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EXPANSION OF THE STRATONOVICH MULTIPLE
STOCHASTIC INTEGRALS BASED ON THE FOURIER
MULTIPLE SERIES

D. F. Kuznetsov UDC 519.2

An expansion of multiple Stratonovich stochastic integrals of multiplicity k, k ∈ N , into multiple
series of products of Gaussian random variables is obtained. The coefficients of this expansion
are the coefficients of multiple Fourier-series expansion of a function of several variables relative
to a complete orthonormal system in the space L2([t, T ]). The convergence in mean of order n,
n ∈ N , is established. Some expansions of multiple Stratonovich stochastic integrals with the
help of polynomial and trigonometric systems are considered. Bibliography: 8 titles.

§1. Introduction

Consider a fundamental probability space (Ω,F ,P) and a Wiener random process wt ∈ Rn

with independent components w(i)
t , i = 1, . . . ,m. We consider a nondecreasing family of σ-

algebras {Ft, t ∈ [0, T ]} of subsets of (Ω,F ,P) such that, for every t ∈ [0, T ], the random
variable wt is Ft-measurable.

We introduce the class M2([0, T ]) of functions

ξt
def= ξ(t, ω) : [0, T ]× Ω→ R1

measurable with respect to the pair (t, ω) of variables and Ft-measurable for all t ∈ [0, T ]. It
is assumed that

T∫
0

E
{
(ξ(t, ω))2

}
dt <∞ and E

{
(ξ(t, ω))2

}
<∞

for all t ∈ [0, T ]. The class M2([0, T ]) is endowed with the norm

‖ξ‖2,T =

(∫ T

0

E
{
(ξ(t, ω))2

}
dt

) 1
2

.

Consider the process
{
η

(i)
τ , τ ∈ [t, T ]

}
of the form

η(i)
τ = η

(i)
t +

τ∫
t

asds+

τ∫
t

bsdw(i)
s , (1)

where a2
s, b

2
s ∈ M2([t, T ]), the inequality E

{
(bs − bτ )4

}
≤ C|s− τ |γ holds for all s, τ ∈ [t, T ]

and some C, γ ∈ (0,∞), w(0)
s = s, and

τ∫
t

bsdw
(i)
s is the stochastic Itô integral (i = 1, . . . ,m).
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The symbol
∗∫
t

T

η
(i)
s dw(j)

s denotes the following sum:

∗∫
t

T

η(i)
s dw(j)

s =

T∫
t

η(i)
s dw(j)

s +
1
2
1{i=j 6=0}

T∫
t

bsds a.s. (2)

Here and in what follows, 1A is the indicator function of a set A. The integral
∗∫
t

T

η
(i)
s dw(j)

s is

called the Stratonovich stochastic integral.
We consider a system of Itô stochastic differential equations (SDE) of the form

dxt = a(xt, t)dt +A(xt, t)dwt, x0 = x(0, ω), (3)

where xt ∈ Rn is a solution of the SDE (3). Assume that nonrandom functions a(x, t) :
Rn× [0, T ]→ Rn and A(x, t) : Rn× [0, T ]→ Rn×m guarantee the existence and uniqueness (up
to stochastic equivalence) of a solution of the SDE (3) [8]. Let the random variables x0 ∈ Rn

and wt −w0 be independent for any t ∈ [0, T ].
It follows from results of [1, 2] that, for s > t, under certain conditions, a solution of the Itô

SDE (3) admits the following unified Taylor–Itô expansions:

xs = xt +
∑

(k,j,l1,... ,lk,i1,... ,ik)∈Ar

C
(i1...ik)
jl1...lk

(xt, t)
(s − t)j
j!

J
(i1...ik)
(l1...lk)s,t +R

(r+1)
s,t a.s., (4)

xs = xt +
∑

(k,j,l1,... ,lk,i1,... ,ik)∈Ar

C̃
(i1...ik)
jl1...lk

(xt, t)
(s − t)j
j!

J̃
(i1...ik)
(l1...lk)s,t +R

(r+1)
s,t a.s., (5)

where Ar = {(k, j, l1, . . . , lk, i1, . . . , ik) : 1 ≤ k + j +
k∑

p=1

lp ≤ r; i1, . . . , ik = 1, . . .m; k, j,

l1, . . . , lk = 0, 1, . . . }, R(r+1)
s,t is the remainder term written in the integral form (see [1, 2]),

J
(i1...ik)
(l1...lk)s,t =

s∫
t

(t− tk)lk . . .

t2∫
t

(t − t1)l1dw(i1)
t1 . . . dw(ik)

tk
, (6)

and

J̃ (i1...ik)
(l1...lk)s,t =

s∫
t

(s− tk)lk . . .

t2∫
t

(s − t1)l1dw(i1)
t1

. . . dw(ik)
tk

. (7)

For s > t, this solution also admits (see [3–5]) the following Taylor–Itô expansions:

xs = xt +
∑

(λ1,... ,λk,i1,... ,ik)∈Mr

G
(i1...ik)
λ1...λk

(xt, t)I
(i1...ik)
(λ1...λk)s,t +D

(r+1)
s,t a.s. (8)

2149



and the Taylor–Stratonovich expansions:

xs = xt +
∑

(λ1,... ,λk,i1,... ,ik)∈Mr

G
∗(i1...ik)
λ1...λk

(xt, t)I
∗(i1...ik)
(λ1...λk)s,t +D

∗(r+1)
s,t a.s., (9)

where Mr = {(λ1, . . . , λk, i1, . . . , ik) : λl ∈ {0, 1}, il = 0 for λl = 0 and il = 1, . . . ,m for
λl = 1; l = 1, . . . , k; k = 1, . . . , r}, D(r+1)

s,t and D∗(r+1)
s,t are the remainder terms in the integral

form (see [3–5]),

I
(i1...ik)
(λ1...λk)s,t =

s∫
t

. . .

t2∫
t

dw(ik)
t1 . . . dw(i1)

tk
, (10)

and

I
∗(i1...ik)
(λ1...λk)s,t =

∗∫
t

s

. . .

