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Preface

God does not care about our
mathematical difficulties. He
integrates empirically

— Albert Einstein

The book is devoted to the problem of strong (mean-square) approximation
of iterated It6 and Stratonovich stochastic integrals in the context of numerical
integration of It6 stochastic differential equations (SDEs) and non-commutative
semilinear stochastic partial differential equations (SPDEs) with nonlinear mul-
tiplicative trace class noise. The presented monograph opens up a new direction
in researching of iterated stochastic integrals and summarizes the author’s re-
search on the mentioned problem carried out in the period 1994-2025.

The basis of this book composes on the monographs [1]-[17] and recent
author’s results [18]-[71].

This monograph (also see books [6]-[11], [14]-[17]) is the first monograph
where the problem of strong (mean-square) approximation of iterated Itd and
Stratonovich stochastic integrals with respect to components of a multidimen-

sional Wiener process is systematically analyzed in application to the numerical
solution of SDEs.

For the first time we successfully use the generalized multiple Fourier series
converging in the sense of norm in Hilbert space Lo([t, T']¥) for the expansion and
strong approximation of iterated Ito stochastic integrals of arbitrary multiplicity
k, k € N as well as for the expansion of some other types of iterated stochastic
integrals (Chapter 1).

The above result has been adapted for iterated Stratonovich stochastic in-
tegrals of multiplicities 1 to 8 for the following two cases (Chapter 2).

1. The case of continuously differentiable weight functions (multiplicities 1
to 5) and weight functions identically equal to one (multiplicities 6 to 8). In
this case, we use a complete orthonormal system of Legendre polynomials or
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trigonometric functions in Lo([t, T7).

2. The case of continuous weight functions (multiplicities 1 and 2), binomial
weight functions (multiplicities 3 and 4) and weight functions identically equal
to one (multiplicities 5 and 6). In this case, we use an arbitrary complete
orthonormal system of functions in Ls([t, T1).

Recently (in 2024), the mentioned adaptation has also been carried out for
iterated Stratonovich stochastic integrals of multiplicity k, & € N (Chapter 2,
Theorems 2.59, 2.61) but under one additional condition (the case of continuous
weight functions and an arbitrary complete orthonormal system of functions in
Ly([t, T7)).

Two theorems on expansions of iterated Stratonovich stochastic integrals
of multiplicity k,k € N based on iterated Fourier series with the pointwise
convergence are formulated and proved (Chapter 2).

The integration order replacement technique for the class of iterated Ito
stochastic integrals has been introduced (Chapter 3). This result is generalized
for the class of iterated stochastic integrals with respect to martingales.

Four new forms of the Taylor—It6 and Taylor—Stratonovich expansions (the
so-called unified Taylor-Ito and Taylor—Stratonovich expansions) are presented
(Chapter 4).

Exact expressions are obtained for the mean-square approximation error
of iterated Ito stochastic integrals of arbitrary multiplicity k, k¥ € N (Chap-
ter 1) and iterated Stratonovich stochastic integrals of multiplicities 1 to 4
(Chapter 5). Furthermore, we provided a significant practical material (Chap-
ter 5) devoted to the expansions and approximations of specific iterated [t6 and
Stratonovich stochastic integrals of multiplicities 1 to 6 from the Taylor-It6 and
Taylor—Stratonovich expansions (Chapter 4) using the system of Legendre poly-
nomials and the system of trigonometric functions.

The methods formulated in this book have been compared with some exist-
ing methods of strong approximation of iterated It6 and Stratonovich stochastic
integrals (Chapter 6).

The results of Chapter 1 were applied (Chapter 7) to the approximation
of iterated stochastic integrals with respect to the finite-dimensional approxi-
mation W of the infinite-dimensional Q-Wiener process W; (for integrals of
arbitrary multiplicity k, & € IN) and to the approximation of iterated stochas-
tic integrals with respect to the infinite-dimensional Q-Wiener process W, (for
integrals of multiplicities 1 to 3).
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This book will be interesting for specialists dealing with the theory of
stochastic processes, applied and computational mathematics as well as senior
students and postgraduates of technical institutes and universities.

Exact solutions of 1t6 SDEs and semilinear SPDEs are known in rather rare
cases. Therefore, the need arises to construct numerical procedures for solving
these equations.

The importance of the problem of numerical integration of It6 SDEs and
semilinear SPDEs is explained by a wide range of their applications related
to the construction of adequate mathematical models of dynamic systems of
various physical nature under random disturbances and to the application of
these equations for solving various mathematical problems, among which we
mention signal filtering in the background of random noise, stochastic optimal
control, stochastic stability, evaluating the parameters of stochastic systems,
etc.

It is well known that one of the effective and perspective approaches to
the numerical integration of 1t6 SDEs and semilinear SPDEs is an approach
based on the stochastic analogues of the Taylor formula for solutions of these
equations. This approach uses the finite discretization of temporal variable and
performs numerical modeling of solutions of Ito SDEs and semilinear SPDEs in
discrete moments of time using stochastic analogues of the Taylor formula.

Speaking about It6 SDEs, note that the most important feature of the
mentioned stochastic analogues of the Taylor formula for solutions of 1t6 SDEs
is a presence in them of the so-called iterated It6 and Stratonovich stochas-
tic integrals which are the functionals of a complex structure with respect to
components of a multidimensional Wiener process. These iterated Ito and
Stratonovich stochastic integrals are subject for study in this book and are
defined by the following formulas

T ts
/wk(tk) . /wl (tl)dwgl) . dwgz’“) (Ito integrals),
¢ ¢

*T *t2

/ Ui (t) ... / zpl(tl)dwgl) . dwgi’“) (Stratonovich integrals),

t t
where Y1(7),..., k(1) : [t,T] — R are nonrandom functions (as a rule, in

the applications they are identically equal to 1 or have a binomial form (see

() _ g0

Chapter 4)), w; is a random vector with an m + 1 components: w for
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i=1,...,mand wl — T, £ (¢=1,...,m) are independent standard Wiener

processes, 11,...,1, = 0,1,...,m.

Apparently, one of the first who began the study of such stochastic integrals
(the case k = 2, m = 2, ¥y(7),Us(7) = 1, 41 = 1, iy = 2) was Lévy, who
introduced the concept of the so-called Lévy stochastic area and studied its
properties.

The above iterated stochastic integrals are the specific objects in the theory
of stochastic processes. From the one side, nonrandomness of weight functions
Pi(1) (I = 1,...,k) is the factor simplifying their structure. From the other
side, nonscalarity of the Wiener process f. with independent components fT(i)
(t=1,...,m) and the fact that the functions ¢;(7) (I = 1,..., k) are different
for various [ (I = 1,..., k) are essential complicating factors of the structure of
iterated stochastic integrals. Taking into account features mentioned above, we
suppose that the systems of iterated It6 and Stratonovich stochastic integrals
play the extraordinary and perhaps the key role for solving the problem of
numerical integration of It6 SDEs.

A natural question arises: is it possible to construct a numerical scheme
for Ito SDE that includes only increments of the Wiener processes £l (1 =
1,...,m), but has a higher order of convergence than the Euler method? It
is known that this is impossible for m > 1 in the general case. This fact is
called the ”Clark-Cameron paradox” [72] and explains the need to use iterated
stochastic integrals for constructing high-order numerical methods for Ito SDEs.

We want to mention in short that there are two main criteria of numerical
methods convergence for Ito SDEs: a strong or mean-square criterion and a
weak criterion where the subject of approximation is not the solution of Ito
SDE, simply stated, but the distribution of Ito SDE solution. Both mentioned
criteria are independent, i.e. in general it is impossible to state that from the
execution of strong criterion follows the execution of weak criterion and vice
versa. Each of two convergence criteria is oriented on the solution of specific
classes of mathematical problems connected with I1t6 SDEs.

Numerical integration of Ito SDEs based on the strong convergence crite-
rion of approximation is widely used for the numerical simulation of sample
trajectories of solutions to It6 SDEs (which is required for constructing new
mathematical models based on such equations and for the numerical solution of
different mathematical problems connected with It6 SDEs). Among these prob-
lems, we note the following: signal filtering under influence of random noises in
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various statements (linear Kalman—Bucy filtering, nonlinear optimal filtering,
filtering of continuous time Markov chains with a finite space of states, etc.),
optimal stochastic control (including incomplete data control), testing estima-
tion procedures of parameters of stochastic systems, stochastic stability and
bifurcations analysis.

The problem of effective jointly numerical modeling (with respect to the
mean-square convergence criterion) of iterated It6 or Stratonovich stochastic
integrals is very important and difficult from theoretical and computing point
of view.

Seems that iterated stochastic integrals may be approximated by multiple
integral sums. However, this approach implies the partitioning of the inter-
val of integration [t,T] for iterated stochastic integrals. The length 7" — ¢ of
this interval is already fairly small (because it is a step of integration of nu-
merical methods for It6 SDEs) and does not need to be partitioned. Com-
putational experiments show that the application of numerical simulation for
iterated stochastic integrals (in which the interval of integration is partitioned)
leads to unacceptably high computational cost and accumulation of computa-
tion errors.

The problem of effective decreasing of the mentioned cost (in several times or
even in several orders) is very difficult and requires new complex investigations.
The only exception is connected with a narrow particular case, when i; =

=1 # 0 and ¥1(7),...,Yx(7) = (7). This case allows the investigation
with using of the Ito formula. In the more general case, when not all numbers
i1,...,1; are equal, the mentioned problem turns out to be more complex (it
cannot be solved using the Ito formula and requires more deep and complex
investigation). Note that even for the case i; = ... = i, # 0, but for different
functions ¥ (7), ..., ¥, (7) the mentioned difficulties persist and simple sets of
iterated It6 and Stratonovich stochastic integrals, which can be often met in the
applications, cannot be expressed effectively in a finite form (with respect to
the mean-square approximation) using the system of standard Gaussian random
variables. The It6 formula is also useless in this case and as a result we need
to use more complex but effective expansions.

Why the problem of the mean-square approximation of iterated stochastic
integrals is so complex?

Firstly, the mentioned stochastic integrals (in the case of fixed limits of
integration) are the random variables, whose density functions are unknown in
the general case. The exception is connected with the narrow particular case
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which is the simplest iterated Ito stochastic integral with multiplicity 2 and
Y1(7),o(T) = 1; 41,93 = 1,...,m. Nevertheless, the knowledge of this density
function not gives a simple way for approximation of iterated Ito stochastic
integral of multiplicity 2.

Secondly, we need to approximate not only one stochastic integral, but sev-
eral iterated stochastic integrals that are complexly dependent in a probabilistic
sense.

Often, the problem of combined mean-square approximation of iterated
Ito and Stratonovich stochastic integrals occurs even in cases when the exact
solution of It6 SDE is known. It means that even if you know the solution of It
SDE exactly, you cannot model it numerically without the combined numerical
modeling of iterated stochastic integrals.

Note that for a number of special types of Ito SDEs the problem of ap-
proximation of iterated stochastic integrals may be simplified but cannot be
solved. Equations with additive vector noise, with non-additive scalar noise,
with additive scalar noise, with a small parameter are related to such types of
equations. In these cases, simplifications are connected to the fact that some
members from stochastic Taylor expansions are equal to zero or we may neglect
some members from these expansions due to the presence of a small parameter.

Furthermore, the problem of combined numerical modeling (with respect to
the mean-square convergence criterion) of iterated It6 and Stratonovich stochas-
tic integrals is rather new.

One of the main and unexpected achievements of this book is the successful
usage of functional analysis methods (more concretely, we mean generalized
multiple Fourier series in various systems of basis functions that converge in
the sense of the norm in Ly ([t, T]%)) in this scientific field.

The problem of combined numerical modeling (with respect to the mean-
square convergence criterion) of systems of iterated Ito6 and Stratonovich
stochastic integrals was analyzed in the context of the problem of numerical
integration of It6 SDEs in the following monographs:

[I] Milstein G.N. Numerical Integration of Stochastic Differential Equations.
Kluwer Academic Publishers. Dordrecht. 1995 (Russian Ed. 1988).

[II] Kloeden P.E., Platen E. Numerical Solution of Stochastic Differential
Equations. Springer-Verlag. Berlin. 1992 (2nd Ed. 1995, 3rd Ed. 1999).

[ITI] Milstein G.N., Tretyakov M. V. Stochastic Numerics for Mathematical
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Physics. Springer-Verlag. Berlin. 2004.

[IV] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice
of Numerical Solution. Polytechnical University Publ. St.-Petersburg. 2007 [2]
(2nd Ed. 2007 [3], 3rd Ed. 2009 [4], 4th Ed. 2010 [5], 5th Ed. 2017 [12], 6th
Ed. 2018 [13)]).

Note that the initial version of the book [IV] has been published in 2006
[1]. Also we mention the books [6] (2010), [7] (2011), [8] (2011), [9] (2012), [10]
(2013), [11] (2017) and [14] (2020), [15] (2021), [16] (2023), [17] (2024).

The books [I] and [ITI] analyze the problem of the mean-square approxima-
tion of iterated stochastic integrals only for two simplest iterated Ito stochastic
integrals of 1st and 2nd multiplicities (k = 1 and 2, 11 (7) and 15(7) = 1) for the
multidimensional case: 71,79 = 0,1,...,m. In addition, the main idea is based
on the expansion of the so-called Brownian bridge process into the trigonomet-
ric Fourier series (version of the so-called Karhunen—Loeve expansion). This
method is called in [I] and [III] as the Fourier method!.

In [IT] using the Fourier method [I], the attempt was made to obtain the
mean-square approximation of elementary iterated Stratonovich stochastic in-
tegrals of multiplicities 1 to 3 (kK = 1,...,3, ¥1(7),...,¢¥3(7) = 1) for the
multidimensional case: i1,...,723 = 0,1,...,m. However, as we can see in the
presented book, the results of the monograph [II], related to the mean-square
approximation of iterated Stratonovich stochastic integrals of 3rd multiplicity,
cause a number of critical remarks (see discussions in Sect. 2.41, 2.42, 6.2).

The main purpose of this book is to construct and develop newer and more
effective methods (than presented in the books [I|-[III]) of combined mean-
square approximation of iterated Ito6 and Stratonovich stochastic integrals.

Talking about the history of solving the problem of combined mean-square
approximation of iterated stochastic integrals, the idea to find a basis of random
variables using which we may represent iterated stochastic integrals turned out
to be useful. This idea was transformed several times during last decades.

Attempts to approximate the iterated stochastic integrals using various in-
tegral sums were made until 1980s and later, i.e. the interval of integration [¢, T']
of the stochastic integral was divided into n parts and the iterated stochastic
integral was represented approximately by the multiple integral sum, which in-
cluded the system of independent standard Gaussian random variables, whose

1To date, there is confusion in the literature about who first proposed the Fourier method [I], [III]. As far as
the author of this book knows, the mentioned method first appeared in the Russian edition of the monograph
by G.N. Milstein [82] (pp. 121-135), which was published in 1988.
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numerical modeling is not a problem.

However, as we noted above, it is obvious that the length T" — ¢ of integra-
tion interval [¢t,T] of the iterated stochastic integrals is a step of integration
of numerical methods for Ito SDEs, which is already a rather small value even
without the additional splitting. Numerical experiments demonstrate that such
approach results in drastic increasing of computational costs accompanied by
the growth of multiplicity of the stochastic integrals (beginning from 2nd and
3rd multiplicity) that is necessary for construction of high-order strong nu-
merical methods for Ito SDEs or in the case of decrease of integration step of
numerical methods, and thereby it is almost useless for practice.

The new step for solution of the problem of combined mean-square ap-
proximation of iterated stochastic integrals was made by Milstein G.N. in his
monograph [I] (1988). For the expansion of iterated stochastic integrals, he pro-
posed to use the trigonometric Fourier expansion of the Brownian bridge process
(version of the so-called Karhunen-Loeve expansion). Using this method, ex-
pansions of two simplest iterated Ito stochastic integrals of multiplicities 1 and
2 are obtained and their mean-square convergence is proved.

As we noted above, the attempt to develop this idea together with the
Wong—Zakai approximation [73]-[75] was made in the monograph [II] (1992),
where the expansions of simplest iterated Stratonovich stochastic integrals of
multiplicities 1 to 3 were obtained. However, due to a number of limitations
and technical difficulties which are typical for the method [I], in [II] and fol-
lowing publications this problem was not solved more completely. In addition,
the author has reasonable doubts about application of the Wong—Zakai results
[73]-]75] to approximation of iterated Stratonovich stochastic integrals of 3rd
multiplicity in the monograph [II] (see discussions in Sect. 2.41, 2.42, 6.2).

[t is necessary to note that the computational cost for the method [I] is
significantly less than for the method of multiple integral sums.

Regardless of the method [I] positive features, the number of its limitations
are also outlined. Among them let us mention the following.

1. The absence of explicit formula for calculation of expansion coefficients
for iterated stochastic integrals.

2. The practical impossibility of exact calculation of the mean-square ap-
proximation error of iterated stochastic integrals with the exception of simplest
integrals of 1st and 2nd multiplicity (as a result, it is necessary to consider
redundant terms of expansions and it results to the growth of computational
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cost and complication of the numerical methods for 1t6 SDESs).

3. There is a hard limitation on the system of basis functions — it may be
only the trigonometric functions.

4. There are some technical problems if we use this method for iterated
stochastic integrals whose multiplicity is greater than 2nd.

Nevertheless, it should be noted that the analyzed method is a concrete
step forward in this scientific field.

The author thinks that the method presented by him in [IV] (for the first
time this method is appeared in the final form in [1] (2006)) and in this book
(hereafter this method is reffered to as the method of generalized multiple
Fourier series) is a breakthrough in solution of the problem of combined mean-
square approximation of iterated Ito stochastic integrals.

The idea of this method is as follows: the iterated Ito stochastic integral
of multiplicity k, k € N is represented as the multiple stochastic integral from
the certain nonrandom discontinuous function of k variables defined on the
hypercube [t, T]*, where [t,T] is the interval of integration of the iterated Ito
stochastic integral. Then, the mentioned nonrandom function of k variables is
expanded in the hypercube [t, T]* into the generalized multiple Fourier series
converging in the mean-square sense in the space Ly([t, T]¥). After a number
of nontrivial transformations we come to the mean-square converging expan-
sion of the iterated Ito stochastic integral into the multiple series of products
of standard Gaussian random variables. The coefficients of this series are the
coefficients of generalized multiple Fourier series for the mentioned nonrandom
function of k variables, which can be calculated using the explicit formula re-
gardless of the multiplicity k of the iterated Ito stochastic integral.

As a result, we obtain the following new possibilities and advantages in
comparison with the Fourier method [I].

1. There is an explicit formula for calculation of expansion coefficients of
iterated Ito stochastic integral with any fixed multiplicity k. In other words,
we can calculate (without any preliminary and additional work) the expansion
coefficient with any fixed number in the expansion of iterated Ito stochastic
integral of the preset fixed multiplicity. At that, we do not need any knowledge
about coefficients with other numbers or about other iterated Ito stochastic
integrals included in the considered set.

2. We have new possibilies for obtainment the exact and approximate ex-
pressions for the mean-square approximation errors of iterated Ito stochastic
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integrals. These possibilities are realized by the exact and estimate formulas
for the mentioned mean-square approximation errors. As a result, we would
not need to consider redundant terms of expansions that may complicate ap-
proximations of iterated Ito stochastic integrals.

3. Since the used multiple Fourier series is a generalized in the sense that it
is built using various complete orthonormal systems of functions in the space
Ly([t, T]¥), we have new possibilities for approximation — we can use not only
the trigonometric functions as in [I] but the Legendre polynomials as well as
the systems of Haar and Rademacher—Walsh functions.

4. As it turned out, it is more convenient to work with Legendre polynomi-
als for approximation of iterated Ito stochastic integrals. The approximations
themselves are simpler than their analogues based on the system of trigono-
metric functions. Probably for the systems of Haar and Rademacher—Walsh
functions the expansions of iterated stochastic integrals become more complex
and less effective for practice [IV]. Expansions based on Haar functions for k& = 2
were also considered in [87], [95], [222]. Note that the multiple Fourier—Walsh
and Fourier—Haar series (kK € IN) were applied to the mean-square approxima-
tion of multiple Stratonovich stochastic integrals (defined as in [143], [144]) in
[221]. The convergence of these approximations was proved with respect to the
special subsequence n,, = 2™ (m — oo) [221].

5. The question about what kind of functions (polynomial or trigonometric)
is more convenient in the context of computational costs for approximation
turns out to be nontrivial, since it is necessary to compare approximations not
for one stochastic integral but for several stochastic integrals at the same time.
At that there is a possibility that computational costs for some integrals will
be smaller for the system of Legendre polynomials and for others — for the
system of trigonometric functions. The author proved [21] (also see Sect. 5.3 in
this book) that the computational costs are significantly less for the system of
Legendre polynomials at least in the case of approximation of the special set of
iterated It6 stochastic integrals, which are necessary for the implementation of
strong numerical methods for 1t6 SDEs with the order of convergence v = 1.5.
In addition, the author supposes that this effect will be more impressive when
analyzing more complex sets of iterated Itd stochastic integrals (v = 2.0, 2.5,
3.0, ...). This supposition is based on the fact that the polynomial system
of functions has a significant advantage (in comparison with the trigonometric
system of functions) in the mean-square approximation of iterated Ito stochastic
integrals for which not all weight functions are equal to 1.
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6. The Milstein approach [I] for approximation of iterated Ito6 stochastic
integrals leads to iterated applicaton of the operation of limit transition (in
contrast with the method of generalized multiple Fourier series, for which the
operation of limit transition is implemented only once) starting at least from the
second or third multiplicity of iterated It6 stochastic integrals (we mean at least
double or triple integration with respect to components of a multidimensional
Wiener process). Multiple series are more preferential for approximation than
the iterated ones, since the partial sums of multiple series converge for any
possible case of joint converging to infinity of their upper limits of summation
(let us denote them as py,...,pi). For example, when p; = ... = pp = p — 0.
For iterated series, the condition p; = ... = pr = p — 00 obviously does
not guarantee the convergence of this series. However, in [II] the authors use
(without rigorous proof) the condition p; = ps = p3 = p — oo within the frames
of the Milstein approach [I] together with the Wong—Zakai approximation [73]-
[75] (see discussions in Sect. 2.41, 2.42, 6.2).

7. The convergence in the mean of degree 2n, n € N as well as the con-
vergence with probability 1 of approximations from the method of generalized
multiple Fourier series are proved. The convergence rate for these two types of
convergence is estimated.

8. The method of generalized multiple Fourier series has been applied for
some other types of iterated stochastic integrals (iterated stochastic integrals
with respect to martingale Poisson random measures and iterated stochastic
integrals with respect to martingales) as well as for approximation of iterated
stochastic integrals with respect to the infinite-dimensional ()-Wiener process.

9. Another modification of the method of generalized multiple Fourier se-
ries is connected with the application of complete orthonormal with weight
r(t1)...7r(t;) > 0 systems of functions in the space Lo([t, T]%).

10. As it turned out, the method of generalized multiple Fourier series can
be adapted for iterated Stratonovich stochastic integrals. This adaptation is
carried out in Chapter 2 for the following two cases.

1). The case of continuously differentiable weight functions (multiplicities
1 to 5) and weight functions identically equal to one (multiplicities 6 to 8). In
this case, we use a complete orthonormal system of Legendre polynomials or
trigonometric functions in Lo ([t, T1).

2). The case of continuous weight functions (multiplicities 1 and 2), binomial
weight functions (multiplicities 3 and 4) and weight functions identically equal
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to one (multiplicities 5 and 6). In this case, we use an arbitrary complete
orthonormal system of functions in Ls([t, 7).

Recently (in 2024), the mentioned adaptation has also been carried out
for iterated Stratonovich stochastic integrals of multiplicity k£, £ € N but un-
der one additional condition (the case of continuous weight functions and an
arbitrary complete orthonormal system of functions in Lo([t,T]) (Chapter 2,
Theorems 2.59, 2.61)). The rate of mean-square convergence of approximations
of iterated Stratonovich stochastic integrals is found (Sect. 2.8, 2.15, 2.16).

11. The method of generalized multiple Fourier series is reformulated us-
ing Hermite polynomials in Sect. 1.10 and generalized to the case of an ar-
bitrary complete orthonormal system of functions in the space Lo([t,T]) and
(1), ..., Up(T) € Lo([t, T]) in Sect. 1.11, 1.12, 1.14, 1.15. At that, in Sect. 1.11,
1.12 we use the multiple Wiener stochastic integral with respect to the compo-
nents of a multidimensional Wiener process.

12. The results of Chapter 1 (Theorems 1.1, 1.2, 1.14, 1.16) and Chapter
2 (Theorems 2.1-2.10, 2.14, 2.17, 2.30, 2.32-2.36, 2.41-2.51, 2.53, 2.55, 2.57,
2.59, 2.61-2.65) can be considered from the point of view of the Wong—Zakai
approximation [73]-[75] for the case of a multidimensional Wiener process and
the Wiener process approximation based on its series expansion using various
complete orthonormal systems of functions in the space Lo([t,T]) (see discus-
sions in Sect. 2.41, 2.42, 6.2). These results overcome a number of difficulties
that were noted above and relate to the Fourier method [I].

The theory presented in this book was realized [53], [54] in the form of a
software package in the Python programming language. The mentioned soft-
ware package implements the strong numerical methods with convergence or-
ders 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for It6 SDEs (with multidimensional non-
commutative noise) based on the unified Taylor—It6 and Taylor—Stratonovich
expansions (Chapter 4). At that for the numerical simulation of iterated Ito
and Stratonovich stochastic integrals of multiplicities 1 to 6 we applied the for-
mulas based on multiple Fourier—Legendre series (Chapter 5). Moreover, we
used [53], [54] the database with 270,000 exactly calculated Fourier-Legendre
coefficients.

Throughout the book, special attention is paid to two systems of basis
functions in the space Lo([t,T]). Namely, we mainly use the complete orthonor-
mal systems of Legendre polynomials and trigonometric functions in the space
Lo([t, T]). This is due to two reasons. The first of these is that the trigono-
metric basis system has already been used to approximate iterated stochastic
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integrals in the 1980s-1990s (see above), and the author needed to compare his
results with the results of other authors. The second reason is that the system
of Legendre polynomials is optimal (see Sect. 5.3) for the implementation of
strong numerical methods with convergence order 1.5 and higher for I[to SDEs
with multidimensional non-commutative noise. The system of Legendre poly-
nomials was first applied to the approximation of iterated stochastic integrals
in the author’s work [76] in 1997 (also see [77]-[79]). According to the author’s
opinion, other complete orthonormal systems of functions in the space Ly([t, T)
(for example, systems of Haar and Rademacher—Walsh functions) turn out to be
less efficient for the mean-square approximation of iterated Ito and Stratonovich
stochastic integrals.

The attentive reader will notice that Chapters 1 and 2 of this book can be
somewhat shortened since Theorem 1.16 is a generalization of Theorems 1.1, 1.2
and Theorems 2.3, 2.33, 2.34, 2.41 are generalizations of Theorems 2.1, 2.2, 2.4—
2.9. However, the author did not make the appropriate changes in Chapters 1,
2 for a number of reasons. In particular, the application of the multiple Wiener
stochastic integral with respect to the components of a multidimensional Wiener
process to the expansion of iterated [to stochastic integrals (Theorem 1.16) and
a new approach to the expansion of iterated Stratonovich stochastic integrals
(Theorems 2.30-2.65) were obtained by the author recently (in 2021-2025),
while Theorems 1.1, 1.2, 2.4-2.9 were obtained by the author in the period
from 2005 to 2013. In addition, the proof of each of the mentioned theorems
contains some original ideas that the author would like to keep in Chapters
1 and 2. Moreover, a significant part of Chapter 2 is devoted to the proof of
Hypothesis 2.5 (Sect. 2.28) for various special cases (Theorems 2.1-2.9, 2.30,
2.33-2.36, 2.41, 2.45-2.48, 2.50, 2.51, 2.53, 2.55, 2.57, 2.59, 2.61-2.65). In order
to prove these theorems, we developed a number of approaches to the expansion
of iterated Stratonovich stochastic integrals.

Thus, the results of Chapters 1, 2 are presented primarily in the order in
which they were obtained by the author.

Dmitriy F. Kuznetsov July, 2025
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Basic Notations

re X
XUY
X xY

lim
n—oo

lim
n—oo

rLy

set of natural numbers

set of real numbers

n-dimensional Euclidean space
ordered set with elements aq,...,a,
unordered set with elements aq,...,a,
1-2-...-nforneN (0!=1)
1-3-...-(2n—1)forne N

equal by definition

identically equal to

binomial coefficient n!/(m!(n — m)!)
empty set

indicator of the set A

x is an element of the set X

union of sets X and Y

Cartesian product of sets X and Y
lim sup

n—oo

lim inf
n—oo

x much less than y

largest integer number not exceeding x
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i

F: X—=Y

AGd)

O’F
IxOx0)

. dw?

“_\ﬂ

absolute value of the real number 2

function F from X into Y

ijth element of the matrix A

ith colomn of the matrix A

ith component of the vector x € R"

expression being divided by x remains bounded as z — 0

sum with respect to all possible permutations (i1, ..., i)

expectation of &
conditional expectation of & with respect to F

Gaussian random variable £ with expectation m and variance

0.2

limit in the mean-square sense
o-algebra of Borel subsets of X
scalar standard Wiener process

v(e;):tor standard Wiener process with independent components
£, i=1,....,m

with probability 1

vector with components wt(i), 1 = 0,1,...,m and property

wgi) = ft(i) fori=1,...,m and W,EO) =t
partial derivative of F': R* - R

2nd order partial derivative of F': R* - R

[to stochastic integral
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«T
/ . dwl)
t

T
/...odwg)
t

W,

J W(k)]T,h 1 ((lZ 11:.'.’11: ))T,t
T WOy, I,
S,/ (k)1 (i1--ik)
o[

757,/,(k) (41...7%)

S [k

J[p®pLps Ui

Tt 0 LTt

T, I
T, @)l

J@)), Je)

Stratonovich stochastic integral

Stratonovich stochastic integral [143]

@-Wiener process

iterated Ito stochastic integrals

iterated Stratonovich stochastic integrals

iterated Stratonovich stochastic integral [144]
multiple Stratonovich stochastic integral [144]
approximations of iterated Ito stochastic integrals
approximations of iterated Stratonovich stochastic integrals
multiple Stratonovich stochastic integrals
multiple Wiener stochastic integrals

Legendre polynomials

Hermite polynomials

polynomials related to the Hermite polynomials
Hilbert space of square integrable functions on D
norm in the Hilbert space Ly(D)

trace of the operator A

norm in the Hilbert space H

scalar product in the Hilbert space H

space of Hilbert—Schmidt operators from U to H
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(B[ ns(UH) operator norm in the space of Hilbert—Schmidt operators from
UtoH

T
/ .. dW stochastic integral with respect to the ()-Wiener process
t
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Chapter 1

Method of Expansion and
Mean-Square Approximation of

Iterated Ito Stochastic Integrals Based
on Generalized Multiple Fourier Series

This chapter is devoted to the expansions of iterated Ito stochastic integrals
with respect to components of the multidimensional Wiener process based on
generalized multiple Fourier series converging in the sense of norm in the space
Ly([t, T]¥), k € N. The method of generalized multiple Fourier series for ex-
pansion and mean-square approximation of iterated Ito stochastic integrals of
arbitrary multiplicity k, £ € N is proposed and developed. The obtained expan-
sions contain only one operation of the limit transition in contrast to existing
analogues. In this chapter it is also obtained the generalization of the proposed
method for the case of an arbitrary complete orthonormal system of functions in
the space Lo([t, T)*), k € N as well as for the case of complete orthonormal with
weight r(t1) ... 7(t;) > 0 systems of functions in the space Lo([t, T]%), k € N. It
is shown that in the case of a scalar Wiener process the proposed method leads
to the well known expansion of iterated Ito stochastic integrals based on the Ito0
formula and Hermite polynomials. The convergence in the mean of degree 2n,
n € N as well as the convergence with probability 1 of the proposed method
are proved. The exact and approximate expressions for the mean-square ap-
proximation error of iterated Ito stochastic integrals of multiplicity k&, £k € N
have been derived. The considered method has been applied for other types of
iterated stochastic integrals (iterated stochastic integrals with respect to mar-
tingale Poisson random measures and iterated stochastic integrals with respect
to martingales).

32



DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stmmnovic}l Stochastic Integmls Based on Genemlized Mu]tip]e Fouriet Series 33

1.1 Expansion of Iterated It6 Stochastic Integrals of Ar-
bitrary Multiplicity Based on Generalized Multiple
Fourier Series Converging in the Mean

1.1.1 Introduction

The idea of representing the iterated Ito6 and Stratonovich stochastic integrals in
the form of multiple stochastic integrals from specific discontinuous nonrandom
functions of several variables and following expansion of these functions using
multiple and iterated Fourier series in order to get effective mean-square ap-
proximations of the mentioned stochastic integrals was proposed and developed
in a lot of author’s publications [1]-[70] (also see early publications [76] (1997),
[77] (1998), [78] (2000), [79] (2001), [80] (1994), [81] (1996)). Note that another
approaches to the mean-square approximation of iterated Ito and Stratonovich
stochastic integrals can be found in [71], [82]-[99].

Specifically, the approach [1]-[70] appeared for the first time in [80], [81].
In these works the mentioned idea is formulated more likely at the level of
guess (without any satisfactory grounding), and as a result the papers [80], [81]
contain rather fuzzy formulations and a number of incorrect conclusions. Note
that in [80], [81] we used the trigonometric multiple Fourier series converging
in the sense of norm in the space Ly([t, T]*), k = 1,2, 3. It should be noted that
the results of [80], [81] are correct for a sufficiently narrow particular case when

the numbers iy, ..., i; are pairwise different, i1,...,7 = 1,...,m (see Theorem
1.1 below).

Usage of Fourier series with respect to the system of Legendre polynomials
for approximation of iterated stochastic integrals took place for the first time
in the publications of the author [76]-[79] (also see [1]-[71]).

The question about what integrals (It6 or Stratonovich) are more suitable
for expansions within the frames of distinguished direction of researches has
turned out to be rather interesting and difficult.

On the one side, the results of Chapter 1 (see Theorems 1.1, 1.2, 1.16)
conclusively demonstrate that the structure of iterated Ito stochastic integrals is
rather convenient for expansions into multiple series with respect to the system
of standard Gaussian random variables regardless of the multiplicity k of the
iterated Ito stochastic integral.

On the other side, the results of Chapter 2 [6]-[23], [26], [28], [30], [32]-
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[39], [42], [43], [45]-[47], [52], [64], [65], [76]-[79] convincingly demontrate that
the final formulas for expansions of iterated Stratonovich stochastic integrals
of multiplicities 1 to 8 (the case of continuously differentiable weight functions
and a complete orthonormal system of Legendre polynomials or trigonometric
functions in Lo([t,T])) and iterated Stratonovich stochastic integrals of mul-
tiplicity k, & € N (the case of continuous weight functions and an arbitrary
complete orthonormal system of functions in Lo([t,T])) are more compact than
their analogues for iterated Ito stochastic integrals.

1.1.2 Ito Stochastic Integral

Let (2, F, P) be a complete probability space and let f(¢,w) : [0,7] X — R be
the standard Wiener process defined on the probability space (€2, F, P). Further,
we will use the following notation: f(t,w) aof fr.

Let us consider the right-continous family of o-algebras {F;, ¢t € [0,T]} de-
fined on the probability space (€2, F,P) and connected with the Wiener process
f+ in such a way that

1. ¥, CF, CF for s < t.
2. The Wiener process f; is Fi-measurable for all t € [0, 7.

3. The process fioan — fi for all £ > 0, A > 0 is independent with the events
of o-algebra F,.

Let us introduce the class My ([0, TY]) of functions & : [0,7] x 2 — R, which
satisfy the conditions:

1. The function £(t,w) is measurable with respect to the pair of variables
(t,w).

2. The function £(t,w) is Fy-measurable for all ¢ € [0,7] and &(7,w) is
independent with increments f;.an — f; for t > 7, A > 0.

