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Abstract

The work is devoted to a new approach to the expansion of iterated
Stratonovich stochastic integrals with respect to the components of a mul-
tidimensional Wiener process. This approach is based on multiple Fourier–
Legendre series as well as multiple trigonometric Fourier series. The theo-
rem on the mean-square convergent expansion for the iterated Stratonovich
stochastic integrals of arbitrary multiplicity is formulated and proved un-
der the condition of convergence of trace series. This condition has been
verified for integrals of multiplicities 1 to 5 and complete orthonormal sys-
tems of Legendre polynomials and trigonometric functions in Hilbert space.
The Hu–Meyer formula and multiple Wiener stochastic integral were used
in the proof of the mentioned theorem. The rate of mean-square conver-
gence of the obtained expansions is found. The results of the work can be
applied to the numerical integration of Itô stochastic differential equations
with non-commutative noise in the framework of the approach based on the
Taylor–Stratonovich expansion.
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1 Introduction
Let (Ω, F, P) be a complete probability space, let {Ft, t ∈ [0,T]} be a

nondecreasing right-continous family of σ-algebras of F, and let Wt be a
standard m-dimensional Wiener stochastic process, which is Ft-measurable
for any t ∈ [0,T]. We assume that the components W(i)

t (i = 1, . . . ,m) of
this process are independent. Consider an Itô stochastic differential equation
(SDE) in the integral form

xt = x0 +

t∫
0

a(xτ , τ)dτ +
t∫

0

B(xτ , τ)dWτ , x0 = x(0, ω), ω ∈ Ω. (1)

Here xt is some n-dimensional stochastic process satisfying the equation (1).
The nonrandom functions a : Rn × [0,T] → Rn, B : Rn × [0,T] → Rn×m

guarantee the existence and uniqueness up to stochastic equivalence of a
solution of the equation (1). Let x0 is F0-measurable and E |x0|2 < ∞ (E
denotes a mathematical expectation). We assume that x0 and Wt − W0
are independent when t > 0.
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It is well known that Itô SDEs are adequate mathematical models of
dynamic systems of various physical nature under the influence of random
disturbances. One of the effective approaches to the numerical integration
of Itô SDEs is an approach based on the Taylor–Itô and Taylor–Stratonovich
expansions. The most important feature of such expansions is a presence in
them of the following iterated Itô and Stratonovich stochastic integrals

J [ψ(k)](i1...ik)T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dW(i1)
t1 . . . dW(ik)

tk , (2)

J ∗[ψ(k)](i1...ik)T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1) ◦ dW(i1)
t1 . . . ◦ dW(ik)

tk , (3)

where ψ1(τ), . . . , ψk(τ) are nonrandom functions on [t,T], W(i)
τ (i = 1, . . . ,

m) are independent standard Wiener processes, W(0)
τ = τ, i1, . . . , ik = 0,

1, . . . , m, dW(i)
τ and ◦ dW(i)

τ denote Itô and Stratonovich differentials,
respectively (i = 1, . . . ,m).

Effective solution of the problem of mean-square approximation of iter-
ated Stratonovich stochastic integrals (3) composes the subject of the work.
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Remark 1. It is well known that the following representation takes place

W(i)
τ −W(i)

t = l.i.m.
p→∞

(
W(i)p

τ − W(i)p
t

)
, W(i)p

τ −W(i)p
t =

p∑
j=0

τ∫
t

ϕj(s)ds ·ζ(i)j ,

ζ
(i)
j =

T∫
t

ϕj(s)dW(i)
s , dW(i)p

τ =

p∑
j=0

ϕj(τ)ζ
(i)
j dτ,

where p ∈ N, τ ∈ [t,T], t ≥ 0, {ϕj(x)}∞j=0 is an arbitrary CONS in L2([t,T]),
W(0)

s = s, i = 0, 1, . . . ,m, ζ(i)j are i.i.d. N(0, 1)-r.v.’s for various i or j (i ̸= 0).
Consider the following iterated Riemann–Stieltjes integral
T∫

t

ψk(tk) . . .

t2∫
t

ψ1(t1)dW(i1)p
t1 . . . dW(ik)p

tk =

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl → ?

if p → ∞, where i1, . . . , ik = 0, 1, . . . ,m,Cjk...j1 has the form

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk.

The case i1 = . . .= ik ̸=0 can be obtained from [JK-1],[BK-1],[B-1] under
additional assumptions among which is the existence of limiting traces.
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2 Expansion of Iterated Itô Stochastic Integrals of Arbitrary
Multiplicity Based on Generalized Multiple Fourier Series

Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t,T]). Define the following func-
tion on the hypercube [t,T]k

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), for t1 < . . . < tk

0, otherwise
, (4)

where t1, . . . , tk ∈ [t,T] (k ≥ 2), and K(t1) ≡ ψ1(t1) for t1 ∈ [t,T].
Suppose that {ϕj(x)}∞j=0 is a complete orthonormal system of functions

in the space L2([t,T]). It is well known that the generalized multiple Fourier
series of K(t1, . . . , tk) ∈ L2([t,T]k) is converging to K(t1, . . . , tk) in the
hypercube [t,T]k in the mean-square sense, i.e.

lim
p1,...,pk→∞

∥∥∥∥K − Kp1...pk

∥∥∥∥
L2([t,T]k)

= 0,
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where

Kp1...pk(t1, . . . , tk) =
p1∑

j1=0
. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl),

Cjk...j1 =

∫
[t,T]k

K(t1, . . . , tk)
k∏

l=1
ϕjl(tl)dt1 . . . dtk (5)

is the Fourier coefficient,

∥f ∥L2([t,T]k) =

 ∫
[t,T]k

f 2(t1, . . . , tk)dt1 . . . dtk


1/2

.

Consider the partition {τj}N
j=0 of [t,T] such that

t = τ0 < . . . < τN = T, ∆N = max
0≤j≤N−1

∆τj → 0 if N → ∞, ∆τj = τj+1−τj.