∗∫
t

t2

dw(ik)
t1 . . . dw(i1)

tk
. (11)

The functions C(i1...ik)
jl1...lk

(xt, t), C̃
(i1...ik)
jl1...lk

(xt, t), G
(i1...ik)
λ1...λk

(xt, t), and G
∗(i1...ik)
λ1...λk

(xt, t) in (4), (5),
(8), and (9) are determined (see [1, 2, 3–5]) by the diffusion and drift operators of the Itô
formula and the processes a(xt, t) and A(xt, t).

Consider the problem of numerical solution of the Itô SDE arising in a wide class of ap-
plications (see, for example, [5]). This problem is reduced to a joint numerical simulation of
multiple stochastic integrals of the form (6), (7), (10), or (11).

A method of expansion of multiple stochastic integrals of the form (11) based on the Fourier-
series expansion with random coefficients for the process

{
wt − t

∆w∆, t ∈ [0,∆],∆ > 0
}

was
proposed in [3]. Following this method, to obtain the needed expansion, one has to substitute
the Fourier-series expansions of the processes w(il)

t , l = 1, . . . , k, into integral (11) and perform
some transformations. Within the framework of this approach, no convenient expression was
given for the general term of the expansion of a Stratonovich multiple stochastic integral of
arbitrary multiplicity k. In [3, 5, 6], expansions of multiple stochastic integrals of the form (11)
were obtained only for multiplicities 1, 2, and 3. In addition, this method allows us to use only
the trigonometric system for expansion of a multiple stochastic integral. As we show below,
this system is not optimal from the point of view of the mean-square convergence of the series
and of their simplicity.

Consider a multiple Stratonovich integral of the form

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw(ik)

tk
, (12)

where ψl(τ ) ∈ C1
[t,T ], l = 1, . . . , k. (Here and below, C1

[t,T ] is the space of functions continuously
differentiable on [t, T ].) In this paper, a more powerful new method of expansion of this type of
multiple Stratonovich integrals is proposed. This method is based on the representation of the
multiple Stratonovich integral (12) as a multiple stochastic integral and subsequent multiple
orthogonal expansion of the integrand. Various orthonormal systems in the space L2([t, T ])
can be used for these purposes. This enables us to obtain a general form of expansion of the
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multiple stochastic integral (12) of multiplicity k and to use various complete orthonormal
systems.

Later we show that expansions of multiple stochastic integrals of the form (12) obtained by
the proposed method using the polynomial system of functions

φj(x) =

√
2j + 1
T − t Pj

((
x − T + t

2

)
2

T − t

)
, (13)

where Pj(x) are the Legendre polynomials, converge really faster and have a simpler form than
similar expansions obtained by the same methods with the help of the trigonometric system,
i.e., with respect to functions of the form

φj(s) =
1√
T − t


1 for j = 0,

√
2 sin

2πr(s − t)
T − t for j = 2r − 1; r = 1, 2, . . . ,

√
2 cos

2πr(s − t)
T − t for j = 2r.

(14)

Indeed, let

I
∗(i1...ik)
l1...lkT,t

=

∗∫
t

T

(t− tk)lk . . .

∗∫
t

t2

(t− t1)l1dw(i1)
t1 . . . dw(ik)

tk
, (15)

and let I∗(i1...ik)q
l1...lkT,t

be an approximation of I∗(i1...ik)
l1...lkT,t

. Our method with respect to system (14)
gives us the following expressions:

I
∗(i1)
0T,t

=
√
T − tζ(i1)

0 ,

I
∗(i1)q
1T,t

= − (T − t)
3
2

2

[
ζ
(i1)
0 +

√
2
π

q∑
r=1

1
r
ζ
(i1)
2r−1

]
,

I
∗(i2i1)q
00T,t

=
1
2
(T − t)

[
ζ
(i1)
0 ζ

(i2)
0 +

1
π

q∑
r=1

1
r

{
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√

2
(
ζ(i1)
2r−1ζ

(i2)
0 − ζ(i1)

0 ζ(i2)
2r−1

)}]
, (16)

and

E
{(

I
∗(i2i1)
00T,t

−I∗(i2i1)q
00T,t

)2
}

=
3(T − t)2

2π2

(
π2

6
−

q∑
r=1

1
r2

)
(i1 6= i2), (17)

where ζ(i)
j =

T∫
t

φj(s)dw
(i)
s , i1, i2 = 1, . . . ,m, and the functions φj(s) have the form (14).

The same method with respect to system (13) gives us the following expressions:

I
∗(i1)
0T,t

=
√
T − tζ(i1)

0 ,
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I∗(i1)1T,t
= − (T − t)3/2

2

(
ζ(i1)
0 +

1√
3
ζ(i1)
1

)
,

I∗(i2i1)q
00T,t

=
T − t

2

[
ζ
(i1)
0 ζ(i2)

0 +
q∑

i=1

1√
4i2 − 1

{
ζ
(i2)
i−1ζ

(i1)
i −ζ(i2)

i ζ(i1)
i−1

}]
,

and

E
{(

I∗(i2i1)
00T,t

−I∗(i2i1)q
00T,t

)2
}

=
(T − t)2

4

(
1
2
−

q∑
i=1

1
4i2 − 1

)
(i1 6= i2), (18)

where ζ(i)
j =

T∫
t

φj(s)dw
(i)
s , i1, i2 = 1, . . . ,m, and the functions φj(s) have the form (13).