3. The following relation is fulfilled
T
/M {(f(t,w))Q} dt < co.
0

4 M {(ﬁ(t,w))Q} < oo for all ¢ € [0, 7.
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For any partition T}N) ,j=0,1,..., N of the interval [0,T] such that
_ () (N) (N) _ (N) _ _(N) -
O=7"'"<77'<...<7y =T, 0<r]n<%\>[<_1‘7j+1—7j ‘—)01fN—>oo

(1.1)

we will define the sequence of step functions
EM(tw)=¢ (W) w.p. 1 for te [T;N),Tj(fl)),

where EM)(t,w) € My([0,T)), j =0,1,...,N—1, N = 1,2, ... Here and further,
w. p. 1 means with probability 1.

Let us define the It6 stochastic integral for £(¢,w) € Ms([0,T]) as the fol-
lowing mean-square limit [100], [101] (also see [84])

l.im. Nz_lg(N) (T].(N),w) <f (TJ(_Z:[B,CU) —f (T;N),W>) & /Tﬁrdfn (1.2)
J=0 0

N—o0

where £(V)(¢,w) is any step function from the class M ([0, 77]), which converges
to the function £(¢,w) in the following sense

T

th M {‘g(N)(t,w) —§(t,w)‘2}dt:0. (1.3)
0

Further, we will denote £(7,w) as &, .

It is well known [100] that the [t0 stochastic integral exists as the limit (1.2)
and it does not depend on the selection of sequence & >(t,w). Furthermore,
the It6 stochastic integral satisfies w. p. 1 to the following properties [100]

2

T

M i O/ &df,
T

M 0/ &

T T T
(@& + B )dfy = o | &dfy + 5 | dfy,
/ [ea]

F0 = 07

2

FO )

T
Fop =M /gfdt
0
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where éta ¢t € MQ([OaT])ﬂ a, 6 € Rl-

Let us define the stochastic integral for & € My([0,7]) as the following
mean-square limit

N-1

T
Lim. Zf(N) (T;N),w> (T](ivl) - T;N)> © /é}dT, (1.4)
' 0

N—o0
]:
where £(V)(¢,w) is any step function from the class M ([0, 77]), which converges
in the sense (1.3) to the function £(¢, w).

1.1.3 Theorem on Expansion of Iterated Ito Stochastic Integrals of
Multiplicity &k (k € N)

Let (2, F, P) be a complete probability space, let {F;,t € [0,7]} be a non-
decreasing right-continuous family of o-algebras of F, and let f; be a stan-
dard m-dimensional Wiener stochastic process, which is Fy-measurable for any
t € [0, T]. We assume that the components ft(l) (¢ = 1,...,m) of this process
are independent.

Let us consider the following iterated It stochastic integrals

T s
Jp®p, = / Ur(tr) . .. / D (t)dwi L dw™) (1.5)
t t
where every ¢;(7) (Il = 1,...,k) is a nonrandom function on [t, T, wi — ¢l
fori=1,...,m andwgo) =T,0,...,0: =0,1,...,m.

Let us consider the approach to expansion of the iterated 1t6 stochastic
integrals (1.5) [1]-[70] (the so-called method of generalized multiple Fourier
series). The idea of this method is as follows: the iterated It6 stochastic integral
(1.5) of multiplicity k, k € N is represented as the multiple stochastic integral
from the certain discontinuous nonrandom function of £ variables defined on
the hypercube [t, T]*. Here [t,T] is the interval of integration of the iterated
Ito6 stochastic integral (1.5). Then, the mentioned nonrandom function of k&
variables is expanded in the hypercube [t,T]F into the generalized multiple
Fourier series converging in the mean-square sense in the space Lo([t, T]¥). After
a number of nontrivial transformations we come to the mean-square converging
expansion of the iterated Ito stochastic integral (1.5) into the multiple series
of products of standard Gaussian random variables. The coefficients of this
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series are the coefficients of generalized multiple Fourier series for the mentioned
nonrandom function of k variables, which can be calculated using the explicit
formula regardless of the multiplicity k& of the iterated Ito stochastic integral
(1.5).

Suppose that every ¢;(7) (I =1,..., k) is a continuous nonrandom function
on [t, T] (we will also consider the case 11 (7), ..., ¥g(7) € Lo([t,T]) in Sect. 1.11,
1.12). Define the following function on the hypercube [t, T]*

@Dl(tl) .. .@Dk(tk), 1 <...<ty

k k—1
K(ty,... ty) = H Ui (t) H Yey<tinds
0, otherwise =1 =
(1.6)
where tq,...,t, € [t,T] (k > 2) and K(t1) = 91(t1) for t; € [¢t,T]. Here 14
denotes the indicator of the set A.

Suppose that {¢;(x)}32, is a complete orthonormal system of functions in
the space Lo([t,T]).

The function K(t1,...,t;) is piecewise continuous in the hypercube [t, T]*.
At this situation it is well known that the generalized multiple Fourier series of
K(ty,...,t;) € Lo([t, T]%) is converging to K (t1,...,t;) in the hypercube [t, T]*
in the mean-square sense, i.e.

P1
lim R () Z...ZCM ]IH% tr) =0, (1.7)
j1=0  jx=0 La([t.T7*)
where
k
Cjooii = / K(ty,....t) | [ o (t)dts ... dty (1.8)
. 1=1
is the Fourier coefficient, and
1/2
HfHLQtT / Aty ... te)dty .. dty,

Consider the partition {7;}7, of [t,T] such that

t=1<...<tw=T, Ayv= max Ar; =0 if N =00, A7j=7j41—7;.
0<j<N-—1
(1.9)
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Theorem 1.12 [1] (2006) (also see [2]-[70]). Suppose that every (1) (I =
1,...,k) is a continuous nonrandom function on [t,T] and {¢;(x)}32, is a com-
plete orthonormal system of continuous functions in the space Lo([t,T]). Then

J[¢(k)]T,t = li lpigm Z Z CJk J1 (H Cj

Jj1=0 Jx=0

—Lim. Y ¢ (m)Awl) quk(nk)Ang:)) , (1.10)

N—oo
(ll,...,lk)EGk

where
GkZHk\Lk, HkZ{(ll,...,lk)Z ll,...,lk:O, 1,...,N—1},

Lp={(li,.. ., ) s Lo 1y =0, 1,...,N=1; Iy # 1, (g#7); gr=1,....k},

Lim. s a limit in the mean-square sense, i1,...,1 =0,1,...,m,

— [oi(s)awt? (1.11)

are independent standard Gaussian random variables for various i or j (in the
case when i # 0), Cj, j, 1is the Fourier coefficient (1.8), Aw%) = Wg)ﬂ - W%)
(1 =0,1,...,m), {Tj};yzo is a partition of [t,T], which satisfies the condition
(1.9).

Proof. At first, let us prove preparatory lemmas.

Lemma 1.1. Suppose that every ¥(1) (I =1,...,k) is a continuous non-
random function on [t,T]. Then

- Jo—1 k

J[p®] 7, = Lim. Z ZH@DZ (75,)A TZ w. p. 1, (1.12)

N=oo 570 j1=01=1

where AWS—? = W%)ﬂ —W%) (1=0,1,...,m), {Tj}j.vzo is a partition of the interval

[t, T] satisfying the condition (1.9).

2Theorem 1.1 will be generalized to the case of an arbitrary complete orthonormal system of functions
{#;(z)}320 in the space La([t,T]) and ¥1(7), ..., ¥r(7) € La([t,T]) in Sect. 1.11 (see Theorem 1.16). Theo-
rem 1.1 marked the beginning of a systematic study of the problem of strong approximation of iterated It6 and
Stratonovich stochastic integrals that have been most fully studied to date in this book.
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Proof. It is easy to notice that using the property of stochastic integrals
additivity, we can write

- Jo—1 k
Nre = Z ZHJ [ilr, 0, tEN WD L (1.13)
Jx=0 =0 [=1
where 3
J[t]os = / ()
9
and
N-1 Tt
=), / V(s / Up—1( 2] dwliv-) gw () 4
Jx=0

+ Z G[wk r+1

]k r+1— 1 ]k rt
X Z / Vk— 7“ / (/A 1 k T_Q)]T,tdwgk””’l)dwgik”)+

jk*TZO ity Tik—r
B Jja—1
2
N Z JW( )]Tj2+1aTj2’
J2=0
where
N-1 ji—1 Jma1=1 k
k
Gy =32 > - X2 T[T Wnm

J&=0 jr—1=0 Jm=0"l=m

def def

(¢m7wm+l7 SR ﬂﬁk) = ¢7(7]1€)7 (wla cee 7wk‘) = w%k) — w(k)

Using the standard estimates (1.26), (1.27) (see below) for the moments of
stochastic integrals, we obtain w. p. 1

Lim. ey =0. (1.14)

N—oo

Comparing (1.13) and (1.14), we get

- Jjo—1 k

J[ih! ]Tt—llm Z ZH [Wilzy, 17, WD L (1.15)

N=oo 220 ji=01=1
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Let us rewrite J[¢y in the form

]le+17le
le+1

Tl nyesy = () A [ () = ()t

le

and substitute it into (1.15). Then, due to the moment properties of stochastic
integrals and continuity (which means uniform continuity) of the functions v (s)
(I =1,...,k) it is easy to see that the prelimit expression on the right-hand
side of (1.15) is a sum of the prelimit expression on the right-hand side of (1.12)
and the value which tends to zero in the mean-square sense if N — co. Lemma
1.1 is proved.

Remark 1.1. It is easy to see that z'wa%.i) in (1.12) for somel € {1,... k}

.\ D )
is replaced with (AW%?) (p = 2, 4 # 0), then the differential th(lZl) in the
integral J[")) 1, will be replaced with dt;. If p = 3,4, ..., then the right-hand

side of the formula (1.12) will become zero w. p. 1. If we replace AW%) in (1.12)
for some 1 € {1,...,k} with (A1;,)" (p = 2,3,...), then the right-hand side of
the formula (1.12) also will be equal to zero w. p. 1.

Let us define the following multiple stochastic integral

. — ) def )
Lim. Z ®(15,...,7j, HAWTH = Ja)}) (1.16)
J15-J6=0
where ®(t1,...,t;) : [t,T]* — R! is a nonrandom function (the properties of

this function will be specified further).
Denote
DkZ{(tl,...,tk)It§t1<...<tk§T}. (117)

We will use the same symbol D, to denote the open and closed domains
corresponding to the domain Dy defined by (1.17). However, we always specify
what domain we consider (open or closed).

Also we will write ®(tq,...,t;) € C(Dy) if ®(t1,...,t;) is a continuous
nonrandom function of k variables in the closed domain Dj..

Let us consider the iterated Ito stochastic integral

def/ / (tr, .. t)dw ™ L dwi™), (1.18)
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where ®(tq,...,t;) € C(Dy).

Using the arguments which similar to the arguments used in the proof of
Lemma 1.1 it is easy to demonstrate that if ®(¢1,...,t;) € C(Dy), then the
following equality is fulfilled

- Ja—1 k
I<I> —llm D(7j, ..., T Aw!  w. p. 1. 1.19
@] N%w.;; Z% o7 [TAWET e po 1 (119)

In order to explain this, let us check the correctness of the equality (1.19)

when k£ = 3. For definiteness we will suppose that i1,i9,23 = 1, ..., m. We have
T t3 to
(I)]Ttdef/// (tr, ta, t3)dwi Vdw(? dw(® =
N—1 Tjg to
= Lim. O(t), by, 7 )dw' W aw' D Awliz) =
N_mjgz_:o / (1 2 Js) 11 to Tjs
=0% %

N—1js—1 Tio+1 to

= lim. ZZ // tl,tg,%)dwﬁ )dw]E )Awgi):

N— ;
> j3=0 jo=0 t
Tjo

N— 1_]3 1 J2+1 TA

= Lim. ZZ / / / tl,tQ,Tjg)dwg )dwg )AW%) —

N—
> J3=0 j2=0

N—1ja—1jp—1 2rt T

-mmzzzj/tmﬁwwwm@+

N— )
%% j3=0 jy=0 j1=0

+Lim. / / (t1,t9, T dw'™ gw !’ >Aw$?3>. 1.20
N oo Z:ODZO 1, b2, Ty ) AWy, ty is ( )

Tj2

Let us demonstrate that the second limit on the right-hand side of (1.20)
equals to zero.

Actually, for the second moment of its prelimit expression we get

N—1j3—1 2+t ta N—1j5—1

Z Z / / (t1, bo, 75, )dtydbs ATy, < M? Z Z ! (AT;,)? Ay, — 0

J3=0 72=0 Tiy J3=0 j2= 0
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when N — oco. Here M is a constant, which restricts the module of the function
(ty,19,t3) due to its continuity, A1 = 741 — 7;.

Considering the obtained conclusions, we have

T t3 to
def il iQ 1
19 [ [ [ @t ta,t)awlViw(Pawl) =
t t t

N— 1]3 1]2 1 Tjo+1 Tj1+1

= lLim. Z Z Z / / tl,tQ,Tjg)dwt(fl)dwg?)AWS_jg) =

N— .
% j3=0 jo=0j;=0 .

N— 1]3 1.72 1 Tjo+1 Tj1+1

= Lim. ZZZ/ / flatmjg)—<I>(t1,7j2,7j3))dw§f1>dw§§2)Aw$§§)+

N—o0

J3=0 j2=0 j1=0 T

N— 1]3 1]2 1 Tj2+1 Tj1+1

+lim. Z Z Z / / tl’ Tja> Tj?)) - (I)(ij Tjos sz)) dngl)dwgz)Awgz)_{—

N— ;
% j3=05>=0 j1=0 it
J1

N—1j3—172—1

+1.im. Z Z Z D (75, Tjy, Tjs) Aw( Aw AWTE:: : (1.21)

N0 5220 ja=0j,=0
In order to get the sought result, we just have to demonstrate that the first
two limits on the right-hand side of (1.21) equal to zero. Let us prove that the
first one of them equals to zero (proof for the second limit is similar).

The second moment of prelimit expression of the first limit on the right-
hand side of (1.21) equals to the following expression

N—1j3—1jo—1 Tjg+1 Tj1+1

ZZZ / / tl,tQ,Tj3) — (I)(tl,TjQ,Tj3))2 dtldtgATj3. (122)
J3=0j2=0j1=0 i

Since the function ®(t1, 9, t3) is continuous in the closed bounded domain
Dj3, then it is uniformly continuous in this domain. Therefore, if the distance
between two points of the domain Dj is less than d(¢) (d(e) > 0 exists for any
e > 0 and it does not depend on mentioned points), then the corresponding
oscillation of the function ®(t1,ts,t3) for these two points of the domain Dy is

less than €.
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If we assume that A7; < d(¢) (j = 0,1,..., N — 1), then the distance
between points (t1,t2, 7j,), (t1, 7j,, Tj,) is obviously less than §(¢). In this case

‘(I)(tlyt2;7_j3) - (I)(tla Tj277j3)| <E.

Consequently, when A7; < d(e) (=0, 1,..., N —1) the expression (1.22)
is estimated by the following value

N—-1j3—1j2—1

23S Y ananan, <20

j3=0 j2=0 j1=0

Therefore, the first limit on the right-hand side of (1.21) equals to zero.
Similarly, we can prove that the second limit on the right-hand side of (1.21)
equals to zero.

Consequently, the equality (1.19) is proved for k£ = 3. The cases k = 2 and
k > 3 are analyzed absolutely similarly.

[t is necessary to note that the proof of correctness of (1.19) is similar when
the nonrandom function ® (¢4, ..., %) is continuous in the open domain Dy and
bounded at its boundary.

Let us consider the following multiple stochastic integral

N-1
lNi._>m. Z Q(15,,...,7) H AWT” g (D] k), (1.23)
> j1 ----- jk:0

where ®(t1,...,t.) : [t,T]¥ — R! is the same function as in (1.16).

According to (1.19), we get the following equality

T to
/ <<I>(t1, o t)dw dwgi“) w.p. 1, (1.24)
¢ (t1,estn)
where
(t1,eetk)
means the sum with respect to all possible permutations (1, . .., tx). At the same
time permutations (1,...,¢;) when summing are performed in (1.24) only in

the expression, which is enclosed in parentheses. Moreover, the nonrandom
function ®(¢1,...,%;) is assumed to be continuous in the corresponding closed
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domains of integration. The case when the nonrandom function ®(t1, ..., ;) is
continuous in the open domains of integration and bounded at their boundaries
is also possible.

It is not difficult to see that (1.24) can be rewritten in the form

Z / / (t1,...,t dwt )...dwgz’“) w. p. 1, (1.25)

tla atk:

Where permutatlons (t1,...,t;) when summing are performed only in the values
dwt i) dwt . At the same time the indices near upper limits of integration in
the 1terated stochastic integrals are changed correspondently and if ¢, swapped
with ¢, in the permutation (¢i,...,%;), then i, swapped with i, in the permu-
tation (i1,...,1k).

Lemma 1.2. Suppose that ®(ty, ..., tx) € C(Dy) or ®(t1,...,t) is a con-
tinuous nonrandom function in the open domain Dj and bounded at its bound-

ary. Then
“m%t}<c/ /@%h” pdty .. dty,  Cp < o0,
where [[Cb]gfz is defined by the formula (1.18).

Proof. Using standard properties and estimates of stochastic integrals for
& € My([t, T]), we have [101]

T

/ .df, / M2}, (1.26)

T

[ear| < @0 [P (1.27)

t

Let us denote

ti+1

f[(I) B ot / / (t1, ... dw§ 2 dwg ),

where [ =1,..., k — L and £[@]\" , < ®(t1,...,t;).
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By induction it is easy to demonstrate that

@l e Mo([t, T))

with respect to the variable ¢;.;. Further, using the estimates (1.26), (1.27)
repeatedly we obtain the statement of Lemma 1.2.

It is not difficult to see that in the case 71,...,4, = 1,...,m from the proof
of Lemma 1.2 we obtain
M{‘ @]7) } / /@2 thy .oy ty)dty . diy (1.28)
Lemma 1.3. Suppose that every ¢;(s) (I =1,...,k) is a continuous non-
random function on [t,T]. Then
k
[[7lelrs = Ji@)7; w.p. 1, (1.29)
=1
where
T

Jlolre = /@l(s)dwgl>a (g, ... HSOZ t),

t
and the integral J[® ] 71 18 defined by the equality (1.16).
Proof. Let at first 7, #20, [ =1,...,k. Let us denote

dof o= ,
Jedn = alr)Aw.
=0
Since
k k

170y =[] 7ledrs

=1 =1
k -1 k

=> (H J[sog]T,t> <J[mN - Jm]T,t> IT 7~ | - (1.30)

=1 \g=1 g=l+1

then due to the Minkowski inequality and the inequality of Cauchy—Bunyakov-
sky we obtain
9 1/2

<

k
- HJ[SOZ]Tt
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k A\ 1/4
Z( {' Lo = Jleilry }) : (1.31)

where (), is a constant.

Note that
N—-1
Jloldn = Jledre = ) J[A@r.
=0
Tjt1
JA@ir; 17 = / (pi(75) — @u(s)) dwli.

Since J[A]; ., -, are independent for various j, then [102]

N-1 4 N-1 4
M Z ‘][AQOZ]TJH Tj - Z M {|J|:Agpl:|7j+l77j } +
Jj=0 j=0
N-1 7—1 2
+6 Z M {'J JANH R } Z {‘ (A7, 1 . } . (1.32)
Jj=0 q=

Moreover, since J[Ay] is a Gaussian random variable, we have

Tj+1:Tj5

}— [ itm) = o),

Tj

} 3 / (o) — u(s))?ds

Tj

M {‘J[A@l]nﬂ,n

M {|J[A¢Z]Tj+1,7j

Using these relations and continuity (which means uniform continuity) of
the functions ¢;(s), we get

N-1 4 N-1
M Z JA@r 1, (3 Z AT] +6 Z AT Z ATq>
=0 =0
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where A7; < 6(¢), j = 0,1,...,N —1 (6(¢) > 0 exists for any ¢ > 0 and it
does not depend on points of the interval [¢,7]). Then the right-hand side of
the formula (1.32) tends to zero when N — oco. Considering this fact as well as
(1.31), we obtain (1.29).

If ng) = t; for some [ € {1,...,k}, then the proof of Lemma 1.3 becomes
obviously simpler and it is performed similarly. Lemma 1.3 is proved.

Remark 1.2. It is easy to see that z'wa%.i) in (1.29) for somel € {1,... k}
.\ D )
is replaced with (AW%?) (p = 2, 4 # 0), then the differential th(lZl) in the

integral J[®®)]r; will be replaced with dt;. If p = 3,4, ..., then the right-hand
side of the formula (1.29) will become zero w. p. 1.

Let us consider the case p = 2 in detail. Let AW%) in (1.29) for some

N2
l€{1,...,k} is replaced with (AW%?) (47 # 0) and

eN—1 N ) T
Sl v d:fZSOZ(Tj) (AW%Z)) , Jledre dzf/@l(s)ds-
Jj=0 t
We have
AN 1/4
(M {J[W]N — JlpiTa }) =
1/4
Vi N T 4 /
= [ [E et (awi) = [atslas| o | =
J=0 t
A\ LA
N-1 9 i1
— | w o) (aw) = [ (auls) = i) + alr) ds <
=0 J
N_1 | , 4 1/4
<M ngl(Tj) ((AW%Z)> —ATj> +
=0
N—1 Tt
3 [ alm) — alyds|. (1.33)
=0
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From the relation, which is similar to (1.32), we obtain

%; i(7;) ((Awiﬁf’)Q - ATj)
e { (aw)' - mj)4} ;

6 N (7)) M { ((aw)"- An)z} .
széqu)fm{((Aw&zﬂ)zmq) } NZ (i(m) (A +

4

+24 Z oi(75)) ATJ)Q (W(Tq))? (ATq)Q < C(Ax)* =0 (1.34)

q

I
o

if N — oo, where constant C' does not depend on N.

The second term on the right-hand side of (1.33) tends to zero if N — oo
due to continuity (which means uniform continuity) of the function ¢;(s) at the
interval [t,T]. Then, taking into account (1.30), (1.31), (1.33), (1.34), we come
to the affirmation of Remark 1.2.

Let us prove Theorem 1.1. According to Lemma 1.1, we have

N-1 lo—1
T Wy =1im. Z Zm 7)o k() Awl L A —
N-1 lr—1
:1N1_>n(;10 ZK Tlyy - - le AW“ AW%: =
lx=0 =0
N-1
=lim. 3 .. ZK% ) AW AW =
lx=0 =0
N-1
im Z K(r,,...,m)Awi . Awl®) = (1.35)
N—o0

lg#lr; q;ér q,r=1,....k
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/ / Z K(ty,... ,tk)dwgl) . dwiik)) w. p. 1, (1.36)

(t1yesti)

where permutations (t1,...,%;) when summing are performed only in the ex-
pression enclosed in parentheses.

It is easy to see that (1.36) can be rewritten in the form

Ny = Z / /K t, ...yt dW,E 1) ..dwgz’“) w. p. 1, (1.37)

tla atk:

where permutations (¢y, . . ., t;) when summing are performed only in the values
dwgl) e dwgzk). At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if ¢, swapped
with ¢, in the permutation (¢i,...,%x), then ¢, swapped with i, in the permu-
tation (i,...,1x).

Since integration of a bounded function with respect to the set with measure
zero for Riemann or Lebesgue integrals gives zero result, then the following
formula is correct for these integrals

/|G(t1,... W|dty .. dty = Z/ /\th,... )|dty ... dt, (1.38)
LTk

(t1,oth)

where permutations (t1,...,%;) when summing are performed only in the va-
lues dt;...dt;. At the same time the indices near upper limits of integration
in the iterated integrals are changed correspondently and |G(ty, ..., t;)| is the
integrable function on the hypercube [t, T*.

According to Lemmas 1.1, 1.3 and (1.24), (1.25), (1.36), (1.37), we get the
following representation

T ™p, =

B Z ZCJ’“ jl/ / Z ¢31 t1). @k(tk)dwt“ : dwg >

1=0 Jk=0 (t1,eesti)

+Rp17 Pk —



50 DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stmmnovic}l Stochastic Integmls Based on Genemlized Multip]e Fourier Series

P1 Pk N-1 . .

= Z . Z Ciois lNi.—iz Z ¢4, (11,) - - - (bjk(le)Awg‘ll) . Aw%:)jL
n=0 =0 I e
+R%£""pk = (1.39)
P Pk N-1 ) .
=D > i | Lm0 05(7) - 65 (m) AW Awp—
j1=0 jr=0 l1,..50x=0
_ llm Z ¢Jl (Tll)Awgl) Ce ¢]k (le)Ang) +
N—o0 ! g
(ll,...7lk)€Gk
+R}££...,pk —
D1 Pk
SN
J1=0 Jk=0
. (i)
TG —Lim > oum)Awh) oy (m)Awl) | +
=1 (ll,...,lk)EGk
+R’%1,;5”"p’“ w. p. 1, (1.40)
where
T to 1 Pk k
Ry = Y // (K(tl,...,tk) ~ Z...chk...ﬁﬂ%(tz)) X
(t1,etr) % ! 7=0 " Jk=0 =1

xdwgfl) . dwgzk), (1.41)

where permutations (1, .

(i1)

.., tx) when summing are performed only in the values
dw, " ... dwgi

t) At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if ¢, swapped
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with ¢, in the permutation (¢i,...,%;), then ¢, swapped with ¢, in the permu-
tation (i1,...,1k).

Pk

Let us estimate the remainder R}, "* of the series. According to Lemma

l[)jpl Pk 2
M {( T’;”’ ) } <

T t
Sckz /---/(Kth Z ZC]k 31H¢Jztl>dt1 SUTES
t

Jj1=0 Jr=0

:Ck/ (Ktl, Z ZCM hH@l tl> dt ...dt;, — 0
ik

Jj1=0 Jk=0
(1.42)

if p1,...,pr — 00, where constant (' depends only on the multiplicity k& of the
iterated Ito stochastic integral J[¢)")]7;. Theorem 1.1 is proved.
Note that from (1.39) and (1.42) it follows that
P Pr
T e = Lim. Y .Y Ch - Gl ) p. 1, (1.43)

Pis.-- pk—>OO ‘ ¢
7 Jj1=0 Jik=0

where J'[¢), ... jl7; (1) s defined by (1.23).

It is not dlfﬁcult to see that for the case of pairwise different numbers

1,...,2:=0,1,...,m from Theorem 1.1 we obtain
FN . — 15 (ix)
JwWlre= lim, ZO Zocyk AV (1.44)
J1 Jk

1.1.4 Expansions of Iterated It6 Stochastic Integrals with Multiplic-
ities 1 to 7 Based on Theorem 1.1

In order to evaluate the significance of Theorem 1.1 for practice we will demon-
strate its transformed particular cases (see Remark 1.2) for k = 1,...,7 [1]-[63]

Tk =Lim 3 (1.45)

J1=0
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TPy = lim, ZZCM< W — 1401y, m) (1.46)

J1=0j2=0

1 b2 P3
J[w(?))]T,t - D1 %721]91311%00 Z Z Z 033]2]1 ( Ji 32 Cj(;g)

J1=0 j2=0 53=0

_1{i1:i27é0}1{j1:j2}Cj33 o 1{i2:i37é0}1{j2:j3}Cj1 o 1{i1i3#0}1{j1j3}cjgz)>’ (1'47)

TNy = i, Z ZCM i (HCJ

..... i
~ Lo L=t G G = Ly L= GG
— L =iz00 15 34}632 ng — Liy=iy 201 L4, JS}CJ Cy4)
Vit Lm0 = Liminroy Liismin G G+

L =ir0y L=} Lis=iar0} L a=ja) T Lin=is0y L=} Lin=iat0} L o=jia) =

+]‘{i1=i47'50} 1{j1=j4} 1{%'221'3750} 1{j2j3}> ) (1 '48)

LIRS S8 3L | | 1

mr S
— Ly 0y LG GG Cy(5 ) — Ljiymiyoy L G G -
“Lmirr L= G G G = Liminroy Liimin G 6 G -
—Lii=iz01 1, ]3}Cj C4 C](5 ) Lgip—is01 15, J4}Cj ng CJ(ES)_

—Lip=is 201 1), Js}Cgl C]g C](4 L FORIIS 9 ]4}@ g2 Cj(ﬁ"’)—
—Lig=isz0y 1, ]5}@1 CQ CJ(4 - i Fry——e v Js}gh CQ CJ(§3)—|—
1m0 L) Linminoy Lssmiad G Linmiao) Limiy Lismioio) Liomsn) G+
ity Lm0 L iminy Gy Linmintoy Linms Liamidoy Lims G+

(is) i
+1 (=i 200 L (1=} Lin=is 20 L=} G5, + 1{1‘1:2'37&0}1{j1:j3}1{i4:i5¢0}1{j4:j5}@<~22)+
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53

is) (i3)
+1{i1=i4750}1{j1=j4}1{i2=i37é0}1{j2=j3}c§55 + 1{1'1:147&0}1{j1:j4}1{i2:i57é0}1{j2:j5}Cj33 +

(i2) (i4)
14 =20} L=y Lig=is 20} L a=ia} Gy~ T Lin=is 20} L{n=is} Lio=is 20} L {o=ja} G5, T+

(i3) (i2)
F 1 gi=is20y Li=jo} Wia=iart0) L=} Gy Linminrt0) Lamio} Linmintoy Lia=in} G, +

i1) (i1)
—'_1{1'221'3750}1{]'2:]'3}1{i4=i5750}1{j4=j5}cj('1 +1{i2:i47é0}1{j2=j4}1{i3=i57é0}1{j3:j5}Cj1 +

(41)
+1{i2=i5¢0} 1{j2=j5} 1{i3:i47é0} 1{.7'32.7'4}@1 ) ’

iz) ~(i4)
]-{21 167&0}1{31 JG}CJ Cja Cj4

(i4)
1{13 167&0}1{]3 ]6}g71 C2 €J44

Z Z Clig-wi

J1=0 Je=0

(H G-

i3)
CJ(S R Lii,=isz0y 14, JG}CJ CJS

(1.49)

(i) (i)
Cj4 Cj55 o
' (is) »(is)

C§5 Y Loy L aﬁ}Cyl C i C]j’ G —

i (i5) ~(is)
1{25 16750}1{j5 jG}C] CQ CJ(33)C(4 ) - 1{21 22750}1{71 jg}Cj C4 C]55 Cj66 -
(és) (i5) ~(i6)
C]e 1{21 247&0}1{11 J4}CJ C]g Cj55 Cj66 o

~ izt 1= GGG
~ Lm0 Limint G G G
Uit L gamin GG G
~Liymito L gmin GG G

i) ~(ic) (i5) ~(i6)
(]6 - 1{12 137é0}1{]2 ]3}C] §j4 <J5 CjGG N

i5) -(i6) (i4) ~-(i6)
C]a o 1{12 257’50}1{32 ]5}Cj CJ?, CJ44 Cj66 o

(i6) (a) ~(i6)

C](s - 1{13 257&0}1{13 J5}CJ1 C]2 Cj4 stﬁ o
i i)

1{24 15750}1{34 Js}CJ CQ CJ(;)C]('GG +

i)
+1{21 22#0}]—{31 32}1{23 24750}1{33 j4}Cj CJ@ +

L,y 20y L 1o Liaminpop Lt G G +

+1{11 127&0}1{]1 J2}1{Z4 25750}1{14 35}@3 C]Es +

i)
+1{zl 237&0}]—{31 33}1{22 24#0}1{32 J4}Cj Cje +

10, =is201 L=} Lin=is 20y 1 (5 35}@ CG +

+1gsiy 0 Loy Liaminiy L G G+

i6)
+1{zl 247&0}]—{31—34}1{22 23#0}1{32 33}Cj C]G +

+1{21 14#0}1*@1 J4}1{Z2 15?@}1{]2 15}@3 C% +
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140201 L=y L g=is 203 L (5 JS}CJ CJG )+
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+1{i1:i27é0ajl:j2,i3:i75’é07j3:j7,i5:i67é07j5:j6} + 1{@'1=i3750’j1=j372'2=i57507j2=j572'6:@'775073'623'7}+
A1y =i 0,51 = s i =60, ja=josis=ir#0,js =iz} T L{iv=is 0,1 =js in=ir£0,jo=jr is=ic70,j5=jo} T
L0y i £0,51=j5 i =i5£0,jo=js,is=ir£0,jo=jr} T L{ir=is £0,j1=js in=is£0,ja=js is=ir#0,js=jr} T
+1{i1:i57é0aj1:j57i2:i77é0aj2:j7ai3:i67é07j3:j6} + 1{i6=i1#Oaj6=j172'2=i3750,j2=j37%'5:@'775073'523'7}+
T ig=i1#£0,jo=j1 iz=isA0,ja=jnsia=irA0,js=jr} T Lig=i10,jo=j1,ia=ir#0.ja=r.is=is70.ja=js} T

AL {ir=i1 £0,jr=j1 i =is£0,jo=js,is=i6£0,js=jc} T L{iz=ir£0,jr=j1 in=is £0,ja=js iz=is#0,js=jo} T

(i4)
1 (=i, 20,y =1 sig=i6H0,ja=josis=is20.js=js} | Gy —

- 1{il=i27é0,j1=j2,i3=i4750,j3=j4,i6=i7750,j6=j7} +1{il=i2750’j1=j2,i3=i67é0,j3=j6,i4=i7750’j4=.7'7} +

+1{i1=i27é0aj1=j2,i3=i7750,j3=j7,i4=i6750,j4=j6} + 1{i1=i37507j1=j3,iz=i47507j2=j4,i6=i77507j6=j7}+
—l_1{il:i37é07j1:j3,i2:i67é07j2:j6,i4:i77é07j4:j7} + 1{il=i3750’j1=j3,i2=i77507.7'2=.7'7,Z'4=i67507.7'4=]'6}+
+1{i1:i4#0aj1:j4,izzis#oaﬁ:jé,i6:i77é0aj6:j7} + 1{1'1:i45£0,j1:j4,i2:z'(,-;éO,jg:jﬁ,i3:i77£0,j3:j7}+
+1{i1=i47é0,j1:j4,i2=i77é0,j2=j7»i3=i6750,j3:j6} + 1{i6:i17’é07j6:j1;i2:i37é07j2:j37i4:i77é07j4:j7}+
+1{i6:i17é0aj6:j1,i2:i47é07j2:j4,i3:i77é07j3:j7} + 1{@'621'1750’j6=j172'2=i77507j2=j77i3=i47507j3=j4}+

+1{i1=i7750,j1=J'7,i2=i3790’j2=j3,i4=i6750,j4:j6} + 1{il:i77é07j1:j7ai2:i47é07j2:j4ai3:i67é07j3:j6} +

(is)
L iy =i 40, jr=j1 ia=i6#0.jo=jo.is=is#0.js=ja} | Cjs —

Lii)mint0,j1=n.is=i4#0,js=ja,is=ir£0,js=jr} T L {iy =i 0 j1 =3 is=is £0,js=js ia=ir£0,ja=jr} T

L0 i £0,51 =g ig=ir£0,js=jr,ia=is£0,ja=js} T L{ir=is£0,j1=js in=ia#0,ja=js,is=ir#0,js=jr} T
1 iy =ia 20,1 =jia=i50,ja=js.ia=ir£0.ja=jr} T L{ii=ia0,j1=js.io=ir£0.jo=jrsia=is0,ja=js} T
+1{i1=i47407j1=j4,i2=i3740,j2=j3,i5=i7790’j5=j7} + 1{1'1:i47é0,j1:j4,z'2:i57é0,j2:j5,i3:i77é0,j3:j7}+
+1{il:i4?é0aj1:j4,i2:i7?é0,j2:j7,i3:i5?é0a]'3:j5} + 1{i1:i57é07j1:j5,iz:Z':s#ovjz:js,i4:i77£07j4:j7}+
1 iy =i5 20,1 =5 ia=i470,ja=jasis=ir£0,ja=jr} T L{ii=is0,j1=js.io=ir£0.jo=jrsis=ia0,js=ja} T

F 145,020 jr=1 in=is#0,jo=1s is=is£0,ja=js} T L{iz=i1#0,jr=j1,in=i4#0.ja=ja,iz=i5#0js=js} T

(i6)
+1{i7=i1750,j7=j1,12=i5#0712=j5,i3:i47é07j3=j4} <j o
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o (1{i1i2¢07j1j2,i3i47£07j3j4,15i67£07j5j6} +1{i1:i2¢0,j1:j2,i3:i57é0,j3:j5,i4:i6¢07]'4:j6}+

+1{i1:i27é0aj1:j2>i3:i67éo7j3:j6»i4:i55’é07j4:j5} + 1{il:i37é0aj1:j37i2:i47é07j2:j47i5:i67é07j5:j6}+
+1{i1:i3750aj1=j3,i2:i57é0aj2:j5,i4=i6750aj4:j6} + 1{7:1:i37é07j1:jSai2:i67é07j2:j6ai4:7;57é07j4:j5}+
T L4140 jy= 1 in=i570,ja=js.is=is#0js=js} T L{ia=ir#£0,ja=j1 ia=is 0, jo=js.is=i6#0,js=js} T
T iimin 20, ju=j1 in=ia 20, jo=josis=is#0js=js} T Lis=ir£0,js=j1,in=is£0.ja=js,ia=is£0,a=ja} T
+1{i5:i17é07j5:j1,i2:i47é07j2:j4»i3:i67é07j3:j6} + 1{i5=i17507j5=j1,2'2=i67507]'2=]'6,2'322'47507.7'3:]'4}+

+1{i6:i17é05j6:j17i2:i37é05j2:j37i4:i57é0aj4:j5} + 1{i6=i17é07j6=j1,iz:i47é0,j2=j4,i3=i5#07]'3215}+
(i7)
+1{i6:i17§0,j6:j1,i2:i57é0,j2=j5,i3:i47é0,j3:j4}> Cj: ) (1 51)
where 14 is the indicator of the set A.