(6)
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Theorem 1 [1, Section 1.1.3] (2006). Suppose that every ψl(τ) (l = 1,
. . . , k) is a continuous nonrandom function on [t,T] and {ϕj(x)}∞j=0 is a
CONS of continuous functions in L2([t,T]). Then

J [ψ(k)](i1...ik)T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

( k∏
l=1

ζ
(il)
jl −

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆W(i1)
τl1

. . . ϕjk(τlk)∆W(ik)
τlk

)
, (7)

Gk = Hk\Lk, Hk = {(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . ,N − 1},
Lk = {(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . ,N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k},

i1, . . . , ik = 0, 1, . . . ,m, J [ψ(k)](i1...ik)T,t is defined by (2), ζ(i)j =
T∫
t
ϕj(τ)dW(i)

τ

are i.i.d. N(0, 1)-r.v.’s for various i or j (if i ̸= 0), Cjk...j1 is the Fourier
coefficient (5), ∆W(i)

τj = W(i)
τj+1 − W(i)

τj (i = 0, 1, . . . ,m), {τj}N
j=0 is a

partition of the interval [t,T], which satisfies the condition (6).
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Let us consider particular cases of Theorem 1 (see (7)) for k = 1, . . . , 5

J [ψ(1)](i1)T,t = l.i.m.
p1→∞

p1∑
j1=0

Cj1ζ
(i1)
j1 , (8)

J [ψ(2)](i1i2)
T,t = l.i.m.

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1

(
ζ
(i1)
j1 ζ

(i2)
j2 − 1{i1=i2 ̸=0}1{j1=j2}

)
, (9)

J [ψ(3)](i1i2i3)
T,t = l.i.m.

p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1

(
ζ
(i1)
j1 ζ

(i2)
j2 ζ

(i3)
j3 −

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3 − 1{i2=i3 ̸=0}1{j2=j3}ζ

(i1)
j1 − 1{i1=i3 ̸=0}1{j1=j3}ζ

(i2)
j2

)
,

(10)
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J [ψ(4)](i1...i4)T,t = l.i.m.
p1,...,p4→∞

p1∑
j1=0

. . .

p4∑
j4=0

Cj4...j1

( 4∏
l=1

ζ
(il)
jl −

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3 ζ

(i4)
j4 − 1{i1=i3 ̸=0}1{j1=j3}ζ

(i2)
j2 ζ

(i4)
j4 −

−1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2 ζ

(i3)
j3 − 1{i2=i3 ̸=0}1{j2=j3}ζ

(i1)
j1 ζ

(i4)
j4 −

−1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1 ζ

(i3)
j3 − 1{i3=i4 ̸=0}1{j3=j4}ζ

(i1)
j1 ζ

(i2)
j2 +

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}+

+ 1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}

)
, (11)
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J [ψ(5)](i1...i5)T,t = l.i.m.
p1,...,p5→∞

p1∑
j1=0

. . .

p5∑
j5=0

Cj5...j1

( 5∏
l=1

ζ
(il)
jl −

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3 ζ

(i4)
j4 ζ

(i5)
j5 − 1{i1=i3 ̸=0}1{j1=j3}ζ

(i2)
j2 ζ

(i4)
j4 ζ

(i5)
j5 −

−1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2 ζ

(i3)
j3 ζ

(i5)
j5 − 1{i1=i5 ̸=0}1{j1=j5}ζ

(i2)
j2 ζ

(i3)
j3 ζ

(i4)
j4 −

−1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1 ζ

(i4)
j4 ζ

(i5)
j5 − 1{i2=i4 ̸=0}1{j2=j4}ζ

(i1)
j1 ζ

(i3)
j3 ζ

(i5)
j5 −

−1{i2=i5 ̸=0}1{j2=j5}ζ
(i1)
j1 ζ

(i3)
j3 ζ

(i4)
j4 − 1{i3=i4 ̸=0}1{j3=j4}ζ

(i1)
j1 ζ

(i2)
j2 ζ

(i5)
j5 −

−1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1 ζ

(i2)
j2 ζ

(i4)
j4 − 1{i4=i5 ̸=0}1{j4=j5}ζ

(i1)
j1 ζ

(i2)
j2 ζ

(i3)
j3 +
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+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}ζ
(i5)
j5 +1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}ζ

(i4)
j4

+1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}ζ
(i3)
j3 +1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}ζ

(i5)
j5

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}ζ
(i4)
j4 +1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}ζ

(i2)
j2

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}ζ
(i5)
j5 +1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}ζ

(i3)
j3

+1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i2)
j2 +1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}ζ

(i4)
j4

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}ζ
(i3)
j3 +1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}ζ

(i2)
j2

+1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1 +1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}ζ

(i1)
j1

+ 1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1

)
, (12)

where 1A is the indicator of the set A.
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Let us consider the generalization of Theorem 1. In order to do this, let
us consider the unordered set {1, 2, . . . , k} and separate it into two parts:
the first part consists of r unordered pairs (sequence order of these pairs
is also unimportant) and the second one consists of the remaining k − 2r
numbers. So, we have

({{g1, g2}, . . . , {g2r−1, g2r}︸ ︷︷ ︸
part 1

}, {q1, . . . , qk−2r︸ ︷︷ ︸
part 2

}), (13)

where
{g1, g2, . . . , g2r−1, g2r, q1, . . . , qk−2r} = {1, 2, . . . , k},

braces mean an unordered set, and parentheses mean an ordered set.
Consider the sum ∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

ag1g2,...,g2r−1g2r,q1...qk−2r
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Theorem 2 [1, Section 1.11] Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t,T])
and {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in
the space L2([t,T]). Then the following expansion

J [ψ(k)](i1...ik)T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

( k∏
l=1

ζ
(il)
jl +

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}1{jg2s−1 = jg2s }

k−2r∏
l=1

ζ
(iql )
jql

)

(14)
that converges in the mean-square sense is valid, where [x] is an integer part
of a real number x; another notations are the same as in Theorem 1.

[R-1] Rybakov, K.A. Orthogonal expansion of multiple Itô stochastic
integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 3 (2021), 109-
140.
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3 Expansions of Iterated Stratonovich Stochastc Integrals
of Multiplicities 1 to 4. Some Old Results

Let M2[t,T] (0 ≤ t < T < ∞) be the class of random functions
ξ(τ, ω)

def
= ξτ : [t,T] × Ω → R, which satisfy the following conditions:

ξ(τ, ω) is measurable with respect to the pair of variables (τ, ω), ξτ is Fτ -
measurable for all τ ∈ [t,T], ξτ is independent with increments Ws+∆−Ws
for s ≥ τ, ∆ > 0, and

T∫
t

E(ξτ )2dτ <∞, E(ξτ )2 <∞ for all τ ∈ [t,T].

We introduce the class Q4[t,T] of Itô processes η(i)τ , τ ∈ [t,T], i =
1, . . . ,m of the form

η(i)τ = η
(i)
t +

τ∫
t

asds +
τ∫

t

bsdW(i)
s w. p. 1, (15)

where (as)4, (bs)4 ∈ M2[t,T] and lim
s→τ

E |bs − bτ |4 = 0 for all τ ∈ [t,T].
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Consider a function F(x, τ) : R × [t,T] → R for fixed τ from the class
C2(−∞,∞) consisting of twice continuously differentiable in x functions on
the interval (−∞,∞) such that the first two derivatives are bounded.