§2. Relations between multiple Stratonovich and Itô integrals

We introduce the following notation:

J∗
(
ψ(k)

)
T,t

=

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw(ik)

tk
, (19)

J
(
ψ(k)

)
T,t

=

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw(ik)

tk
, (20)

J
(
ψ(k)

)sl,... ,s1

T,t

def=
l∏

q=1

1{isq =isq+1 6=0}

×
T∫

t

ψk(tk) . . .

tsl+3∫
t

ψsl+2(tsl+2)

tsl+2∫
t

ψsl(tsl+1)ψsl+1(tsl+1)

×
tsl+1∫
t

ψsl−1(tsl−1) . . .

ts1+3∫
t

ψs1+2(ts1+2)

ts1+2∫
t

ψs1(ts1+1)ψs1+1(ts1+1)

×
ts1+1∫
t

ψs1−1(ts1−1) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(is1−1)
ts1−1

dts1+1dw
(is1+2)
ts1+2

. . . dw
(isl−1)
tsl−1

dtsl+1dw
(isl+2)
tsl+2

. . . dw(ik)
tk

, (21)

where (sl, . . . , s1) ∈ Akl; ψp(τ ) ∈ C1
[t,T ], ip = 0, 1, . . . ,m (p = 1, . . . , k); Akl = {(sl, . . . , s1):

sq > sq−1 + 1; q = 2, . . . , l; sl, . . . , s1 = 1, . . . , k− 1}; l = 1, . . . ,
[

k
2

]
; [x] is the integer part of

the number x; ψ(k) = (ψk, . . . , ψ1).
The following lemma establishes a relationship between the multiple stochastic integrals

J∗
(
ψ(k)

)
T,t

and J
(
ψ(k)

)
T,t

.
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Lemma 1.

J∗
(
ψ(k)

)
T,t

= J
(
ψ(k)

)
T,t

+
[ k
2 ]∑

r=1

1
2r

∑
(sr,... ,s1)∈Akr

J
(
ψ(k)

)sr,... ,s1

T,t
a.s. (22)

Proof. The proof is by induction.
For k = 1, the following equality is obvious: J

(
ψ(1)

)
T,t

= J∗
(
ψ(1)

)
T,t

a.s. For k = 2,
relation (22) implies the relation

J∗
(
ψ(2)

)
T,t

= J
(
ψ(2)

)
T,t

+
1
2
J
(
ψ(2)

)1

T,t
a.s. (23)

To prove equality (23), we consider the process η(i1)
τ = ψ2(τ )

τ∫
t

ψ1(s)dw
(i1)
s . By the Itô formula,

its stochastic differential is

dη(i1)
τ =

τ∫
t

ψ1(s)dw(i1)
s dψ2(τ ) + ψ1(τ )ψ2(τ )dw(i1)

τ . (24)

It follows from (24) that the diffusion coefficient of the process η(i1)
τ equals 1{i1 6=0}ψ1(τ )ψ2(τ ).

Further, relation (2) implies (23). Thus, relation (22) is proved for k = 1, 2. Now, by the
induction hypothesis, the following equality holds a.s.:

J∗
(
ψ(k+1)

)
T,t

=

∗∫
t

T

ψk+1(τ )J
(
ψ(k)

)
τ,t
dw(ik+1)

τ

+
[k
2 ]∑

r=1

1
2r

∑
(sr,... ,s1)∈Akr

∗∫
t

T

ψk+1(τ )J
(
ψ(k)

)sr,... ,s1

τ,t
dw(ik+1)

τ . (25)

Using the Itô formula and relation (2), we establish similarly to (23) that the following
equalities hold a.s.:

∗∫
t

T

ψk+1(τ )J
(
ψ(k)

)
τ,t
dw(ik+1)

τ =J
(
ψ(k+1)

)
T,t

+
1
2
J
(
ψ(k+1)

)k

T,t
, (26)

∗∫
t

T

ψk+1(τ )J
(
ψ(k)

)sr,... ,s1

τ,t
dw(ik+1)

τ

=


J
(
ψ(k+1)

)sr,... ,s1

T,t
for sr = k − 1,

J
(
ψ(k+1)

)sr,... ,s1

T,t
+

1
2
J
(
ψ(k+1)

)k,sr,... ,s1

T,t
for sr < k − 1.

(27)
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Substituting relations (25) and (27) into (25) and regrouping the terms, we come to the fol-
lowing relations valid a.s.:

J∗
(
ψ(k+1)

)
T,t

= J
(
ψ(k+1)

)
T,t

+
[ k
2 ]∑

r=1

1
2r

∑
(sr,... ,s1)∈Ak+1,r

J
(
ψ(k+1)

)sr,... ,s1

T,t
(28)

for k even and

J∗
(
ψ(k

′
+1)
)

T,t
= J

(
ψ(k

′
+1)
)

T,t
+

[
k
′

2

]
+1∑

r=1

1
2r

∑
(sr,... ,s1)∈Ak

′+1,r

J
(
ψ(k

′
+1)
)sr,... ,s1

T,t
(29)

for k = k
′
+ 1 odd. Relations (28) and (29) prove that the following equality holds a.s.:

J∗
(
ψ(k+1)

)
T,t

= J
(
ψ(k+1)

)
T,t

+
[ k+1

2 ]∑
r=1

1
2r

∑
(sr,... ,s1)∈Ak+1,r

J
(
ψ(k+1)

)sr,... ,s1

T,t
. (30)

�

§3. An expansion of the Stratonovich multiple stochastic integral

Define the function

K(t1, . . . , tk) =
k∏

l=1

ψl(tl)
k−1∏
l=1

1{tl<tl+1}, k ≥ 2, (31)

on the set [t, T ]k. Let {φj(x)}∞j=0 be a complete orthonormal system in the space L2([t, T ])
consisting of continuously differentiable functions.