1.1.5 Expansion of Iterated Ito6 Stochastic Integrals of Multiplicity
k (k € N) Based on Theorem 1.1

Consider a generalization of the formulas (1.45)—(1.51) for the case of arbitrary
multiplicity k& for J [w(k)]T,t. In order to do this, let us consider the unordered set
{1,2,...,k} and separate it into two parts: the first part consists of r unordered
pairs (sequence order of these pairs is also unimportant) and the second one
consists of the remaining k£ — 2r numbers. So, we have

({igla 92}7 ey {927“—17 g?r};}a {gl; ey qk—??;})a (152)
part 1 part 2
where {91, 92, .-, 921,92, q1, - - - s Qr—2-} = {1,2,...,k}, braces mean an un-

ordered set, and parentheses mean an ordered set.

We will say that (1.52) is a partition and consider the sum with respect to
all possible partitions

E : angQa-~-792r—lg2r7ql---qk—27‘7 (1'53)

({192}, A92r 1,927} 1 {a1,-ap—2, )
{91,92:--:92r—1,92r41 >4 — oy }={1,2,...,k}

where Ag1ga,....92r—192r,q1 - Qk—2r cR.
Below there are several examples of sums in the form (1.53)

E Qg g, = A12,

({91,92})
{gl )92}:{172}
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E : Qg gy,gsgs = Q12,34 T Q1324 + 423 14,

({{91,92}.{93,94}})
{917g27g3’g4}:{1727374}

§ : a9192,Q1LI2 =

({91.92}.{q1,92})
{91,92,91,92}=1{1,2,3,4}

= 12,34 + 1324 + Q1423 + Q2314 + Q2413 + A34.12,

§ : a91927Q1Q2Q3 =

({91,92}:{491,92,93})
{91,92,91,92,93}={1,2,3,4,5}

= 12,345 + Q13,245 + Q14,235 + G15234 + @23 145 + Q24135+

+a25,134 + A34,125 + A35,124 + A45,123,

Z Ag192,9391,01 —

({{91,92}{93:94}} {a1 })
{91:92,93,94,91}=1{1,2,3,4,5}

= (12,34,5 T Q13245 + 14,235 + A12354 + Q13254 + 15234 + A1254,3 + Q15243+

+a14,253 + Q15342 + Q13542 + Q14532 + A52.34,1 + A53.24,1 + A54,231-

Now we can formulate Theorem 1.1 (see (1.10)) using alternative form.

Theorem 1.23 [4] (2009) (also see [5]-[17], [24], [29], [39], [48], [49]). Under
the conditions of Theorem 1.1 the following expansion

[k/2]
JW® g, = 11 m. g C; H §
[1/) ]T,t PE—oo 4 Jke--J1 CJ
=0 Jjr=0
k—2r
’qu
X Z H {7’925 1_ 2‘1257&0} {]‘125 1 .792 } H Cj (1'54)
({{gl792})“'7{927'—17«‘727‘}}7{‘117"'ka727“}) S§= 1

{91:92,-:920—1,927+91 >4 2y }={1,2,....,k}

converging in the mean-square sense is valid, where [x] is an integer part of a real
def | def

number x, [[ = 1, Y. = 0; another notations are the same as in Theorem 1.1.

0

Proof. The equality (1.54) will be proved by induction in Sect. 1.14 (see
the proof of Theorem 1.23).

3The connection of formulas (1.45)—(1.51), (1.54) with Hermite polynomials is studied in Sect. 1.10, 1.11 (see
Theorems 1.14-1.17).
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In particular, from (1.54) for k = 5 we obtain

JW)(Q]TJ - Pl,ll,pEgOO Z Z 0]5 J1 (H CJ

]1 =0 jo

- > Lii, = iy, 204105, = o) H Cf“

({91,92}:{91,92,93}) =1
{91,92,91,92,93}={1,2,3,4,5}
+ ) T i woli - 2la -0 sl - o 4Com)
{Zglz Z!]Q#O} {ngz .792} {7»93: Z94#0} {]ggz jg4} ]ql '
({{91,92} {93,941} {ar})

{91,92,93,94,91}=1{1,2,3,4,5}

The last equality obviously agrees with (1.49).

It is now appropriate to make a remark about the structure of the formulas
(1.45)—(1.51) and (1.54). Using (1.39), (1.43), (1.45)—(1.51), (1.54), we obtain

[k/2]

Jl[¢j1' ¢]k Zl o HQJ Z

r k—2r
x Z H 1{1.92571: iQQS#O}l{ngS = Joo, b H CJW ) 1 55)

({Ho1:92} {927 — 1,927 3} 4a1 - ap—2 P =1
{91,925+-920—1,92r:41 -4 — o7 }={1,2,....k}

w. p. 1, where the multiple stochastic integral J'[¢;, . .. ¢, |1 (--0t) s defined by
1.23); another notations in (1.55) are the same as in Theorem 1.2.

The stochastic integral with respect to the scalar standard Wiener process
(i1 = ... =i # 0) and similar to (1.23) was considered in [106] (1951) and is
called the multiple Wiener stochastic integral [106]. Note that ®(tq,...,t;) €
Lo([t, T]%) in [106] (this case will be considered in Sect. 1.11-1.14).

As we will see in Sect. 1.10, 1.11, 1.14, the expression on the right-hand

side of (1.55) is the Wick polynomial with arguments (;fl), o ,C(.i’“). Moreover,

Jk
the given expression is an explicit representation of the Wick polynomial, in
contrast to its representation in the form of a product of Hermite polynomials
(see Sect. 1.10, 1.11, 1.14) or its another representation (or definition) using a

recurrence relation (see (1.391)).

To best of our knowledge, the representation of the multiple Wiener stochas-
tic integral in the form of a Wick polynomial (see (1.55)) for the case of
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a multidimensional Wiener process (iy,...,ix = 0,1,...,m) and the case
Jis--Jk = 0,1,2,... was first obtained in our monographs [1] (2006), [3]
(2007), and [4] (2009). More precisely, the formula (1.55) is obtained in our
monograph [4] (2009) as part of the formula (5.30) (see [4], p. 220). Moreover,
partiular cases k = 1,...,5 (see (1.45)—(1.49)) of the formula (1.55) were ob-
tained in [1] (2006) as parts of the formulas on the pages 243-244 and partiular
cases k = 1,...,7 (see (1.45)—(1.51)) of the formula (1.55) were obtained in [3]
(2007) as parts of the formulas on the pages 208-218.

The indicated formulas are obtained for the case when 1(7),...,¥k(T)
are continuous nonrandom functions on the interval [t,T] and {¢;(z)}32, is a
complete orthonormal system of piecewise continuous functions in the space
Lo([t, T]) (see Sect. 1.1.7 and [1] (2006), [3] (2007), and [4] (2009)). Note
that the generality of the above results is even too great when applied to the

numerical integration of It6 stochastic differential equations.

It should be noted that in [110] (1987) an Le—version of the formula (1.55)
was obtained, but only for the special case j; = ... = jx. The above result in
[110] (Proposition 5.1) is obtained using diagrams, i.e. (unlike our results) in
an implicit form (see Sect. 1.14 (below Remark 1.18) for details).

Let us turn to the comparison of the formula (1.55) with another interesting
work [113] (2019). An Lo-version of (1.55) was obtained in [113] in terms of
Wick polynomials and for the case of vector valued random measures (see [113],
Theorem 7.2, p. 69). In earlier works of this author (see for example [112]) only
the case of scalar valued random measures was considered (see Sect. 1.14 (below
Remark 1.18) for details).

In Sect. 1.14 (Theorems 1.22, 1.23) we consider Ly—versions of the formula
(1.55). At that, to prove Theorems 1.22 and 1.23 we use only the It6 formula,
in contrast to the diagram method from [113].

1.1.6 Comparison of Theorem 1.2 with the Representations of Iter-
ated Ito Stochastic Integrals Based on Hermite Polynomials

Note that the correctness of the formulas (1.45)—(1.51) can be verified in the
following way. If iy = ... =iz =i =1,...,mand ¥(s),...,1¥7(s) = ¥(s), then
we can derive from (1.45)—(1.51) [2]-[17], [29] the well known equalities

1
J[p W], = 0T,
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1
- (5%’t - AT,iﬁ) )

J[w(Q)]T,t - 9|

1
JW(?’)]T,L* — 3 (5%,t - 35T,tAT,t) ’

1
00T = 1 (58— 65, + 383,

1

1
TN = o (07, — 1607 Ay + 4507, A7, — 15A7,)

1
Ty = & (87, — 2008, Ay + 10563, %, — 10361,A%,)

w. p. 1, where

T T
Oy = / W(s)dfD,  Ap, = / V2 (s)ds
t t

which can be independently obtained using the It6 formula and Hermite poly-
nomials [108].

When £ = 1 everything is evident. Let us consider the cases £ = 2 and
k = 3 in detail. When k = 2 and p; = py = p we have (see (1.46)) [2]-[17], [29]

J[w(Q)] Tt = lpl—glo ( Z 03231 ]1 ]2 Zcﬁjl) -

J1,J2=0

i (35 ()i + o (€)' 1)) -

J1=0 j2=0 =0
Ji—1 ;
=S (ZZ%%% w3 Z (< ) 1>>
J1=0 j2=0 ]1 =0
L o N
=lim |5 2 Cmca'z@f)@(ﬁ)*ézoci «gﬁ)) _1> B
J1,32=0 1=

J17#752
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1 p
i (3(Sed) 150

Jj1=0 ]1 =0

1
=5 (5%,75 —Ary) w.p. L (1.56)

Let us explain the last step in (1.56). For the It6 stochastic integral the
following estimate [103] is valid

q/2

T q T
/gTdfT < KM /|§T|2d7 : (1.57)
t t

where ¢ > 0 is a fixed number, f; is a scalar standard Wiener process, &, €
Ma([t,T]), K, is a constant depending only on g,

T
/]lesz <oo w.p. 1,
¢

T q/2
/ & 2dT < 0.
t

Since
p . I p
Ors — Y C ) = /<¢($) - le¢j1($)>df( )
Jj1=0 t 71=0

then applying the estimate (1.57) to the right-hand side of this expression and
considering that

/T <w(8) - i)cjl%l(s))st 0

if p — 00, we obtain

T
/¢ ) =¢-lim. ZC’thl, q > 0. (1.58)
t

p—00 0
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Here ¢ - l.i.m. is a limit in the mean of degree ¢. Hence, if ¢ = 4, then it is
p—00

easy to conclude that w. p. 1

2
p
: (@) ) _ 52
ll.)l_.glo. (Z%ngﬁ) = 07y
=

This equality as well as Parseval’s equality were used in the last step of the
formula (1.56).

When k = 3 and p; = ps = p3 = p we obtain (see (1.47)) [2]-[17], [29]

p
J[w(g)]Tt = l.i.m. < Z stjzjlggj)gj(';)c;g)_

p—00 .
jl7]27]3:0

p
o E : Ojsjljl § : OJ232]1 ]1 § : 03112.71 ]2> -

J1,§3=0 J1,J2=0 J1,52=0

p
=Lim. ( Chinin (V¢ — > <Cj3j1j1 + Clijijs +Cj1j3j1>§§§)> =
J1,J2,§3=0

j17j3:0

P Ji—lja— 1
(Z Z Z VEVEY + 013.71]2 + 03211.73 + 0323311 + OJ132J3 + C]1J3J2>

Jj1=0 j2=0 j3=0

<G G
p -1 N2
+ Z Z ( Jsj1J3 + CJ1]3J3 + C]S]S]l) (CJ(;)> C](ll)—i_
J1=0j3=0
p 11 N2
+ Z Z < Jsjin + C]l]l]d} + C11]331> (Cj(f)) C](;)+
=0 j3=0

p N\ 3 p .
+ Z Cj1j1j1 (<.7(1)> - Z (Cj3j1j1 + Cj1j1j3 + Cj1j3j1) Cj(?))) -

J1=0 J1,j3=0

p Jji—1lj2—1
(Z Z Z CJlC]?CJ?)CJl J2 C]S

0 j2=0 j3=0
p j1i—1 p ji—1

5 Y () g Yo () o+

J1 =0 j3=0 J1=0 j3=0



DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stramnovic}l Stochastic Integmls Based on Genemlized Multip]e Fourier Series 69

I s (0N L= o 00
+EZCJ1 (le) 9 Z lecj?’gjs -

j1=0 J1,J3=0
_ 1 - (i) ~(0) ~(i)
=lim g X GGG
I T 3y
p -1 _ p Ji—1 , (i)
13330 () g > (o) ¢
71=0 j3=0 e
~ 1 (0
; P i) _
qre @) L aod)-
]17 J1,53=0
. 1 (8) 1) (1)
B llagro% (6 Z le CJ2Cj3Cj1 Cjz Cj3 -
J1,J2,93=0
p ji—1 ‘ j (4)
(322 (33) ]1+3ZZ ( 1) Cj?’Jr
J1=073=0 J1=0j3=0
¢ 0%
+ Z C?l (CJlZ ) +
J1=0
p i1 ‘ p n—l , (i)
3203000 (¢0) ¢ + 50 Yo ch (o)) ¢+
Jj1=0 73=0 ]1 0 75=0
- 1 (i)
i 2 ¢
Y @) -3 3 dod) -
]1 =0 jlaj?):o
(e o0 L= o= )
_ ] ! 2 ' -
- 1pl—>rono 6 (Z CJ&CJ& ) 2 Z le Z Cj?’CjS o
j1=0 Jj1=0 J3=0
1

The last step in (1.59) follows from Parseval’s equality, Theorem 1.1 for
k =1, and the equality

3
p
: @) _ 3
1;31%%10' (Z legjl) =dr; w.p. 1,

J1=0
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which can be obtained easily when ¢ = 8 (see (1.58)).

In addition, we used the following relations between Fourier coefficients for
the considered case

1

(=)
@)

Cijo + Cijy = C, 0y 2Cy5, = G, (1.60)
Clijos + Chrsge T Chagaii + Ciagijs + Clgjogi + Cligjuge = C5.C1Clys - (1.61)
2(Cijujs + Chijajy + Cigiigy) = C5,Cy, (1.62)

6C, = C3. (1.63)

1

(@)
w

1.1.7 On Usage of Discontinuous Complete Orthonormal Systems
of Functions in Theorem 1.1

Analyzing the proof of Theorem 1.1, we can ask the question: can we weaken
the continuity condition for the functions ¢;(z), j =1,2,...74

We will say that the function f(x) : [t,T] — R satisfies the condition (%),
if it is continuous at the interval [t,T] except may be for the finite number of
points of the finite discontinuity as well as it is right-continuous at the interval
[t,T].

Furthermore, let us suppose that {¢;(z)}3,
system of functions in the space Lo([t,77]), each function ¢;(z) of which for
J < oo satisfies the condition (x).

is a complete orthonormal

It is easy to see that continuity of the functions ¢;(x) was used substantially
for the proof of Theorem 1.1 in two places. More precisely, we mean Lemma
1.3 and the formula (1.19). It is clear that without the loss of generality the
partition {Tj}é.vzo of the interval [¢,T] in Lemma 1.3 and (1.19) can be taken so
“dense” that among the points 7; of this partition there will be all points of
jumps of the functions ¢1(7) = ¢;,(7), ..., (7)) = ¢;,.(7) (1, ..., jr < 00) and
among the points (7;,,...,7j,) for which 0 < j; < ... < jr < N — 1 there will
be all points of jumps of the function ®(ty,..., ).

Let us demonstrate how to modify the proofs of Lemma 1.3 and the formula
(1.19) in the case when {¢;(x)}52, is a complete orthonormal system of func-
tions in the space Lq([t,T]), each function ¢;(z) of which for j < oo satisfies
the condition (x).

4The results of this section will be generalized to the case of an arbitrary complete orthonormal system of
functions {¢;(x)}32, in the space La([t, 1) and ¢1(7), ..., 9¥x(7) € La([t, T]) in Sect. 1.11 (see Theorem 1.16).
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At first, appeal to Lemma 1.3. From the proof of this lemma it follows that

N—-1 N-1 4
M Z J[AQPZ]T]+1 Tj - Z M {|J[Agpl]7—j+la7j } +
§j=0 j=0
N-1 2) j—1 2
+6) M {'J[Agpl]mmj } > M {‘J[Agpl]mmq } : (1.64)
7=0 q=0
Tj+1
2
M {71861} = [ (e1(m) = () s,
2
Tj+1
4
M {17861} =3 | [ (i) = )

Suppose that the functions ¢;(s) (I = 1,...,k) satisfy the condition (%)
and the partition {Tj}j\fzo includes all points of jumps of the functions ;(s)
(l=1,...,k). It means that for the integral

Tj+1

/ (i) — u(s))%ds

7j

the integrand function is continuous at the interval |7}, 7;;1], except possibly
the point 7,41 of finite discontinuity.

Let 1 € (0,Ar;) be fixed. Due to continuity (which means uniform con-
tinuity) of the functions ¢;(s) (I = 1,...,k) at the interval [7;,Tj41 — p] we
have

[ il = )i =
—~ / (r(1j) — u(s))?ds + / (1)) — @i(s))?ds <

< eX(A1j —p) + M?p. (1.65)
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When obtaining the inequality (1.65) we supposed that At; < d(¢) for all
j=0,1,...,N — 1 (here §(¢) > 0 exists for any € > 0 and it does not depend
on s),

li(75) — @u(s)| < e

for s € [15,7j41 — p] (due to uniform continuity of the functions ¢;(s), | =
L.... k),
eu(ms) —@i(s)| < M

for s € [1j41 — p,Tj+1], M is a constant (potential discontinuity point of the
function ¢;(s) is the point 7;41).

Performing the passage to the limit in the inequality (1.65) when p — +0,

we get
Tj+1

/ (i) — u(s))%ds < A, (1.66)

7j

Using (1.66) to estimate the right-hand side of (1.64), we obtain

N-1 4 N-1 N-1 j—1
MS DY JAG,m| ¢ <€ (3 D (AT +6)Y Ay A7q> <
j=0 =0 j=0 q=0
<3t (6(e)(T —t) + (T —t)?). (1.67)
This implies that
N-1 4
MS 1D JIAG | ¢ 0
j=0

when N — oo and Lemma 1.3 remains correct.

Now, let us present explanations concerning the correctness of (1.19), when
{#;(7)}32 is a complete orthonormal system of functions in the space La([t, T7),
each function ¢;(x) of which for j < oo satisfies the condition ().

Consider the case k = 3 and the representation (1.21). Let us demonstrate
that in the studied case the first limit on the right-hand side of (1.21) equals
to zero (similarly, we can demonstrate that the second limit on the right-hand
side of (1.21) equals to zero; proof of the second limit equality to zero on the
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right-hand side of the formula (1.20) is the same as for the case of continuous
functions ¢;(z), j =0,1,...).

The second moment of the prelimit expression of first limit on the right-
hand side of (1.21) looks as follows

N— 1]3 1.72 1 Tjo+1 Tj1+1

ZZZ / / tl,tQ,Tj3) —(I)(tl,TjQ,TjB))zdtldtgATjg.

]3 0]2 0]1 0 7_]1

Further, for the fixed u € (0, A7;,) and p € (0, A7;,) we have

Tjo+1 Tj1+1

((D(tl,tQ,TjS) — (I)(tl,Tj2,Tj3))2 dtldtg =

Tis  Ti

Tjo+1—H Tjo+1 Tj1+1—pP Tj1+1

/ / / / t17t2,7j3> — (I)(tl,TjQ,Tjg))2 dtldtg =
Tjo+1—H Tj1+1—pP
Tjo+1—H Tj1+1=P  Tjo+1—H Tj+1 Tja+1  Tj+1—P Tjo+1  Tj1+1

S S S

TiH1=P  Tjg+1— M Ty Tjo+1—H Tj1+1—P
X (D(t1, to, 73) — Bt Tjy, 73))° dbadts <
e* (AT, — 1) (AT, — p) + MPp (A7j, — ) +
(A7), = p) + Mpp, (1.68)

where M is a constant, Ar; < 6(¢) for j = 0,1,...,N — 1 (6(¢) > 0 exists
for any € > 0 and it does not depend on points (t1,t2,7j,), (t1, 7y, 7)) We
suppose here that the partition {Tj}é\fzo contains all discontinuity points of the
function ®(t,t9,t3) as points 7; (for each variable with fixed remaining two
variables). When obtaining the inequality (1.68) we also supposed that poten-
tial discontinuity points of this function (for each variable with fixed remaining
two variables) are contained among the points 7 41, 7j,+1, Tjs+1-



74 DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stmmnovic}l Stochastic Integmls Based on G neralized M Itiple Fo S ries

Let us explain in detail how we obtained the inequality (1.68). Since the
function ®(t1,ts,t3) is continuous at the closed bounded set

Q3 = {(751,7527153) 1t € [T Ti — plite € [Ty, Tpr1 — 1,13 € [Ty, Tipy1 — V]}a

where p, i, v are fixed small positive numbers such that
€ (0,A7;,), we(0,A7;,), pe(0,Ar),

then this function is also uniformly continous at this set. Moreover, the function
O (ty,t9,t3) is supposed to be bounded at the closed set D3 (see the proof of
Theorem 1.1).

Since the distance between points (¢1,t9, 75,), (t1,7j,, Tjs) € Q3 is obviously
less than d(e) (A7; < d(e) for j =0,1,...,N — 1), then

‘(I)(tlyt2;7_j3) - (I)(tla Tj27Tj3)| <E.

This inequality was used to estimate the first double integral in (1.68). Esti-
mating the three remaining double integrals in (1.68) we used the boundedness
property for the function ®(t1,ts,t3) in the form of inequality

’(I)(tlat%Tjg) - q)(t177_j277_j3)| < M.

Performing the passage to the limit in the inequality (1.68) when u, p — +0,
we obtain the estimate

Tig+1 Tj1+1
((I)(tl, tz, Tj3) — (I)(tl, Tiys Tjg))Q dtldtg < SQAszAle.
Tj Tj

2 1

This estimate provides

N—1j3—1jo—1 Tjo+1 Tj1+1

J3=0 j2=0 j;= Ty T

N— 1]3 1]2 1 ( t)

<e Z Z Z AT AT, AT, < &7 5

J3=0 72=0 j1=0
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The last inequality means that in the considered case the first limit on the
right-hand side of (1.21) equals to zero (similarly, we can demonstrate that the
second limit on the right-hand side of (1.21) equals to zero).

Consequently, the formula (1.19) is correct when k = 3 in the studied case.
Similarly, we can perform the argumentation for the cases £ = 2 and k£ > 3.

Therefore, in Theorem 1.1 we can use complete orthonormal systems of
functions {¢;(z)}32, in the space La([t,T]), each function ¢;(x) of which for
J < oo satisfies the condition (x).

One of the examples of such systems of functions is a complete orthonormal
system of Haar functions in the space Lo([t,T])

1 1 —t
¢0(SU) = T ¢nj(33) = T——t Pnj (;——t)’

where n =10,1,..., j=1,2,...,2" and the functions ¢,;(x) are defined as

2" we((-1)/2% (j-1)/2"+1/2")

pnj(r) =4 =2"2  we|(j-1)/2"+1/2" G2y

0, otherwise

n=201,..., 7 = 1,2,...,2" (we choose the values of Haar functions in
the points of discontinuity in such a way that these functions will be right-
continuous).

The other example of similar system of functions is a complete orthonormal
system of Rademacher—Walsh functions in the space La([t,T])

1
x) = :
¢o(z) —
1 r—t T —t
Dy, (T) = = Pm (T_t> -.-somk(T — t>,
where 0 <my < ...<mgp, my,....mp=12,..., k=1,2,...,

() = (=1)*",

r€[0,1], m=1,2,..., [y]is an integer part of a real number y.



76 DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stmmnovic}l Stochastic Integmls Based on Genemlized Mu]tip]e Fouriet Series

1.1.8 Remark on Usage of Complete Orthonormal Systems of Func-
tions in Theorem 1.1

Note that actually the functions ¢;(s) from the complete orthonormal system
of functions {¢;(s)}32, in the space La([t,T]) depend not only on s, but on ¢
and 7.

For example, the complete orthonormal systems of Legendre polynomials
and trigonometric functions in the space Lq([t, T]) have the following form

129+ 1 T+t 2
¢j(57t7T): jz—__'—tf)j((s_ ;_ >T—t)j

where Pj(y) (j =0,1,2,...) is the Legendre polynomial,

.

1, Jj=20

b(s,t,T) = Q V2sin (27r(s —t) /(T —t)), j=2r—1, (1.69)

i

\\/§COS 2rr(s—t) /(T —1t)), j=2r

where r =1,2, ...

Note that the specified systems of functions are assumed to be used in the
context of implementation of numerical methods for It6 SDEs (see Chapter 4)
for the sequences of time intervals

[To, T1], [T1, T3], [T, T3], ...
and Hilbert spaces

Lo([To, T1]), Lo([Th, T3]), Lao([T3,T3]), ...
We can explain that the dependence of functions ¢;(s,t,7") on ¢t and T

(hereinafter these constants will mean fixed moments of time) will not affect on
the main properties of independence of random variables

T
C((;%T,t - /qu(sv t, T)dwgi)a
t



DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stramnovic}l Stochastic Integmls Based on Genemlized Mu]tip]e Fouriet Series 77

where2=1,...,mand 7 =0,1,2,...

Indeed, for fixed t and T' due to orthonormality of the mentioned systems
of functions we have

(i) 4(r) B
M {C(j)T7tC(g)T,t} - 1{i=r}]—{j:g},

where 2,7 =1,...,m, 5,9g=0,1,2,...
This means that C((;;T , and C((;))T . are independent for j # g or i # r (since
these random variables are Gaussian).

From the other side, the random variables

Tl T2
= [ rtstr T, = [ oot Tyt
t 1 t2

are independent if [ty, T1] N [ta, To] = () (the case Ty = ty is possible) according
to the properties of the It6 stochastic integral.

(4)

(Tt which are

Therefore, the important properties of random variables (
the basic motive of their usage, are saved.

1.1.9 Convergence in the Mean of Degree 2n (n € N) of Expansions
of Iterated It6 Stochastic Integrals from Theorem 1.1

Constructing the expansions of iterated Ito stochastic integrals from Theorem
1.1 we saved all information about these integrals. That is why it is natural to
expect that the mentioned expansions will converge not only in the mean-square
sense but in the stronger probabilistic senses.

We will obtain the general estimate which proves convergence in the mean
of degree 2n (n € N) of expansions from Theorem 1.1.

According to the notations of Theorem 1.1 (see (1.41)), we have

Rty = Wy — S0 =

to

T
= /.../Rpl,,,pk(tl,...,tk)df;f”...df;jw, (1.70)
t

(t17"'7tk) t

where
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Ryt te) & K(ty,.. .t Z ZCM ]11_[% t),

Jj1=0 J&=0

J[®)] 7, is the stochastic integral (1.5), J[w(k)]z}l’;'"p’“ is the expression on the
right-hand side of (1.10) before passing to the limit Li.m.

pl,...,pk*)OO
Note that for definiteness we consider in this section the case i,...,1; =
1,...,m. Another notations from this section are the same as in the formulation

and proof of Theorem 1.1.
When proving Theorem 1.1 we obtained the following estimate (see (1.42))

2
M { (R%%’pk) } < / R1271-.-pk (t1, ..., tg)dty ... dtg,

[¢,T]F

where ()}, is a constant.

Assume that

s def/ / ot ) dET L dEY =203, k1,

2
k) def i1 i k def (k
nik) & / / Ry gy (1, t)dE L df™, gt = ),

Using the It6 formula it is easy to demonstrate that [101]

n—2

t 2n ¢ s 2
to/ gdf. | b =nn—1) / M / ed, | ebas

Using the Hélder inequality (under the integral sign on the right-hand side
of the last equality) for p =n/(n — 1), ¢ = n (n > 1) and using the increasing

of the value
'
[ e
to
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with the growth of ¢, we get
(n—=1)/n

t t
/defT <ni2n-1)| M /gTdfT X
to to

t

« / (M {&2) " ds

to

After raising to power n the obtained inequality and dividing the result by

" nm n—1
[ e ,
to
we get the following estimate
t n t n
[edr| b <men-ny | [oaggas) . amn
to tO

Using the estimate (1.71) repeatedly, we have

m{ (42)"} < (oo - vy / (m{(nﬁf;”)%})””dtk P

< (n(2n — 1))"x

T 2n n ny 1/n
X / n(2n —1)) / ( { Nt 1t }) dty—1 dig | =
t t
T tk L on 1/n n
= (n(2n — 1))2” // <M {(n§k272> }) dty._1dty, <
t ot
th ts n
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n

T to
= (n(2n — 1))" " Y(2n — )N /.../Rgl___pk(tl,...,tk)dtl...dtk <
t t

< (n(2n —1))"*D(2n — 1)l1x

n

X / R> (b, ty)dty . dy

t,T]*

The penultimate step was obtained using the formula

s n
M {(n;;;)%} — (2n—1)! / R (b te)dt |
t
which follows from Gaussianity of
lo
), = / Ry py (b1, - ) dE.
t

Similarly, we estimate each summand on the right-hand side of (1.70). Then,
from (1.70) using the Minkowski inequality, we finally get

ny 1/2n\2"
< [k (n(2n — 1))"*Y(2n — 1! /Rf)l_._pk(tl,...,tk)dtl...dtk
al
= (E)?"(n(2n — 1))"* =Y (2n — 1)1
X Ry (b, t)dt . dt | (1.72)



DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stramnovic}l Stochastic Integmls Based on G neralized M Itiple Fo S ries 81

Using the orthonormality of the functions ¢;(s) (j =0,1,2,...), we obtain

/ Rgl-upk (t17 e 7tk)dt1 e dtkj —

[T
/(ml, z chk ﬁH% tl>dt1...dtk
[t,T]F Jj1=0 Jx=0
= /Kz(tl,...,tk)dtl...dtk—
T
_2/ et J1H¢ﬂ bty .. dtyt
[t,T]k Jj1=0 Jx=0
/(Z S, JIH% tg> dty .ty =
[tT} Jj1=0 Jr=0
= /KQ(tl,...,tk)dtl...dtk—
T
k
—zz ZCM i / K(ty,....t) [ [ o5(t)dts ... dty+
= J&=0 =1
pom Pe P gL
199D DD D) LAY | [ AT OIS
Jj1=0 j1=0 Jk=0j;.=0 lzlt
:/KQ(tl,...,tk)dtl TS SIS DI JES SIS e S
[t, T n=0 Jjr=0 =0 jr=0
:/K2(t1,...,tk)dt1...dtk—z Z 2 (1.73)
[t,T]k J1=0 Jk=0

Let us substitute (1.73) into (1.72)
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M {(J[w(k)]T,t . J[w(k)]%;..,pk)2n} <

< (E)*(n(2n — 1))"*=Y(2n — 1! x

| [ K -3 e |
[t,T]k Jj1=0 Jk=0
Due to Parseval’s equality
/Rf;l ot t)dty L dty, =
[t.T]*
p1
_ / K2ttt dt = Z 2 (1.75)
[t.T) Jji1=0 Jx=0

if p1,...,pr — o0o. Therefore, the inequality (1.72) (or (1.74)) means that the
expansions of iterated Ito stochastic integrals obtained using Theorem 1.1 con-
verge in the mean of degree 2n (n € N) to the appropriate iterated It6 stochastic
integrals.

1.1.10 Conclusions

Thus, we obtain the following useful possibilities and modifications of the ap-
proach based on Theorem 1.1.°

1. There is an explicit formula (see (1.8)) for calculation of expansion coef-
ficients of the iterated It6 stochastic integral (1.5) with any fixed multiplicity &
(k € N).

2. We have possibilities for exact calculation of the mean-square approx-
imation error of the iterated Ito stochastic integral (1.5) [14]-[18], [31] (see
Sect. 1.2).

3. Since the used multiple Fourier series is a generalized in the sense that it
is built using various complete orthonormal systems of functions in the space
Ly([t,T]), then we have new possibilities for approximation — we can use not
only the trigonometric functions as in [82]-[85], [92], [93], [96], [97], but the
Legendre polynomials.

5Theorem 1.1 will be generalized to the case of an arbitrary complete orthonormal system of functions
{#;()}52, in the space La([t,T]) and 91(7), ..., ¥x(7) € La([t, T]) in Sect. 1.11 (see Theorem 1.16).
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4. As it turned out [1]-[63], it is more convenient to work with Legendre
polynomials for approximation of the iterated It6 stochastic integrals (1.5) (see
Chapter 5). Approximations based on Legendre polynomials essentially sim-
pler than their analogues based on trigonometric functions [1]-[63]. Another
advantages of the application of Legendre polynomials in the framework of the
mentioned problem are considered in [21], [40] (see Sect. 5.3).

5. The Milstein approach [82] (see Sect. 6.2 in this book) to expansion of
iterated stochastic integrals based on the Karhunen—Loeve expansion of the
Brownian bridge process (also see [83]-[85], [92], [93], [96], [97]) leads to iterated
application of the operation of limit transition (the operation of limit transition
is implemented only once in Theorem 1.1) starting from the second or third
multiplicity of the iterated It6 stochastic integral (1.5). Multiple series (the
operation of limit transition is implemented only once) are more convenient for
approximation than the iterated ones (iterated application of the operation of
limit transition), since partial sums of multiple series converge for any possible
case of convergence to infinity of their upper limits of summation (let us denote
them as p1,...,pr). For example, when p; = ... = pp = p — oo. For iterated
series, the condition p; = ... = pr = p — oo obviously does not guarantee the
convergence of this series. However, in [83]-[85], [93] the authors use (without
rigorous proof) the condition p; = py = p3 = p — oo within the frames of the
Milstein approach [82] together with the Wong—Zakai approximation [73]-[75]
(see discussions in Sect. 2.41, 2.42, 6.2).

6. As we mentioned above, constructing the expansions of iterated Ito
stochastic integrals from Theorem 1.1 we saved all information about these in-
tegrals. That is why it is natural to expect that the mentioned expansions will
converge with probability 1. The convergence with probability 1 in Theorem
1.1 has been proved for some particular cases in [3]-[17], [32] (see Sect. 1.7.1)
and for the general case of iterated It0 stochastic integrals of multiplicity k
(k € N) in [14]-[17], [27], [29], [31], [32] (see Sect. 1.7.2).