The mean-square limit

l.i.m.
N→∞

N−1∑
j=0

F
(

1
2
(
η(i)τj + η(i)τj+1

)
, τj

)(
W(l)

τj+1 − W(l)
τj

)
def
=

T∫
t

F(η(i)τ , τ) ◦ dW(l)
τ

(16)
is called the Stratonovich stochastic integral with respect to the component
W(l)

τ (l = 1, . . . ,m) of the multidimentional Wiener process Wτ , where
{τj}N

j=0 is a partition of the interval [t,T], which satisfies the condition (6).
Under proper conditions we have

T∫
t

F(η(i)τ , τ)◦dW(l)
τ =

T∫
t

F(η(i)τ , τ)dW(l)
τ +

1
21{i=l}

T∫
t

∂F
∂x (ητ , τ)bτdτ w. p. 1,

(17)
where 1A is the indicator of the set A and i, l = 1, . . . ,m.

Dmitriy F. Kuznetsov A new approach to... 19 / 65



A possible variant of conditions under which the formula (17) is correct,
for example, consisits of the conditions

η(i)τ ∈ Q4[t,T], F(η(i)τ , τ) ∈ M2[t,T], F(x, τ) ∈ C2(−∞,∞) (for fixed τ),

where i = 1, . . . ,m.
As it turned out, approximations of the iterated Stratonovich stochastic

integrals (3) are essentially simpler than the appropriate approximations of
the iterated Itô stochastic integrals (2) based on Theorems 1 and 2.

According to the standard connection (17) between Itô and Stratonovich
stochastic integrals, the iterated Itô and Stratonovich stochastic integrals
(2) and (3) of first multiplicity are equal to each other w. p. 1. So, we begin
the consideration from the multiplicity k = 2 (the case k = 1 is given by
(8)).

The following three theorems adapt Theorems 1, 2 for the integrals (3)
of multiplicities 2 to 4.
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Theorem 3 [1, Section 2.1.2] (2012, 2018). Suppose that ψ1(τ), ψ2(τ)
are continuously differentiable functions at the interval [t,T] and {ϕj(x)}∞j=0
is a complete orthonormal system of Legendre polynomials or trigonometric
functions in the space L2([t,T]). Then, the iterated Stratonovich stochastic
integral of second multiplicity

J ∗[ψ(2)](i1i2)
T,t =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ dW(i1)
t1 ◦ dW(i2)

t2

is expanded into the converging in the mean-square sense double series

J ∗[ψ(2)](i1i2)
T,t = l.i.m.

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1 ζ

(i2)
j2 ,

where i1, i2 = 0, 1, . . . ,m; another notations are the same as in Theorems
1, 2.
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Theorem 4 [1, Section 2.2.5] (2013). Suppose that {ϕj(x)}∞j=0 is a com-
plete orthonormal system of Legendre polynomials or trigonomertic func-
tions in the space L2([t,T]). Furthermore, let the function ψ2(τ) is contin-
uously differentiable at the interval [t,T] and the functions ψ1(τ), ψ3(τ) are
twice continuously differentiable at the interval [t,T]. Then, for the iterated
Stratonovich stochastic integral of third multiplicity

J ∗[ψ(3)](i1i2i3)
T,t =

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ dW(i1)
t1 ◦ dW(i2)

t2 ◦ dW(i3)
t3

the following expansion

J ∗[ψ(3)](i1i2i3)
T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1 ζ

(i2)
j2 ζ

(i3)
j3 (18)

that converges in the mean-square sense is valid, where i1, i2, i3 = 0, 1, . . . ,m;
another notations are the same as in Theorems 1, 2.
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Theorem 5 [1, Section 2.3] (2013). Suppose that {ϕj(x)}∞j=0 is a com-
plete orthonormal system of Legendre polynomials or trigonometric func-
tions in the space L2([t,T]). Then, for the iterated Stratonovich stochastic
integral of fourth multiplicity

J ∗(i1...i4)
T,t =

T∫
t

. . .

t2∫
t

◦ dW(i1)
t1 . . . ◦ dW(i4)

t4

the following expansion

J ∗(i1...i4)
T,t = l.i.m.

p→∞

p∑
j1,...,j4=0

Cj4...j1ζ
(i1)
j1 . . . ζ

(i4)
j4

that converges in the mean-square sense is correct, where i1, . . . , i4 = 0, 1,
. . . ,m; another notations are the same as in Theorems 1, 2.
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4 Expansion of Iterated Stratonovich Stochastic Integrals
of Arbitrary Multiplicity k

In this section, we prove the expansion of iterated Stratonovich stochas-
tic integrals (3) of arbitrary multiplicity k (k ∈ N) under the condition of
convergence of trace series.

Consider the Fourier coefficient

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (19)

corresponding to the function (4), where {ϕj(x)}∞j=0 is a complete orthonor-
mal system of functions in the space L2([t,T]). At that we suppose

ϕ0(x) =
1√

T − t
.
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Denote
Cjk...jl+1jljljl−2...j1

∣∣∣∣
(jljl)↷(·)

def
=

def
=

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1(tl+1)

tl+1∫
t

ψl(tl)ψl−1(tl)×

×
tl∫

t

ψl−2(tl−2)ϕjl−2(tl−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtl−2dtltl+1 . . . dtk =

= Ĉjk...jl+10jl−2...j1 , (20)

i.e. Ĉjk...jl+10jl−2...j1 is again the Fourier coefficient of type (19) but with a
new shorter multi-index jk . . . jl+10jl−2 . . . j1 and new weight functions ψ1(τ),
. . . , ψl−2(τ),

√
T − t ψl−1(τ)ψl(τ), ψl+1(τ), . . . , ψk(τ) (also we suppose

that {l, l − 1} is one of the pairs {g1, g2}, . . . , {g2r−1, g2r} (see (13)).
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Denote

C̄(p)
jk...jq...j1

∣∣∣∣
q̸=g1,g2,...,g2r−1,g2r

def
=

def
=

∞∑
jg2r−1=p+1

∞∑
jg2r−3=p+1

. . .

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1=jg2r

,

Sl

{
C̄(p)

jk...jq...j1

∣∣∣∣
q̸=g1,g2,...,g2r−1,g2r

}
def
=

1
21{g2l=g2l−1+1}

∞∑
jg2r−1=p+1

∞∑
jg2r−3=p+1

. . .