Let H([t, T ]) ⊂ L2([t, T ]) be the space of functions f(x) bounded on [t, T ], piecewise

smooth on (t, T ), and such that their orthogonal (Fourier-series) expansions
∞∑

j=0

Cjφj(x), Cj =

T∫
t

f(x)φj(x)dx, converge at any interior point x ∈ [t, T ] to the values 1
2

(
f(x + 0) + f(x − 0)

)
,

converge uniformly to f(x) on any closed interval of continuity, and converge at the points
x = t and x = T .

Remark 1. Here and below, convergence of orthogonal expansions in the space L2([t, T ]) is
understood as convergence in the norm.

Define functions Cjq−1...j1 (tq, . . . , tk), q = 1, . . . , k, as follows:

Cjq−1...j1(tq , . . . , tk) def=

T∫
t

. . .

T∫
t

K(t1, . . . , tk)
q−1∏
l=1

φjl(tl)dt1 . . . dtq−1, 2 ≤ q ≤ k.

The following theorem is the main result of this paper.
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Theorem. Assume that the following conditions are satisfied.
(1) ψi(τ ) ∈ C1

[t,T ], i = 1, . . . , k.
(2) {φj(x)}∞j=0 is a complete orthonormal system of continuously differentiable functions in

the space L2([t, T ]).
(3) Gjq−1...j1 (tq, . . . , tk)∈H([t, T ]) with respect to the variable tq, q=2, . . . , k; K(t1, . . . , tk)

∈H([t, T ]) with respect to the variable t1.
Then the Stratonovich multiple stochastic integral J∗

(
ψ(k)

)
T,t

admits the following multiple

orthogonal expansion:

J∗
(
ψ(k)

)
T,t

=
∞∑

j1=0

. . .
∞∑

jk=0

Cjk...j1

k∏
l=1

ζ
(il)
(jl)T,t (32)

converging in average of any degree n ∈ N.

In the formulas above, if il are jl different and if il 6= 0, then the variables ζ
(il)
(jl)T,t =

T∫
t

φjl(s)dw
(il)
s are the standard Gaussian variables and

Cjk...j1 =

T∫
t

. . .

T∫
t

K(t1, . . . , tk)
k∏

l=1

φjl(tl)dt1 . . . dtk. (33)

To prove the theorem, we establish some auxiliary assertions.
Let a function B±k−1(t1, . . . , tk) be defined on the set [t, T ]k as follows:

B±k−1(t1, . . . , tk) = K(t1, . . . , tk)

+
k∏

l=1

ψl(tl)
k−1∑
r=1

k−1∑
sr,... ,s1=1
sr>...>s1

1
g(s1, . . . , sr)

r∏
l=1

1{tsl
=tsl+1}

k−1∏
l=1

l6=s1,... ,sr

1{tl<tl+1}, (34)

where g(s1, . . . , sr) = (q1 +1)! . . . (qpk +1)!; pk = 1, 2, . . . , [ k
2 ]; q1, . . . , qpk are the lengths of all

possible subsequences of the form g, g−1, . . . , g−m with g = 1, . . . , k−1, m = 0, 1, . . . , k−2,
chosen from the sequence sr, . . . , s1; sr > . . . > s1; sr, . . . , s1 = 1, . . . , k − 1.

In particular, if k = 2 or k = 3, then formula (34) implies that

B±1 (t1, t2) =
2∏

l=1

ψl(tl)
(
1{t1<t2} +

1
2
1{t1=t2}

)
and

B±2 (t1, t2, t3) =
3∏

l=1

ψl(tl)

(
1{t1<t2}1{t2<t3}

+
1
2
1{t1=t2}1{t2<t3} +

1
2
1{t1<t2}1{t2=t3} +

1
6
1{t1=t2}1{t2=t3}

)
.
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Lemma 2. Under the assumptions of the above theorem, the function B±k−1(t1, . . . , tk) is
extendable into the multiple orthogonal (Fourier) series

B±k−1(t1, . . . , tk) =
∞∑

j1=0

. . .

∞∑
jk=0

Cjk...j1

k∏
l=1

φjl(tl) (35)

at any interior point of the hypercube [t, T ]k. Here the coefficients Cjk...j1 have the form (33).
The multiple series (35) converges on the boundary Γk of the hypercube [t, T ]k and converges
uniformly to the function B±k−1(t1, . . . , tk) in any closed domain of its continuity.