7. The generalizations of Theorem 1.1 for an arbitrary complete orthonor-
mal system of functions in Lo([t, T]%) [29] and complete orthonormal with weight
r(t1)...7(tx) > 0 systems of functions in Ly ([t, T|*) [12]-[17], [41] as well as for
iterated stochastic integrals with respect to martingale Poisson measures and
iterated stochastic integrals with respect to martingales [1]-[17], [41] are pre-
sented in Sect. 1.3-1.6, 1.11.

8. The adaptation of Theorem 1.1 for iterated Stratonovich stochastic in-
tegrals was carried out in [6]-[23], [28], [30], [32]-[39], [43], [45]-[47], [50], [52],
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[64], [65] (see Chapter 2).

9. Application of Theorem 1.1 for the mean-square approximation of it-
erated stochastic integrals with respect to the infinite-dimensional ()-Wiener
process can be found in [14]-[17], [24], [25], [48], [49] (see Chapter 7).

1.2 Exact Calculation of the Mean-Square Error in the
Method of Approximation of Iterated It6 Stochas-
tic integrals Based on Generalized Multiple Fourier
Series

This section is devoted to the obtainment of exact and approximate expres-
sions for the mean-square approximation error in Theorem 1.1 for iterated It6
stochastic integrals of arbitrary multiplicity k& (k € N). As a result, we do not
need to use redundant terms of expansions of iterated Ito stochastic integrals.

1.2.1 Introduction

Recall that we called the method of expansion and mean-square approxima-
tion of iterated Ito6 stochastic integrals based on Theorem 1.1 as the method of
generalized multiple Fourier series. The question about how estimate or even
calculate exactly the mean-square approximation error of iterated Ito stochas-
tic integrals for the method of generalized multiple Fourier series composes the
subject of Sect. 1.2. From the one side the mentioned question is essentially
difficult in the case of a multidimensional Wiener process, because of we need
to take into account all possible combinations of the components of a multi-
dimensional Wiener process. From the other side an effective solution of the

mentioned problem allows to construct more simple expansions of iterated Ito
stochastic integrals than in [82]-[87], [92]-[94], [96], [97].

Sect. 1.2.2 is devoted to the formulation and proof of Theorem 1.3, which
allows to calculate exacly the mean-square approximation error of iterated Ito
stochastic integrals of arbitrary multiplicity k& (k € IN) for the method of gen-
eralized multiple Fourier series. The particular cases (k = 1,...,5) of Theorem
1.3 are considered in detail in Sect. 1.2.3. In Sect. 1.2.4 we prove an effective
estimate for the mean-square approximation error of iterated It6 stochastic inte-
grals of arbitrary multiplicity k£ (k € N) for the method of generalized multiple
Fourier series.
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1.2.2 Theorem on Exact Calculation of the Mean-Square Approxi-
mation Error for Iterated It6 Stochastic integrals

Theorem 1.3% [12]-[18], [31]. Suppose that every ¢y(t) (I=1,...,k) is a con-
tinuous nonrandom function on [t,T] and {¢;(x)}32, is a complete orthonormal
system of functions in the space Lo([t,T]), each function ¢;(x) of which for finite
J satisfies the condition (%) (see Sect. 1.1.7). Then

M {(J[W)]TJ - J[w("f)]f;’t)z} = / K2(ty, ... ty)dty ... dty—
t Tk

p p

YoM Z / O th) / b5 (1)) g\
J1=0 k=0 U (i
(1.76)
where
T to
)y = /wk(tk).../@bl(tl)dft(fl)...dft(ljk>7
Z Zojk " <H ¢\ J> , (1.77)
Jj1=0 Jk=0
Sj(jfzkk) B 1Nl—glo Z ¢j1(Tll)Af i) ¢]k (le)Af(Zk) (178)
(l1 ..... lk)EGk

the Fourier coefficient C; has the form (1.8),

~ [ois)att” (1.79)

are independent standard Gaussian random variables for various i or j (i =
L,...,m),

ke-J1

STheorem 1.3 will be generalized to the case of an arbitrary complete orthonormal system of functions
{¢;(2)}52 in the space La([t, T]) and 91 (1), ..., ¥x(7) € La([t, T]) in Sect. 1.12 (see Theorem 1.18).
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means the sum with respect to all possible permutations (ji, ..., ji). At the same
time if j, swapped with j, in the permutation (j1,...,ji), then i, swapped with
iq in the permutation (i1, ..., i) (see (1.76)); another notations are the same
as 1 Theorem 1.1.

Remark 1.3. Note that

/ i, (tr) - / o, (1) dE e b =
T to

t t
to

= /Mg(tk)%k(tk) .. -/101(751)%‘1 (tl)dtl e dtk = Cjk~~~j1' (180)

Therefore, in the case of patrwise different numbers i1, . .., from Theorem
1.3 we obtain

M {(t]w(k)]m _ J[w(k)]z%’tY} _

:/K2(t1,...,tk)dt1...dtk—z Z 2 (1.81)

[t,T]F Jj1=0 Jx=0

Moreover, if iy = ... =1, then from Theorem 1.3 we get

M {(JW(’C)]TJ N J[¢(k)]g,t>2} _

= / K2(t1, . .. dlfl dtk — Z Z C]k J1 ( Z Cjk...ﬁ)’
v

[T J1=0 Jk=0 15050k

where

2.

(J15eJk)
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means the sum with respect to all possible permutations (ji, ..., ji)-

For example, for the case k = 3 we have

T t3
M {(J[w@]m — I } / V2 (t3) / W2 (ts) / D2 (t1) dt 1 dtadts—
t

E : OJBJZ?I ( JajeJ1 + C]SJlJZ + C]23331 + 01231]3 + 011]233 + CJlJ3]2>

J1,J2,53=0

Proof. Using Theorem 1.1 for the case i1,...,iz =1,....mandp; =... =
pr = p, we obtain

JWWlre = Lim » ...% Ch, (H G - Sj(fff.'f,sz)> - (L82)

Jj1=0 Jx=0

For n > p we can write

W%, = <Z+ Z><2p3+ i) " 31<ng — gl 3’1)

J1 Ji=p+1 Jk=0  jr=p+1

= JWWPE, + W (1.83)

Let us prove that due to the special structure of random variables S
(see (1.45)—(1.51), (1.54), (1.78)) the following relations are correct

{HCJ - -ff...Z’l}(l (1.84)

K
it @) ol | L
{(H CJ = 5. ui) (H G~ Sj{,...,f,g)} =0, (1.85)
=1

(jla"'ajk) EKp; (]177.7/,6) GKTL\KP

where

and
Kn:{(jhu]k) O§j177]k§n}7
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Ky = {(j1r-od) : 0 < ju,o ik <}

For the case i1,...,ix = 1,...,m and p; = ... = px = p from (1.39), (1.40)
(see the proof of Theorem 1.1) we obtain

N-1

ng — S = ], > 65 (1) - Gy (M)AETY AL =

N—o0
1,0l =0

lg#lr; g#r; gr=1,...k

=y /% th). /gb]l t)df . dfY wop. 1, (1.86)

(J15++2Jk)
where
(jla"‘vjk)
means the sum with respect to all possible permutations (ji,...,ji). At the
same time if j, swapped with j, in the permutation (ji, ..., ji), then i, swapped

with 4, in the permutation (ii,...,4;); another notations are the same as in
Theorem 1.1.

So, we obtain (1.84) from (1.86) due to the moment property of the Ito
stochastic integral.

Let us prove (1.85). From (1.86) we have

{(ch _ gl ) (H@:l gl )H

=M{ > > / 65 (th) - / o5, (t)dE . df{)

(.]17 a.]k) (.]17 7.]k

T to
x / oy (1) .. / oy () dEM) . af b <
t t

/¢]k (7% ij tk dtk /¢j1 t1 ij tl)dtl =

(]17 a]k;
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Z 1{31 =j1} 1{jk:j//c}’ (1-87)

.....

where 14 is the indicator of the set A. From (1.87) we obtain (1.85).
First, let us prove (1.87) for the cases k = 2 and k = 3. We have

ta
AP / @ia(l2) / O3, (1) / b15(t2) / by (t)dEdE™ | —

(J1,J2) ]1]2
= [ ¢;,(5)d(s)ds | ¢j (s s)ds+
Foionion]
T
+1{i1:i2} ¢Jz(8)¢ji(5)d5 ¢j1(5)¢3 (S)ds
/ f

= 1= o=ty + Lii=i} - L= L ii=s)s (1.88)

M Z Z /¢J3 t3) /¢Jz t2) /¢J1 ty dftlll dftQZQ dft(gzg)

(J1:72,93) (J1:J5:75)

T

t3 ta
x [ dilts) [ Slta) [ dyp(t)dfy el b =
Joo] !
T T
= [ ¢,(5)dy(s)ds [ ¢j,(s)pj(s)ds | &, (s s)ds+
e py—y
T
+1{i1=i2} ¢j3(8 dS ¢]1 S dS ¢j2 S ¢ji S>d5+
e y—y
T
1) | 05, (8)0j(s)ds | b, (s)ji(s)ds [ &j,(s)djy(s)ds+
/ / o]

T T
+1{z'1=z’3}/¢j1(8)¢jg(5)d8/¢j2(3)¢j§(8)d8/¢j3(5)¢j1(8)d8+
t t t
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T T
+1{z‘1z'gig}/¢j2(5)¢jg(8)d8/¢j1(8 ds/% s)ds—+

T T
+1{i1=i2:i3}/¢j1(3)¢j§,(3)d5/¢j3(5)¢j§(5)ds/¢j2($)¢] (s)ds

= 1= Y= 1=y + L=in) - L=} Yi=iny Lin=ip +
1=y - =i L= Lgs=s5) + Lin=is} - L=} L=y Ljs=s3 +

1 mip=ig) - L=y L =iy Ls=i3 +
F 1 mip=is} - L=y L a=isy L =it}

From (1.88) and (1.89) we get

M Z Z /¢J2 t? /ijl tl df (i) df 12)

]1 32 317]2

T ts
X/¢j§(t2)/¢j{(t1)dft(fl)dft(j2) <
t t

< 16— Ge=iy T L= L =iy =

- Z L - =j1} 1= =Ja}>

]1 ]2

My Sy / 81t / bit) / 05, (1)t} af 2 af )

(J1,J2.03) (31.75-05)

T s N
8 / b (ts) / O3 (t2) / by (1) dE D df 2 g™ | <
t t )

< L= L=y 1= + La=ip L= 1 o=y} +
10— L= Y s=ity + L= 1 Go=ss) Lgo=sy +
=i =i L ge=iy T L=y Ys=ipt Lio=i1} =

(1.89)
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> Vi e L=}

(J1:J2:J3)

where we used the relation

T
/¢i(7)¢j(7)d7 = 1{i:j}: 1,7 =0,1,2...
t

Now consider the case of an arbitrary £ € N. We have

M Z Z /¢Jk: tr) - /¢J1 t1) df e dft(;jk)

..........

T to
% / & (1) . .. / by (0)dE™ L df

=M Yy / i (). / o, (1) dE L df™

(.717 7]/6 jlv Jk

/ by (1) - / oy (t)deD . dfl

- Z Z 1{% =i} Li=ip) X

T 123
X /¢jk(tk)¢];€(tk) c. / ¢j1 (t1)¢ﬁ (tl)dtl c. dtk =

Jk

T T
Z Li=it) - -1{z'1=z"1}/ijk(tk)(?j,;(tk)dtk-~-/¢j1(f1)¢j1(t1)df1 =

where (i7,...,7,) = (i1, ...

- Z 1{% =i} } - 1{21 21}1{Jk—]k} 1{3'1:]'{}7 (1'90)

,1it). However, if ji swapped with j; in the permuta-
tion (ji,...,J;), then i, swapped with i; in the permutation (i}, ...,,) and if

91
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Jr swapped with j, in the permutation (ji, ..., ji), then 4, swapped with i, in
the permutation (i1, ...,1).

From (1.90) we obtain (1.87). The equality (1.85) is proved.

Note that the formula (1.85) (in the light of the results of Sect. 1.10, 1.11)
can be interpreted as a consequence of the orthogonality of two random variables
that are Hermite polynomials of vector random arguments.

From (1.85) we obtain
M { I[P = o,
Due to (1.77), (1.82), and (1.83) we can write

WL = Tl W, — T ™.,

P def

Lim. (PN = J®) g, — Jw®)., = uWpEL

n—00

We have

0< M {ew W, }| =

= [M{ (el @t — el + @) T} =

< [M{ (@t - e ) Tl b+ M LT, | =

<

_ ‘M {(Jw(k)]T’t — J[lb(k)]%t) J[¢(k)]]%,t}

< \/ M {(J [ ®Ngy —J W’f)}%,t)z}\/ M {(J [w<k>]§;t)2} <
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< K\/M {(J[zp(k)m — J[z/}(k)]'g;,t)Q} —0 if n— oo, (1.91)

where K is a constant.
From (1.91) it follows that

M€l T, =0

or
M {(J[w(k)]m _ Jw(k)]%t) J[w(k)]z%,t} _0

The last equality means that
2
M {1 O [, | = M {(JW%) } - (1.92)

Taking into account (1.92), we obtain

M {(J[¢(k)]T,t - J[Zb(k)]%t)Q} =M {(*]W(k)]T,t)2} n
+M {(J[w(k)]]%’JQ} _9M {J[w(k)]T’tJhb(k)]%t} M {(J[¢(k)]T’t)2} B
M LI T, ) =

= / K2(ty, ... tp)dty ... dty — M {J[w’f)]T,tJ[@b(’“)]gt} . (1.93)

[t,T]*
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Let us consider the value

M LT T

The relations (1.77) and (1.86) imply that

p p
J[w(k)]l%,t = Z T Jk: J1 /¢]k tk /¢Jl tl df = dft(ljk)'
Jj1=0 jk

.....

(1.94)
After substituting (1.94) into (1.93), we finally get
2
M {(J[w(’“)]m - J[w(k)]]}’t> } = / K2(ty, ..., tp)dty . .. dty—
[t.T]k
p p
=Y ) CaM Z / Gj, () - / &, (t)del) . dfl™
a=0 =0 L (Jis

Theorem 1.3 is proved.

1.2.3 Exact Calculation of the Mean-Square Approximation Errors
for the Cases k. =1,...,5

Let us denote
M {(J[qp(k)]m — J[w(k)]z%o } dof E?,

def
bl / K%(ty, ... tp)dty ... dt, = I;.

The case k =1

In this case from Theorem 1.3 we obtain

E{’:h—zp:CQ

J1=0
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The case k =2

In this case from Theorem 1.3 we have

(I) il 75 i22
EY=1,— Z 2 (1.95)

J1,72=0

(II) il == ig .

p
Z J2Jl Z Coj Clijo- (1.96)

J1,J2=0 J1,j2=0

Note that from (1.77), (1.86), (1.88), (1.92), and (1.93) we obtain

p
Z 32,71 = L=y Z Ci2j1 Ciro- (1.97)

J1,J2=0 J1,J2=0
Obviously, the relation (1.97) is consistent with (1.95) and (1.96).
Example 1.1. Let us consider the following iterated Ito stochastic integral

T 1o

[ / / ag dg), (1.98)

Approximation of the iterated It6 stochastic integral (1.98) based on the
expansion (1.10) (Theorem 1.1, the case of Legendre polynomials) has the fol-
lowing form

where 41,70 =1,...,m.

T—t & 1 .
[(mz)p 21 ( (Zl) (22) _ (i1) ~(i2 )) 1 i
(00)Tt <C0 C ; 1: 132 — 1 Cz—lcz CZ gz {i1=i2}
(1.99)

Note that (1.99) has been derived for the first time in [76] (1997) (also see
[77]-[79]) with using the another approach. This approach will be considered in
Sect. 2.4. Later (1.99) was obtained [1] (2006), [2]-[63] on the base of Theorem
1.1.



96 DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stramnovich Stochastic Integmls Based on Genemlized Multip]e Foun'er Series

Using (1.95), we get

p
(i1i2) (iliQ)p 2 . (T — t)2 1 1
I\/I{ ([(OO)T,t - ](oo)T,t> } = 5 (2~ E w21 (1.100)

1=

where i1 # is.

It should also be noted that the formula (1.100) has been obtained for the
first time in [76] (1997) by direct calculation.

The case k =3

In this case from Theorem 1.3 we obtain

(). i1 # 9,11 # 13,19 # 13 :

p
Ef=I—- ) C (1.101)

Jajaj1’
j17j2vj3:0

(II) il == ’iz = i3 .

p
Ef=1I— ) Cijm( > ngjm), (1.102)
(

j17j2vj3:O j17j27j3)

p p
Ef=Iy— Y  Ci— > CiiiisClhiain (1.103)

Ji,J2,53=0 J1,J2,53=0

(HI)2 il 75 i2 = i3 .

p p
Ef=Iy— Y  Ci— > CiuiiChi (1.104)

j17j27j3:0 jl?j?aj3:0

p p
Eg = I3 — Z CJ23j2j1 - Z Cj3j2j10j1j2j3' (1105)

J1,J2,93=0 J1,J2,§3=0
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It is not difficult to see that from (1.77), (1.86), (1.89), (1.92), and (1.93)
we obtain

Z 1332.71

J1,J2,53=0

p
— L=y Z Clisgogi Ciisgrjo—

jla.anj3:0

1{12 =iz} E : stjzh JeJgsii

J1,J2,53=0

]‘{21 23} E : 0]3]2]1 Jijegs

J1,J2,§3=0

p
~Lpmimisy Y Ciujoin Chgus + Cijiia) - (1.106)

jlaj27j3:0

Obviously, the relation (1.106) is consistent with (1.101)—(1.105).

Note that the cases kK = 2 and k = 3 (excepting the formula (1.102)) were
investigated for the first time in [2] (2007) using the direct calculation.

Example 1.2. Let us consider the following iterated Ito stochastic integral

T t3 to
Lo, = / / / df™ gl gl (1.107)

where il,ig,ig = 1, o,

Approximation of the iterated It stochastic integral (1.107) based on The-
orem 1.1 (the case of Legendre polynomials and p; = p» = p3 = p) has the
following form [1] (2006), [2]-[63]

zlzgz . (i2) ~(i3)
OOOZSFt - Z CJsJ2Jl< 1 <j2 st — L =iy 1y, Jz}ng

J1,J2,93=0

—1{i2:i3}1{j2:j3}cj(-fl) — 1{@113}1{3-1]-3}@(;2)) : (1.108)
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where
(251 +1)(2j2 + 1)(273 + 1) =
Cj3j2j1 — \/ 8 (T - t)B/QCj;sjzju (1'109)
1 z Y
C_(1'3]'2.7‘1 - /Pjs(z) / PjQ (y) /le (x)dxdydz,
-1 —1 -1

where P;(z) is the Legendre polynomial (i = 0,1,2,...).
For example, using (1.103) and (1.104), we obtain

(i1i213) (i1i2i3)p 2 _
M {(I(Ooo)igf,t - 1(000)%,75) } - Z 333231 - Z CJ3J1J2 J3J2J1s

J1,J2,73=0 Ji,j2,J3=

where il = ig 7é ig,

(iriais) (izis)p\ 2 |
M {(I (0002)T,t —1 (0002);5) } - Z 333231 o Z C]2J3]1 J3j2J1s

J1,J2,J3=0 J1:J2, 3=
where le 7é iQ = 23
The exact values of Fourier-Legendre coefficients Cj,,;, can be calculated
for example using computer algebra system Derive [1]-[17], [32] (see Sect. 5.1,

Tables 5.4-5.36). For more details on calculating of Cj3j2jl using Python pro-
gramming language see [53], [54].

For the case iy = iy = 13 it is convenient to use the following well known
formula

111171 1 i\ 2 i
I((OOO)T3t = E(T —1)*? ((Cé )) — 3C(§ )) w. p. 1.

The case k=4
In this case from Theorem 1.3 we have
(I). 41, ...,14 are pairwise different:

-y

jlv 3]4 0
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(II) 7;1 = ig = ig = i42

(HI)l il = i2 75 i3,i4; ig 75 i4 .

p
Ezzlj =14 — Z Cyi ( Z Cj4-~-j1>7
(

jlv"'aj4:O jl,j2)
(111)2 il = 23 7£ i27i4; ig 7é ’é4 :

b
Eéll) =1, - Z Oj4~-~j1 ( Z Cj4-~-j1> )
' = (

J1:J3)
(HI)?) il = i4 75 ig,ig; ig 7é i3 .

p
Efl) =1y — Z Cy.i ( Z Cj4-~-j1>7
(

jl?"'aj4:0 jl,j4)
(ITD) 4. iy = i3 2 i1, ia; 1 2 i 2

b
Eéll) =1 - Z Cj4~-~j1 ( Z Cj4-~-j1> J
' = (

J2,J3)
(1H>5 ig = i4 75 il,ig; il 7é i3 .

p
Eflg = 14— Z Cy.i ( Z Cj4-~-j1> J
' (

j27j4)
(III)6 i3 = i4 7£ il,ig; il 7£ ’éQ .

p
Ef=ILi— ) Cj. ( > Cj4...j1>>
' (

j37j4)

(1.110)

(1.111)

(1.112)

(1.113)

(1.114)

(1.115)
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p
El=L—- > Cj4...j1< > Cj4,,,j1>,
(

j17"',j4:0 j17j2aj3)
(IV)2 ig = i3 = i4 75 ili

p
Eﬁ) = 14 - Z Cj4...j1 ( Z C]4j1> )
' (

J2,J3:J4)

p
El=1L—- > Cj4...j1< > Cj4,,,j1>,
' (

j17j2aj4)

p
Eﬁ) = ]4 - Z Cj4...j1 ( Z C]4j1> )
' (

J1:J3:J4)
(V)l il = ig 7é 23 = i42

EY =1, — zp: Cj,i, ((Z (Z Cj,. J>>

J5e,Ja=0 J1:92) \(Js.Ja)
(V)2 il = i3 7& ig = i41

o % o (x(ze)

J1.J3) \(j2,ja)
(V)3 il = i4 7é ig = ig:

EY =1, — zp: Cj,i, ((Z (Z Cj,. J>>

J1yee,Ja=0 J1.Ja) \(j2,73)

(1.116)

(1.117)

(1.118)

(1.119)

(1.120)

(1.121)

(1.122)
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The case k=5

In this case from Theorem 1.3 we obtain

(I). 41,...,15 are pairwise different:

E_]5_ Z ]5 J1o

.7 a"'a]5 =0

(II) il = ig = i3 = i4 = i52

Ef = ]5_ Z OJ5 Ji Z Cj5 g

.7177)

(IT1).1. iy = i9 # 3,14, 15 (i3, 14,15 are pairwise different):

E _[5_ Z C]s Ju ZO% Ju o

.,J5=0 (41,72)

(IT1).2. 4y = i3 # 49, 14, 15 (42,14, 15 are pairwise different):

E_[5_ Z st Ju ZC% g

j 1 7]5_0 jlv.]?)

(I11).3. iy = ig4 # 9,13, 15 (i2, 13,15 are pairwise different):

E =I5 - Z CJ5 Ju ZC% Ju o

.]a a.]5 =0 jlaj4

(II1).4. 4y = i5 # 1o, 13,14 (42,13, 14 are pairwise different):

E_[5_ Z st Ju ZC% Ju o

J1se-535=0 (J1.J5)

(I11).5. i9 = i3 # i1, 44, @5 (i1, 14,15 are pairwise different):

E =I5 - Z 0]5 Ju 20]5 g

]a aj5 =0 (]27]3
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(I11).6. ig = i4 # i1, 13,15 (i1, 13,15 are pairwise different):

E —[5_ Z st J1 ZCJ Ju|o

]7 3.75 =0 .727.74

(HI)7 19 = i5 7é il, ig, 14 (il, ig, 14 are pairwise different):

E5 =15 — Z Clis...ji 2015 Jr |

]a aj5 =0 (.]27.]5

(II1).8. i3 = 4 # 11, 12,45 (i1, 19,15 are pairwise different):

E _15_ Z Cls...ji ZOJS Ju |

-,J5=0 (J3,74)

(I11).9. i3 = i5 # 11, 12, 44 (41,1792, 14 are pairwise different):

E_]5_ Z 0]5 J1 ZC% Juv |

33735

(IT1).10. iy = i5 # i1, 42,13 (41,19, i3 are pairwise different):

E =I5 - Z C]s Ju ZC% Ju o

J1r:J5=0 (Ja.Js)
(IV)l il = ig — 23 7é i4,i5 <Z4 7é i5)1

E =I5 — Z 05 J1 Z Oj5~-~j1 )

.7 1,- 7]5_ (jlaj27j3)

(IV)Q il = ig = i4 75 i3, i5 (ig 75 i5)1

p
EEI)):I5_ Z Cls...in Z Clseot |

j17"'7j5:O (j17j25j4)
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(IV)3 il == ig == i5 7£ ig, i4 (23 7é i4)2

E =I5 — Z 05...]'1 Z Cj5~-~j1 )

.7 1s- 7]5 (j17j27j5)

(IV)4 ig = i3 = i4 7é il, i5 (il 75 i5)1

Bl =1I;— Z it D Ciseir |

j 15 a.75 (j27.j3a.j4)

(IV)5 ig == i3 = i5 7& il, i4 (Zl 7é ’i4)2

EY =15 — Z o Z Cigi |5

JlseensJ5= (92,73,35)

(IV)6 iQ = i4 = 7;5 7é il, i3 (Zl 7é ig)i

p
P __ . ..
By =15 — E: 015---31 E , CJ5~-~J1 )
j17 7j5:0

(j2aj4aj5)

(IV)7 ig == i4 == i5 7é il,iQ (Zl 75 'iQ):

EY =15 — Z 035,,,]‘1 Z Cigi |5

J1resJ5= (3:74,75)

(IV)8 il = i3 — i5 7é iQ, i4 (ZQ 7é i4)1

E =[5 — Z 05...j1 Z Oj5~-~j1 )

.7 15 7]5 (jlaj37j5)

(IV)9 il = i3 = i4 75 ig, i5 (ig 75 i5)1

p
EEI)):I5_ Z Cls...in Z Clsegt |

J1yeesf5=0 (J1,J3,J4)



104DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stramnovich Stochastic Integmls Based on Genemlized Multip]e Foun'er Series

(IV)lO il == i4 = ’i5 7é i2,i3 (22 7é ig)l

E =I5 — Z 05 Ji Z Cj5~-~j1 )

.7 1 7]5 (jlaj47j5)

(V)l il = ig = ig = i4 7& i51

p
Ep = [5 — Z st---jl Z st...jl )

j17"'aj5:O (jlaj27j37j4)
(V)2 il = ig == 23 == i5 7& i42

p
EP=I— Y Cial D Cial

jla"'7j5:0 (j17j27j37j5)

(V)3 il = ig = i4 = i5 7'£ i32

Ep_l5— Z Cinirl Y Civir |

7]5 =0 (j15j27j47j5)

(V)4 il == i3 == i4 == i5 75 iQZ

p
El=Is— Y, Ciil D Cial

J1s-595=0 (J1,73:74J5)

(V)5 19 =13 = 1y = 15 7é 11

p
Ep = I5 — Z st---jl Z Cj5...j1 )

j17'~'7j5:0 (j2)j3>j47j5)
(VI)l i5 7é il = ig 75 i3 = i4 75 i52

p
Eg =I5 - Z Cj5---j1 Z Z Cj5---j1 )

jla"'aj5:O (j17j2) (j3aj4)
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(VI).2.

(VI).3.

(VI) .4,

(VI).5.

(VI).6. i

(VI).7. i

(VI).8. i

i5 £ 11 = 13 # 2 = 14 # i5:

> c

jlv"'aj5:0

U5 # 11 =1y # Iy = i3 # i3

4 F i1 = lg # i3 = 15 £ iy
p
> Ci

jla"'aj5:0

B4 F# i1 = U5 # g = 13 7 iy

{;
{;
(<
{;

N
(

{;
{;

2.

J1:J3)

2.

J1,Ja)

2

j17j2)

2.

J1,Js)

2.

j2aj5)

2.

Jo ]5)

2.

J1.J2)

z
(
(
z
(<
=
(

Z C]5~-

Jo, J4

Z C]5~-

]2 J3

> Ci.

J3:J5)

Z C1J5~-

J2, J3

Z Cj5«~

jlaj3)

Z Ojsu

J1,J4)

Z CJ5--

J4 ]5

)
)
)
)
)
)
)
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(VI)Q 23 7& ig = i4 7£ il = i5 7£ ig:

(VI).10.

(VI).11

(VI).12

(VI).13.

(VI).14.

(VI).15. i

ij Cli.i1 ((Z

J1se-J5=0 J2:J4) \(J1,J5)

iy # 11 = iy # i3 = U5 7 12!

JlseesJ5= Ji,Ja

EP =

Js J5

g F1p =13 F ig = U5 F lo

p
Z Cj5~-~j1

jla"'aj5:0 <(]17]5) ]47.75

Clg F U =15 F 13 = 14 F I

E3

p
I5 — ZO J5-- J1<(Z

J1seesJ5= J1,J5) \(j3.j4)

i1 # Uy = 13 # Iy = 15 7 U1

p
I5 — | ZO Jse--J1 ((Z

J2 33)

E3

J4,J5)
i1 # iy = iy F 13 = 15 7 U1

p
E§:]5_ Z Cjs. 11<Z
' (

J2:J4) \(J3,J5)

- f (sl

J2,J5) \(J3:Ja)

((z .
S o
((Z .
((Z .
((Z .
((z .

Z CJ5--

)
)
)
)
)
)
)
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p
EY =15 — Z Cis..iy ( Z ( Z st...j1>>;
' ( (

JasJs) \(J1,92,J3)
(VH)Q il = ig = i4 75 i3 = i52

s $ o (5(50)

J3,J5 jl 2J2s J4

(VII)3 il = ’ig == i5 7& ’i3 = i42

zpj Clyis ((Z ((Z st...j1)>,

J1yeeJ5=0 J3.J4) \(j1,J2,J5)

(VII>4 ig == ig == i4 7& il == i51

Bon- Y G <(z (( 3 c))

J1:J5) \(J2,73,J4)

(VII)5 ig == ig == i5 7é il = i42

B =1I— zp: Cliis <(Z (( > st...ﬁ)),

j17j4) jQ,j37j5)

BY=1I— Zp: Cis i ((Z (( > st...ﬁ)),

J1:J3) \(J2,J4.J5)

(VH)7 i3 = i4 = i5 75 il = iz!

po 5o (x5 00)

J1 ]2) ]3 »J4 ]5
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(VII)S il == ig == i5 7é ig - i4:

Z Cj5-~-j1

.717"'7]0

(VII)9 il = ig == i4 7é ’ig = i52

Zco

.717 7]5

(VII)].O il == i4 == i5 # ig = igi

Z Cj5---j1

.717 735

(<

) ((

(<

2.

j2aj4

2.

J2.J5

2.

J2.J3

(
(
{

> G

j17j37j5)

Z st--

J1,J3:J4)

Z st--

J1:J4:J5)

)

)
)

Let us make a remark about Theorem 1.3. It is easy to see that the right-
hand side of the formula (1.76) consists of two parts. The first part tends to
zero when p — oo by Parseval’s equality. At the same time the second part
also tends to zero when p — oo, but due to the generalized Parseval equality.

Let us explain the above reasoning in more detail for the case k = 3.

For the case k = 3 we have (see (1. 106))

EY =1y — Z

.]17.]27]3 =0

Js]z]1

p
Ly Y CiajoisChaiija—

J1,J2,53=0

p
Lty Y ChsiairCljaju—

j17j21j3:0

p
o 1{i1:i3} Z Ojsj2j1 Cj1j2j3 -

j17j27j3:o

p
“Limipmiy O Chvinir (Chgusa + Cirjaia) -

jl aj27j3:0

(1.123)
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Applying the Parseval equality, we obtain

Jim <13 - Z hm) = 0. (1.124)

.]17.]27.]3 =0

The generalized Parseval equality gives

;}Lrgo Z 0]3]2]1CJ1J2]3_0 phﬁrgo Z 0]3]2]10]3J1]2207 (1125)

J1,J2,93=0 J1,J2,73=0

plggo Z CJ3JQJ1CJ1J3]2:07 ph_{go Z 033.72]10]2]1]3:07 (1'126)

J1,J2,§3=0 J1,J2,§3=0

Z}Lrgo Z 033]2310]2]3]1:0- (1127)

]1a325.73 =0

Let us explain in more detail the first equality in (1.125). Using the gener-
alized Parseval equality, we have

lLim C —
P E : J1j2Js ,73]2]1

J1,J2,§3=0

= lim Z /% t3)0j, (t3) /% t2)dj, (t2) /% 1)@, (t1)dt dtadts <

P—00
J1,J2,53=0

T t3 ty
X/¢3(t3)¢jg(t3)/¢2(t2)¢j2(t2)/wl(tl)@l(tl)dtldtgdtg =

T T T
= lim Z 1(E3)04,(t3) [ Walt2)dj,(t2) [ Ws(t1)dj, (t1)dtidtadts ¥
e J1:J2,J3=0 t/ : Z : Z :

T t3 to
X [ 3(t3)dj,(ts) | a(ta)ds,(ta) [ i(tr)dy, (tr)dtidtadts =
[t oo |
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= lim Z / Litycty <ty V3 (1) 2 (t2)101 (t3) H% ty)dt dtadts x
-1

p-)OO
J1,J2,53=0 (.13

3

X / L, <ty ety V1 (81) 2 (t2)103(13) H% ty)dtdtadts =

o -1

= / Lty Lt <tocts)¥3(t1) U1 (t1) (Wa(ta))” s (t3)ihn (t3)dt dtadts = 0.
t.T]?

(1.128)

Applying (1.123), (1.124), and (1.125)—(1.127), we get (see (1.76) for the
case k = 3)
lim Ef = 0.

pP—00

1.2.4 Estimate for the Mean-Square Approximation Error of Iter-
ated Ito Stochastic Integrals Based on Theorem 1.1

In this section, we prove the useful estimate for the mean-square approximation
error in Theorem 1.1.

Theorem 1.4 [12]-[17], [31]. Suppose that every ¥ (t) (I = 1,...,k) is
a continuous nonrandom function on [t,T] and {$;(r)}32, is a complete or-
thonormal system of functions in the space Lo([t,T]), each function ¢;(x) of
which for finite j satisfies the condition (%) (see Sect. 1.1.7). Then the estimate

(S0 - o) L <
/KQ(tl,...,tk)dtl...dtk—Z Z 2 (1.129)
gl

J1=0 Jr=0

18 valid for the following cases:
1.tg,..,,=1,....m and 0<T —1 < o0,
2. 01, .., ig=0,1,...,m, i+...4+4 >0, and 0<T —t <1,

where J[ W)y, is the iterated It stochastic integral (1.5), J[@D(k)]g{;“’p’“ is the
expression on the right-hand side of (1.10) before passing to the limit lim.

P1;e-,PE—200

’

another notations are the same as i Theorem 1.1.



DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stramnovic}l Stochastic Integmls Based on G neralized M Itiple Fo S 111

Proof. In the proof of Theorem 1.1 we obtained w. p. 1 the following re-
presentation (see (1.40))

J[@b(k)]T,t: J[w(k)]ph ,pk_+_Rp17 7pk7

where J [@b(k)]%g“’p * is the expression on the right-hand side of (1.10) before

passing to the limit lim. and
P1ye-esPk—>00

R = Y / /( (t,... 1 z:: ZCM jlﬂ% t;)

(t1yest) Jk=0
xdw! . dw'!™ (1.130)
tl . .. tk y .
where
(t1,eetk)
means the sum with respect to all possible permutations (t1, ..., tx), which are

performed only in the values dwt(fl) e dwgz’“). At the same time the indices

near upper limits of integration in the iterated stochastic integrals are changed
correspondently and if ¢, swapped with ¢, in the permutation (¢i,...,%;), then
i, swapped with 4, in the permutation (i1, ..., ).