. . .

∞∑
jg2l+1=p+1

∞∑
jg2l−3=p+1

. . .

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg2l jg2l−1 )↷(·),jg1=jg2 ,...,jg2r−1=jg2r
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Note that the operation Sl (l = 1, 2, . . . , r) acts on the value

C̄(p)
jk...jq...j1

∣∣∣∣
q̸=g1,g2,...,g2r−1,g2r

(21)

as follows: Sl multiplies (21) by 1{g2l=g2l−1+1}/2, removes the summation

∞∑
jg2l−1=p+1

,

and replaces
Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1=jg2r

with
Cjk...j1

∣∣∣∣
(jg2l jg2l−1 )↷(·),jg1=jg2 ,...,jg2r−1=jg2r

. (22)
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Since (22) is again the Fourier coefficient, then the action of superposi-
tion SlSm on (21) is obvious. For example, for r = 3

S3S1

{
C̄(p)

jk...jq...j1

∣∣∣∣
q̸=g1,g2,...,g5,g6

}
=

=
1
22 1{g6=g5+1}1{g2=g1+1}

∞∑
jg3=p+1

Cjk...j1

∣∣∣∣∣
(jg2 jg1 )↷(·)(jg6 jg5 )↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6

,

S2

{
C̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
=

=
1
21{g4=g3+1}

∞∑
jg1=p+1

∞∑
jg5=p+1

Cjk...j1

∣∣∣∣∣
(jg4 jg3 )↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6

.
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Theorem 6 [1, Section 2.10] (2022). Assume that the continuously
differentiable functions ψl(τ) (l = 1, . . . , k) and the complete orthonormal
system {ϕj(x)}∞j=0 of continuous functions (ϕ0(x) = 1/

√
T − t) in the space

L2([t,T]) are such that the following conditions are satisfied:

1. The equality

1
2

s∫
t

Φ1(t1)Φ2(t1)dt1 =
∞∑

j=0

s∫
t

Φ2(t2)ϕj(t2)

t2∫
t

Φ1(t1)ϕj(t1)dt1dt2 (23)

holds for all s ∈ (t,T], where the nonrandom functions Φ1(τ), Φ2(τ) are
continuously differentiable on [t,T] and the series on the right-hand side of
(23) converges absolutely.

Dmitriy F. Kuznetsov A new approach to... 29 / 65



2. The estimates∣∣∣∣∣∣
s∫

t

ϕj(τ)Φ1(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)
j1/2+α

,

∣∣∣∣∣∣
T∫

s

ϕj(τ)Φ2(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)
j1/2+α

,

∣∣∣∣∣∣
∞∑

j=p+1

s∫
t

Φ2(τ)ϕj(τ)

τ∫
t

Φ1(θ)ϕj(θ)dθdτ

∣∣∣∣∣∣ ≤ Ψ2(s)
pβ

hold for all s ∈ (t,T) and for some α, β > 0, where Φ1(τ), Φ2(τ) are
continuously differentiable nonrandom functions on [t,T], j, p ∈ N, and

T∫
t

Ψ2
1(τ)dτ <∞,

T∫
t

|Ψ2(τ)| dτ <∞.
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3. The condition

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
Sl1Sl2 . . . Sld

{
C̄(p)

jk...jq...j1

∣∣∣∣
q̸=g1,g2,...,g2r−1,g2r

})2

= 0

holds for all possible g1, g2, . . . , g2r−1, g2r (see (13)) and l1, l2, . . . , ld such
that l1, l2, . . . , ld ∈ {1, 2, . . . , r}, l1 > l2 > . . . > ld, d = 0, 1, 2, . . . , r − 1,
where r = 1, 2, . . . , [k/2] and

Sl1Sl2 . . . Sld

{
C̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
= C̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

for d = 0.
Then, for the iterated Stratonovich stochastic integral of arbitrary mul-

tiplicity k
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J ∗[ψ(k)](i1...ik)T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1) ◦ dW(i1)
t1 . . . ◦ dW(ik)

tk (24)

the following expansion

J ∗[ψ(k)](i1...ik)T,t = l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl (25)

that converges in the mean-square sense is valid, where i1, . . . , ik = 0,1, . . . ,m,

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (26)

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense,W(0)
τ = τ,

ζ
(i)
j =

T∫
t

ϕj(τ)dW(i)
τ

are independent N(0, 1) – random variables for various i or j (if i ̸= 0).
Dmitriy F. Kuznetsov A new approach to... 32 / 65



Proof. Step 1. Let us find a representation of the random variable
p∑

j1,...,jk=0
Cjk...j1

k∏
l=1

ζ
(il)
jl

that will be convenient for further consideration.
Let us consider the following multiple stochastic integral

J ′[Φ]
(i1...ik)
T,t

def
= l.i.m.

N→∞

N−1∑
j1,...,jk=0

jq ̸=jp; q̸=p; q,p=1,...,k

Φ(τj1 , . . . , τjk)
k∏

l=1
∆W(il)

τjl
, (27)

where we assume that Φ(t1, . . . , tk) : [t,T]k → R is a continuous nonran-
dom function on [t,T]k. Moreover, ∆W(i)

τj = W(i)
τj+1 −W(i)

τj (i = 0, 1, . . . ,m),

{τj}N
j=0 is a partition of the interval [t,T], which satisfies the condition (6),

i1, . . . , ik = 0, 1, . . . ,m.
The stochastic integral with respect to the scalar standard Wiener pro-

cess (i1 = . . . = ik ̸= 0) and similar to (27) was considered in [I-1] (1951)
and is called the multiple Wiener stochastic integral.
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Note that the following well known estimate

E
(

J ′[Φ]
(i1...ik)
T,t

)2
≤ Ck

∫
[t,T]k

Φ2(t1, . . . , tk)dt1 . . . dtk (28)

is true for the multiple Wiener stochastic integral, where J ′[Φ]
(i1...ik)
T,t is de-

fined by (27) and Ck is a constant.
From the proof of Theorem 1 [1, Section 1.1.3] it follows that (7) can

be written as

J [ψ(k)](i1...ik)T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J ′[ϕj1 . . . ϕjk ]
(i1...ik)
T,t , (29)

where J ′[ϕj1 . . . ϕjk ]
(i1...ik)
T,t is the multiple Wiener stochatic integral defined

by (27) and J [ψ(k)](i1...ik)T,t is the iterated Itô stochastic integral (2).