Proof. We consider the cases k = 2 and k = 3. Introduce the following functions:

K ′(t1, t2) =
{
ψ2(t1)ψ1(t2), t1 ≥ t2;
ψ1(t1)ψ2(t2), t1 ≤ t2;

t1, t2 ∈ [t, T ],

K1(t1, t2, t3) =



ψ3(t3)ψ2(t2)ψ1(t1), t1 ≤ t2 ≤ t3;
ψ3(t3)ψ1(t2)ψ2(t1), t2 ≤ t1 ≤ t3;
ψ1(t3)ψ3(t2)ψ2(t1), t3 ≤ t1 ≤ t2;
ψ2(t3)ψ3(t2)ψ1(t1), t1 ≤ t3 ≤ t2;
ψ1(t3)ψ2(t2)ψ3(t1), t3 ≤ t2 ≤ t1;
ψ2(t3)ψ1(t2)ψ3(t1), t2 ≤ t3 ≤ t1;

t1, t2, t3 ∈ [t, T ],

K2(t1, t2, t3) =

ψ3(t3)ψ2(t2)ψ1(t1), t1 ≤ t2 ≤ t3;
ψ3(t3)ψ1(t2)ψ2(t1), t2 ≤ t1 ≤ t3;

0 otherwise;
t1, t2, t3 ∈ [t, T ],

K3(t1, t2, t3) =

ψ2(t3)ψ3(t2)ψ1(t1), t1 ≤ t3 ≤ t2;
ψ3(t3)ψ2(t2)ψ1(t1), t1 ≤ t2 ≤ t3;

0 otherwise;
t1, t2, t3 ∈ [t, T ].

First we prove our lemma for k = 2. Obviously, the Fourier series

S(t1, t2) =
∞∑

j1=0

∞∑
j2=0

Cj2j1

2∏
l=1

φjl(tl)

converges uniformly to the function K(t1, t2) on any closed subset belonging to the interior
of the hypercube and disjoint with the set {t1 6= t2} (the function K(t1, t2) is continuous on
such a set). The sum of the series is finite on the boundary of the square. Thus, it remains to

show that S(t1, t1) = 1
2

2∏
l=1

ψl(t1), t1 ∈ (t, T ). Consider the following Fourier-series expansion

S′(t1, t2) of the function K′(t1, t2):

S′(t1, t2) =
∞∑

j1=0

∞∑
j2=0

C ′j2j1

2∏
l=1

φjl(tl), (36)
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where C ′j2j1
=

∫
[t,T ]2

K ′(t1, t2)
2∏

l=1

φjl(tl)dt1dt2. It is clear that S′(t1, t2) converges uniformly to

K ′(t1, t2) in any closed subdomain of the open square (t, T )2 since the function K′(t1, t2) is
continuous there. Furthermore, changing the order of integration, we obtain the equality

C ′j2j1 = Cj2j1 + Cj1j2 . (37)

Substituting (37) into (36) and putting t1 = t2 in (36), we come to the relation S′(t1, t1) =
ψ1(t1)ψ2(t1) = 2S(t1, t1), i.e., S(t1, t1) = 1

2ψ1(t1)ψ2(t1). This completes the proof for the case
k = 2.

Now we consider the case k = 3. Obviously, the Fourier series

S(t1, t2, t3) =
∞∑

j1=0

∞∑
j2=0

∞∑
j3=0

Cj3j2j1

3∏
l=1

φjl(tl)

converges uniformly to the function K(t1, t2, t3) on any closed subset belonging to the open
cube (t, T )3 and disjoint from the subsets t1 = t2, t2 = t3, t1 = t3 (the function K(t1, t2, t3) is
continuous there). The sum of this Fourier series is finite on the boundary of the cube. Now
we have to show that

S(t1, t1, t1) =
1
6

3∏
l=1

ψl(t1), (38)

S(t2, t2, t3) =
1
2
ψ3(t3)

2∏
l=1

ψl(t2), (39)

and

S(t1, t3, t3) =
1
2
ψ1(t1)

3∏
l=2

ψl(t3). (40)

Consider the Fourier-series expansions Si(t1, t2, t3) of the functions Ki(t1, t2, t3), i = 1, 2, 3:

Si(t1, t2, t3) =
∞∑

j1=0

∞∑
j2=0

∞∑
j3=0

C
(i)
j3j2j1

3∏
l=1

φjl(tl), (41)

where C(i)
j3j2j1

=
∫

[t,T ]3
Ki(t1, t2, t3)

3∏
l=1

φjl(tl)dt1dt2dt3. The series S1(t1, t2, t3) converges uni-

formly to K1(t1, t2, t3) on any closed subdomain of (t, T )3 since the function K1(t1, t2, t3) is
continuous there. The series S2(t1, t2, t3) and S3(t1, t2, t3) converge uniformly to K2(t1, t2, t3)
and K3(t1, t2, t3) in any closed subdomain of the set of their continuity.

Changing the order of integration, we obtain the equalities

C
(1)
j3j2j1

= Cj3j2j1 + Cj3j1j2 + Cj2j1j3 + Cj2j3j1 +Cj1j2j3 + Cj1j3j2 , (42)

C
(2)
j3j2j1

= Cj3j2j1 + Cj3j1j2 , (43)
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and
C

(3)
j3j2j1

= Cj3j2j1 + Cj2j3j1 . (44)

Substituting equalities (42), (43), and (44) into (41) for i = 1, 2, 3, respectively, and putting
t1 = t2 = t3 for i = 1, t1 = t2 for i = 2, and t2 = t3 for i = 3 in (41), we obtain equalities
(38)–(40) after some simple transformations. The proof of Lemma 2 for the case k = 3 is
completed. The general case can be considered similarly. �

Consider a partition of the interval [t, T ] of the form

t = τ0 < . . . < τN = T

such that
∆N = max

0≤j≤N−1
|τj+1 − τj| → 0 as N →∞. (45)

Lemma 3. Under assumptions of the theorem formulated above,

J
(
ψ(k)

)
T,t

= l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

ψl(τjl)∆w(il)
τjl

a.s., (46)

where ∆w(il)
τjl

= w(il)
τjl+1 −w(il)

τjl
, il = 0, 1, . . . ,m, and {τjl}

N−1
jl=0 is a partition of [t, T ] satisfying

condition (45).