The stochastic integrals on the right-hand side of (1.130) will be dependent
in a stochastic sense (i1,...,ix = 1,...,m, k € N). Let us estimate the second
moment of

Tl — TR,

Using (1.26), (1.38), (1.130), the orthonormality of the system {¢;(x)}32,
(see the relation (1.73)), and the elementary inequality

(a1+a2+...—|—ap)2Sp(a%—l—ag—l—...—l—ai), peN, (1.131)

we obtain the following estimate

{10, )

T to
<k!z/.../(m, 3 zoﬂﬁnapjlt,)dh...dtk:
( )t t

t1,e 5tk 71=0 Jx=0
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b1
= k! / (K(tl,...,tk)z ZCM 31H¢jl tz> dty ... dty =

[t,T] Jj1=0 Jk=0

Jj1=0 Jr=0

/K2(t1,... R)dty dtk—z Z ® . (1132)
77"

where T'—t € (0,00) and 41,...,9 = 1,...,m.

From (1.26), (1.27), (1.38), (1.130), (1.131), and the orthonormality of the
system {¢;(z)}32, we obtain

(G100 - )} <

T to
SC}C Z //( t1, Z ZCM J1H¢jltl>dt1-'-dtk

= Jr=0

Ck:/( (t1, .. Z chk 31H¢31tl>dt1...dtk

7" I

/Kz(tl,...,tk)dtl...dtk—z Z T
Xl

Jj1=0 Jx=0

where i1,...,4,=0,1,...,m, i3+ ...+ 2 >0, and Cy is a constant.

It is not difficult to see that the constant Cj depends on k (k is the mul-
tiplicity of the iterated Ito stochastic integral) and T' — ¢ (T — t is the length
of integration interval of the iterated It6 stochastic integral). Moreover, C has
the following form

Ck:k!-max{(T—t)o‘l, (T — 1), ..., (T—t)ak!},

where ay,a9,...,ap =0, 1,..., k—1.

However, T' — t is an integration step of numerical procedures for Ito SDEs
(see Chapter 4), which is a rather small value. For example, 0 < T —t < 1.
Then C) < k!
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It means that for the case iy,...,i, = 0,1,...,m, i2 + ... —|—ii > 0, and
0<T—t<1weget (1.129). Theorem 1.4 is proved.

Example 1.3. The particular case of the estimate (1.129) for the iterated

Ito stochastic integral [ ((éag)i%)t (see (1.107)) has the following form

(irinis)  plininis)p) 2
M{(f@o;);,t—fma;ﬁ,f) }ses( -y« )
J1,J2:J3=0

where 41,149,473 = 1,...,m and C},j,;, is defined by the formula (1.109).

Let us consider the case of pairwise different i1,...,7; = 1,...,m and prove
the following equality

:/Kz(tl,...,tk)dtl...dtk—z Z 2 (1.133)

[t,T]k Jj1=0 Jx=0

where notations are the same as in Theorem 1.4.

The stochastic integrals on the right-hand side of (1.130) are uncorrelated
for the case of pairwise different ¢1,...,72; = 1,..., m. Moreover, these integrals
have zero expectations. Then

(10 - )} =

Y ((tz //(K(t Z S, jln%tl)

= Jr=0

2
xdfi" ... dff}f“) —

- 3 M (i]([((tl Z ZCM jlﬂaﬁgltz)

Jj1=0 Jx=0

2
xdf™ dftﬁjk)) =
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= > /T/t2< K(ty, .. Z ZCM Jlngb]ltl)dtl...dtk

(tl ..... tk) ¢ + =0 )
N /( tl?"' Z ZC]k JlH¢jl tl) dtldtk:
[t,T)* J1=0 Jk=0

/Kztl,...,tk)dtl...dtk—z Z 2

Jj1=0 Jx=0

1.3 Expansion of Iterated Ito Stochastic Integrals Based
on Generalized Multiple Fourier Series. The Case
of Complete Orthonormal with Weight r(¢;)...r(t)
Systems of Functions in the Space Ly([t, T]")

In this section, we consider a modification of Theorem 1.1 for the case of com-
plete orthonormal with weight r(¢;)...7r(tx) > 0 systems of functions in the
space Ly([t, T]"), k € N.7

Let {¥;(x)}32, be a complete orthonormal with weight r(x) > 0 system of
functions in the space Ly([t,T]). It is well known that the Fourier series of the

function f(x) (f(:z:)\/r(x) € Lo([t, T])> with respect to the system {W;(z)}32,
converges to the function f(x) in the mean-square sense with weight r(x), i.e.

phi& (f(a:) — Z C’ﬂl@(x)) r(z)dx =0, (1.134)
where .
G, — / (@)U, (2)r(2)da (1.135)

is the Fourier coeflicient.

The relations (1.134), (1.135) can be obtained if we will expand the function
f(z)y/r(z) € Lo([t, T]) into a usual Fourier series with respect to the complete

"The results of this section are generahzed to the case of an arbitrary complete orthonormal with weight

r(z) > 0 system of functions {W;(x)/r(x)}32, in the space La([t,T]) and 1 (x)\/7(x), ..., ¢Yr(z)\/7(z) €
Lo ([t,T)) in Sect. 1.13 (see Theorems 1. 20 1. 21)
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orthonormal with weight 1 system of functions

{wi@)vr@@)}

J=0

in the space Ly([t,T]). Then

fin [ (10370 - 30007 -
= lim t (f(x) - jz;(?j\pj(:c)) r(z)dz =0, (1.136)

where C; is defined by (1.135).

Let us consider an obvious generalization of this approach to the case of k
variables. Let us expand the function K(ty,...,%;) such that

k

K(ty,....tx) | [ V/r(t) € La([t, T)F)

using the complete orthonormal system of functions

k

[[vit)vrt), =012, [I=1..k

=1

in the space Lo([t, T]%) into the generalized multiple Fourier series.

It is well known that the mentioned generalized multiple Fourier series con-
verges in the mean-square sense, i.e.

lim /(K(tl,...,tk)H\/r(tl)Z... Chroir | i (10) fr(tl)>><

P1;e- P00
[t, T

- i (mtl,...,m—i...zkéjk...jlﬂwjl<tz>> [t

[t, 1)

xdty ... dty =0, (1.137)
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where
k

Cijy = / K(ty,....te) ]| (\Ifjl(tl)r(tl)) dty ... dty,.

it 7]k =1

Let us consider the following iterated It6 stochastic integrals
T to
yW)p, = / (b)) - / D1tV r(t)dw L dw!™ | (1.138)
t t

where every ¢;(7) (I = 1,...,k) is a nonrandom function on [t, 7], wl) = £l
fori=1,...,m andwgo) =T,0,...,0:=0,1,...,m

So, we obtain the following version of Theorem 1.1.

Theorem 1.5 [13]-[17], [29], [41]. Suppose that every ¥y(7) (I =1,...,k)
is a continuous nonrandom function on [t,T]. Moreover, let {W;(x)+/7(7)}3,
(r(x) > 0) is a complete orthonormal system of functions in the space Lo([t, T]),
each function U,(x)\/r(x) of which for finite j satisfies the condition (%) (see
Sect. 1.1.7). Then

Jp®) g = JLm, Z Z% i (H ¢ —

Ge=Hi\Ly, Hp={,....): L,....y=0, 1,...,N—1},
Lk:{(lly-..alk’): li,...,. [ =0,1,...,N—1; lg#l (g7é7») g,r=1,. k},

Lim. is a limit in the mean-square sense, i1,...,1, =0,1,...,m

Y

T

(= [wits) /it

t

are independent standard Gaussian random variables for various i or j (in the

case when i # 0), Aw%) = W%)H — W%) (1=0,1,...,m), {Tj}j-vzo is a partition
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of [t,T], which satisfies the condition (1.9),

Cyk”_jl:/K(tl,... H( G )dt1 dty, (1.140)
[t, ] =1

1s the Fourier coefficient,

i(ty) . p(te), t1<...<ty
K(tl,...,tk)z , tl,...,tke[t,T], k> 2,

0, otherwise

and K(t1) = Y1 (ty) forty € [t,T].

Proof. According to Lemmas 1.1, 1.3 and (1.24), (1.25), (1.36), (1.37), we
get the following representation

j[w(’“)]m: Z //K ty, .. H\/ (t1) dwtl1 . dwt w)

SRS S B I ol ) (CIENE ) AR B

+R:1p{£...,pk
P Pk _
=22 G
J1=0 Jk=0
N-1
im0 W)V ) AW W (n)Vr(m) Al
U100, =0

P15 Pk
-I-RT,t
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b1 Pk
:§ E le

J1=0 Jk=0

N-1
x | Lim. Z \Iljl(Th)\/?“(Tll)Awgll)...\Iljk(le)\/T(le)Awgz)—

N=oo ) im0

—Llim. )~ ‘I’jl(Tzl)\/f(Tzl)Angl)---‘I’jk(le)\/r(le)Awgf) +

N—oo

(ll,...,lk)EGk
+RP17 Pk __
b1 Pk
]1—0 jk:O

k
H C](_llz) — lim. Z \Iljl (Tll)‘/T(Th)Awgll) . ‘Ifjk (le)\/ T(le)AWg:) +
=1

N—o0
(lh...,lk)EGk

+Rp1’ PEw.p. 1,

where

Fpen Z/ /( (- te) [ V/r(t)—

t17 atk? =1

S e mH( (1) r(tn))dw o dwi,,

Jj1=0 Je=0

where permutations (t1, . .., t;) when summing are performed only in the values
alwlgf1> e dwgi’“). At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if £, swapped
with ¢, in the permutation (¢i,...,%;), then ¢, swapped with ¢, in the permu-

tation (i1,...,1k).
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Let us estimate the remainder RY; 7" of the series.

According to Lemma 1.2 and (1.38), we have

T 2
M{(R%;f,pk)Q} SCk Z //(K(tlaatk)H\/T(tl)—
(t1yeensli) % f =1
h1 Pr_ k 2
— Z C]k J1 H (‘I’Jl(tl) (tl))) dtl dtk — (1 141)
71=0 Jjx=0 =1

P1 Pk k 2
= O} (Ktl,... Z ZC H Jltl> %
X 0 =0 I—1

=1

k
X (H T(tl)> dty...dt, — 0 (1.142)

if p1,...,pr — 00, where constant (' depends only on the multiplicity k& of the
iterated It6 stochastic integral (1.138). Theorem 1.5 is proved.

Let us formulate the version of Theorem 1.4.

Theorem 1.6 [14]-[17], [29], [41]. Suppose that every (1) (I = 1,...,k)
is a continuous nonrandom function on [t,T]. Moreover, let {¥;(x)/7(7)}3,
(r(xz) > 0) is a complete orthonormal system of functions in the space Lo([t, T7]),
each function U;(x)\/r(x) of which for finite j satisfies the condition (%) (see
Sect. 1.1.7). Then the estimate

(T~ o) | <

Jj1=0 Jx=0

k
/K2(t1,...,tk) (Hr(t1)> dtl...dtk—z Z 2 ] (1143)
[¢,T]* B
15 valid for the following cases:
1Li,...;0.=1,....m and 0<T —1t < o0,
2. 00, i, =0,1,...om, 34+...4+i2 >0, and 0<T —t <1,
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where J[1) )7, is the stochastic integral (1.138), J[)*) 770 s the expression
on the right-hand side of (1.139) before passing to the limit 1l.im. ; another

_ . P1yeees D00
notations are the same as in Theorem 1.5.

1.4 Expansion of Iterated Stochastic Integrals with Re-
spect to Martingale Poisson Measures Based on
Generalized Multiple Fourier Series

In this section, we consider the version of Theorem 1.1 connected with the
expansion of iterated stochastic integrals with respect to martingale Poisson
measures.

1.4.1 Stochastic Integral with Respect to Martingale Poisson Mea-
sure

Let us consider the Poisson random measure on the set [0,7] x Y (R” o Y).

We will denote the value of this measure at the set A x A (A C[0,7], ACY)
as V(A, A). Assume that

M{v(A, A)} = [A[TI(A),

where |A| is the Lebesgue measure of A, II(A) is a measure on g-algebra B of
Borel subsets of Y, and Bj is a subalgebra of B consisting of sets A C B that
satisfy the condition I1(A) < oc.

Let us consider the martingale Poisson measure
D(AA) =v(AA) — |ATI(A).

Let (2, F,P) be a fixed probability space, let {F;, ¢t € [0,7]} be a non-
decreasing family of o-algebras F; C F.

Assume that the following conditions are fulfilled:

1. The random variables v([0,t), A) are Fi-measurable for all A C B,
t e [0,T].

2. The random variables v([t,t 4+ h), A), A C By, h > 0 do not depend on
events of g-algebra Fj.

Let us define the class H;(I1, [0, T) of random functions ¢ : [0, 7] xY xQ —
R! that are Fi-measurable for all t € [0,7], y € Y and satisfy the following
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condition
T

//M{\g@(t,y)V}H(dy)dt < o0,

0Y

Consider the partition {Tj}é\fzo of the interval [0, 7], which satisfies the con-
dition (1.9), and define the stochastic integral with respect to the martingale
Poisson measure for ¢(t,y) € Hy(Il, [0,T]) as the following mean-square limit

[100]
0//90 v(dt,dy) _lzvljﬁlo // 5(dt, dy), (1.144)

Y

where ¢©M(t,y) is any sequence of step functions from the class Ho(I1, [0, T7)

such that
2
lim // {‘gp (t,y) Nt y)‘ }H(dy)dt — 0.
N—o0

It is well known [100] that the stochastic integral (1.144) exists, it does not
depend on selection of the sequence @) (t,y) and it satisfies w. p. 1 to the

following properties
T
M / / (t,y)v(dt,dy)
0 Y

/ a1 (t,y) + Bea(t,y))o(dt, dy) =

T T
:oz//gol dtdy+6//gpgty (dt,dy),
0 0 Y
T 2 T
| [ [eteytanay)| [rob = [ [a{loy) Fofnay)
0 Y 0 Y

where a, 3 € R! and ¢1(t,y), 2(t,y), ©(t,y) from the class Hy(II, [0, T]).

Fo» =0,

O\H
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The stochastic integral

/T/w(t, y)v(dt, dy)

Y

with respect to the Poisson measure will be defined as follows [100]

// (t,y)(dt, dy) = // (t,y)5(dt, dy) // (t,y)TI(dy)dt, (1.145)

where we suppose that the right-hand side of the last equality exists.
According to the It6 formula for 1t6 processes with jumps, we get [100]
t
(%) = / / (G +2(ry)) = () )wldr,dy) w.p. 1, (1.146)
0 Y

where p € N and z,_ means the left-sided limit value of the process z, at the

point T,
t
ztz//v(T,y)V(dT, dy).
0

Y

We suppose that the function (7, y) satisfies the conditions of existence of
the right-hand side of (1.146) [100].

Let us consider the useful estimate for moments of stochastic integrals with
respect to the Poisson measure [100]

ap(T) < max // (7)Y + 1> — 1> (dy)dr , (1.147)

jelp, 1}

where

ay(t) = sup M{|="}, b(ry) = M{ (. y)P}

0<7<t

We suppose that the right-hand side of (1.147) exists. According to (see
(1.145))

// . Myoj/ (i ) — j/ s

Y
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and the Minkowski inequality, we obtain
1/2 1/2 1/2
({7 H) 7 < (M{Ja}) T+ (m{a}) L (s

where
t
and
t

The value M { |2, % } can be estimated using the well known inequality [100]

t 2p

M { |2} thpl/M /v(T,y)H(dy) dr, (1.149)
0 Y

where we suppose that

t 2p

O/I\/I !7(7, y)I1(dy) dr < oo.

1.4.2 Expansion of Iterated Stochastic Integrals with Respect to

Martingale Poisson Measures

Let us consider the following iterated stochastic integrals

P[X(k)]T,t =

T to
://Xk(tk,yk)...//Xl(tl,yl)ﬁ@l)(dtl,dyl)...ﬁ“k)(dtk,dyk), (1.150)
t X t X

"= X, alny) = dln)aly) (=1, k),

where i1,...,4. = 0,1,....m, R
,k) and every function ¢;(y) :

every function (1) : [t,T] — R! (I = 1,...
X = R! (I=1,... k) such that
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xi(ry) € Hy(IL [t T])  (I=1,..., k),

where definition of the class Ho(II, [t, T]) see above, v (dt, dy) (i = 1,...,m)
are independent Poisson measures for various i, which are defined on [0, 7] x X,

D (dt, dy) = v (dt, dy) — (dy)dt (i=1,...,m)

are independent martingale Poisson measures for various i, ﬁ(o)(dt,dy) o

(dy)dt, v (dt, dy) < TI(dy)adt.

Let us formulate an analogue of Theorem 1.1 for the iterated stochastic
integrals (1.150).

Theorem 1.7 [1]-[17], [41]. Suppose that the following conditions are hold:

1. Bvery (1) (I = 1,...,k) is a continuous nonrandom function at the
interval [t,T].

2. {pj(7)}32 is a complete orthonormal system of functions in the space
Ly([t, 1)), each function ¢i(x) of which for finite j satisfies the condition ()
(see Sect. 1.1.7).

3. Forl=1,...,k and ¢ = 2! the following condition is satisfied

/ ou(y)|* TI(dy) < oo.

X

Then, for the iterated stochastic integral with respect to martingale Poisson
measures P[X(k)]m defined by (1.150) the following expansion

P[X(k)]T,t Li 1p1kn_m Z Z Cl..in (H Uy

’’’’’ Jj1=0 Jr=0

k
—lim. Z qujg(ﬂg)/gpg(y)ﬁ(ig)([ﬁg,Tlg+1)’dy)> (1.151)
X

(I1, k) €GE 9=1

that converges in the mean-square sense is valid, where {Tj}j\fzo 1S a partition of
the interval [t, T satisfying the condition (1.9),

Gk:Hk\Lk, Hk:{(ll,...,lk)i ll,...,lkIO, 1,...,N—1},
Lp={(li,.. ., ) s b, 1y =0,1,... . N=1; Iy # 1, (9g#7); gr=1,...,k},

Lim. is a ltmit @n the mean-square sense, i1, ...,4. = 0,1,...,m, random vari-
ables
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77](-9 o) / /gog )l (dr, dy)
X

t

are independent for various i, (if iy # 0) and uncorrelated for various j,

k
Cjk---.h - / K(tla . 7tk) H ¢jl (tl)dtl .. dt
[t,T]* =1

i1s the Fourier coefficient,

Yi(ty) . p(te), t1<...<ty
K(tl,...,tk)z , tl,...,tke[t,T], k> 2,

0, otherwise

and K(t1) = 1(t1) forty € [t,T].

Proof. The scheme of the proof of Theorem 1.7 is the same with the sche-
me of the proof of Theorem 1.1. Some differences will take place in the proof of
Lemmas 1.4, 1.5 (see below) and in the final part of the proof of Theorem 1.7.

Lemma 1.4. Suppose that every ¥ (1) (I=1,...,
tion at the interval [t,T] and every function p;(y ) (l =

/ i) 2 TI(dy) < oo

Then, the following equality

k) is a continuous func-
1,...,k) such that

Jo—1 k
P[ Y Tt B lNl—>m Z Z H / Xl(le? y)D(”)([le’ sz-i-l)? dY) (1-152)
=0 ji=01=1%

is valid w. p. 1, where {Tj}j-vzo is a partition of the interval [t,T] satisfying the
condition (1.9),

| 70([r,5), dy)
D(l)([T,s),dy): (1=0,1,...,m).
v ([, s),dy)

In contrast to the integral P[y¥) ]Tt defined by (1.150), U (dt;, dy;) is used in
the integral P[x")r; instead of 7 (dt;, dy;) (I=1,...,k).
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Proof. Using the moment properties of stochastic integrals with respect
to the Poisson measure (see above) and the conditions of Lemma 1.4, it is easy
to notice that the integral sum of the integral P [)‘((k)]T,t can be represented as
a sum of the prelimit expression from the right-hand side of (1.152) and the
value, which converges to zero in the mean-square sense if N — oo. Lemma 1.4
is proved.

Note that in the case when the functions ¢;(7) (I = 1,...,k) satisfy the
condition (x) (see Sect. 1.1.7) we can suppose that among the points 7, j =
0,1,..., N there are all points of jumps of the functions ¥;(7) (I = 1,... k).
Further, we can apply the argumentation as in Sect. 1.1.7.

Let us consider the following multiple and iterated stochastic integrals

N-1 k
. ~(i def k
Llm. > ‘I’(Tju---aTjk)H/‘Pl(Y)V( (7 mi1), dy) =PI,
T i =0 I=1%
Tt
(i) > (ik) dlef
[ ottt [amrandy)... [ o), dy) ©
t t X X
def ~ k
= Plely,
where ®(ty,...,t) : [t,T]* — R! is a bounded nonrandom function and the

sense of notations of the formula (1.152) is remaining.

Note that if the functions ¢;(y) (I = 1,...,k) satisfy the conditions of
Lemma 1.4 and the function ®(¢y,...,%;) is continuous in the domain of in-

tegration, then for the integral p[@]gf 2 the equality similar to (1.152) is valid
w. p. 1.

Lemma 1.5. Assume that the following representation takes place:

g(r,y) =h(m)aly) (=1,...k),

where the functions h(7) : [t,T] — R (I = 1,... k) satisfy the condition (x)
(see Sect. 1.1.7) and the functions p(y) : X — R! (I = 1,... k) satisfy the
condition

/\SOZ(Y)\pH(dY) <oo for p=2"1
X
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Then

T
//91(37}’)9@1)(6537(13’) = PO} w. p. 1, (1.153)
t X

where i; =0,1,....m (I=1,....k) and

Proof. Let us introduce the following notations

Jgi]n o Z/gl T, Y TJaTJH) dy),

]OX

ef lz
gz]md— //gz s, y)v\"(ds, dy),

where {7}, is a partition of the interval [t, T] satisfying the condition (1.9).

It is easy to see that

1T7@~ = [ 713l =

-1 k
= Z (H J[gq]T,t> (Jgln — Jglre) H J1Gqln

Using the Minkowski inequality and the inequality of Cauchy—Bunyakovsky
together with the estimates of moments of stochastic integrals with respect to
the Poisson measure and the conditions of Lemma 1.5, we obtain

4 }) 1/4

2 1/2
<Ck2( {‘ lgiln — Jlai)r
(1.154)

117@x =T 7@l

where C}, < 00.
We have

Jaln — Jalr: = JIAG7, 7,5
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where o
JAG)rymy = [ (u(rg) = lu(s)) | du(y)p'™(ds, dy).
Jov-a

Let us introduce the notation
WY (s) = hi(r,), s €lrpmen), ¢=0,1,...,N—1.
Then
gy — Jgilrs = Z JAGrrm, =

- / (H¥(s) — hu(s / Bu(y)7(ds, dy).

t

Applying the estimates (1.147) (for p = 4) and (1.148), (1.149) (for p = 2)
to the value
4

M /(h( (s /</5z 700(ds, dy)| .

t
taking into account (1.154), the conditions of Lemma 1.5, and the estimate
\hi(ry) — h(s)| <&, s€lrymgnl, ¢=0,1,....,N—1, (1.155)

where ¢ is an arbitrary small positive real number and |7, — 7, < 6(¢), we
obtain that the right-hand side of (1.154) converges to zero when N — oo.
Therefore, we come to the affirmation of Lemma 1.5.

It should be noted that (1.155) is valid if the functions h;(s) are continu-
ous at the interval [t,T], i.e. these functions are uniformly continuous at this
interval. So, |hi(7,) — hi(s)| < € if s € [ry, Ty41], where |741 — 74| < d(e),
q=20,1,...,N —1 (§(e) > 0 exists for any £ > 0 and it does not depend on
points of the interval [t, T1).

In the case when the functions hy(s) (I =1,...,k) satisfy the condition (x)
(see Sect. 1.1.7) we can suppose that among the points 7,, ¢ =0,1,..., N there
are all points of jumps of the functions hi(s) (I = 1,...,k). Further, we can
apply the argumentation as in Sect. 1.1.7.

Obviously, if 7; = 0 for some [ = 1,..., k, then we also come to the affirma-
tion of Lemma 1.5. Lemma 1.5 is proved.
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Proving Theorem 1.7 by the scheme of the proof of Theorem 1.1 using
Lemmas 1.4, 1.5 and moment properties of stochastic integrals with respect to
the martingale Poisson measures, we obtain

M { <R%;""pk) } < CkH/SOz

I=1x

X Z/T tz( K(ty,...t Z qu jIHqﬁjltl) X

1=0 Jr=0

/(Ktl,... Z ZCM ]1H¢jl tl> x

[t,T}k J1=0 Jx=0

< Cj (Ktl,... Z ZOM jIH(b]ltl)dtl...dtk—)O

J1=0 Jk=0
if p1,...,px — 00, where constant C, depends only on k& (k is the multiplic-

ity of the iterated stochastic integral with respect to the martingale Poisson
measures). Moreover, R} " has the following form

D1s---5Pk
RT,t = E:

\’ﬂ

f( K(ty, ...t Z qu Jlngbﬁtl)

(t1,esth) % =0 Jjr=0
x/gpl Vo (dty, dy) . /gok V) (dty,, dy), (1.156)
X X
where permutations (t1,...,%) when summing in (1.156) are performed only

in the values o1 (y)o)(dty,dy) ... pp(y)o) (dty, dy). At the same time, the
indices near upper limits of integration in the iterated stochastic integrals
are changed correspondently and if ¢, swapped with ¢, in the permutation
(t1,...,tx), then i, swapped with ¢, in the permutation (iy,...,4;). Moreover,
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¢, (y) swapped with ¢,(y) in the permutation (¢1(y),. .., ¢x(y)). Theorem 1.7
is proved.

Let us consider the application of Theorem 1.7. Let 1 # iy and 1,29 =

1,...,m. Using Theorem 1.7 and the system of Legendre polynomials, we obtain
//902 ¥ //901 y1) 7 (dty, dy) ) (dty, dys) =
T—t( (i) (24 = 1 Liy) (2. Liy) (2.
- Tt (a4 3 o () o) ).

T
//(,01 dtl, dyl) vV T — tﬂ'él’“),
t X

where

and {¢;(7)}3%, is a complete orthonormal system of Legendre polynomials in
the space Lo([t,T)).

1.5 Expansion of Iterated Stochastic Integrals with Re-
spect to Martingales Based on Generalized Multiple
Fourier Series

1.5.1 Stochastic Integral with Respect to Martingale

Let (2, F, P) be a fixed probability space, let {F;, t € [0, T]} be a non-decreasing
family of o-algebras Fy C F, and let May(p, [0,T]) be a class of Fi-measurable
for each ¢ € [0, T] martingales M; satisfying the conditions

S

M{(Ms _ Mt)z} — /p(f)dT, (1.157)

t

M{\MS _ Mt\p} <COls—t], p=3.4,...,
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where 0 < t < s < T, p(7) is a non-negative and continuously differentiable
nonrandom function at the interval [0, 7], C,, < oo is a constant.

Let us define the class Hs(p,[0,T]) of stochastic processes &, t € [0,7],
which are Fy-measurable for all ¢ € [0, 7] and satisfy the condition

T
0

N
For any partition {T(N) } ~of the interval [0, T such that

(V)

0= M < (N) _ ()

Tiy1 — T, ‘—>OifN—>oo

Jj+1
(1.158)
we will define the sequence of step functions £V (¢, w) by the following relation

<...<T1y =T, max
0<j<N-1

f(N)(t,w) =& (w) w.p. 1 for te {T}N),Tj(ﬁ));

where ¢ (t,w) € Hy(p,[0,7)),j=0,1,..., N -1, N=1,2,...

Let us define the stochastic integral with respect to martingale from the
process &(t,w) € Ha(p,[0,T]) as the following mean-square limit [100]

T
L. 36 (9,0) (31 (1) = vt (70) ) ¥ [t (1o
0

N—oo

where £V (¢, w) is any step function from the class Hs(p, [0, T), which converges
to the function £(¢,w) in the following sense

lim [ M {)gm(t, W) — E(t, w)f} p(£)dt = 0.

N—o0

It is well known [100] that the stochastic integral (1.159) exists, it does not
depend on selection of the sequence &W )(t,w) and it satisfies w. p. 1 to the

following properties
T
/ §dMy|Fo
0

=0,
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FO )

T 2 T
M / &dMy| |Fo p =M / & p(t)dt
0 0
T T T

(& + pYy)dM;y = o | §dMy + B | dM;,
/ [emien]
where €t7 ,@/}t S HQ(p7 [OaT])a O‘aﬁ S Rl'

1.5.2 Expansion of Iterated Stochastic Integrals with Respect to
Martingales

Let Q4(p,[0,T]) be the class of martingales My, t € [0,T], which satisfy the
following conditions:

1. My, t € [0,T] belongs to the class Ma(p, [0,T7).

2. For some « > 0 the following estimate is correct
4

T

M / g(s)dM,| b < K, / 19(s)[°ds, (1.160)

where 0 <t < 7 < T, g(s) is a bounded nonrandom function at the interval
[0,T], Ky < oo is a constant.

Let G, (p, [0,T]) be the class of martingales My, t € [0,T], which satisfy the
following conditions:

1. My, t € [0,T] belongs to the class My(p, [0,T1).

2. The following estimate is correct

T n

M /g(s)dMs < 00,
t
where 0 <t <7 < T, n €N, g(s) is the same function as in the definition of
the class Q4(p, [0,T]).

Let us remind that if (§)" € Ha(p,[0,T]) with p(t) = 1, then the following
estimate is correct [100]

T

- 2n
M /gsds < (T—If)2n_1/|\/| {|§S\2"}ds, 0<t<r<T (L161)
t

t
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Let us consider the iterated stochastic integral with respect to martingales

T ®Y, = / Urte) ... / G (b)) M L amE), (1.162)

..., k) is a continuous non-

( L,...;k, i =1,...,m) are

independent martingales for various ¢ = 1, : Ms( 0 df .

where iy,...,7, = 0,1,...,m, every (T ) (
random function at the interval [¢,T], M, )

Now we can formulate the following theorem.
Theorem 1.8 [1]-[17], [41]. Suppose that the following conditions are hold:

1. EBvery ¥y(7) (I = 1,...,k) is a continuous nonrandom function at the
interval [t,T].

2. {¢;(z) 720 s a complete orthonormal system of functions in the space
Ly([t,T]), each function ¢;(x) of which for finite j satisfies the condition (x)
(see Sect. 1.1.7).

3. M € Qup, [t,T)), Gulp, [t,T)) with n = 281 iy = 1,... m, [ =
1,....,k (ke N).

Then, for the iterated stochastic integral J W ]Tt with respect to martin-
gales defined by (1.162) the following expansion

ECTE TR S Sl (Hfﬁ“

Jj1=0 J&=0

—Lim. Z ¢j1 (Tll)AMT(lllvil) T ¢jk (le>AM£JIZik))

N—oo

that converges in the mean-square sense s valid, where i1, ...,1 = 0,1,...

7

{Tj} "o 15 a partition of the interval [t,T] satisfying the condztzon szmzlar to
(1.158), AMY) = MU — MO (i=0,1,...m, r=1,...,k),

Tj+1
GkZHk\Lk, HkZ{(ll,...,lk)Z ll,...,lkZO, 1,...,N—1},
Lk:{(ll,...,lk)i ll,...,lk:(), 1,....N—1; lg?’élr (g;ér); g)r:l)_“,k}7

Lim. s a limit in the mean-square sense,

T
£ = [ oy(s)ant
t
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are independent for various i; (if iy # 0) and uncorrelated for various j (if p(T)
is a constant, i; # 0) random variables,

k
Clpeoji = / K(ty, ... tk) H ¢, (tr)dty ... dty,
[t,T]* =1

1s the Fourier coefficient,

1/)1(t1) . ..1/)k(tk), h <...<tp
K(tl,...,tk): , tl,...,tke[t,T], k> 2,

0, otherwise

and K(t1) = Y1 (ty) forty € [t,T].
Remark 1.4. Note that from Theorem 1.8 for the case p(T) = 1 we obtain
the variant of Theorem 1.1.

Proof. The proof of Theorem 1.8 is similar to the proof of Theorem 1.1.
Some differences will take place in the proof of Lemmas 1.6, 1.7 (see below) and
in the final part of the proof of Theorem 1.8.

Lemma 1.6. Assume that M € My(p, [t,T]) (i=1,...,m), MO =5
(r=1,...,k), and every ¥y (t) (I =1,...,k) is a continuous nonrandom func-
tion at the interval [t,T]. Then

jo—1 k

J[p™] J7% = Lim. Z ZHW (75)A ]l,l” w. p. 1, (1.163)

N=oo 570 j1=01-1

where {;}L¢ is a partition of the interval [t, T satisfying the condition similar
to (1.158), 4, =0,1,...,m, L =1,... k; another notations are the same as in
Theorem 1.8.

Proof. According to the properties of the stochastic integral with respect
to martingales, we have [100]

j EdME | b = / M {\54“‘} p(s)ds, (1.164)

/Tﬁsds < (T—t)/M {\§5]2}d5, (1.165)
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where & € Hy(p,[0,7)), 0 <t <7 <T, 4 =1,...,m,l =1,...,k Then
the integral sum for the integral J [@b(k)]% under the conditions of Lemma 1.6
can be represented as a sum of the prelimit expression from the right-hand side
of (1.163) and the value, which converges to zero in the mean-square sense if
N — o00. More detailed proof of the similar lemma for the case p(7) = 1 can be

found in Sect. 1.1.3 (see Lemma 1.1).

In the case when the functions ¢;(7) (I = 1,..., k) satisfy the condition (%)
(see Sect. 1.1.7) we can suppose that among the points 7;, 7 =0,1,..., N there
are all points of jumps of the functions ¥;(7) (I = 1,...,k). So, we can apply
the argumentation as in Sect. 1.1.7.

Let us define the following multiple stochastic integral

Lim. Z O(rj,, ... ) [ [AMED < [[@)), (1.166)

N—oo .

where {7;}/ is a partition of the interval [t, T] satisfying the condition similar
to (1.158) and ®(t1,...,t;) : [t,T]" — R!is a bounded nonrandom function;
another notations are the same as in Theorem 1.8.

Lemma 1.7. Let M ¢ Qslp, [t,T)), Gulp, [t,T]) withn =21 ke N
(u=1,....m, Il =1,...,k) and the functions g1(s), ..., gr(s) satisfy the con-
dition (%) (see Sect. 1.1.7). Then

k T
H/gl YdMUW = 119]F) w. p. 1,

where i, =0,1,....,m, [ =1,...,k,

k
O(ty,....t) = [[au(tr)
Proof. Let us denote -
T
Tglv = Zgl TAMED, Jlglr, € /gz(s)dMs(l’il),
t

Where {7;}710 is a partition of the interval [t, T satisfying the condition similar
to (1.158).
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Note that

1179 = ] 7oz =

= Z (H J[gq]T,t> (Jglv = Jlgilrs) H J(9q)n

Using the Minkowski inequality and the inequality of Cauchy-Bunyakovsky
as well as the conditions of Lemma 1.7, we obtain

2y \ 1/2

~”

<

k 4N\ /4
<C Z( {‘ lgiln — JailTs }) : (1.167)

where C), < 00 is a constant.
We have

Tg+1
memm;3/mma—m@»mﬂw-

Let us introduce the notation
() = —0,1,...,N—1
gl (S) _gl(Tq)a s € [Tanq—i-l)? q=Y,1,..., .
Then

Jaln — Jalr: = Z JIAgl7, 7 =

T
/ )) dM(l i)
t
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Applying the estimate (1.160), we obtain

T 4

M| [ (66) = as)) an| b <

t

T

< K4/ ‘QZ(N)(S) — ai(s)

t

«

ds =

N—-1 Tg+1

_mzjm@ gi(s)|" ds <

D

2 »Q
|

< K4€ (Tq+1 — Tq) = K4EQ<T — t) (1168)

q

I
o

Note that we used the estimate
(1) —ai(s)| <e, se€rg,m+1], ¢=01,...,N—1 (1.169)

to derive (1.168), where |7,41 — 7| < 0(¢) and ¢ is an arbitrary small positive
real number.

The inequality (1.169) is valid if the functions g;(s) are continuous at the
interval [t, T, i.e. these functions are uniformly continuous at this interval. So,
\gi(15) — qi(s)| < e if s € |1y, Tg41], where |74 — 7| < (), ¢=0,1,...,N —1
(0(g) > 0 exists for any € > 0 and it does not depend on points of the interval
£.7)).