Dmitriy F. Kuznetsov A new approach to... 34 / 65



Let us consider the following multiple stochastic integral

J [Φ](i1...ik)T,t
def
= l.i.m.

N→∞

N−1∑
j1,...,jk=0

Φ(τj1 , . . . , τjk)
k∏

l=1
∆W(il)

τjl
, (30)

where we assume that Φ(t1, . . . , tk) : [t,T]k → R is a continuous nonran-
dom function on [t,T]k. Another notations are the same as in (27).

The stochastic integral with respect to the scalar standard Wiener pro-
cess (i1 = . . . = ik ̸= 0) and similar to (30) has been considered in the
literature (see, for example, Remark 1.5.7 [B-1]). The integral (30) is some-
times called the multiple Stratonovich stochastic integral. This is due to
the fact that the following rule of the classical integral calculus holds for
this integral

J [Φ](i1...ik)T,t = J [φ1]
(i1)
T,t . . . J [φk]

(ik)
T,t w. p. 1,

where Φ(t1, . . . , tk) = φ1(t1) . . . φk(tk).
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Theorem 7 [1, Section 1.9] Suppose that Φ(t1, . . . , tk) : [t,T]k → R
is a continuous nonrandom function on [t,T]k. Furthermore, let {ϕj(x)}∞j=0
be a complete orthonormal system of continuous functions in the space
L2([t,T]). Then the following expansion

J ′[Φ]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

( k∏
l=1

ζ
(il)
jl +

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}1{jg2s−1 = jg2s }

k−2r∏
l=1

ζ
(iql )
jql

)

(31)
converging in the mean-square sense is valid, where J ′[Φ]

(i1...ik)
T,t is the mul-

tiple Wiener stochatic integral defined by (27),

Cjk...j1 =

∫
[t,T]k

Φ(t1, . . . , tk)
k∏

l=1
ϕjl(tl)dt1 . . . dtk

is the Fourier coefficient. Another notations are the same as in Theo-
rems 1,2.
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Introduce the following notations

J [ψ(k)](i1...ik)[sl,...,s1]
T,t

def
=

l∏
p=1

1{isp=isp+1 ̸=0} ×

×
T∫

t

ψk(tk) . . .

tsl+3∫
t

ψsl+2(tsl+2)

tsl+2∫
t

ψsl(tsl+1)ψsl+1(tsl+1)×

×

tsl+1∫
t

ψsl−1(tsl−1) . . .

ts1+3∫
t

ψs1+2(ts1+2)

ts1+2∫
t

ψs1(ts1+1)ψs1+1(ts1+1)×

×

ts1+1∫
t

ψs1−1(ts1−1) . . .

t2∫
t

ψ1(t1)dW(i1)
t1 . . . dW(is1−1)

ts1−1 dts1+1dW(is1+2)
ts1+2 . . .

. . . dW(isl−1)
tsl−1 dtsl+1dW(isl+2)

tsl+2 . . . dW(ik)
tk , (32)
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where (sl, . . . , s1) ∈ Ak,l,

Ak,l =
{
(sl, . . . , s1) : sl > sl−1+1, . . . , s2 > s1+1; sl, . . . , s1 = 1, . . . , k−1

}
,

(33)
l = 1, 2, . . . , [k/2] , i1, . . . , ik = 0, 1, . . . ,m, [x] is an integer part of a real
number x, 1A is the indicator of the set A.

Let us formulate the statement on connection between iterated Itô and
Stratonovich stochastic integrals (2) and (3) of arbitrary multiplicity k.

Theorem 8 [1, Section 2.4.1] (1997). Suppose that every ψl(τ) (l =
1, . . . , k) is a continuous nonrandom function at the interval [t,T]. Then,
the following relation between iterated Stratonovich and Itô stochastic in-
tegrals (3) and (2) is correct

J ∗[ψ(k)](i1...ik)T,t = J [ψ(k)](i1...ik)T,t +

[k/2]∑
r=1

1
2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)](i1...ik)[sr,...,s1]
T,t (34)

w. p. 1, where
∑
∅

is supposed to be equal to zero.
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Consider Theorem 7 (see (31)) for Φ(t1, . . . , tk) = Kp1...pk(t1, . . . , tk)

and without passing to the limit l.i.m.
p1,...,pk→∞

J [Kp1...pk ]
(i1...ik)
T,t = J ′[Kp1...pk ]

(i1...ik)
T,t −

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}×

× J [Kg1...g2r,q1...qk−2r
p1...pk ]

(iq1 ...iqk−2r )

T,t (35)

w. p. 1, where J ′[Kp1...pk ]
(i1...ik)
T,t is the multiple Wiener stochastic integral

(27), J [Kp1...pk ]
(i1...ik)
T,t is the multiple Stratonovich stochastic integral (30),

Kp1...pk(t1, . . . , tk) =
p1∑

j1=0
. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl), (36)
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Kg1...g2r,q1...qk−2r
p1...pk (tq1 , . . . , tqk−2r) =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

r∏
s=1

1{jg2s−1 = jg2s }

k−2r∏
l=1

ϕjql
(tql).

(37)
By iteratively applying the formula (35), we obtain a representation of

the multiple Stratonovich stochastic integral of multiplicity k as the sum of
some constant value and multiple Wiener stochastic integrals of multiplici-
ties not exceeding k

J [Kp1...pk ]
(i1...ik)
T,t = J ′[Kp1...pk ]

(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}×

× J ′[Kg1...g2r,q1...qk−2r
p1...pk ]

(iq1 ...iqk−2r )

T,t w. p. 1. (38)
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From (38) we have
p1∑

j1=0
. . .

pk∑
jk=0

Cjk...j1ζ
(i1)
j1 . . . ζ

(ik)
jk =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J ′[ϕj1 . . . ϕjk ]
(i1...ik)
T,t +

+

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}×

× 1{jg2s−1 = jg2s }
J ′[ϕjq1

. . . ϕjqk−2r
]
(iq1 ...iqk−2r )

T,t w. p. 1. (39)
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The formulas (38), (39) can be considered as new representations of the
Hu-Meyer formula for the case of a multidimensional Wiener process [R-2]
(also see [B-1], [JK-1]) and kernel Kp1...pk(t1, . . . , tk) (see (36)).

Further, we will use the representation (39) for p1 = . . . = pk = p, i.e.