Proof. It is easy to see that, under the assumptions of our lemma, the integral sum of the
integral J

(
ψ(k)

)
T,t

can be represented as the sum of a prelimit expression of the left-hand side
of (46) and a variable tending in average to zero as N →∞. �

Remark 2. If, for some l ∈ {1, . . . , k}, one replaces ∆w(il)
τjl

by
(
∆w(il)

τjl

)p

in expression (46),

then the differential dw(il)
tl

in J
(
ψ(k)

)
T,t

for p = 2 transforms to dt1. If p = 3, 4, . . . , the

right-hand side of (46) vanishes a.s. If, for some l ∈ {1, . . . , k}, one replaces ∆w(il)
τjl

by (∆τjl)p,
p = 2, 3, . . . , in (46), then the right-hand side of (46) also vanishes a.s.

We define the following stochastic integrals:

l.i.m.
N→∞

N−1∑
j1,... ,jk=0

Φ(τj1 , . . . , τjk )
k∏

l=1

∆w(il)
τjl

def=

T∫
t

. . .

T∫
t

Φ(t1, . . . , tk)dw(ik)
tk

. . . dw(i1)
t1

= J [Φ](k)
T,t, (47)

l.i.m.
N→∞


N−1∑

j1,... ,jk=0

−
N−2∑

j1,... ,jk=1

Φ(τj1 , . . . , τjk )
k∏

l=1

∆w(il)
τjl

def= J [Φ]Γk

T,t. (48)

Let Dk = {(t1, . . . , tk) : t ≤ t1 < . . . < tk ≤ T} and let ΓDk be the boundary of Dk. We
write Φ(t1, . . . , tk) ∈ C1(Dk) if the following conditions are satisfied:
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(AI) the function Φ(t1, . . . , tk) is continuously differentiable in Dk;
(AII) the function Φ(t1, . . . , tk) is bounded on ΓDk .
Similarly to the proof of Lemma 3, one can show that if Φ(t1, . . . , tk) ∈ C1(Dk), then

I[Φ](k)
T,t

def=

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw(i1)
t1 . . . dw(ik)

tk

= l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

Φ(τj1 , . . . , τjk )
k∏

l=1

∆w(il)
τjl

a.s., (49)

where I[Φ](k)
T,t is understood as the Itô multiple integral.

We introduce the following notation:

1jl,jl+1(jq1 , . . . , jq2 , jl, jq3 , . . . , jqk−2 , jl, jqk−1 , . . . , jqk)

def= (jq1 , . . . , jq2 , jl+1, jq3 , . . . , jqk−2 , jl+1, jqk−1 , . . . , jgk ), (50)

where l ∈ N ; l 6= q1, . . . , q2, q3, . . . , qk−2, qk−1, . . . , qk ∈ N ;

S
(k)
N (a) =

N−1∑
jk=0

. . .

j2−1∑
j1=0

∑
(j1,... ,jk)

a(j1,... ,jk);

C+
sr
. . . C+

s1
{S(k)

N (a)} =
N−1∑
jk=0

. . .

jsr+2−1∑
jsr+1=0

jsr+1−1∑
jsr−1=0

. . .

js1+2−1∑
js1+1=0

js1+1−1∑
js1−1=0

. . .

j2−1∑
j1=0

×
∑

r∏
l=1

1jsl
,jsl+1 (j1,... ,jk)

a r∏
l=1

1jsl
,jsl+1 (j1,... ,jk)

;

C∗sr
C+

sr−1
. . . C+

s1
{S(k)

N (a)} = C+
sr−1

. . . C+
s1
{S(k)

N (a)} + C+
sr
. . . C+

s1
{S(k)

N (a)};
0∏

l=1

1jsl
,jsl+1(j1, . . . , jk) = (j1, . . . , jk);

r∏
l=1

1jsl
,jsl+1(j1, . . . , jk) = 1jsr ,jsr+1 . . .1js1 ,js1+1(j1 . . . jk);

C+
s0
. . . C+

s1
{S(k)

N (a)} = S(k)
N (a).

In the formulas above, s1, . . . , sr = 1, . . . , k − 1; sr > . . . > s1; r = 1, . . . , k − 1;
∑

(jq1 ,... ,jqk
)

means the sum over all the permutations (jq1 , . . . , jqk); q1, . . . , qk ∈ {1, . . . , k}; a(jq1 ,... ,jqk
) are

scalars.
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The following equality is easily proved by induction:

N−1∑
jk=0

. . .
N−1∑
j1=0

a(j1,... ,jk) = C∗k−1 . . . C∗1{S
(k)
N (a)}

=
k−1∑
r=0

k−1∑
sr,... ,s1=1
sr>...>s1

C+
sr
. . . C+

s1
{S(k)

N (a)}, k ≥ 1;
∑
∅

def= 1. (51)

Put a(j1,... ,jk) = Φ(τj1 , . . . , τjk)
k∏

l=1

∆w(il)
τjl

. Then relations (47) and (51) imply that

J [Φ](k)
T,t =

k−1∑
r=0

∑
(sr,... ,s1)∈Akr

I[Φ](k)s1,... ,sr

T,t a.s., (52)

where

I[Φ](k)s1,... ,sr

T,t =

T∫
t

. . .

tsr+3∫
t

tsr+2∫
t

tsr∫
t

. . .

ts1+3∫
t

ts1+2∫
t

ts1∫
t

. . .

t2∫
t

∑
r∏

l=1
1tsl

,tsl+1 (t1,... ,tk)

×
[
Φ(t1, . . . , ts1−1, ts1+1, ts1+1, . . . , tsr−1, tsr+1, tsr+1, . . . , tk)

×dw(i1)
t1 . . . dw

(is1−1)
ts1−1

dw
(is1)
ts1+1

dw
(is1+1)
ts1+1

dw
(is1+2)
ts1+2

. . . dw(isr−1)
tsr−1

dw(isr )
tsr+1

dw(isr+1)
tsr+1

dw(isr+2)
tsr+2

. . . dw(ik)
tk

]
, (53)

and
0∏

l=1

1tsl
,tsl+1(t1, . . . , tk) def= (t1, . . . , tk);

∑
(s0,... ,s1)∈Ak0

def= 1; k ≥ 2.