Thus, taking into account (1.168), we obtain that the right-hand side of
(1.167) converges to zero when N — oco. Hence, we come to the affirmation of
Lemma 1.7.

In the case when the functions g;(s) (I =1,..., k) satisfy the condition (%)
(see Sect. 1.1.7) we can suppose that among the points 7,, ¢ =0,1,..., N there
are all points of jumps of the functions ¢g;(s) (I = 1,...,k). So, we can apply
the argumentation as in Sect. 1.1.7.

Obviously if i, = 0 for some [ = 1,..., k, then we also come to the affirma-
tion of Lemma 1.7. Lemma 1.7 is proved.

Proving Theorem 1.8 similar to the proof of Theorem 1.1 using Lemmas 1.6,
1.7 and moment properties of stochastic integrals with respect to martingales
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(see (1.164), (1.165)), we obtain

2
M {(Rf%{;'"p’“) } <
2
< Ch Z / /( tl’ Z ZCM ]1H¢Jz tl) X
(t1yestr) ¢ j1=0 jr=0
Xﬁl(tl)dtl .. ﬁk(tk)dtk < (1170)

T t
< _kz /---/(Kth Z chk J1H¢jztl>dtl SUTES

= Jk=0
= C} (Ktl, Z ZCM ,1H¢jl tl> dty...dty — 0
k 1=0 Jx=0

if p1,...,pr — 00, where constant Cj, depends only on k (k is the multiplicity
of the iterated stochastic integral with respect to martingales) and pg;(s) = p(s)
or pi(s) =1 (I=1,...,k). Moreover, Ry has the following form

Ry = Z/T /( by, Z Z% alﬂ%ztl)

(t1nth) ¢ J1=0 jx=0
xdMIM™ L dn, (1.171)
where permutations (¢1, ..., ;) when summing in (1.171) are performed only in

the values th(ll’il) e th(]f’i’“). At the same time the indices near upper limits of
integration in the iterated stochastic integrals are changed correspondently and
if t, swapped with ¢, in the permutation (t1,...,%), then i, swapped with i, in
the permutation (i1,...,4). Moreover, r swapped with ¢ in the permutation
(1,...,k). Theorem 1.8 is proved.
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1.6 One Modification of Theorems 1.5 and 1.8

1.6.1 Expansion of Iterated Stochastic Integrals with Respect to
Martingales Based on Generalized Multiple Fourier Series.
The Case p(z)/r(z) < o0

Let us compare the expressions (1.141) and (1.170). If we suppose that r(x) > 0
and

PY < 0 < o,

if p1,..., pr — o0 (see (1.142)), where () is a constant, {W;(z)}32, is a complete
orthonormal with weight r(z) > 0 system of functions in the space Lo([t,T]),

and the Fourier coefficient Cj, ;, has the form (1.140).
So, we obtain the following modification of Theorems 1.5 and 1.8.

Theorem 1.9 [13]-[17], [41]. Suppose that the following conditions are
fulfilled:

1. FEvery (1) (I = 1,...,k) is a continuous nonrandom function at the
interval [t,T].
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2. {W;(x)}32, is a complete orthonormal with weight r(x) > 0 system
of functions in the space Lo([t,T]), each function V;(x) of which for finite j
satisfies the condition (%) (see Sect. 1.1.7). Moreover,

)

(x)§C<oo.

(x
3. MY e Qup, [t.T)), Gulp, [t.T]) with n = 281 4, = 1,...,m, | =
L,...,k (ke N).

Then, for the iterated stochastic integral J [@b( )]Tt with respect to martin-
gales defined by (1.162) the following expansion

WO = Lo Z ZCM g (H &

Jj1=0 J&=0

~—

=

N—oo

—Lime ) Wy () AME ‘I’jk(m)Angk))
(ll ..... lk)EGk

that converges in the mean-square sense is valid, where i1,...,4 = 1,...,m,
{Tj} Lo 15 a partition of the interval [t,T] satisfying the condition similar to

(1.158), AMY) = MU — MO (=1, m, r=1,... k),

T]+1
Gk:Hk\Lk, Hk:{(ll,...,lk>: ll,...,lk:(), 1,...,N—1},

Lk:{(ll,...,lk): Ly.o..,l,=0,1,... , N=1; [, # 1, (g #r); g,rzl,...,k},

Lim. is a limit in the mean-square sense,

T

N

t

are independent for various iy = 1,....,m (I = 1,... k) and uncorrelated for
various j (if p(x) = r(x)) random variables,

k
éjk~~~j1 = / K(tla cee 7tk) H (‘I]jl (m)””(t;)) dtl ce dtk
[t 17"

=1
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i1s the Fourier coefficient,
i(ty) . p(te), t1<...<ty
K(tl,...,tk): , tl,...,tkE[t,T], kZQ,

0, otherwise

and K (t1) = Y1 (t1) fort, € [t,T].

Remark 1.5. Note that if p(z),r(x) = 1 in Theorem 1.9, then we obtain
the variant of Theorem 1.1.

1.6.2 Example on Application of Theorem 1.9 and the System of
Bessel Functions

Let us consider the following boundary-value problem

(p(x)®'(2)) + g(2)@(2) = —Ar(2)®(x),
a®(a) + P’ (a) =0, ~P(b)+ 69'(b) =0,

where the functions p(x), q(z), r(z) satisfy the well known conditions and «a,
B, v, §, A are real numbers.

It is well known (Steklov V.A.) that the eigenfunctions ®y(x), ®1(x), ...
of this boundary-value problem form a complete orthonormal with weight r(x)
system of functions in the space Ls([a,b]). It means that the Fourier series of
the functlon Vr(x)f(x 6 Lo([a, b)) with respect to the system of functions
V() Po(z \/ <I>1 . converges in the mean-square sense to the func-
tion 4/ r(a:) f (x) at the interval la,b]. Moreover, the Fourier coefficients are
defined by the formula

b
> :/f(x)fbj(x)r(x)d:c. (1.172)

It is known that when solving the problem on oscillations of a circular
membrane (general case), a boundary-value problem arises for the following
Euler—Bessel equation

r’R'(r)+rR'(r)+ (A =n®)R(r)=0 (A€eR, neN). (1.173)

The eigenfunctions of this problem, taking into account specific boundary con-
ditions, are the following functions

T <M%>, (1.174)
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where 7 € [0, L] and p; ( =0,1,2,...) are positive roots of the Bessel function
Jo(p) (n=0,1,2,...) numbered in ascending order.

The problem on radial oscillations of a circular membrane leads to the
boundary-value problem for the equation (1.173) for n = 0, the eigenfunctions
of which are the functions (1.174) when n = 0.

Let us consider the system of functions

V2 1y
U7 :—Jn(—%>, i=0,1,2,.... 1.175
where
o T\ n+2m 1
o= ()
(z) mz::o( ) 2 F'm+1D)I'(m+n+1)
is the Bessel function of the first kind,
['(z) = /e_xxz_ldx

0

is the gamma-function, p; are positive roots of the function J,(z) numbered in
ascending order, and n is a natural number or zero.

Due to the well known properties of the Bessel functions, the system
{¥;(7)} 2, is a complete orthonormal with weight 7 system of continuous func-
tions in the space Ly([0, 7).

Let us use the system of functions (1.175) in Theorem 1.9.

Consider the following iterated stochastic integral with respect to martin-

gales

T
/ / dMWdMP,
0

0
where

MO = [yt i=12),
0
fT(i) (i = 1,2) are independent standard Wiener processes, MS@ (i = 1,2) are
martingales (here p(7) = 7), 0 < s < T. In addition, M has a Gaussian
distribution.

It is obvious that the conditions of Theorem 1.9 are fulfilled for £ = 2.
Using Theorem 1.9, we obtain
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T s
P1 D2
DFIVIO Y v W@
//dMT dMS _p},ll?zr—r:oo ZZC.D,hgjl <j2 )
00 J1=0 j2=0
where
T
G = / W, (r)dM)
0

are independent standard Gaussian random variables for various i or j (i = 1,2,
j=0,1,2,...),

S

T
Ciojy = /S‘I’jg(S)/T‘I’jl(T)deS
0 0
is the Fourier coefficient.

It is obvious that we can get the same result using the another approach:
we can use Theorem 1.1 for the iterated Ito stochastic integral

T s
/ s / VTV dE®),
0 0

and as a system of functions {¢;(s)}7%, in Theorem 1.1 we can take

V2s

Hj -
(s :—Jn<—s), ~0,1,2,...
As a result, we obtain
A p pP1 P2 . )
V5 [ R = i 3T Cucles
0 0 7 J1=0 j2=0

where
T
(= [ oxtryts
0

are independent standard Gaussian random variables for various i or j (i = 1, 2,
j=0,1,2,...),

Clojy = /T V505, (5) /s VT (T)drds
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is the Fourier coefficient. Obviously that Cj,;, = C'j

2J1°

Easy calculation demonstrates that

7 (s) — 2(s — 1) Wi g -
;(s) (T—t)JnH(uj)‘]”(T—t( t)), i=0,1,2,...

is a complete orthonormal system of functions in the space Lo([t,T]).

Then, using Theorem 1.1, we obtain

T s pP1 P2
. ~(1) x(2
fom [ s < S
/ / J1=0 j2=0

where
T
&= [6irae
t

are independent standard Gaussian random variables for various i or j (i = 1, 2,
j=0,1,2,...),

T s
Cj2j1 = /\/8 — tgng(S) / VT — t(;ﬁ(T)deS
t t
is the Fourier coefficient.

1.7 Convergence with Probability 1 of Expansions of It-
erated Ito Stochastic Integrals in Theorem 1.1

1.7.1 Convergence with Probability 1 of Expansions of Iterated It6
Stochastic Integrals of Multiplicities 1 and 2

Let us address now to the convergence with probability 1 (w. p. 1). Consider
in detail the iterated It6 stochastic integral (1.98) and its expansion, which is
corresponds to (1.99) for the case i1 # iy

iy T —t( (i) s = 1 i) (i i) (i
otyre =5~ (Cé G+ e (Y - kff)) - (1.176)
i—1

First, note the well known fact [104].
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Lemma 1.8. If for the sequence of random variables &, and for some o > 0
the number series

> Mg

converges, then the sequence §, converges to zero w. p. 1.

In our specific case (iy # i9)
. . Tt & 1 L g
1(2122) — ](1112)2? _}_5 5 — (dh)dh) _ C'(“)C‘(Z2)>
(00)Tt (00)T,t P D § : 5 i—15i i i—1)>
2 P V4aiz —1
where

i T =1t/ (i) 0 - 1 i1) A(i in) A
T AES .
i-1

Furthermore,
T2 & 1 (T2 [ 1
M 2 _ (L=t < / dr =
{al™} s 2 1S 42— 1"
i=p+1 D
T—1)?1 2

SN it ) O P Q) (1.178)

2 4 2p+1 P

where constant C' is independent of p.

Therefore, taking o = 2 in Lemma 1.8, we cannot prove the convergence of
&p to zero w. p. 1, since the series

> M i}

will be majorized by the divergent Dirichlet series with the index 1. Let us take
o = 4 and estimate the value M {|,[*}.

From (1.74) for k = 2, n =2 and (1.178) we obtain
K
M{jgl'} < 2 (1.179)

and

oo (0.} 1
M{|EM <KDY = < oo, (1.180)
Z {1&['} Zp



146DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stramnovich Stochastic Integmls Based on Genemlized Multip]e Foun'er Series

where constant K is independent of p.

Since the series on the right-hand side of (1.180) converges, then according
to Lemma 1.8, we obtain that §, — 0 when p — oo w. p. 1. Then
(ixi2)p (i1i2)
](OO)Tt — I(OO)TJ when p — o0 w.p. 1.

Let us analyze the following iterated Ito stochastic integrals

T S T s
I, = /t—S/ EOVaE), I = //t—Tdf“ detiz),
t t

whose expansions based on Theorem 1.1 and Legendre polynomials have the
following form (also see Chapter 5, Sect. 5.1)

I(Z'li2) . T — t](illé)p _ (T ; t)2 (QSM)Q@) N

o7t — 9 T(00)Tit \/§

p ~ (1) ~(i2) (i1) ~(i2) (i1) ~(i2)
(i +2)GG — G+ DEHGY ¢ (01)
+§;< V(@2 + 1)(20 + 5)(2i + 3) (2i1)(2i+3)>> e

ﬁm)__T—@mwgﬂT—ﬂQC$%m+
(10)1t — 9 (00)Tt 4 \/g

P - i1) (i2) ~(i1) (i) »(i2)
+z< )CH-QC (Z+2)C CH—Q T G Cz ))) _{_51(710)7

P (2i+1)(20 +5)(2¢ + 3) (20 —1)(20 + 3

where

3o (026705 - G ehet  ghe®
JR2it)(2i+5)(2i+3)  (2i—1)@2i+3)) )

1=p+1

51(]10) - (T (

2 T \/42 <<(21)C(ZQ) - Cz'(il)@@)Jr

=p+1
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n f: ((i +1)¢7¢E — (i +2)¢1¢ ™ (lin) i) >>

V(20 + 1)(2i + 5)(2i + 3) (20— 1)(20 + 3)

1=p+1

Then for the case 71 # 12 we obtain

M { §<01>(2} B Clnl) Y

P 16
= [ 9 (i +2)* + (i + 1)? L
X Z <4z’2 1" (20 +1)(20 4 5)(2i + 3)? i (20 = 1)%(2i +3)2) :

i=p+1

—~ 1 K
<K - < — 1.181
SKY 55— (1181)

1=p+1
where constant K is independent of p.
Analogously, we get

2 K
M {‘g}}m‘ } <2 (1.182)

p

where constant K does not depend on p.
From (1.74) for k =2, n =2 and (1.181), (1.182) we have

M { £;Ol>)4} +M { 672“”\4} <

1

p= p=1

and

where constant K is independent of p.

According to (1.183) and Lemma 1.8, we obtain that 5}()01)7 5190) — 0 when
p— o0 w. p. 1. Then

(i142) (i142) (i1i2) (i1i2)
](Ol)Tfjt 1(01)”, I(lo)Ti — I(m)T,t when p—o00 w.p. 1,

where il 75 iQ.

Let us consider the case 11 = 19

(i1) »(i1)
iy (T =12 (T —t)? N2 GG
loyre =7 @)
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n Z Ci(“)Ci(j—12) _ Cz'(il)@(il) + M(Ol)
V(2 +1)(2i +5)(2i +3) (20 —1)(2i +3) v

A i) N i ) Y S
(10)T,t 4 4 0 \/g

Cfil)@(ilg) C.(il)c'(il) o)
( V(20 +1)(20 + 5)(2i + 3) MRCTAEIoTn 3))) Ty

+

~.
I M@
(@)

where

i (T —t)? 200: Ci(il)ci(j_l% ) Ci(z'l)ci(il)
’ 4 AN\ V@i+D)(2i+5)(2i+3) (2= 1D(2i+3)

oy __(T=1? 5~ [ (el ¢
& 4 Zp;l< V(2 +1)(20 + 5)(2i + 3) TRt )

Then

- 1 - 2
X<Z (2 + 1)(2i + 5)(2i + 3)2 Z 2i— 12237

1=p+1 i=p+

*(,Zl 2 —1)(2i +3>> ) =

C

2
u,(f’”‘ } +M {
p:

where constant K is independent of p.

= =

and

‘ }) <KZ—<oo (1.184)

According to Lemma 1.8 and (1.184), we obtain that ugn), ,ul(,m) — 0 when
p — oo w. p. 1. Then

(i1i1)p (i1i1) (iri1)p (i1i1)
[(Ol)Tt — [(Ol)T,t7 I(lO)Tt — I(lO)T,t when p—oo w.p. L
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Analogously, we have

(i192)p (i1i2) (iriz)p (i1i2) (i1i2)p (i142)
[(OQ)Tt = Liggyr4 I(ll)Tt = Ly ](20)Tt — Liygyp, when p—oo w.p. 1,

where
S

A T s
[(%12321)% = /(t - 8)2 / dfT(il)dfs(iQ), I((;(l)i)"%t = //(t _ T)2dfr(i1)dfs(i2)a
t tot

t

f&?%s/t—s /t—fdf“ df),
t

i1,i2 = 1,...,m. This result is based on the expansions of stochastic integrals
Tt Igg)?}t, I{13, (see the formulas (5.27)-(5.29) in Chapter 5).

Let us denote

where [ =0,1,2.

The expansions (5.7)—(5.9), (5.30), (5.38) (see Chapter 5) for stochastic
integrals I<( )2”, ]((ZQ”, I((Sg”, I<(§3>Tt, I((;)l%t are correct w. p. 1 (they include

1,2,3,4, and [ + 1 members of expansion, correspondently).

1.7.2 Convergence with Probability 1 of Expansions of Iterated It6
Stochastic Integrals of Multiplicity k& (k € IN)

In this section, we formulate and prove the theorem on convergence with prob-
ability 1 (w. p. 1) of expansions of iterated It stochastic integrals in Theorem
1.1 for the case of multiplicity k£ (k € N). This section is written on the base
of Sect. 1.7.2 from [14]-[17] as well as on Sect. 6 from [31] and Sect. 9 from [29].

Let us remind the well known fact from the mathematical analysis, which
is connected to existence of iterated limits.

Proposition 1.1. Let {xnm} | be a double sequence and let there exists
the limit

lim ., =a < oo.
n,Mm—00



150DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stmmnovic}l Stochastic Integmls Based on Genemlized Multip]e Fourier Series

Moreover, let there exist the limats

lim z,.,, < oo for any m, lim z,,, <oo for any n.
n—oco m—00

Then there exist the iterated limaits

lim lim z,,, lm lim z,,,
n—o0 m—0o0 m—00 N—00

and moreover,

lim lim z,, = lim lim z,, = a.
n—o0 M—00 m—00 N—00

Theorem 1.10 [14]-[17], [27], [29], [31], [32]. Let ¢y(7) (I = 1,...,k)
are continuously differentiable nonrandom functions on the interval [t,T] and
{p;(x) 720 s a complete orthonormal system of Legendre polynomials or
trigonometric functions in the space Lo([t,T]). Then

JWpWEr = JpWr, if p— oo

w. p. 1, where J[W® )" is the expression on the right-hand side of (1.10)
before passing to the limit lim.  for the case p1 = ... = pr = p, i.e. (see

P1,y--sPE—00
Theorem 1.1)

=3 (T4 -

Jj1=0 Jr=0

N—00
(117"'7lk)€Gk

— Lim. Z G, (Tll)Angl) R Ors (le)Ang) ’

where i1, ...,1; = 1,...,m, rest notations are the same as in Theorem 1.1.

Proof. Let us consider the Parseval equality

2
/K(tl,... Rty dty = 1715?%02 Z 2 5 (1.185)
k

= Jr=0

i(ty) . p(te), t1<...<ty

k k-1
K(t17 .. 7tki) — — H wl(tl) H 1{tl<tl+1}7
=1 =1

0, otherwise
(1.186)
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where tq,...,t, € [t,T] for k > 2 and K(t1) = ¢1(t1) for t; € [¢t,T], 14 denotes
the indicator of the set A,

k
Ojk...jl - / K(tl, ce ,tk) H gbjl (tl)dtl ce dtk (1.187)
k =1

is the Fourier coefficient.
Using (1.186), we obtain

T ta
Clydr = /%(tka(tk)---/¢j1(t1)¢1(t1)dt1---dtk

Further, we denote

ph.,l.,lpnkl_mz Z - 11_ Z it

J1=0 jx=0 J1sesJk=0
If py = ... = pp = p, then we also write
Y Y, Y C
Pare Tkt ]k Ji
J1=0 Jk=0 J1se-:J=0

From the other hand, for iterated limits we write

. def
lim ... lim E g j g E :
moo” oo o1 ]k J1

= Jke=0 = Jr=0
. . def
lim lim E E E E
P1—00 P2,...,Pk—>00 jk jl jk '71
J1=0 Jx=0 J1=0 j2,...,7x=0

and so on.
Let us consider the following lemma.

Lemma 1.9. The following equalities are fulfilled

Z Jk]l Z ijh_

J1se-Je=0 Jj1=0 Jx=0

—Z Z i = Z Z 7 i (1.188)

Jx=0 J1=0
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for any permutation (qi1,...,q;) such that {q,...,q} = {1,... k}.

Proof. Let us consider the value
Z Z 2 (1.189)
]ql—o

for any permutation (¢, ...,qx), where l = 1,2, ... k. {q,...,q} ={1,..., k}.

Obviously, the expression (1.189) defines the non-decreasing sequence with
respect to p. Moreover,

> Z ST DI Z o S

Jql_o Jql =0 qu =0

jla"'»]k:O

Then the following limit

;;11102 Z it = Z %

]ql—o .]ql7 qu
exists.
Let py, ..., pr simultaneously tend to infinity. Then g,r — oo, where g =
min{p;, ...,pr} and r = max{p;, ..., pr}. Moreover,
Z Z DI Z EDIN Z HY
JQl_O Jql—o

This means that the existence of the limit

,}LI?OZ Z 2 (1.190)

implies the existence of the limit

lim Z Z 2 (1.191)

pla"'apkﬁoo

and equality of the limits (1.190) and (1.191).
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Taking into account the above reasoning, we have

p,lqiinoo Z Z Z I pllglo Z Z Jhej1

qul+1 =0

Ply- P00
J

= lim Z 2 (1.192)
a=

Since the limit

> oo,

J1,---57k=0
exists (see the Parseval equality (1.185)), then from Proposition 1.1 we have

00 q p
Z Z ]k Ju _qh_gloph_)r?o Z Z Z Jhedi

jq1:0 jq2,...,jqk—0 jq1:0 jq2:0

:q,ginoo Z Z Z Jheedt Z ]k Jre (1.193)

OJQQ_O J 7"'7.7k =0

Using (1.192) and Proposition 1.1, we get

qa P p
DS Chrogy = Jim Tim 37> 7. Z et =
qu_ojq?,a"'ajqk_o J‘I2_O]‘I3_O
:q}}inoox § § 2= Z 2o (1.194)
0]q3_0 ]qga ’]qk

Combining (1.194) and (1.193), we obtain
0 0
YY) G- Y a
Ja1=0 Jgo=0Jgg,--:Jq;,=0 J1seesJ=0

Repeating the above steps, we complete the proof of Lemma 1.9.
Further, let us show that for s =1,...,k
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DD DEES BD HEN e WF (1195

Js=p+1js—1=0 71=0 7541=0 Jx=0

Using the arguments which we used in the proof of Lemma 1.9, we have

hmﬁZ DIDID IS S

n—oo
Js—1=0js=0 js4+1=0 Jx=0
p 00 p 00
_ 2
=2 >, CGa=2D Z Ges (1196)
jszo jl7~-~7js—1;js+17---7jk:0 js:oj(]lzo ij 1=

for any permutation (qi,...,qx—1) such that {¢1,...,q-1} =1{1,...,s = 1,5+
1,...,k}, where p is a fixed natural number.

Obviously, we obtain

>y Z Z Z z 2=

Js=0 jg; =0 ]qk 1= ]qk 1=

- Z Z Z 2 (1.197)

qu 1_0 ]S

Using (1.196), (1.197) and Lemma 1.9, we get

oo oo oo 0 oo o0 (0.¢] (0.] (0.] 0

2
PIRND DD DD DRND B IED DD DD DI DD Bre M
j1:O js_1:O js:p+1 js+1:0 ]k:() j1:0 j5_1:O j5:0 j3+1:O jk:()

L[
M
.Mﬁ
Mg
Mg

EE SIS S SIS z

Js=p+1js_1=0 J1=0 Js4+1=0 Jk=0

So, the equality (1.195) is proved.
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Using the Parseval equality and Lemma 1.9, we obtain

/Kz(tl,...,tk)dtl...dtk—z Z 2 =
¢T]k

Jj1=0 Jx=0
Z ]k J1 Z Z Jredi
Jk=0 Jj1=0 7=0
- Z Z J-wd1 Z Z Jredi
J1=0 Jk=0 j1=0 jr=0
p o0 00
SIS R S S ZMZ ZM—
J1=0 j2=0 Jr=0 Ji=p+1 jo=0 Jk=0 Jj1=0 Jk=0
p p p o0 o0 o0
) 3) D SIS ol Sl S gt
J1=0 j2=0 j3=0 Jr=0 J1=0 jo=p+1 j3=0 J&r=0
00 00 o0 p p
D DD DD DA DT DI C A
Jj1=p+1 jo=0 Jx=0 Jj1=0 Jx=0
00 00 00 P 00 00 00
DI IS BATED DI DI BT Pre e
J1=p+1 jo=0 Jx=0 J1=0 jo=p+1 j2=0 Jr=0

p p

+22i§i§ﬁﬁu+imi§:ﬁh

J1=0 j2=0 jz3=p+1 j4=0 Jj1=0 Jr—1=0 jr=p+1

o0 o0 0

IS HED OB DD DI DI e

Mg

+1 72=0 Jk=0 J1=0 jo=p+1 jo=0 Jr=0
o0
15550 S DN DI IS SRS SIb Sie I
J1=0 j2=0 j3=p+1 j4=0 Jr=0 Jj1=0 Jk—1=0 jr=p+1

(0. 9]

:zk: Zi i i Z 2l (1.198)

s=1 \ ji1=0 Js—1=0 js=p+1 js11=0 Jx=0
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Note that we use the following

Jj1=0 Js—1=0 js=p+1 js41=0 Jr=0
mq Ms—1 o0 o0
<> D Z > -
Jj1=0 Js—1=0 js=p+1 j511=0 Jk
ms—1
= mgl_llm—)oo Z Z Z Jkedi

.71 =0 ]s 1= O]s_p+1]s+l 0 ]k =0

C?

Jk-- ]1S

'M8

=0 75 0

Ms—2 o0 o0

—Z D SID SID DI S

J1=0 Js—2=075s-1=0 js=p+1 js41=0 Jjk=0
< ... <

o0 0 o0 0
S I DI SIS yle I
J1=0 Js—1=0 js=p+1 js41=0 Jx=0

to derive (1.198), where my,...,ms_1 > p.

Denote

Cjoi( /¢Js s (ts /%1 t)r(t)dty ... dig

where s =1,...,k— 1.

Let us remind the Dini Theorem, which we will use further.

Theorem (Dini). Let the functional sequence u,(x) be non-decreasing at
each point of the interval [a,b]. In addition, all the functions u,(x) of this

sequence and the limit function u(x) are continuous on the interval [a,b]. Then
the convergence u,(x) to u(x) is uniform on the interval [a,b].

For s < k due to the Parseval equality and Dini Theorem as well as (1.195)
we obtain
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Z Z Z /w Jk 1- ]1(tk:))2dtk:

)
[
I
i
_|_
—_
)
[
L
o
<
[
I
[en)
.
w
+
=
o
.
?T‘
,_.
|
o
~

:.zoo: iiii /w EOO: ]kljltk)dtkz

[ Catran )

where constants C, K depend on T'—t and constant C}, depends on k and T"—t.

Let us explane more precisely how we obtain (1.199). For any function
g(s) € Lo([t, T]) we have the following Parseval equality
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Z /d)j(s)g(s)ds :Z /1{s<7}¢j(3)9(5)ds —
:/(1{s<7})292(8)ds:/QQ(S)ds. (1.200)

The equality (1.200) has been applied repeatedly when we obtaining (1.199).

Using the replacement of integration order in Riemann integrals, we have

Cj,.n( /ijs s (ts /¢J1 t)Y1(ty)dty ... dt,

:/%(tl)%(tl)/¢j2(t2)¢2(752)--- / B, (L) Ws(to)dty . dtsdt; <

def =
For [ =1,...,s we will use the following notation

éjs]l (7_7 0) -
= / @5, (L) (t) / G (tir1) i1 (i) - - / 0. (L)W (ts)dt . . . dtydty.
6 t ts—1
Using the Parseval equality and Dini Theorem, from (1.199) we obtain

J1=0 Js—1=0 js=p+1 js11=0 Jx=0



DF KUZHGTJSOV St 11111 g Apptoxim tion of It ated Ir nd St atonovich Stochastic Integmls Based on Genemlized Mu]tip]e Fouriet Seriesl 59

:Ckf: i i//wl ) (G (r, tl)) dtidr = (1.201)

50 50 T 7 0
— Ck: Z Z .. Z / / ¢1 (tl) Z (éjs---jQ (7', tl))2 dtldT = (1202)
Js=p+1js—1=0 J3=07% % j2=0

] %(tl)/wg(h) (éjs...js(ﬂ t2))2dt2dt1d7 <

/@D%(h)/d}%(tg) (éjsmjg(T, tQ))ththldT <
t t

B

o0 (0.9] o0 T
gc,;.z > Z//¢§ t) CJS (T, tQ)) dtydr <
- t

T

2
t/t/¢§ 1(ts-1) (T,ts_l)) dt,_ydr <
Z / / / ¢;,(0)15(0)d0 | - dudr, (1.203)

Js=p+17%

where constants C’,;, C,;/, Cy. depend on k and T — t.

Let us explane more precisely how we obtain (1.203). For any function
g(s) € Ly([t, T]) we have the following Parseval equality

Pi(s)g(s)ds | = lipcsen@i(s)g(s)ds | =
; 0/ g ; /{6 105(s)g

:/(1{9<S<T})292(8)d8Z/QQ(S)dS. (1.204)
¢ 9

The equality (1.204) has been applied repeatedly when we obtaining (1.203).
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Let us explane more precisely the passing from (1.201) to (1.202) (the same
steps have been used when we derive (1.203)).

We have ,
T 2 00 ) 2
//%(tl)z (st...jz(T,tl)) dt dr—
t ot J2=0

N Z//@/’%(tl) <éjs...j2(ﬂ t1)>2dt1d7 =

J2=Ot f
//wl tl Z C . j2 Ttl)) dtldT—
Jo=n+1
~ 2
:]\}%OZ/¢1 t1 ol st...jg(Tjatl)) dt1 ATj, (1.205)

where {7;};_ is a partition of the interval [t, T] satisfying the condition (1.9).

Since the non-decreasing functional sequence w,(7;,¢1) and its limit function
u(Tj,t1) are continuous on the interval [t, 7;] C [t,T] with respect to ¢;, where

un(7j, 1) = i <éjs...j2(Tj»t1))2a

J2=0
> 2
u(ty,th) = Z (st g Tyatl /% t) (.. jg(Tjab)) dt,
J2=0

then by Dini Theorem we have the uniform convergence of w,(7;,%1) to u(7;,t1)
at the interval [¢,7;] C [t,T] with respect to t;. As a result, we obtain

e - 2
> (Cralmt) <e el (1.206)
Jo=n+1
for n > N(g) € N (IN(e) exists for any € > 0 and it does not depend on 7).
From (1.205) and (1.206) we obtain

N—-1 7j 00

i > [t 3 (Gnlm) dnan <

7=0 + Jo=n+1
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N—oo <

N-1 T T
<e¢e lim Z/wf(tl)dtlmj :5//¢f(t1)dt1d7. (1.207)
J=0 t t t

From (1.207) we get

T T
0 N 2
7}1_{1010//1#%@1) Z (st...jg(Tatl)) dtidt = 0.
t t

Je=n+1

This fact completes the proof of passing from (1.201) to (1.202).

Let us estimate the integral

[ s0)0.(0)0 (1.205)

from (1.203) for the cases when {¢;(s)}52, is a complete orthonormal system
of Legendre polynomials or trigonometric functions in the space Lo([t, T]).

Note that the estimates for the integral
[oow@s. jzper (1.200)
t

where 1(0) is a continuously differentiable function on the interval [t, T'], have
been obtained in [6]-[17], [22], [33] (also see Sect. 2.2.5).

Let us estimate the integral (1.208) using the approach from [22], [33].

First, consider the case of Legendre polynomials. Then ¢;(s) is defined as

follows
27+ 1 T+t 2 .
) — . — >
¢4(0) T—tpj((e 2 )T—t)’ 720,

where Pj(z) (j =0,1,2...) is the Legendre polynomial.

Further, we have

/ 6;(0)0(0)d0 =
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T—1
T 22 +1 <(Pj+1(z($)) = Pi1(2(2)))9 () = (Pja(2(v)) = Pia(2(v)))(v) =
[ - Pj1<y>>w'<u<y>>dy>, (1210
z(v

where z,v € (t,T), j > p+ 1, u(y) and z(z) are defined by the following
relations

T—t T+t T+t 2

Y’ is a derivative of the function () with respect to the variable u(y).

Note that in (1.210) we used the following well known property of the
Legendre polynomials

dPj1 dPj_q
dx (z) dx

(x) = (2j + DPy(x), j=12,...
From (1.210) and the well known estimate for the Legendre polynomials
[115] (also see [121])

K
VIT L= )7

where constant K does not depend on y and j, it follows that

|Pj(y)| < Yy e (_17 1)7 j € N)

r C 1 1
/(ﬁj(@)w(e)de < 7<(1 @) + 1= (2(0) B +01>, (1.211)

where j € N, z(z),2(v) € (—=1,1), z,v € (t,T) and constants C,C; do not
depend on j.

From (1.211) we obtain

2

/fbj(@)@b(e)de < @< ! + ! +03>, (1.212)

P\ = @) (1= (2(v))?

where j € N, constants Cs, C'3 do not depend on j.
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Let us apply (1.212) for the estimate of the right-hand side of (1.203). We
have

2
[J{ fostomiomn) s
i 1 =z
1
SJ_Q / 1/2+/ 1/2d£E—|—K2 <
*\0 52
K
<= (1.213)
Js

where j, € N, constants K1, Ko, K3 are independent of j.

Now consider the trigonometric case. The complete orthonormal system of
trigonometric functions in the space Lo([t,T]) has the following form

,

L, J=70

0;(0) = Q V2sin 27r(0 —t)/(T —1t)), j=2r—1, (1.214)

\\/ﬁcos 2nmr(@ —t)/(T —1t)), j=2r

where r =1, 2,.

Using the system of functions (1.214), we have

/¢2r 1 \/j/smﬁr (9)d9:

—/coswtt)wl(@)c%), (1.215)
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T _ _ _
=\ 5 t% (¢(w)sin—27r;(x_t b _ lb(v)sin—QW;(U_t H_

X

2mr(0 — ¢

- / sinuwl(ﬁ)cw), (1.216)
T—1

where /() is a derivative of the function () with respect to the variable 6.

Combining (1.215) and (1.216), we obtain for the trigonometric case

2

/cbj(@)w(@)d@ < % (1.217)

where j € N, constant () is independent of j.
From (1.217) we finally have

T 7 T 2
Ky
/ / / 6300000 | tudr < = (1.218)
t t U 3

where j, € N, constant K, is independent of 7j,.
Combining (1.203), (1.213), and (1.218), we obtain

SN [dr L
<Ly, 5SLf == (1.219)
Js=p+17° 8 b

where constant L; depends on k and T — ¢.

Obviously, the case s = k can be considered absolutely analogously to the
case s < k. Then from (1.198) and (1.219) we obtain

/K2(t1,...,tk)dt1...dtk—z Z 2 <=, (1.220)
[t, 1]

Jj1=0 Jx=0

where constant G;, depends on k and T" — ¢.
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For the further consideration we will use the estimate (1.74). Using (1.220)
and the estimate (1.74) for the case p; = ... = pyr = p and n = 2, we obtain

< Cyy /K2(t1,...,tk)dt1...dtk—z Z 2l <
Jj1=0

H
< 2k (1.221)
p

where
Chr = (KN (n(2n — 1))"*=Y(2n — 1)

and Hg,k = G%CQ,]C.

Let a and &, in Lemma 1.8 be chosen as follows

a=4, &= ‘JW]M — J[pWh

From (1.221) we obtain

00 4 00
Z M { <J[¢ — %7.?;.,19) } < HMZ]% <oo. (1.222)

p=1
Using Lemma 1.8 and the estimate (1.222), we have
T — JWWr, if p— oo

w. p. 1, where (see Theorem 1.1)

P P k
IR U S (H (o
Jj1=0 Jk=0 =1
—Lime Y g (m)Awy @Am)Awa';;)) (1.223)
(11 ..... lk)GGk
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or (see Theorem 1.2)

[k/2]

7= 3 3 e (T4 +

= Jr=0

T k—2r
X Z H 1{i92571: lgy, 7&0}1{3'925 = Joy,} H C] , ) ’

(91,92} {927 —1,927 3} {a1 - vap—ar}) =1
{91:92:-:920—1,927+41 >4 oy }={1,2,....,k}

(1.224)
where iy,...,ix = 1,...,m in (1.223) and (1.224). Theorem 1.10 is proved.