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl =

p∑
j1,...,jk=0

Cjk...j1J ′[ϕj1 . . . ϕjk ]
(i1...ik)
T,t +

+

p∑
j1,...,jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ≠0}×

× 1{jg2s−1 = jg2s }
J ′[ϕjq1

. . . ϕjqk−2r
]
(iq1 ...iqk−2r )

T,t w. p. 1. (40)
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Step 2. Under the Condition 2 of Theorem 6, we get
∞∑

jl=0
Cjk...jl+1jljl−1...js+1jljs−1...j1 = 0 (41)

or
p∑

jl=0
Cjk...jl+1jljl−1...js+1jljs−1...j1 = −

∞∑
jl=p+1

Cjk...jl+1jljl−1...js+1jljs−1...j1 , (42)

where l − 1 ≥ s + 1.

Step 3. Using Conditions 1 and 2 of Theorem 6, we obtain
p∑

jl=0
Cjk...jl+1jljljl−2...j1 =

1
2Cjk...j1

∣∣∣∣
(jljl)↷(·)

−
∞∑

jl=p+1
Cjk...jl+1jljljl−2...j1 . (43)
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Step 4. Passing to the limit l.i.m.
p→∞ in (40), we have (see Theorem 1 and

(29))

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1ζ
(i1)
j1 . . . ζ

(ik)
jk = J [ψ(k)](i1...ik)T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}×

× l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

r∏
s=1

1{jg2s−1 = jg2s }
J ′[ϕjq1

. . . ϕjqk−2r
]
(iq1 ...iqk−2r )

T,t w. p. 1.

(44)
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Using Step 2 and Step 3, we have for r = 1, 2, . . . , [k/2]

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

r∏
s=1

1{jg2s−1 = jg2s }
J ′[ϕjq1

. . . ϕjqk−2r
]
(iq1 ...iqk−2r )

T,t =

= l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1
2r Cjk...j1

∣∣∣∣
(jg2 jg1 )↷(·)...(jg2r jg2r−1 )↷(·),jg1 = jg2 ,...,jg2r−1 = jg2r

×

×
r∏

s=1
1{g2s=g2s−1+1}J ′[ϕjq1

. . . ϕjqk−2r
]
(iq1 ...iqk−2r )

T,t +

+ l.i.m.
p→∞ R(p)g1,g2,...,g2r−1,g2r(iq1 ...iqk−2r )

T,t w. p. 1. (45)
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R(p)g1,g2,...,g2r−1,g2r(iq1 ...iqk−2r )

T,t =

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
(−1)rC̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

+

+(−1)r−1
r∑

l1=1
Sl1

{
C̄(p)

jk...jq...j1

∣∣∣∣
q̸=g1,g2,...,g2r−1,g2r

}
+

+(−1)r−2
r∑

l1,l2=1
l1>l2

Sl1Sl2

{
C̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
+

. . .

+(−1)1
r∑

l1,l2,...,lr−1=1
l1>l2>...>lr−1

Sl1Sl2 . . . Slr−1

{
C̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}×

× J ′[ϕjq1
. . . ϕjqk−2r

]
(iq1 ...iqk−2r )

T,t . (46)
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We have for g2 = g1 + 1, . . . , g2r = g2r−1 + 1

l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1
2r Cjk...j1

∣∣∣∣
(jg2 jg1 )↷(·)...(jg2r jg2r−1 )↷(·),jg1 = jg2 ,...,jg2r−1 = jg2r

×

×
r∏

s=1
1{ig2s−1 = ig2s ̸=0}J ′[ϕjq1

. . . ϕjqk−2r
]
(iq1 ...iqk−2r )

T,t =

=
1
2r

l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q̸=g1,g2,...,g2r−1,g2r

p∑
jm1 ,jm3 ...,jm2r−1=0

r∏
s=1

1{ig2s−1 = ig2s ̸=0}×

×Cjk...j1

∣∣∣∣
(jg2 jg1 )↷jm1 ...(jg2r jg2r−1 )↷jm2r−1 ,jg1 = jg2 ,...,jg2r−1 = jg2r

×

×J ′[ϕjm1
ϕjm3

. . . ϕjm2r−1
ϕjq1

. . . ϕjqk−2r
]
(00...0iq1 ...iqk−2r )

T,t =

= (by Theorem 1 and (29)) =
1
2r J [ψ(k)](i1...ik)[sr,...,s1]

T,t w. p. 1, (47)
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where the notations are the same as in (32) and (33), g2i−1 = si (i =
1, 2, . . . , r, r = 1, 2, . . . , [k/2]) the last transition is based on (29), and

Cjk...jl+1jljljl−2...j1

∣∣∣∣
(jljl)↷jm

def
=

def
=

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1(tl+1)

tl+1∫
t

ψl(tl)ψl−1(tl)ϕjm(tl)×

×
tl∫

t

ψl−2(tl−2)ϕjl−2(tl−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtl−2dtltl+1 . . . dtk =

= C̄jk...jl+1jmjl−2...j1 ,

i.e. C̄jk...jl+1jmjl−2...j1 is again the Fourier coefficient of type (19) but with
a new shorter multi-index jk . . . jl+1jmjl−2 . . . j1 and new weight functions
ψ1(τ), . . . , ψl−2(τ), ψl−1(τ)ψl(τ), ψl+1(τ), . . . , ψk(τ) (also we suppose
that {l, l − 1} is one of the pairs {g1, g2}, . . . , {g2r−1, g2r} (see (13))).
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Using (42)-(47), and Theorem 8, we prove that [1, Section 2.10]

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1ζ
(i1)
j1 . . . ζ

(ik)
jk =

= J [ψ(k)](i1...ik)T,t +

[k/2]∑
r=1

1
2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)](i1...ik)[sr,...,s1]
T,t =

= J ∗[ψ(k)](i1...ik)T,t (48)

w. p. 1, where J [ψ(k)](i1...ik)[sr,...,s1]
T,t is defined by (32). Theorem 6 is proved.
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[R-2] Rybakov, K.A. Orthogonal expansion of multiple Stratonovich
stochastic integrals. Differencialnie Uravnenia i Protsesy Upravlenia, 4
(2021), 81–115.

1. An expansion similar to (25) was obtained in [R-2], where the author
used a definition of the Stratonovich stochastic integral, which differs from
(16). The proof from [R-2] is somewhat simpler than the proof proposed in
this work. However, our proof allows us to estimate the rate of convergence
in Theorem 6.

2. We also note that Conditions 1 and 2 of Theorem 6 are satisfied for
complete orthonormal systems of Legendre polynomials and trigonometric
functions in the space L2([t,T]) [1, Chapters 1, 2] (see (49)–(54) below).