Remark 3. The terms on the right-hand side of (53) have to be understood as follows. For

any permutation from the collection
r∏

l=1

1tsl
,tsl+1(t1, . . . , tk) on the right-hand side of (53), one

has to replace every pair of differentials with coinciding lower indices of the form dw(i)
tp
dw(j)

tp

(there exist r such pairs) by the values 1{i=j 6=0}dtp.
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Lemma 4. Let Φ(t1, . . . , tk) ∈ C1(Dk). Then

E
{∣∣∣I[Φ](k)

T,t

∣∣∣2n
}
≤ Cnk

T∫
t

. . .

t2∫
t

Φ2n(t1, . . . , tk)dt1 . . . dtk, where Cnk <∞, n ∈ N. (54)

Proof. Using standard inequalities for stochastic integrals at (ξτ )n ∈M2([t0, t]), we obtain the
estimates

E


∣∣∣∣∣∣

t∫
t0

ξτdfτ

∣∣∣∣∣∣
2n
 ≤ (t− t0)n−1 (n(2n− 1))n

t∫
t0

E
{
|ξτ |2n

}
dτ (55)

and

E


∣∣∣∣∣∣

t∫
t0

ξτdτ

∣∣∣∣∣∣
2n
 ≤ (t − t0)2n−1

t∫
t0

E
{
|ξτ |2n

}
dτ. (56)

Let ξ(l)tl+1,... ,tk,t =
tl+1∫
t

. . .
t2∫
t

Φ(t1, . . . , tk)dw(i1)
t1 . . . dw(il)

tl
for l=1, . . . , k − 1, and let ξ(0)

t1,... ,tk,t
def=

Φ(t1, . . . , tk). It can be shown by induction that
(
ξ
(l)
tl+1,... ,tk,t

)n

∈ M2([t, T ]). Multiple appli-
cation of inequalities (55) and (56) proves our lemma. �

Using the Minkowski inequality and Lemma 4, we obtain from (52) the following estimates:(
E
{(

J [Φ](k)
T,t

)2n
}) 1

2n

≤
k−1∑
r=0

∑
(sr,... ,s1)∈Akr

(
E
{(

I[Φ](k)s1,... ,sr

T,t

)2n
}) 1

2n

, (57)

(
E
{(

I[Φ](k)s1,... ,sr

T,t

)2n
}) 1

2n

≤ Cs1...sr

nk

[ T∫
t

. . .

tsr+3∫
t

tsr+2∫
t

tsr∫
t

. . .

ts1+3∫
t

ts1+2∫
t

ts1∫
t

. . .

t2∫
t

∑
r∏

l=1
1tsl

,tsl+1(t1,... ,tk)

×Φ2n (t1, . . . , ts1−1, ts1+1, ts1+1, . . . , tsr−1, tsr+1, tsr+1, . . . , tk)

×dt1 . . . dts1−1dts1+1dts1+2 . . . dtsr−1dtsr+1dtsr+2 . . . dtk

] 1
2n

, (58)

where permutations during summation in (58) take place only in Φ2n(. . . ), Cs1...sr

nk <∞, and

0∏
l=1

1tsl
,tsl

+1(t1, . . . , tk) def= (t1, . . . , tk).
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Lemma 5. Under the assumptions of our theorem,

J [B±k−1{K}]
(k)
T,t = J∗

(
ψ(k)

)
T,t

a.s. (59)

Proof. Substituting relation (34) into (59) and using Lemma 3 and Remark 2, we get the
equality

J [B±k−1{K}]
(k)
T,t = J

(
ψ(k)

)
T,t

+
[ k
2 ]∑

r=1

1
2r

∑
(sr,... ,s1)∈Akr

J
(
ψ(k)

)sr,... ,s1

T,t
a.s.

Now Lemma 5 is a consequence of Lemma 1. �
Lemma 6. Let |Φ(t1, . . . , tk)| <∞ for (t1, . . . , tk) ∈ [t, T ]k. Then J [Φ]Γk

T,t = 0 a.s.

Proof. First assume that Φ(t1, . . . , tk) ≡ 1. In this case, the integral sum J [1]Γk

T,t consists of a
finite sum of random variables αN

p β
N
k−p, where

αN
p =

N−2∑
s1,... ,sp=1

p∏
l=1

∆w(rl)
τsl

and βN
k−p =

k−p∏
l=1

(
∆w(rp+l)

τ0 + ∆w(rp+l)
τN−1

)
.

In the formula above, αN
0

def= 1; {r1, . . . , rk} = {i1, . . . , ik}; p = 0, 1, . . . , k−1; k−p = 1, . . . , k;
i1, . . . , ik = 0, 1, . . . ,m, and the inequality E

{(
αN

p

)2}
< ∞ holds. Using the Minkowski

inequality and taking into account the independence of the random variables αN
p and βN

k−p,
one can show that J [1]Γk

T,t = 0 a.s. For an arbitrary bounded function Φ(t1, . . . , tk) defined on
the set [t, T ]k, the proof is similar. �
Lemma 7. Let ϕi(s) ∈ C1

[t,T ], i = 1, . . . , k. Then

k∏
l=1

T∫
t

ϕl(s)dw(il)
s =

T∫
t

. . .