Remark 1.6. From Theorem 1.4 and Lemma 1.9 we obtain

2
. T T . (k)1P1se-5Pk
lim lim .. .pqlklgflOO M {(J[?b e — J[Y I ) } <

pql — 00 pq2—>oo

. 2(
S]{;!.pgrgo... hm /K t1, ... tr)dty .. dtk—z Z et

Jj1=0 Jxr=0

/ Kz(tl, o tr)dty L dt — Z Z Jh-d1
[t T]"

for the following cases:

1L.ig,...;0.=1,....m and 0<T —1t < o0,

2. 01, ., ig=0,1,....m, it+...4+4i2 >0, and 0<T —t < 1.
At that, (q1,...,qx) is any permutation such that {q,...,q} = {1,...,k},
J[W "]y, is the stochastic integral (1.5), J[w(’“)]%""p’“ is the expression on
the right-hand side of (1.10) before passing to the limit 1lim. | lim means

P1y-sPE—00
lim sup; another notations are the same as in Theorem 1.1.

Remark 1.7. Taking into account Theorem 1.4 and the estimate (1.220),
we obtain the following inequality

(= )} < BRI

where i1,...,1; = 1,...,m and constant Py depends only on k.
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The estimate (1.225) can be written in a slightly different form. Let us
consider this question in more detail.

By analogy with (1.128) we have

plgglo Z Cltit Chgviimy, = 05 (1.226)

JseJk=0
where (mq,...,my) is any permutation of the set {1,...,k} such that
(mg,...,m1) # (k,...,1); braces mean an unordered set, and parentheses mean

an ordered set.
Further, using (1.226) and the estimate (1.220), we obtain

: : k Jl ]mk ‘]ml : : k jl Jmk ‘]ml : : k‘ .71 ]mk ]ml

]17 7]k 0 .]17 a]k 0 j17 7]k 0
o0 p
< ( Z o Z ) ’C]k Ji ]mk Jmy | =
jl""7jk:0 jla"'ajkzo
1 2
ST VRS o ICTRT R R (D ol Ve
]17 a.jk =0 .717 7.]/€ =0 Jla ajk) =0 ]1) 7.7k =0
= | Kt tp)dty ... dty — Z < Gn (1.227)
— 17. cey k; 1- k jk jl ~ p ) .
.717 7]]@ =0

where constant G depends on k and T —t.
Combining (1.76), (1.80), (1.220), and (1.227), we get

2) _ P(T —1t)"
M (10, - ) < B
where iy, ... ir = 1,...,m and constant Py depends only on k.

It is easy to see that from the proof of Theorem 1.4 and (1.220) we obtain
the estimate

(109, = o) < &, (1228

where i1, ...,1, = 0,1,...,m and constant Qi depends only on k and T — t.
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Remark 1.8. The estimates (1.74) and (1.220) imply the following inequal-

ity
By ) "
{(J[w s = Tl ?) } <
P)" (T —t)™*
< (KN (n(2n — 1))"*D(2p — D! (Pe)” (T = 1) , (1.229)
p’I’L
where i1,...,1 =1,...,m, n € N, and constant P, depends only on k.

1.7.3 Rate of Convergence with Probability 1 of Expansions of It-
erated It6 Stochastic Integrals of Multiplicity £ (k € N)

Consider the question on the rate of convergence w. p. 1 in Theorem 1.10. Using
the inequality (1.229), we obtain

n 1/2n

E

where n € N and
Qui = k! (n(2n — 1))*= D72 (2n — )YV /P (T — t)¥/2.

According to the Lyapunov inequality, we have

( {(JW N —J [w(k)%;g"p>n}>l/n<Q”’k (1.231)

for all n € N. Following [105] (Lemma 2.1), we get

p1/2—€

- pl/2—<

U
) = o (1.232)
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w. p. 1, where

n. = sup (;01/2_E Jw(k)]T,t — J[@/)(k)]%,'t'"p

peN

and € > 0 is fixed.
For ¢ > 1/e, ¢ € N we obtain (see (1.231)) [105]

M {Jn.|"} = M { (Sup <p1/2—5

peN

- M {sup <p(1/2—6)q

peN

- (1/2—5)(1(@(],]6)(] _ q - i
<>l gy <o (1233

From (1.232) we obtain that for all € > 0 there exists a random variable 7.
such that the inequality (1.232) is fulfilled w. p. 1 for all p € N. Moreover, from
the Lyapunov inequality and (1.233), we obtain M {|n.|?} < oo for all ¢ > 1.

1.8 Modification of Theorem 1.1 for the Case of Integra-
tion Interval [t, s] (s € (¢,T]) of Iterated It6 Stochastic
Integrals

1.8.1 Formulation and Proof of Theorem 1.1 Modification

Suppose that every ¢;(7) (I =1,...,k) is a continuous nonrandom function on
t, T]. Define the following function on the hypercube [t, T]*
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Rty tes) =Ly eg K(t, .. 1), (1.234)

where the function K(ti,...,t;) is defined by (1.6), s € (¢,7] (s is fixed), and
1, is the indicator of the set A. So, we have

K(tla ey Tk 3) - 1{t1<...<tk<s}¢1(t1) cee ¢k(tk;) -

Vi(ty) . k(ty), ti<...<tp<s
B : (1.235)

0, otherwise

where k > 1, t1,...,tx € [t,T], and s € (¢, T].

Suppose that {¢;(z)}72, is a complete orthonormal system of functions in
the space Lo([t,T)).

The function K(t1,...,t,s) defined by (1.235) is piecewise continuous in
the hypercube [t, T]*. At this situation it is well known that the generalized mul-
tiple Fourier series of K (t1,...,tx,s) € Lo([t, T|*) is converging to this function
in the hypercube [t, T]* in the mean-square sense, i.e.

p1 Dk k
lim Kt trs) = Y o> Chgls) [ on(t) — 0,
77777 / J1=0 Jx=0 =1 Lo([t,T]%)
(1.236)
where
) k
CJk]l (S) - / K(tla s 7tk7 S) H ijl(tl)dtl .. dtk =
[t.T]* =1
s to
= /@bk(tk)gbjk (tk;) c e /@bl(tl)d)jl (tl)dtl Ce dtk (1237)
t t
is the Fourier coefficient, and
1/2
HfHLQ([t’T]k) — / f2(t1, ce. ,tk)dtl ce dtk
[t T

Note that
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s to
T = [ welte) ... [ wr(t)dw! .. dwi® = (1.238)
o]

T

ta
= / 1jseo) Or(tr) - - - / Di(t)dwi L dwi wop. L,
t

t

where s € (t,T] (s is fixed), i1,...,i,=0,1,...,m
Consider the partition {7;}}_; of [¢,T] such that

t=mn<...<tw=T, Ay= max A7; =0 if N =00, ATj=Tj11—7;
0<j<N-1
(1.239)

Theorem 1.11 [15]-[17], [29]. Suppose that every y(t) (I = 1,...,k) is
a continuous nonrandom function on [t,T] and {¢;(x)}32, is a complete or-
thonormal system of continuous functions in the space Lo([t,T]). Then

k
CRERTTND S0 SCRIEI | 15
=1

..... — z0

N—oo
(llv"'alk)eGk

—Lim. > gy (m)Awl) gbjk(m)Ang:)) : (1.240)

where J[®),; is defined by (1.238), s € (¢, T)] (s is fived),
Gk:Hk\Lk, Hk: {(ll,...,lk)l ll,...,lkIO, 1,...,N—1},

Lk:{(ll,...,lk): Ly . lyp=0,1,...,N=1; [, # 1, (9 #r); g,rzl,...,k},

Lim. 4s a limit in the mean-square sense, i1,...,1, =0,1,...,m,

T
= /@'(T)dw()

are independent standard Gaussian random wvariables for various i or j (in
the case when i # 0), Cj, ; (s) is the Fourier coefficient (1.237), AW%) =
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W%)H — W%) (1=0,1,...,m), {Tj};\;o is a partition of [t,T|, which satisfies the
condition (1.239).

Proof. Let us consider the multiple stochastic integrals (1.16), (1.23). We
will write J[®]\") and J'[@]'") (s € (¢,T], s is fixed) if the function ®(t, ..., 1)
in (1.16) and (1.23) is replaced by 1y, 4 sy ®(t1, ..., k).

By analogy with (1.24), we have

J'[®] g / /1{tk<8} Z ( (t1, ... ,tk)dwgl) . dwgi’“)> w. p. 1,

(t1yentn)

(1.241)

where
(t1,eetk)

means the sum with respect to all possible permutations (1, . . ., tx). At the same
time permutations (¢1,...,%;) when summing are performed in (1.241) only in
the expression, which is enclosed in parentheses. Moreover, the nonrandom
function ®(tq,...,t) is assumed to be continuous in the corresponding closed
domains of integration. The case when the nonrandom function ®(tq,. .., %) is

continuous in the open domains of integration and bounded at their boundaries
is also possible.

Let us write (1.241) as

Jl[q) st = / / Z (1{tk<s}q) t1,... ,tk.)dwgl) . dwgzk)> w. p. 1,

(t15e5tk)
(1.242)
where permutations (ti,...,t;) when summing are performed in (1.242) only

in the expression ®(ty, ... ,tk)dwgl) . .dwgzk).

It is not difficult to notice that (1.241), (1.242) can be rewritten in the form
(see (1.25))

Z/ / (1, ) L cydwi™ AWl wop. 1, (1.243)

(t1yesti)

where permutations (t1,. .., ;) when summing are performed only in the val-

ues 1{tk<5}dwgl) e dwgzk). At the same time the indices near upper limits of



DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stramnovich Stochastic Integmls Based on G neralized M Itiple Fo S 173

integration in the iterated stochastic integrals are changed correspondently and
if t, swapped with ¢, in the permutation (1, ...,%x), then i, swapped with ¢, in
the permutation (i1, ..., ).

According to Lemma 1.1, we have

N-1 lo—1

JW( = lim. Z Z L¢r, <sy01(my) - (T, ) Aw ) AWTf:) =

N—o0

N-1
= 1im. Z Z 1{7'1 <s}K Tlys - - ,le)AW%ﬁ AWS_E? =

N—o0

N-1
=Lim. > L, <o K (s m ) AWSY L Awl) =
sttrs bk
T t
— / . / > (1{tk<S}K(t1, o t)dwi dwgik)> w. p. 1, (1.244)
t t (tl,...,tk)
where K (t1,...,1t;) is defined by (1.6) and permutations (t1, ..., ;) when sum-
ming are performed only in the expression K (¢, ... ,tk)dwgl) . dngj).

According to Lemmas 1.1, 1.3 and (1.24), (1.25), (1.242)—(1.244), we get
the following representation

J[w(k)]&t -

- Z ZCM J1 / / Z ¢, (t1) - (/bjk(tk)dwt“ . dw§ ))

Jj1=0 Jr=0 (t1yeesti)

D1y--Pk __
+RT,t,3 _

= Z . Z Cj.jr (8)X

71=0  jx=0
N-1
. 7 ) P1y--Pk __
x Lim. E ¢ (11,) - - ¢jk(le)AW%i) AW 4 R =
N—oo [ '
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b1 Pk
=3 Cis) Lim. Z (1) -+ Dy () AWED L AwlE —

Jj1=0 Jr=0 I, ,lx=0

—Llime Y oy (m) AW gy (n)Awl) |+
N—o0 ! g
(ll,...,lk)EGk:

P1s--Pk
+RT,t,s _

— Z . Z Cjjr (5) X

Jj1=0 Jk=0

N—o0
(lla alk)EGk

k
=1

+RE T weop.

where
Ry =
A tz 41 Pk k
- [/ (1{tk<s}f<<t1, IOED DN Ile ﬁ<s>H¢ﬁ<tl>> x
(tl,...,tk) t t ]120 ]k—() l—l
degfl). dwgz’“) =
T to
> /.../K(tl,...,tk)1{tk<s}dw§j1>...dw,ﬁjj)— (1.245)
(t1,eti) t
[ L - () (i)
-y // DY i) [ ¢ tydws . dwy (1.246)
(tla---,tk)t t ,]1:0 jk—o =1
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w. p. 1, where permutations (t1,...,%;) when summing in (1.245) are per-
formed only in the values 1{tk<8}dw§fl) e th(,ik)- At the same time permu-
tations (t1,...,¢;) when summing in (1.246) are performed only in the values
dwgl) .. .dwgzk). Moreover, the indices near upper limits of integration in the
iterated stochastic integrals in (1.245), (1.246) are changed correspondently and
if t, swapped with ¢, in the permutation (1, ...,%x), then i, swapped with ¢, in

the permutation (i1, ..., ).

Let us estimate the remainder R} ™ of the series. According to Lemma

1.2, we have
P1;---3Pk 2
M {(Rﬂ;’s’ ) } <

T t2 D1 Dk k 2
S Ck Z / . / (K(tl, ce th’)l{tk<5} — Z ce Z Cjk“,jl(s) :ll;ll: ¢jl(tl)> X

Jj1=0 Jr=0

xdty .. . dtg, (1.247)

where constant C} depends only on the multiplicity k of the iterated Ito stochas-
tic integral J[(®)], ; and permutations (¢y, ..., #;) when summing in (1.247) are
performed only in the values 1y, -,y and dt; . .. dtg. At the same time the indices
near upper limits of integration in the iterated integrals in (1.247) are changed
correspondently.

Since K (t1,...,t;) = 0 if the condition t; < ... < tj is not fulfilled, then
P1s--5Pk 2
M {(}:')JT,;S,S7 ) } S

T t2 D1 Pk k 2
<Cr Y // (K(tl,...,tk)1{tk<s}—Z...chk_,,jl(s)ﬂqbﬁ(tl)) X

J1=0 Jk=0
Xdty . ..dtg, (1.248)

where permutations (ti,...,t;) when summing in (1.248) are performed only
in the values dt;...dt,. At the same time the indices near upper limits of
integration in the iterated integrals in (1.248) are changed correspondently.
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Then from (1.38), (1.236), and (1.248) we obtain

Tt k 2
< Ck Z / . / (K(tl, ce 1{tk<5} Z Z C]k J1 ) H ¢jl (tl)> X
=1

= Jr=0

thl...dtk =

D1 Pk k 2
= ()} / (K(tl, ey b, S) — Z - Z Cjk---jl(s) H¢jz(tl)> dty...dtp — 0
=1

[t,T]F Jj1=0 Jx=0

if p1,...,pr — 00, where constant (', depends only on the multiplicity & of the
iterated Ito stochastic integral J[¢)*)], ;. Theorem 1.11 is proved.

Remark 1.9. Obviously from Theorem 1.11 for the case s =T we obtain
Theorem 1.1.

Remark 1.10. [t is not difficult to see that Theorem 1.11 is valid for the
case when {¢;(w)}32, is a complete orthonormal system of functions in the space
Ly([t, 1)), each function ¢i(x) of which for finite j satisfies the condition ()
(see Sect. 1.1.7 for details).

From Theorem 1.11 for the case of pairwise different numbers i1,..., 7, =
1,...,m we obtain

P1 Dk
ToWla = Lim 3.3 GGG (1:29)
71=0  jx=0

Note that the expression on the right-hand side of (1.249) coincides for the
case k = 1, ¢1(t;) = 1 with the right-hand side of the formula (6.2) (approxi-
mation of the increment of the Wiener process based on its series expansion).

Remark 1.11. Note that by analogy with the proof of estimate (1.220) we
obtain the following inequality

_G
/K2 toee b 8)dt - dtk—z Z 2l < G 950)

Jj1=0 J&=0
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where K(t1,...,t,s) and Cj,_; (s) are defined by the equalities (1.234) and
(1.237), respectively; constant Gy (s) depends on k and s —t (s € (t,T], s is

fized).
The following obvious modification of Theorem 1.4 takes place.

Theorem 1.12. Suppose that every (7)) (I = 1,...,k) is a continuous
nonrandom function on [t,T] and {¢;(x)}32, is a complete orthonormal system
of functions in the space Lo([t,T]), each function ¢j(x) of which for finite j
satisfies the condition (%) (see Sect. 1.1.7). Then

< Ci(s) K2(t1,...,tk,s)dt1...dtk—Z Z 2 ()], (1.251)
J1=0

Jr=0

where i1,...,i = 0,1,...,m, constant Ci(s) depends only on k and s — t.
Moreover, Ci(s ) < k! for the following cases:

1.1, =1,....m and 0<T —1t < o0,
2. 00, ., ik =0,1,...om, 34+...4+i2>0, and 0<T —t <1,

where J[p®)),; is the stochastic integral (1.238), J[p®]PPE s the ewpres-
sion on the right-hand side of (1.240) before passing to the limit  lim. |

P1,--,PE—200

K(ty,... tg,s) and C;,_j (s) are defined by the equalities (1.234) and (1.237),
respectively; s € (t,T) (s is fized); another notations are the same as in Theorem
1.11.

Remark 1.12. Combining the estimates (1.250) and (1.251), we obtain

(1690, - o) | < DL (1.252)
p
where iy,...,i = 0,1,...,m, constant Qr(s) depends only on k and s — t;

another notations are the same as in (1.250) and (1.251).

Remark 1.13. An analogue of the estimate (1.74) for the iterated Ito
stochastic integral (1.238) has the following form
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< (KN (n(2n — 1))"*Y(2n — DI x

n

X /K th, ... by, s)dty . dtk—z Z 2l . (1.253)
T

1=0 Jr=0

passing to the lzmit

K(t1,...,tr,s) and Cj, j (s) are defined by the equalities (1.234) and (1.237),
respectively; s € (t,T] (s is fized); i1,...,i, =1,...,m.

Remark 1.14. The estimates (1.250) and (1.253) imply the following in-
equality

where i1,...,1, =1,...,m, n € N, and constant P, depends only on k.

1.8.2 Expansions of Iterated 1t6 Stochastic Integrals with Multiplic-
ities 1 to 5 and Miltiplicity £ Based on Theorem 1.11

Consider particular cases of Theorem 1.11 for k =1,...,5

T M)er = Lim, Zcﬁ )G, (1.254)

J[¢(2) St B p}ll?zr—rgoo Z Z 03231 ( 1 DJ2 . o 1{11 12#0}1{]1 ]2}> (1255)

0]2 0
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P11 P2 P3
TPe = pl}’éi;prgn—.)oo Z Z Z Clajoj (8 ( Ji Cj(;z)cj':?))_

J1=0 j2=0 j3=0

(i3) (i i2)
—Li=ir0y L=} Gy — 1{i2:¢3¢0}1{j2:j3}Cj11) — 1{@1:¢3¢o}1{j1:j3}C§22 ), (1.256)

4
J[¢(4)]St = li lpigoo Z Z Cj4 Ji ) (H Cj(‘lil)_

.....

~Lirminr) 1= GG = Lirmipoy 11 GG -
~Lirmi) 1= G = Liamipoy 1 ami GG —
Vit L ismi G G = Liminroy Liismin G G+

T L =in0y L =jo) Lis=iat0} Ls=ja) T Lgir=in0y L=} Lin=is£0} L (jo=ja) =

+1{m4¢0}1{j1j4}1{i2i3¢0}1{j2j3}> : (1.257)

)
CLRENITD 900 SLAEI 1 61

71=0 75=0 =1

Lty =it GG G = Limiroy Liimin GG G~

=1 =i 201145, J4}CJ ng C(o - ) J5}Cj CJs C](f)_

~Limiyr L G G = Lmiio im0 G —

—Lgi,—is 20014, JS}le CJs C](4 V- Liip=isz01 1, J4}CJ CJ2 C(j5)

~Lgsymipor Lmin G G C(4 Y Lm0 L GG G+
1 im0} L (=) L) 1= G+ Lirminroy L s Limioio) 1 gsmin) G+
+Limi01 Lo L iamioio) L= G+ Linmisior Limin) inminio L gamint G+
14520 L 1=y Lm0y Lmint G+ Linmisio L g,mi) Liamisror Limin G+
+Lgimi0r L= L imiso) Liamin) G+ Linmiior Limin Linmivio L mint G+

(i2) i
+1 (=i 20y L =0y Lis=is 20} Lgs=js} G5, T 1{1‘1:@-,7&0}1{j1:j5}1{12:i3¢0}1{j2:j3}@<~44)+
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+1{i1=¢5¢0}1{j1=j5}1{i2=z‘47é0}1{j2=j4}5§§3) + 1{¢1=z’5¢0}1{j1=j5}1{13=z'4#0}1{j3=j4}<}(§2)+
(i1) (i1)
F 1 imis 20} L (o=} Liumis 20} L Ga=s3Gj0 T Liomiurt0} L=} Lin=is 20y L=} G5,

(1)
+1{i2=i5¢0} 1{j2=j5} 1{i3:i4750} 1{j3:j4}Cj1 ) ’

where 14 is the indicator of the set A, Cj, ; (s) (k = 1,...,5) has the form
(1.237), s € (t,T] (s is fixed).

Consider a generalization of the above formulas

[k/2]

k
JW)ee = Lim, Z ZCM i ><H<5f Z
i =1

1=0 Jr=0

k—2r
% Z H {igy, = igy 70} gy = o} H CJ“” )

({{91:92} {920 1,927} {a1 - vag—ar}) =1
{91:92+-:92r—1:92r41 »-- A — 2 1 =11,2,-- .,k }

where £ € N, C}, _j, (s) has the form (1.237); another notations are the same
as in Theorem 1.2.

1.9 Expansion of Multiple Wiener Stochastic Integral
Based on Generalized Multiple Fourier Series

Let us consider the multiple stochastic integral (1.23)

N-1 k
. _ ' (i) def  prr x4 (k)
Lim. | Z (7, om) [ JAWY = J@], (1.258)
J1s--:J=0 =1
Jq#ir; q#r; qr=1,...k
where for simplicity we assume that ®(t1,...,t;) : [t,T]* — R!is a continuous

nonrandom function on [¢, T]*. Moreover, {TJ}N is a partition of [t, T, which

satisfies the condition (1.9).

The stochastic integral with respect to the scalar standard Wiener process
(7, = ... = ix # 0) and similar to (1.258) was considered in [106] and is
called the multiple Wiener stochastic integral [106]. Note that ®(tq,...,t;) €
Ly([t, T]%) in [106] (this case will be considered in Sect. 1.11, 1.12).

0
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Consider the following theorem on expansion of the multiple Wiener
stochastic integral (1.258) based on generalized multiple Fourier series.

Theorem 1.13.% Suppose that ®(ty, ... ;) : [t,T]F — R! is a continuous
nonrandom function on [t, T|* and {¢;(x)}32, is a complete orthonormal system
of functions in the space Lo([t,T]), each function ¢j(x) of which for finite j
satisfies the condition (x) (see Sect. 1.1.7). Then the following expansions

Jj1=0 J&=0

—Lim. Y gy (m)Awl) ¢jk(m)Aw§j:>> : (1.259)

N—00
(lla"'alk’)EGk

[k/2]

= i > DG (H EPR

Jj1=0 J&=0

k—2r
X > H figy, = iy, 2001 0ig, = Gy} H Cf‘”)

({{a1,92}:{92r— 192r}} {a1,ap_o,}) s=1
{91,92:-92r—1,92r,915- a2, }={1,2,....k}

(1.260)
converging in the mean-square sense are valid, where
Gr=H\Lp, Hp={(....0): L,....[r=0, 1,...,N =1},
L, = {(ll,...,lk): Ly .. lk=0,1,... N=1; [, # 1, (g #r); g,rzl,...,k},

Lim. is a limit in the mean-square sense, i1,...,1, =0,1,...,m

T
(= [ oxts)awt?
t

are independent standard Gaussian random variables for various i or j (in the
case when i # 0),

Cjk_,_ﬁ:/ (ty,...,t Hgbjl t)dty . . (1.261)

[¢, 1)

8Theorem 1.13 will be generalized to the case of an arbitrary complete orthonormal system of functions
{0;(x)}32, in the space Ly([t,T]) and ®(ty,...,tx) € La([t, T]*) (see Sect. 1.11, Theorem 1.17).
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is the Fourier coefficient, Awg) = w%ll — Wg) (t=0, 1,...,m), {TJ}N o 5 a
partition of [t,T], which satisfies the condition (1.9); [z] is an 'mteger part of a
real number x; another notations are the same as in Theorem 1.2.

Proof. Using Lemma 1.3 and (1.24), (1.25), we get the following represen-

tation
D)) =

:i...iqk / /Z 6, (1) .. ¢ (tr)dw! ™) . dw§)

=0 =0 (t1yeesth)

+Rp17"'7pk —
N-1
= Z chk i Lim. > 6, (1) - Gy (m)AWED L AwLE ¢
= Jr=0 N—o0 14,0l p=0

+Rp17-~'7pk —
b1 Dk
=> > Ci | Lim Z 6 (1) - Gy (m) Al | Awli)—
71=0 Jk=0 l1,e5l=0

— Lim. E ¢,71 (Tll)Aw ¢ch(le)AW( k) +
N—oo
(l17 alk)EGk)

_i_RPh “Pr

p1 Pk
= E E Cjk“_jlx

Jj1=0 Jk=0

k
[T —1im > éum)Awi . o) (n)Aw) | +
=1

N—oo
(ll,...,lk)GGk
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—I—Rpl’ PEw.op. 1,

where
T t
= X [ [ (w00m0- 3 30 o) »
(tl,...,tk) t t ]1 =0 ]k =0
xdwlgfl) : dw§ ),

where permutations (t1, ..., t;) when summing are performed only in the values
alwlgi1> e dwgz’“). At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if £, swapped
with ¢, in the permutation (¢i,...,%;), then ¢, swapped with ¢, in the permu-
tation (i1,...,1k).

Let us estimate the remainder R}, of the series using Lemma 1.2 and

(1.38). We have
2
M {(R%;“"”’“) } <

<c Z/ /( (..t Z S JIHWZ)QX

(t1,-tk) 71=0

thl...dtk =

2
:ck/ (qm, -3 .3, ﬁH% tl) <

Jj1=0 J&=0

Xdty...dtp — 0

if p1,...,pr — oo, where constant C) depends only on the multiplicity k£ of the
multiple Wiener stochastic integral J' [@]gf i The expansion (1.259) is proved.
Using (1.259) and Remark 1.2, we get the expansion (1.260) (see Theorem 1.2).
Theorem 1.13 is proved.

Note that particular cases of the expansion (1.260) are determined by the
equalities (1.45)—(1.51), in which the Fourier coefficient Cj, ;, (k = 1,...,7)
has the form (1.261).
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1.10 Reformulation of Theorems 1.1, 1.2, and 1.13 Using
Hermite Polynomials

n [107] it was noted that Theorem 3.1 ([106], p. 162) can be applied to the
case of multiple Wiener stochastic integral with respect to components of the
multidimensional Wiener process. As a result, Theorems 1.1, 1.2, and 1.13
can be reformulated using Hermite polynomials. Consider this approach using
our notations. Note that we derive the formula (1.266) (see below) in two
different ways. One of them is not based on Theorem 3.1 [106] (see the proof
of Theorem 1.22 below for details).

We will say that the condition (x*) is fulfilled for the multi-indez (i1 . .. 1)

(11, oty = 0,1,....m) if mq,...,my are multiplicities of the elements
Uy ey Uy respectwely, i.€.
ml mao My
. N~ —
{i1,... i} = {21,.. 01502,y ip ) (Mg = ... =my = 0),
where v = 1,...,k, braces mean an unordered set, and parentheses mean an

ordered set. At that, mi + ...+ myp = k, mq,...,mp = 0,1,....k, and all
elements with nonzero multiplicities are pairwise different.

In this section, we consider the case 71,...,7, = 0,1,...,m. Note that in
[107] the case i1,...,i = 1,...,m was considered.

Let the condition (*%) is fulfilled for the multi-index (i; ...4;). Then

/ Zl Zk !
J [¢jl ° ¢]k¢] J [?jgl e ¢jgmlji¢jgml+1 e ¢jgm1+m2/ e
~~

~"~
mq mo
my mo my,
(21...21 ZQ...ZQ"'Zk...Zk)
s b (1.262)
gm1+7712+...+mk_1+1 Imqi+mo+...+mg
~ ~"~ . Tat
my

w. p. 1, where J'[¢), ... 0|1} U ig defined by (1.23) (also see (1.258)),
D(ty,...,th) = @j,(t1) . .. gb]k(tk) {#;(7)}32 is a complete orthonormal system
of functions in the space Ly([t,T]), each functlon ¢;(x) of which for finite j sat-
isfies the condition (x) (see Sect. 1.1.7), {dg, -+ Jgm syt imy, J = Lo -+ -5 Jh )

From (1.262) we have

mq ma
21 ..il ) (ig...iz )

s 0 = 0 [63 03, )T [ G,

Tt Tt
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g
! [@-g b }(7\’“) (1.263)
oty Do |
w. p. 1, where
, (72\;) def
J [¢j9m+mQ+...+ml_1+1---¢jgm1+m2+...+mlh,t M for my =0, (1.264)

The detailed proof of the equality (1.263) will be given in Sect. 1.14 (see
the proof of Theorem 1.22).

Let us consider the following multiple Wiener stochastic integral

m.l

=

J/ ¢ d) (Zl...ll ) ( > 0)
J9m1+m2+..,+ml_1+1 e ]977z1+m2+...+ml Tt m ’

where we suppose that

{jgm1+m2+...+ml_1+17 t 7]gm1+m2+...+ml} -

- {jhu; s ?jhl,l/7g'h2,l7 <o 7jh2£7 s ’ghdla” s 7jhdli}7 (1265)

~~ v~ ~~
ni, USN ng, 1

where nig+tng +...+nNg g =my; Nig,Nag, ..., NGl = 1L,....om; di=1,...,my
[ =1,..., k. Note that the numbers my, ..., myg, g1, ..., gr depend on (iy, ..., i)
and the numbers nyg,...,ng,1, h11,...,hq, d; depend on {ji,...,jx}. More-
over, {Jgs---sJgt = {J1s-- -, Jr}

Using Theorem 3.1 [106], we get w. p. 1

my

J’/ (il...il ) o
|:¢jgm1+m2+...+m,l_1+1 e ¢j9m1+m2+.4.+ml} Tt -
( . .
H,,, (g()l) My, (gj;ﬁ) L if i £0
=9 (mi>0),  (1.266)

(0) \" (0) "4 i g —
\ () (@)™ i =0

where H,(z) is the Hermite polynomial of degree n

[n/2] )

o " , _1)mpn—2m

Hn(x) - (_1)716;,; /2d_ (6_JC /2) =n! E ( ) *
xn

m=0

ml(n — 2m)12m (n € N), (1.267)
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and (" (i=0,1,...,m, j=0,1,...) is defined by (1.11).

For example,
Hy(z) =1, Hi(z)==x, Hy(z)=2"-1,
Hy(z) = 2® — 3z, Hy(x) = 2* — 62 + 3,

Hs(z) = 2° — 102° + 15z.

From (1.264) and (1.266) we obtain w. p. 1

my
(Gigiy)

7| _

¢]9m1+m2+..‘+ml71+1 e ¢jgm1+m2+m+ml:| Tt
)

(1 (S A (< IR
ML\ Iy ) T TR\ Sdhg, ) !
= 1{mz=0} + 1{mz>0} < , (1.268)

(Gn) " (ei,) it a0
\ ) )

where 14 denotes the indicator of the set A.
Using (1.263) and (1.268), we get w. p. 1

T (65, - byl ™ =

2

H,,, (Cj,ﬁifl) L, (g},ﬁfbl) i i #0
- H Lim=0y + Lim>o0p 9 ,

1=1 0) " 0) \"u! e
\ (Cfm) ...(gjhdﬂ) i =0
(1.269)

where notations are the same as in (1.265) and (1.266).

The equality (1.269) allows us to reformulate Theorems 1.1, 1.2, and 1.13
using the Hermite polynomials.”

9Theorems 1.14, 1.15 (see below) will be generalized to the case of an arbitrary complete orthonormal system
of functions {¢;(x)}32, in the space La([t, T]) and ¢1(7), ..., ¥(7) € Lao([t, T]), ®(t1,. .., tr) € La([t,T]%) in
Sect. 1.11 (see Theorems 1.16, 1.17).
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Theorem 1.14 [29] (reformulation of Theorems 1.1 and 1.2). Suppose that
the condition (xx) is fulfilled for the multi-index (iy...ix) and the condition
(1.265) is also fulfilled. Furthermore, let every (1) (I =1,...,k) is a contin-
uous nonrandom function on [t,T] and {¢;(x)}3< is a complete orthonormal
system of functions in the space Lo([t,T]), each function ¢;(x) of which for finite
J satisfies the condition (x) (see Sect. 1.1.7). Then the following expansion

J[@D(k)]%ltnlk = llpll;n_m Z ZC]k S X

..... 0

(

. Hoy (600} o Hag (G0 ) i 0
< TT | 2omeoy + Limeos |

O ni Nyl . ]
=1 \ (Cﬂ(l?l)l> (Cj(.gjl) : if 4=0
(1.270)
converging in the mean-square sense is valid, where we denote the stochastic
integral (1.5) as J[p* )](Zl Z’“), N1y 4+ nog+ oo Ngg =M NN, e Nl =
L...omy dp=1,....omy; 1 =1,....k; mi+ ...+ mp = k; the num-
bers my, ..., Mg, g1, ..., g depend on (iy,. .., i) and the numbers nyy, ..., N1,

hl gy - hdl Iy dl depend on {]17 R 7]k}7 moreover, {jgp <. 7jgk} = {jla s 7]k}7
H,(x ) is the Hermite polynomial (1.267); another notations are the same as in
Theorem 1.1.

Theorem 1.15 [29] (reformulation of Theorem 1.13). Suppose that the con-
dition (xx) is fulfilled for the multi-indez (i1 . ..1i) and the condition (1.265) is
also fulfilled. Furthermore, let ®(t1,... 1) : [t,T]F — Rl is a continuous non-
random function on [t,T* and {¢;(x)}32y is a complete orthonormal system
of functions in the space Lo([t,T]), each function ¢;(x) of which for finite j
satisfies the condition (x) (see Sect. 1.1.7). Then the following expansion

HWW=JﬁmZ DI

J1=0 Jr=0

p

(1) (ir) e
. Hoy (G00) o Hag (G ), i i 0
X H Lim=0y + Lm>01 § | -
1=1 0) \" 0) "% e
\ <th1,l> ce (thdhl) ) if 1 = 0
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converging in the mean-square sense 1S valzd, where we denote the multiple
Wiener stochastic integral (1.258) as J'[® ]jflt Z’“); nig+ nog 4 ..o+ ngg = my;

NN, Ngy=1,...,my; dp=1,....my;; I=1,...k; mi+...+my =Fk;
the numbers my,...,myg, g1,...,9r depend on (i1,...,ix) and the numbers
N1y, Pigy -, ha, di depend on {ji, ..., Jr}; moreover, {jg, ..., Jg} =

{j1, - Jr}; Hp(x) is the Hermite polynomial (1.267); another notations are the
same as in Theorem 1.13.

From (1.268) we have w. p. 1
( .
[ E(G7). i a0
: 7’?)
S Bj - B3]t = S (k>0). (1.271)
k ( (0))k e
le 9 lf 11 = O
\

Let us show how the relation (1.271) can be obtained from Theorem 1.2. To
prove (1.271) using Theorem 1.2 we choose i; = =i and j; = = jr (i1 =
0,1,...,m) in the following formula (this formula follows from a comparison of
(1.43) and (1.54) or can be obtained using the recurrence relation (1.391))

[k/2]

Jl[¢j1' ¢]k Zl . HC] Z

k—2r

- (i)
X Z H {i92571: i92s7é0}1{j92371: jg?s} H qull (1272)
=1

({192} {92r—1.927} - {a1 5005 _2r})  S=1
{91:925+-920—1,92r:41 - :qf — 27 }={1,2,....k}

w. p. 1, where notations are the same as in Theorem 1.2.