3. Taking into account the modification of Theorem 1 for the case of
integration interval [t, s], s ∈ (t,T] of iterated Itô stochastic integrals (2)
[1, Section 1.8] we can formulate an analogue of Theorem 6 for the case of
integration interval [t, s], s ∈ (t,T) [1, Section 2.10].
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In [1, Sections 2.1.2, 2.7, 2.9] the following formulas are proved

1
2

s∫
t

ψ1(t1)ψ2(t1)dt1 =
∞∑

j=0
Cjj(s), s ∈ (t,T], (49)∣∣∣∣∣∣

∞∑
j=p+1

Cjj(s)

∣∣∣∣∣∣ ≤ C
p

(
1

(1 − z2(s))1/4 + 1
)
, s ∈ (t,T), (50)

∣∣∣∣∣∣
∞∑

j=p+1
Cjj(s)

∣∣∣∣∣∣ ≤ C
p , s ∈ (t,T], (51)

where constant C does not depend p,

z(s) =
(

s − T + t
2

)
2

T − t , Cjj(s) =
s∫

t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2,

{ϕj(x)}∞j=0 is a CONS of Legendre polynomials (formulas (49), (50)) or
trigonometric functions (formulas (49), (51)) in the space L2([t,T]), the
functions ψ1(τ), ψ2(τ) are continuously differentiable at the interval [t,T].
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For the case of Legendre polynomials, we have [1]∣∣∣∣∣∣
x∫

t

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣+
∣∣∣∣∣∣

T∫
x

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣ < C
j

(
1

(1 − (z(x))2)1/4 + 1
)
, (52)

∣∣∣∣∣∣
x∫

v

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣ < C
j

(
1

(1 − (z(x))2)1/4 +
1

(1 − (z(v))2)1/4 + 1
)
, (53)

where j ∈ N, z(x), z(v) ∈ (−1, 1), x, v ∈ (t,T), v < x, ψ(τ) is a continuously
differentiable function on [t,T], constant C does not depend on j.

For the case of trigonometric functions, we obtain∣∣∣∣∣∣
x∫

t

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣+
∣∣∣∣∣∣

T∫
x

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣+
∣∣∣∣∣∣

x∫
v

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣ < C
j , (54)

where j ∈ N, x, v ∈ (t,T), v < x, the function ψ(τ) is continuously differ-
entiable at the interval [t,T], constant C does not depend on j.
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5 Expansion of Iterated Stratonovich Stochastic Integrals
of Multiplicities 3 to 5 (Polynomial and Trigonometric
Cases)

Theorem 9 [1, Section 2.11] Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t,T]). Furthermore, let ψ1(τ), ψ2(τ), ψ3(τ) are continuously
differentiable nonrandom functions on [t,T]. Then, for the iterated Strato-
novich stochastic integral of third multiplicity

J ∗[ψ(3)](i1i2i3)
T,t =

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)◦dW(i1)
t1 ◦dW(i2)

t2 ◦dW(i3)
t3 (55)

the following expansion

J ∗[ψ(3)](i1i2i3)
T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1 ζ

(i2)
j2 ζ

(i3)
j3

that converges in the mean-square sense is valid, where i1, i2, i3 = 0, 1, . . . ,m;
another notations are the same as in Theorem 1.
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Proof. As follows from (49)–(54), Conditions 1 and 2 of Theorem 6
are satisfied for complete orthonormal systems of Legendre polynomials and
trigonometric functions in the space L2([t,T]). Let us verify Condition 3 of
Theorem 6 for the iterated Stratonovich stochastic integral (55). Thus, we
have to check the following conditions

lim
p→∞

p∑
j3=0

 ∞∑
j1=p+1

Cj3j1j1

2

= 0,

lim
p→∞

p∑
j1=0

 ∞∑
j3=p+1

Cj3j3j1

2

= 0,

lim
p→∞

p∑
j2=0

 ∞∑
j1=p+1

Cj1j2j1

2

= 0.
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Theorem 10 [1, Section 2.12] Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t,T]). Furthermore, let ψ1(τ), . . . , ψ4(τ) are continuously
differentiable nonrandom functions on [t,T]. Then, for the iterated Strato-
novich stochastic integral of fourth multiplicity

J ∗[ψ(4)](i1...i4)T,t =

T∫
t

ψ4(t4) . . .

t2∫
t

ψ1(t1) ◦ dW(i1)
t1 . . . ◦ dW(i4)

t4 (56)

the following expansion

J ∗[ψ(4)](i1...i4)T,t = l.i.m.
p→∞

p∑
j1,...,j4=0

Cj4...j1ζ
(i1)
j1 . . . ζ

(i4)
j4

that converges in the mean-square sense is valid, where i1, . . . , i4 = 0,1,. . . ,m;
another notations are the same as in Theorem 1.
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Proof. As follows from (49)–(54), Conditions 1 and 2 of Theorem 6
are satisfied for complete orthonormal systems of Legendre polynomials and
trigonometric functions in the space L2([t,T]). Let us verify Condition 3 of
Theorem 6 for the iterated Stratonovich stochastic integral (56). Thus, we
have to check the following conditions

lim
p→∞

p∑
j3,j4=0

 ∞∑
j1=p+1

Cj4j3j1j1

2

= 0, lim
p→∞

p∑
j2,j4=0

 ∞∑
j1=p+1

Cj4j1j2j1

2

= 0,

lim
p→∞

p∑
j2,j3=0

 ∞∑
j1=p+1

Cj1j3j2j1

2

= 0, lim
p→∞

p∑
j1,j4=0

 ∞∑
j2=p+1

Cj4j2j2j1

2

= 0,
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lim
p→∞

p∑
j1,j3=0

 ∞∑
j2=p+1

Cj2j3j2j1

2

= 0, lim
p→∞

p∑
j1,j2=0

 ∞∑
j3=p+1

Cj3j3j2j1

2

= 0,

lim
p→∞

 ∞∑
j2=p+1

∞∑
j1=p+1

Cj2j1j2j1

2

= 0, lim
p→∞

 ∞∑
j2=p+1

∞∑
j1=p+1

Cj1j2j2j1

2

= 0,

lim
p→∞

 ∞∑
j3=p+1

∞∑
j1=p+1

Cj3j3j1j1

2

= 0, lim
p→∞

 ∞∑
j3=p+1

Cj3j3j1j1

∣∣∣∣
(j1j1)↷(·)

2

= 0,

lim
p→∞

 ∞∑
j1=p+1

Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)