T∫
t

k∏
l=1

ϕl(tl)dw
(i1)
t1

. . . dw(ik)
tk

a.s. (60)

Proof. First let il 6= 0, l = 1, . . . , k. Denote J l
N

def=
N−1∑
j=0

ϕl(τj)∆w(il)
τj and J l =

T∫
t

ϕl(s)dw
(il)
s .

Since
k∏

l=1

J l
N −

k∏
l=1

J l =
k∑

l=1

(
l−1∏
g=1

Jg

)(
J l

N − J l
) k∏

g=l+1

Jg
N

 ,

the Minkowski and Cauchy–Bunyakovskii inequalities show thatE


(

k∏
l=1

J l
N −

k∏
l=1

J l

)2

 1

2

≤ Ck

k∑
l=1

(
E
{(
J l

N − J l
)4}) 1

4
, Ck <∞. (61)
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It is clear that J l
N − J l =

N−1∑
g=0

ζ l
g, where ζ l

g =
τg+1∫
τg

(ϕl(τg) − ϕl(s)) dw
(il)
s . Since the values ζ l

g

are independent for different g, the following equality holds [7]:

E


N−1∑

j=0

ζ l
j

4
 =

N−1∑
j=0

E
{(
ζ l
j

)4}
+ 6

N−1∑
j=0

E
{(
ζ l
j

)2} j−1∑
q=0

E
{(
ζ l
q

)2}
. (62)

Since the values ζl
j are Gaussian and the functions ϕi(s) are continuously differentiable, the

right-hand side of equality (62) tends to zero as N →∞. This fact and inequality (61) prove
equality (60). If w(il)

tl
= tl for some l ∈ {1, . . . , k} , the proof of the lemma is similar. �

Lemmas 2 and 5–7 show that

J∗
(
ψ(k)

)
T,t

=
p1∑

j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

T∫
t

φjl(s)dw
(il)
s + J [Rp1...pk](k)

T,t a.s., (63)

where the value J [Rp1...pk ](k)
T,t is defined by (47) and

Rp1...pk(t1, . . . , tk) =


∞∑

j1=0

. . .
∞∑

jk=0

−
p1∑

j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

φjl(tl). (64)

If (t1, . . . , tk) ∈ [t, T ]k r Γk, then Lemma 2 implies that

lim
p1→∞

. . . lim
pk→∞

Rp1...pk(t1, . . . , tk) = 0. (65)

Remark 4. By Lemma 2, condition (65) holds uniformly on any closed subdomain of conti-
nuity of the function Rp1...pk(t1, . . . , tk), and the limit on the left-hand side of (65) is finite on
the sets Γk.

Lemma 8. Under the assumptions of our theorem,

lim
p1→∞

. . . lim
pk→∞

E
{(
J [Rp1...pk ](k)

T,t

)n}
= 0, n ∈ N. (66)

Proof. Relations (34), (35), and (64) imply that

Rp1...pk(t1, . . . , tk) = K(t1, . . . , tk) +
k∏

l=1

ψl(tl)
k−1∑
r=1

k−1∑
sr,... ,s1=1
sr>...>s1

1
g(s1, . . . , sr)

×
r∏

l=1

1{tsl
=tsl+1}

k−1∏
l=1

l6=s1,... ,sr

1{tl<tl+1} −
p1∑

j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

φjl(tl). (67)
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Equality (67) shows that the function Rp1...pk(t1, . . . , tk) satisfies conditions (AI)–(AII) in
the domain of integration of the multiple stochastic integral on the right-hand side of (52).
Replacing Φ(t1, . . . , tk) by Rp1...pk(t1, . . . , tk) in expressions (57) and (58), passing to the
limit in the integrands in (57) and (58), and taking into account relation (65) and Remark
4, we establish the desired conclusion. Lemma 4 is proved. This completes the proof of the
theorem. �

In conclusion, we show that if the indices i1, . . . , ik ∈ {1, . . . ,m} are pairwise different, then
the approximation of the integral J∗

(
ψ(k)

)
T,t

of the form

J∗
(
ψ(k)

)q

T,t
=

q∑
j1,... ,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
(jl)T,t, q <∞,

satisfies the following relation:

E

{(
J∗
(
ψ(k)

)q

T,t
− J∗

(
ψ(k)

)
T,t

)2
}

=

T∫
t

. . .

T∫
t

K2(t1, . . . , tk)dt1 . . . dtk −
q∑

j1,... ,jk=0

C2
jk...j1 . (68)

By Lemma 2, we have the equality J∗
(
ψ(k)

)
T,t

= J
(
ψ(k)

)
T,t

a.s for pairwise different
nonzero indices i1, . . . , ik. Hence,

E

{(
J∗
(
ψ(k)

)
T,t

)2
}

= E

{(
J
(
ψ(k)

)
T,t

)2
}

=

T∫
t

. . .

T∫
t

K2(t1, . . . , tk)dt1 . . . dtk. (69)

In addition, under the same conditions, the following relations hold:

E

{(
J∗
(
ψ(k)

)
T,t
− J∗

(
ψ(k)

)q

T,t

)2
}

= E

{(
J∗
(
ψ(k)

)
T,t

)2
}
−E

{(
J∗
(
ψ(k)

)q

T,t

)2
}

(70)

and

E

{(
J∗
(
ψ(k)

)q

T,t

)2
}

=
q∑

j1,... ,jk=0

C2
jk...j1 . (71)

Now relations (69)–(71) imply formula (68).
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