2

= 0, lim
p→∞

 ∞∑
j1=p+1

Cj1j2j2j1

∣∣∣∣
(j2j2)↷(·)

2

= 0
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Theorem 11 [1, Section 2.13] Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t,T]). Furthermore, let ψ1(τ), . . . , ψ5(τ) are continuously dif-
ferentiable nonrandom functions on [t,T]. Then, for the iterated Stratono-
vich stochastic integral of fifth multiplicity

J ∗[ψ(5)]T,t =

T∫
t

ψ5(t5) . . .

t2∫
t

ψ1(t1) ◦ dW(i1)
t1 . . . ◦ dW(i5)

t5 (57)

the following expansion

J ∗[ψ(5)]T,t = l.i.m.
p→∞

p∑
j1,...,j5=0

Cj5...j1ζ
(i1)
j1 . . . ζ

(i5)
j5

that converges in the mean-square sense is valid, where i1,. . . , i5 = 0,1,. . . ,m;
another notations are the same as in Theorem 1.
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Proof. As follows from (49)–(54), Conditions 1 and 2 of Theorem 6
are satisfied for CONS of Legendre polynomials and trigonometric func-
tions in L2([t,T]). Let us verify Condition 3 of Theorem 6 for the iterated
Stratonovich stochastic integral (57). Thus, we have to check the following
conditions

lim
p→∞

p∑
jq1 ,jq2 ,jq3=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2

2

= 0,

lim
p→∞

p∑
jq1=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

= 0,

lim
p→∞

p∑
jq1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg2 jg1 )↷(·),jg1=jg2 ,jg3=jg4 ,g2=g1+1

2

= 0,

where ({g1, g2}, {g3, g4}, {q1}) and ({g1, g2}, {q1, q2, q3}) are partitions
of the set {1, 2, . . . , 5} that is {g1, g2, g3, g4, q1} = {g1, g2, q1, q2, q3} =
{1, 2, . . . , 5}; braces mean an unordered set, and parentheses mean an or-
dered set.
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In [1, Sect. 1.7.2] it is shown that under the conditions of Theorem 1
(polynomial and trigonometric cases) the following estimate

E
(

J [ψ(k)](i1...ik)T,t − J [ψ(k)](i1...ik)pT,t

)2
≤ k!Pk(T − t)k

p (58)

holds, where i1, . . . , ik = 1, . . . ,m, constant Pk depends only on k,

J [ψ(k)](i1...ik)T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dW(i1)
t1 . . . dW(ik)

tk ,

J [ψ(k)](i1...ik)pT,t =

p∑
j1,...,jk=0

Cjk...j1

( k∏
l=1

ζ
(il)
jl +

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1 = ig2s ̸=0}1{jg2s−1 = jg2s }

k−2r∏
l=1

ζ
(iql )
jql

)
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6 Rate of the Mean-Square Convergence for Expansions of
Iterated Stratonovich Stochastic Integrals of Multiplicities
1 to 5

In this section, we consider the rate of convergence for approximations
of iterated Stratonovich stochastic integrals.

Theorem 12 [1, Section 2.15] Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t,T]). Furthermore, let ψ1(τ), ψ2(τ), ψ3(τ) are continuously
differentiable nonrandom functions on [t,T]. Then, for the iterated Strato-
novich stochastic integral of third multiplicity J ∗[ψ(3)](i1i2i3)

T,t defined by (3)
the following estimate

E

J ∗[ψ(3)](i1i2i3)
T,t −

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1 ζ

(i2)
j2 ζ

(i3)
j3

2

≤ C
p (p ∈ N)

is fulfilled, where i1, i2, i3 = 1, . . . ,m, constant C is independent of p; an-
other notations are the same as in Theorem 1.
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Theorem 13 [1, Section 2.15] Let {ϕj(x)}∞j=0 be a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t,T]). Furthermore, let ψ1(τ), . . . , ψ4(τ) be continuously differentiable
nonrandom functions on [t,T]. Then, for the iterated Stratonovich stochas-
tic integral of fourth multiplicity J ∗[ψ(4)](i1...i4)T,t defined by (3) the following
estimate

E

J ∗[ψ(4)](i1...i4)T,t −
p∑

j1,...,j4=0
Cj4...j1ζ

(i1)
j1 . . . ζ

(i4)
j4

2

≤ C
p1−ε

(p ∈ N)

holds, where i1, . . . , i4 = 1, . . . ,m, constant C does not depend on p, ε is an
arbitrary small positive real number for the case of complete orthonormal
system of Legendre polynomials in the space L2([t,T]) and ε = 0 for the
case of complete orthonormal system of trigonometric functions in the space
L2([t,T]); another notations are the same as in Theorem 1.

Dmitriy F. Kuznetsov A new approach to... 62 / 65



Theorem 14 [1, Section 2.15] Assume that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t,T]) and ψ1(τ), . . . , ψ5(τ) are continuously differentiable
nonrandom functions on [t,T]. Then, for the iterated Stratonovich stochas-
tic integral of fifth multiplicity J ∗[ψ(5)](i1...i5)T,t defined by (3) the following
estimate

E

J ∗[ψ(5)]T,t −
p∑

j1,...,j5=0
Cj5...j1ζ

(i1)
j1 . . . ζ

(i5)
j5

2

≤ C
p1−ε

(p ∈ N)

is valid, where i1, . . . , i5 = 1, . . . ,m, constant C is independent of p, ε is an
arbitrary small positive real number for the case of complete orthonormal
system of Legendre polynomials in the space L2([t,T]) and ε = 0 for the
case of complete orthonormal system of trigonometric functions in the space
L2([t,T]); another notations are the same as in Theorem 1.

Dmitriy F. Kuznetsov A new approach to... 63 / 65



We should also note the following theorem for the case k = 2.
Theorem 15 [1, Sect. 2.8.1] Suppose that {ϕj(x)}∞j=0 is a complete

orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t,T]). Furthermore, let ψ1(τ), ψ2(τ) are continuously dif-
ferentiable nonrandom functions on [t,T]. Then, for the iterated Stratono-
vich stochastic integral of second multiplicity J ∗[ψ(2)](i1i2)

T,t defined by (3)
the following estimate

E

J ∗[ψ(2)](i1i2)
T,t −

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1 ζ

(i2)
j2

2

≤ C
p (p ∈ N)

is fulfilled, where i1, i2 = 1, . . . ,m, constant C is independent of p; another
notations are the same as in Theorem 1.

Note that the analogue of Theorem 15 for the case k = 1 follows from
(58) [1, Sect. 1.7.2].
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Thanks for your attention!
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