The case i = 0 of (1.271) is obvious. Simple combinatorial reasoning shows

that
k—2r

Z H 1{2925 7&0} {3925 jgzs} H Cj(,;ql) -
=1

({192}, {92r—1.927} 1 -{a1 005 _2r})  S=1
{91,925+-92r—1:92r:91>--:qf 27 }={1,2,....k}

C:-Ciy ... C} N\ k—2r
. —(7“—1)2 (Zl)
— . () (1.273)
where iy = ... =14y, 1=...=7Jr (i1=1,...,m), and
k!
¢l =

Nk — 1)
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is the binomial coefficient.
We have
Ci-Ciar - Cfinp k!

= ' . 1.274
r! ri(k — 2r)l2r (1.274)

Combining (1.272), (1.273), and (1.274), we get w. p. 1

A .

Tion o5 = () + 0 Y o Ea e () -

k r=

B2 ko .
> o () = ().

The relation (1.271) is proved using (1.272).

From (1.269) and (1.272) we obtain the following equalities for multiple
Wiener stochastic integral

[k/2]

Jl[¢j1‘ ¢Jk Zl " HCJ Z

k—2r

-
(iq)
X Z H 1{i925—1: Z'9257é0}]'{j~‘12s—1: Jggs 1 H ququ -
=1

(Ha1.92}s{92r—1.92r}}{a1s 002} 5=1
{91:9292r—1,92rq1 »-+ Q27 }={1,2,...,k}

2

H,, (c}ji%l)...Hndl,l (c]“)l) it i 0

(0) )" (0) )" e
(thu) . (thdhl) , if 2, =20
(1.275)

k
= H L=y + Lim>01 S
=1

w. p. 1, where notations are the same as in Theorem 1.2 and (1.265), (1.266).

Let us make a remark about how it is possible to obtain the formula (1.266)
without using Theorem 3.1 [106].
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Consider the set of polynomials H,(x,y), n = 0,1,... defined by [108]

d" 2
Hn(a:, y) _ ( T y/2)

e (Ho(z,y) 2 1). (1.276)

a=0

It is well known that polynomials H,(z,y) are connected with the Hermite
polynomials (1.267) by the formula [108]

n/2 zn?zz

H,(z,y) = y"*H, ( ) = n'z Tn 20 '22 (1.277)

For example,

Hi(z,y) =
Hy(z,y) = 2* —y,
Hy(z,y) = «° — 3y,
Hy(z,y) = 2* — 62%y + 312,
Hs(z,y) = 2° — 102y + 152>

From (1.267) and (1.277) we get
H,(xz,1) = Hy(x). (1.278)

Obviously, without loss of generality, we can write
(j1...jk) = (Z'l...jl Jo- - Ja - Z'r...jr), (1.279)
my ma my.

where mi +...+m, =k, my,....m. =1,... )k, r=1,....k, k> 0, and
Ji,---,Jr are pairwise different.
Analyzing the proof of Theorem 1.1 and using (1.338), (1.361) (see the

proof of Theorem 1.22 below), we can notice that w. p. 1 (we suppose that the
condition (1.279) is fulfilled)

Jl[¢j1' QSJk] ) =

N-1
=Lim Y g (m). - gn(m) AW Awl) =

ll 77777 lkZO
lg#lg: a#g; a,9=1,...k
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N-1
= 1im > o, (1) ..
N—00
U1, slmq =0

lg#lg; a#9; q¢,9=1,....,mq

N-1

x1.i.m. Z

N—o00
lm1+17"'7lm1+m2:0
lg#lg; a#g; q,.9=m1+1,...,m1+mg

N-1

x1.i.m. Z

N—oo
Uyt 15l =0

lg#lg; a#9; q¢.9=k—mr+1,.. .k

N-1
= Lim. bj, (Tll)Ang)
N—ro00 !

d)]l (Tl1 )AW

-2

(lla"'ylml)eGllﬂnl

x1.1.m.
N—o0

N-1
> il zml+1)AW§f1

lnLl +1 =0

_ Z ¢j2 (

!/
(lml-‘rl ,...,lm1+m,2)GGm1+17m1+m2

x1.i.m.
N—o00

N-1
Z gbjr (le—mr+1)A

lkfmrJrl:O

-

/
(lk—mr—i-l 7"'7lk)€Gk7mr+1,k

-9, (T lml)AW(“

¢j2 (Tlmﬁ-l) T ¢j2 (Tlm1+m2)AW i1)

gbjr (le—mr—i-l ) °

+1)AW

le m7-+1

¢j7' (le—mr-i-l ) AW

CAwl)

Tlml

 Awl) X

ml —+1 Tlml +m2

5, (1, ) Awi)

le me+1

N—-1
D> 9 (7, JAWSY —
Ly =0

¢J1( ) W(“) X

Tlml

E (i) _
¢]2 ml +mg ) WTlm1+m2

m1+m2 =0

(i1)
¢]2( m1+m2 )AWTl;lerQ X

Z qb]r le AW Zl)
l=0

Tk—my+1

(1) o (;SjT(le)AW%) ,
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where the set GJ, , is defined according to the same rule as the set Gy in (1.10).
However, the elements of the set G;n,n are the numbers ,,,, ..., [, (n > m), while
the elements of the set Gj are the numbers [y, ..., ;.

We have (see the proof of Theorem 1.1) w. p. 1 (i1 # 0)

. Zl
l.im. g gb]l Tll AW E ¢]1 ml Tlml_

N—o0
Ly =0

- Z gbjl (Tll )AW Zl gb,]l ( 7”1 ) W’E’jyln)l =

(lla *y 7711)6G/1 ,my

my [m1/2)]
= Lim. <Z b, (1, AW(“>> + Z

N—o0
I

N-1 "
x 3 (Z 2 (7)) (Awgfll>)2> x
1,=0

(Hg1:92}:-- {927 1,927 314 a1 amq —2r 1)
{91:92:-92r—1:927:91+:4mq — 20 }={1,2,...,m1 }

N—1 | mp—2r
X (Z a2 <nl>Aw$:;>) =
11=0

m1/2

N-1 i
= llm (Z ¢J1 (Tll)Angl)> + Z fr' ml — 2T '2T %
11=0

N—o0

my—2r

N—-1 2 " /N—-1 _
x (Z ¢ (m,) (Awin) ) (Z qul(nlmwg;p) -
1,=0 1,=0
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N-1 N-1
=1im. Hp, | Y 6 (n)Aw, >~ 62 (7)) (Aw%;)) ,

N—

;=0 11=0

where notations are the same as in Theorems 1.1, 1.2.

Similarly we get w. p. 1

Lim. Z ¢j, (1 +1)AW : Z ¢32 T oy ) A W(h) _

N—)OO m, —+1 m1+m2
ml-&-l* m1+m2
_ E ‘ (1) ‘ (1) _
/ ¢]2 (Tlm1+1)AWTlm1+1 s ¢]2 (Tlm1+m,2)AWTlm1+m2 —
(lml—i-l7~'~7lml+m2)€Gm1+l,m1+m2
N-1 N-1 9
Zl 2 (21)
= Lim. H,, E bj,(11,) AW E ¢5,(11,) (Ale1 ) :
N=eo 1,=0 11=0
N-1 N—
: , i1) . (i1) _
Lim. ¢jr(le7mT+1)Ale . g ¢;, (11,) Aw
N—=00o k—mp+1 k
lk—mr—i-lzo lk:O

_ ¢jr (lefmTJrl)AWTZl mpdl ' ¢jr (le)AW%) -

(lkfmf,wl»l >"’7lk?)€G;c—mr+l,k

N-1 N-1
. . 2
=Lim. Hy, (3 6 (m)Aw, 3762 () (Awld)
N—oo llzz;) J h llz:% Jr b

Then
TR

N-1

) 2
= 1im. Hml Z ¢]1 Tll AW “) Z ¢§1 (Tll) (AW%;)) X

;1=0 11=0



194DF KUZHGTJSOV St 11111 g Apptoxim tion of It ated Ir nd St atonovich Stochastic Integmls Based on Genemlized Multip]e Fourier Series

N-1 -l o
xlim. H,, (Z b4, (T Aw%ll), Zgbi(nl) <AW%1>> ) X ...

N—oo I 1—0

N-1 . N-1 . 9
X lim. Hy, (Z gbjr(Tll)Awgll)’ Z gb?r(ﬁl) (Awgll)> ) (1.280)
11=0

N—o00 11=0

w. p. 1 for 41 # 0 and

m N-1 my
J/[¢j1---¢jk]§r0, v = lm (Zﬁbﬁ T Am) ( %;(TZT)ATZ,«) =

T m T my
/¢j1(s)ds /%(s)ds :(gj@f))ml...(g](f’)mr (1.281)

for i1 = 0, where we suppose that the condition (1.279) is fulfilled; also we use
in (1.280) and (1.281) the same notations as in the proof of Theorem 1.1.

Applying (1.277), (1.278), Lemma 1.3, and Remark 1.2 to the right-hand
side of (1.280), we finally obtain w. p. 1

T T
J/[d)jl : Qsjk]%ltll) - Hm1 /¢J1(S)dwgl)7/¢]21(8)ds X
t t
T T T
Ho | [ ontorint®), [ s | oot | [ 000w, [ 62 (515 | -
t t

— H,, (gj 2 1) H,, (gj(j), 1)  H,, (g@l), 1) _

= Hy, (G0) Ho, (<27 - o, (G

for i; # 0, where we suppose that the condition (1.279) is fulfilled. Thus, an
equality similar to (1.266) is proved without using Theorem 3.1 [106].
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Consider particular cases of the equality (1.275) for £ = 1,...,4 and
i1, ...,04 =1,...,m (see (1.45)—(1.48)). We have w. p. 1

Toslg) =G = (¢7):

J’ 2122 _ Ain) f(i2) T ol oy =
[¢Jl ¢J2 Cj1 ng {in=i2} Hir1=j2} —
17 (Y g () T

2 le 0 Cjz ;W1 =12, J1 = ]2

— ; (1.282)
H, (C(»“)) H, (g<’2>) , otherwise

J J2

J16n6n0ule™ = GGG = LG = Limin G = Liimin G =

Hy (¢07) o (27) o (¢2)) i == Js
H () Ho () 1 (). it = o # s
= S () Ha () o (¢2), i jo=jsA a5 (1283)
Hy (¢0) 1 () 1 (¢). it =y # jo
\H1 (C§f1)> H, (C§§1)> H, (C§:1)> , I i F e 2 F s N F s

T656505)55 = (I =y () () B (<))
where 11, 19, i3 are pairwise different;
[¢]1¢32¢33] (i19143) C;II)Cj(il)C;gg) . 1{j1:j2}<7(_;3) _

= (0~ 14} € = on0n 0 Tl
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Hy () Ho (¢07) 1 (€)= o

Hy () () i (G7) ) it i A g
where le = ig 7é ig;
[¢]1¢]2¢J3] i) - C;fl)gj(f)gjf) — 1{j2:j3}gj('fl) =
- J('jl) (CJ(;Q)@(:; - L, 33}> [ijl]zzlt J/[¢]2¢]3] 2 =

Hy (¢0) B () Ho () i o= s

(G0 i (¢8) i (G2) it i A g

where il 7§ ig = ig;
[¢]1¢32¢J3] ) = Cj(fl)@(f)@(g X 1{31 33}Cj
- <J<';2) (CJ(?)CJ('?) o 1{j1j3}> [(b.?z]zz?t J/[¢31¢Js] ) =

H () B () Ho (¢8) i a =i

Hy () () o ()i £ s
where il = ig 7é ig;
J165,65,05,05 )57 = ¢ (Wi —
_1{31 ]2}CJ CJ4 1{31 JS}CJ Cj4 _1{31 J4}CJ C]s
_]‘{j2 Jd}cj CJ4 - 1{]2—]4}Cj Cj3 1{,73 .74}6] C]2 +

+1{j1:j2}1{j3:j4} + 1{j1:j3}1{j2:j4} + 1{j1:j4}1{j2:j3} -
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where H,(z) is the Hermite polynomial (1.267) of degree n and (I)-(XV) are
the following conditions

(D). j1 = jo = J3 = Ja,
(I1). 1, Jo, J3, J4 are pairwise different,
(D). j1 = Jj2 # Js, Ja; Js # Ja,
(V). j1 = Js # J2. Ja; Jo # Jas
(V). Jv = Ja # J2. Jsi Jo # Jas
(VD). j2 = Js # J1, Ja; J1 # Ja,
(VID). ja = ju # Jr, Js; J1 # Js
(VIII). js = ja # J1, J2; J1 # Jo,
(IX). j1 = jo = j3 # Ju,
(
(
(
(
(
(

—

X). j2 = J3 = ja # J1,
XI). j1 = jo = ja # J3,
XI). j1 = J3 = ja # Jo,
XIM). j1 = j2 # j3 = Ja,
IV). j1 = j3 # ja = Ju,
V). j1 = Jja # J2 = Js.

S

Moreover, from (1.263) we have w. p. 1

Tl0505050305" " = (V) Hy () i (¢) 1 (¢1Y)

where 11, 19, i3, 74 are pairwise different;

[¢J1¢32¢J3¢j4] st J/[¢J1¢Jz] ) <<](3 )) Hl (C;z4)) ’ (1284)
where iy = iy # i3,14; 13 7 i4;

[¢J1¢32¢J3¢J4] i) J/[¢J1¢J3] i) (C;;z)) Hl (C](z4)) ) (1285)
where iy = i3 # i, 14; lo 7 i4;

T (65050503052 = Jon0slii Hy () H (), (1.280)
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where i1 = @4 # @9, 13; 12 7 i3
[¢J1¢Jz¢j3¢]4] (i1igiaia)

where iy = i3 7# 01,145 @1 7 4
[¢j1¢]2¢j3¢j4] (i1i2igis)

where iy = iy 7# 11,135 @1 7 3;
[¢31¢J2¢33¢]4] (i1izigis)

where i3 = @4 # i1,79; @1 7 l2;
[¢Jl¢32¢33¢]4] (i1i1iria)

where 17 = i9 = i3 # iy;
Z 'L 'L Z

[¢j1¢]2¢]3¢]4] L 2

where 1o = i3 = iy # i1;
, (i1i1igir)
J [¢j1¢]2¢]3¢]4]T}t o

where i1 = iy = 14 # i3;
, (i1iniyi)
J [¢j1¢j2¢j3¢j4]T,lt2 o

where i1 = i3 = iy # i9;
, (ivivigi
J [¢j1¢j2¢j3¢j4]T,lt Vi)

where il = ig 7é ig = i4;

= Jlononlti  (¢17) 1 (¢
= Jlononlii i (¢17) 1 (¢
= (6l H (¢ ) Hy (¢
= J105 050555 (1))
= Josbi0ilin ™ Hy (1Y)
= T105,0505)05 H (¢))

- Jl[¢j1¢j3¢j4]¥,ltilil)Hl (CJ(;Q)) )

J/[d)hgbh] 2111 J/[¢j3¢j4] 1313 )

).

).

).

(1.287)

(1.288)

(1.289)

(1.290)

(1.291)

(1.292)

(1.293)

(1.294)
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[¢]1¢]2¢]3¢]4] i) J/[¢31¢33] i J/[¢J2¢J4] 2iz) ) (1295)

where il = ig 7é ig = i4;

J,[¢j1¢j2¢j3¢j4]§f,lti2i2h Jl[¢j1¢]4] i) Jl[¢j2¢J3] iztz) , (1296)

where i1 = iy # iy = i3.
Note that the right-hand sides of (1.284)—(1.296) contain multiple Wiener

stochastic integrals of multiplicities 2 and 3. These integrals are considered in
detail in (1.282), (1.283).

It should be noted that the formulas (1.54) (Theorem 1.2) and (1.270)
(Theorem 1.14) are interesting from various points of view. The formulas
(1.45)—(1.50) (these formulas are particular cases of (1.54) for k = 1,...,6)
are convenient for numerical modeling of iterated It6 stochastic integrals of
multiplicities 1 to 6 (see Chapter 5). For example, in [53] and [54], approxima-
tions of iterated Ito stochastic integrals of multiplicities 1 to 6 in the Python
programming language were successfully implemented using (1.45)—(1.50) and
Legendre polynomials.

On the other hand, the equality (1.270) is interesting by a number of rea-
sons. Firstly, this equality connects [t0’s results on multiple Wiener stochastic
integral ([106], Theorem 3.1) with the theory of mean-square approximation of
iterated Ito stochastic integrals presented in this book. Secondly, the equal-
ity (1.270) is based on the Hermite polynomials, which have the orthogonality
property on R with a Gaussian weight. This feature opens up new possibilities
in the study of iterated Ito stochastic integrals. Note that the indicated orthog-
onality property is indirectly reflected by the formula (1.85) (see the proof of
Theorem 1.3).

1.11 Generalization of Theorems 1.1, 1.2, 1.14, and 1.15
to the Case of an Arbitrary Complete Orthonormal
System of Functions in the Space Ly([t,T]) and ¥ (1),

L n(T) € Lo([t, 1)), ®(ty,. .., 1) € Lo([t, T))

In this section, we will use the definition of the multiple Wiener stochastic
integral from [106], [109] to generalize Theorems 1.1, 1.2, 1.14, and 1.15 to
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the case of an arbitrary complete orthonormal system of functions in the space
LQ([t7 T]) and wl(T)v SR W(T) S LQ([ta T])v (I)(tla e 7tk:) S LQ([ta T]k)
Consider the following step function on the hypercube [t, T]*

N—-1
Oyt ote) = Y apg Ly (t) L n (), (1.297)

where a;, _;, € R and such that a;, ; = 0 if [, = [, for some p # ¢,

1 ifreA
1A(T) = y
0 otherwise

N e N, {Tj}j.vzo is a partition of [t, T|, which satisfies the condition (1.9):

t=mn<...<1tnv=1T, Ay = max ATj—>OifN—>OO, ATjZTj+1—Tj.
0<j<N-1
(1.298)

Let us define the multiple Wiener stochastic integral for ® (¢4, .. ., ;) [106],
[109]

N-1
le def il i
J/[(DN](T,t = Z all...zkﬁwﬁll) . AW%:), (1.299)
[l =0
where Awl)) = wijl, —wi), i =0,1,...,m w =7,

It is known (see [109], Lemma 9.6.4) that for any ®(¢y,...,t;) € La([t, T]")
there exists a sequence of step functions @y (¢, ..., t;) of the form (1.297) such
that

lim (D(t1, ... b)) — Oy (ty, ... 1) dty ... dt, =0.  (1.300)

N—o00
.77
We have
N-1
(I)N(th s 7tk‘) - Z al1~-~lk1[7-l177l1+1)(t1) cee 1[le,le+1)(th) -
Loy =0
N-1
- Z all---lkl[TllaTllJrl)(tl) s 1[leﬁzk+1)(tk)7 (1301)
(I1,5lg) 15l =0

l1<l2<"'<lk
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where permutations (i, ...,[l;) when summing are performed only in the ex-
pression [} < ly < ... <l (recall that a;, ;, =0 if [, = [, for some p # q).

Using (1.301), we get

Z/ /@N (tr, . t)dw L dwi) = (1.302)

(t15eesti)

2 : 2 : i i
ai, .. lkAW ) AWTl: =

(ll7 ,lk) I,y lp=0
1 <lg<..<l

= > a AW AW = SN wop 1, (1.303)

11 ..... lk:O

where permutations (¢y, . .., t;) when summing are performed only in the values
dwgl) . dwgik) and permutations (1, ..., ;) when summing are performed only
in the expression 1 < Iy < ... < l;. At the same time the indices near upper
limits of integration in the iterated stochastic integrals in (1.302) are changed
correspondently and if ¢, swapped with ¢, in the permutation (¢i,...,%;), then
i, swapped with ¢, in the permutation (i1, .. .,%;) (see (1.302)). In addition, the

multiple Wiener stochastic integral J'[®x]; U1-) §s defined by (1.299) and

T to

//q)N(th’tk)dwt(jl)dwgzk)

t t
is the iterated Ito stochastic integral.

Using (1.300), (1.303), Lemma 1.2 for ®(ty,...,tx) € Lao(Dy), and (1.38)
for Lebesgue integrals, we have

. . 2
M{(J/[q)zv] v = TRy k)) }

tly 7tk

IA

:Ck / ((I)N(tlv'-wtk)_@M(tl,-..,tk))zdtl...dtk:

[¢,T]*
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= C ||Py — (I)MH%g([t,T]"') =

2
) 2
< 2C (H(I)N — @7, oy + 12— (I)M|‘L2([t,T]k)> —+0

if N, M — oo, where constant (' depends only on the multiplicity k& of the
multiple Wiener stochastic integral.

Thus, there exists the limit
Lim. J'[@n]5y ™.

N—o0

We will define the multiple Wiener stochastic integral for ®(ty,...,t;) €
Lo([t, T)*) by the formula [106], [109]

N-1
J ]G t) g5 TG = 1, a1 Awl Aw(i’“),
[ ]T,t Nooo [ ] Tt Nesoo ll?m%o Il U un

(1.304)
where @y (t1,. .., ) is defined by (1.297), Aw%.) = W%.)H —W%), i=0,1,...,m,
wl = 7.

[t is easy to see that the above definition coincides with (1.23) if the function
®(ty, ..., 1) : [t,T]* — R is continuous in the hypercube [t, T]".

Let us prove the following equality

Tl = % /.../cb(tl,...,tk)dwgl)...dwﬁff) w. p. 1, (1.305)

where permutations (¢y, . . ., t;) when summing are performed only in the values
dwgl) e th(,ik)- At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if ¢, swapped
with ¢, in the permutation (¢1,...,%), then ¢, swapped with ¢, in the permuta—
tion (i1,...,%). In addition, the multlple Wiener stochastic integral J'[®]7), (i -4

is defined by (1.304) and

/ / (t1,...,t dwg )...dwgi’“)

is the iterated Ito stochastic integral.

The equality (1.305) has already been proved for the case ®(t1,...,t;) =
Dy (ty, ..., 1) (see (1.303)).
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From (1.303) we have

T to
Ty =3 /.../@N(tl, o t)dw L dw =
(tl ..... tk) t t
T to
_ (i1) (ix)
= > et t)dw, L dwy
(tl ..... tk) t t
T to
+ ) /.../(@N(tl, o ty) = Ot ) AW dw!™ w1
(tl ..... tk) t t
(1.306)
Passing to the limit L.i.m. in the equality (1.306), we obtain
N—00
T to
Jel =% / . ./CID(tl, L t)dw L dw

(tl ..... tk) t t

T to

N—oo ’
(t1seti) ¢ +
(1.307)

Using Lemma 1.2 for ®(¢y,...,t;) € Lo(Dy), (1.38) for Lebesgue integrals,
and (1.300), we get

T to 2
(t1,enrtr) /
T to
<Ok Z //((DN(tla 7tk)_q)(t17 ,tk))thldtk:
(tl ..... tk)t t

ey / @ty b)) — Dt t) oty dte — 0 (1.308)

if N — oo, where constant C';, depends only on the multiplicity &k of the multiple
Wiener stochastic integral. The relations (1.307) and (1.308) prove the equality
(1.305).
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Using (1.305) and the isometry property of the It6 stochastic integral, we
have

T s
Jp®)- ) = /m(tk) . ../wl(tl)dwgl) dwi ™ = TR wop. 1,

t t

(1.309)
where K = K (t1,...,t;) is defined by (1.6), i.e
Yi(t) . n(te), B <... <t
K(ty,...,t) = (u(7) € Lao([t,T71))
0, otherwise

(1.310)

where [ = 1, .. .,k, tl, ce ,tk < [t,T] (l{? Z 2) and K(tl) = ’gﬁl(tl) for tl € [t,T]
Applying (1.309) and the linearity property of the It6 stochastic integral,
we obtain

Ty = TR =

- Z e Z Cjk~-~j1‘]/[¢j1 : ¢Jk] i) + J/[Rp1~-~pk]§£,1tmik) Ww. P. 17 (1311)

J1=0 Jk=0
where
def
Rp1~-~pk (tlv S 7t1€) - tl? Z Z C]k J1 H Qsjz tl (1'312)
71=0 Jk=0
and
Cjooiy = / (t1,. .. H ¢ (t)dty .. (1.313)
[t.T]x
is the Fourier coefficient corresponding to K (t1,...,t).

Using the It6 formula, we have
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- Z /(/bq -'i%(h)i%(t;)--'/té(/bji(t/l)x

(1 ..... ]q ,,,,,,

xdwy! . dwdw(" . dw"” (1.314)

w.p. 1, whereg=0o0rg=1,n,g e N, iy,...,7,#0, 1,

means the sum with respect to all possible permutations (ji,...,Jjk). At the
same time if j,. swapped with j; in the permutation (71, ..., ji), then i, swapped
with 74 in the permutation (i1, ..., ).

The detailed proof of (1.314) will be given in Sect. 1.14 (see the proof of
Theorem 1.22). The equality (1.314) means that (see (1.305))

1o 0iJrs ™ Ty dxlify ) =

e LT R T [ (1.315)

w. p. 1, where g =0org =1 nq € {0} UN, 4,...,7, # 0, 1, and
T (&), b, )y € 1 for g = 0.

Using the equality (1.315), we obtain (1.263) for the case of an arbitrary
complete orthonormal system {¢;(x)}, of functions in La([t, T).

Suppose that the conditions (%%) (see Sect. 1.10) and (1.265) are fulfilled.
Applying Theorem 9.6.9 [109] (also see [106], Theorem 3.1) and (1.275) (also
see Theorem 1.23 below), we get

T (65, .. byl 0™ =

.

H,,, (gﬁfl)  Hy,, (9(22,1) TR A
- H 1{mz=0} + 1{ml>0} < y . -
-1 0 "™ 0) " P
\ (gj) o (gj) i =0
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[k/2]

T+ 30

k—2r

(iq;)
8 Z H ‘725 - ig2s7é0}1{j928_1: ngs} H qull (1-316)
=1

({Ha1-92}s--{92r—1:927 1} a1 v _2p})  5=1
{91:925+:920—1,927:91 -9 — 27 }={1,2,....k}

w. p. 1, where notations are the same as in Theorems 1.2 and 1.14; the multiple
Wiener stochastic integral J'[¢;, ... ¢;,]7; U1-0) §s defined by (1.304).

Again applying (1.305), we have

TRy 3™ = Z/ /( (tr,....t Z qu ]1H¢]ltl>

tlv 7tk jl =0 ]k =0
xdw( . dwi™, (1.317)
where permutations (¢y, . . ., t;) when summing are performed only in the values
dwgl) e dwgzk). At the same time the indices near upper limits of integra-

tion in the iterated stochastic integrals are changed correspondently and if ¢,
swapped with ¢, in the permutation (¢1,...,%x), then i, swapped with ¢, in the
permutation (iy,...,4). In addition, the multiple Wiener stochastic integral

TRy )i ™ is defined by (1.304).

According to Lemma 1.2 for ®(¢y,...,tx) € Lo(Dy), (1.7), and (1.38) for
Lebesgue integrals, we have

M {<J/[Rp1...pk]¥,1tmik)>2} <
T to
<Cr Y. /.../(Ktl, Z Z(ij jlnqb]ltz)dtl...dtk—
t t

Jj1=0 J&=0

:Ck/ (Ktl, Z chk JIH% tl> dty . ..dt;, — 0

1=0 Jr=0

(1.318)
if p1,...,pr — 00, where constant (', depends only on the multiplicity k& of the
iterated Ito stochastic integral J[y®* )]<“ ) Thus (see (1.311) and (1.318)),
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Ty ™ = Lim S Y G o (1319
o 1=0 Jk=0

and the following theorem is proved.

Theorem 1.16 [29] (generalization of Theorems 1.1, 1.2, and 1.14). Suppose
that the condition (xx) is fulfilled for the multi-index (i1 ...1x) (see Sect. 1.10)
and the condition (1.265) is also fulfilled. Furthermore, let ¥(1) € Lo([t,T])
(l=1,....k) and {¢;(x)}32, is an arbitrary complete orthonormal system of
functions in the space Lo([t,T]). Then the following expansions

JWE® = lim, Z chk i X

P1s--sPE—00

= ]k =0
(H C(il) H C(il) if 4 #£0
M\ Sy, )t T Ry jhdl,l ’ :
X H Lim=0y + Lim>01 S l 0 7
=1 (0) \"™ (0) " if 4=
\ (thLl) o (thdpl) , if 4,=0
(1.320)
. /4;/2
T J1=0  jx=0

r k—2r
(i
X Z H 1{2.92371: igzs#o}l{jgzs = oy, H CJ ; )

(Hg1:92}A92r—1,927 3} 4a1 ap—2,. P 5=1
{91,92+-92r—1,92r-91--:qf — 27 }={1,2,....k}

(1.321)
converging in the mean-square sense are valid, where [x] is an integer part of a
real number x; ny;+nog+.. .+ ng g =mg; nig,nog, ., Ng g =1,..0,my; dp =
Lo..omp I=1,...,k mi+...+mp =k; the numbers my,...,mg, gi,-..., Gk
depend on (iy,...,i;) and the numbers niy,...,ng, h1g,..., hay, di depend

on {Jji1,...,Jk}; moreover, {jg,...,Jgt = {J1.---.Jx}; Hp(x) is the Hermite
polynomial (1.267); another notations as in Theorems 1.1, 1.2, and 1.14.

Replacing the function K(ty,...,t;) by ®(t1,...,t;) we get the following
theorem.

Theorem 1.17 [29] (generalization of Theorems 1.13, 1.15). Suppose that
the condition (x*) is fulfilled for the multi-index (i1 ...1y) (see Sect. 1.10) and
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the condition (1.265) is also fulfilled. Furthermore, let ®(ty,. .., 1) € Lo([t, T])
and {¢;(x) 520 s an arbitrary complete orthonormal system of functions in the
space Lo([t,T)). Then the following expansions

(' ) D1 k
J' L™ = 1im. E g C: X
[ ]T,t Pl PE—r00 4 ' Jk--J1
J1=0 Jik=0

p

H,,, (Cjﬁzifl) o Hy, (c},ﬁi}l) i i A0
X H 1{ml=0} + 1{mz>0} < ’

- (Cj(f?1)1> . o (Cj(f?j l) " ’ it =0
\ ; o
(1.322)
o [k/2]
ol = i 33 (TG0 e
1=0  jx=0

r k—2r
(i
X Z H 1{2.92371: ngS#O}]-{jgzs 3925} H CJ N )

(Hg1:92} 4927 —1,92r 3} 4a1 5 ap—2. P 5=1
{91,92++-92r—1,92r91--:qf — 27 }={1,2,....k}

(1.323)
converging in the mean-square sense are valid, where [x] is an integer part of
a real number x; ny;+nog + ...+ ngg =My Ny, Neg, Ny = 1, my;
d=1....m; [ =1,....k; mi +...+mp = k; the numbers mq,..., my,
91, .-, g depend on (iy,...,i) and the numbers niy, ..., ng1, hig, ..., ha.,
d; depend on {ji,...,ji}; moreover, {jg,... g} = {J1,---,Jr}; the multiple
Wiener stochastic integral J'[®] Ui--1%) is defined by (1.304); H,,(x) is the Hermite
polynomial (1.267); another notatzons as 1 Theorems 1.13, 1.15.

It should be noted that an analogue of Theorem 1.17 (more precisely, the
expansion like (1.322) for the case iy, ..., i, # 0) was considered in [107]. Also
note that the proof in [107] is different from the proof given in this section.
In [107], the author interprets the multiple Wiener stochastic integral from
a finite-dimensional kernel as a linear operator and proves that this operator
is bounded. In our proof of Theorems 1.16, 1.17 we several times use the
representation (1.305) of the multiple Wiener stochastic integral as the sum
(with respect to permutations) of iterated It6 stochastic integrals and then
estimate the remainder of the series (see (1.318) for details).
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Note that the results of work [107], as well as the results of Chapter 1 of
this book, are based on our idea [1] (2006) on the expansion of the kernel (1.6)
(or ®(ty,...,t) € Lo([t, T)%)) into a generalized multiple Fourier series (see [1],
Chapter 5, Theorem 5.1, pp. 235-245 or Sect. 1.1.3 of this book for details).

1.12 Generalization of Theorems 1.3, 1.4 to the Case
of an Arbitrary Complete Orthonormal System of
Functions in the Space Ly([t,T]) and 1 (7), ..., ¥i(7)
€ Ly([t, T1)

In this section, we will use the multiple Wiener stochastic integral with respect
to the components of a multidimensional Wiener process to generalize Theorems
1.3, 1.4 to the case of an arbitrary complete orthonormal system of functions

in the space Lo([t,T]) and 91(7), ..., (1) € Lo([t, T)).

Theorem 1.18. Suppose that 11(7), ..., vx(T) € La([t, T]) and {¢;(x)}52,
is an arbitrary complete orthonormal system of functions in the space Lo([t,T]).
Then

M{(J[@b(’“)]T,t—J[ } /K2 ty,. .. tr)dty .. dt—

=Y ) CaM Z / b (1) . / o5, (t)dE™ L df) L
71=0 w=0 L (i,
(1.324)
where
T W1, —/ (tx) - /¢1 t1)dfy, ) dft(:k)a
p p ( ) )
T, => Y Ch b il ™ (1.325)
Jj1=0 J&=0

S b5, - bjlry U-8) i the multiple Wiener stochastic integral defined by (1.304),
the Fourier coeﬂiczent Cj,..;, has the form (1.313), K(t1,...,t;) is defined by
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T
V= [ osts)a?
4

are independent standard Gaussian random variables for various i or j (i =

L,...,m), Z

(j1>“'7jk)

(1.310),

means the sum with respect to all possible permutations (ji, ..., Jx). At the same
time if j, swapped with j, in the permutation (ji,...,Jx), then i, swapped with
iq in the permutation (iy,...,1i) (see (1.324)).

Proof. First, note that the formula (1.325) appears due to the equality
(1.311). Using the equality (1.305), we get

T(6g i)™ = / ;. (1) - / o5, (0)dE™ e w.op. 1,

(t1yestk)

(1.326)
where permutations (¢y, . .., t;) when summing are performed only in the values
dft(fl) e dft(]f’“) . At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if ¢, swapped
with ¢, in the permutation (ti,...,%x), then ¢, swapped with i, in the permu-
tation (i, ..., ).

It is easy to see that the equality (1.326) can be written in the form

Jbjy - bjr ) = = > / G (tr) - / o5, (0™ e w.op. 1,

(J1se-2k)
(1.327)
where
(jlr"vjk)
means the sum with respect to all possible permutations (ji,...,ji). At the
same time if j, swapped with j, in the permutation (ji, ..., ji), then 4, swapped
with ¢, in the permutation (iy, ..., ).

Thus, an analogue of the equality (1.86) is proved under the conditions of
Theorem 1.18 (compare (1.77), (1.86) and (1.325), (1.327)). Further proof of
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Theorem 1.18 is similar to the proof of Theorem 1.3. Theorem 1.18 is proved.
Consider the following obvious generalization of Theorem 1.4.

Theorem 1.19. Suppose that ¥1(7), ..., Yx(7) € La([t, T]) and {¢;(7)}52,
is an arbitrary complete orthonormal system of functions in the space Lo([t,T]).

Then the estimate
2
(169 = a0 )} <

/KQ(tl,...,tk)dtl...dtk—Z Z ® (1.328)
. 77*

J1=0 Jx=0

1s valid for the following cases:

1.tg,.,,=1,....m and 0<T —1 < o0,

2. 01, ,i,=0,1,...,m, #2+...+i >0, and 0<T —t <1,
where J[ W), is the iterated It stochastic integral (1.5), J[@/J(k)]%;""p’“ is the
expression on the right-hand side of (1.321) before passing to the limit 1im.
another notations are the same as in Theorems 1.1, 1.2, 1.16.

In addition, under the conditions of Theorem 1.19 we have the estimate
(also see (1.74))

n

X /K2(t1,... p)dts .. dtk—z Z 2l (1329
1.71*

= Jx=0

1.13 Generalization of Theorems 1.5, 1.6 to the Case of
an Arbitrary Complete Orthonormal with Weight
r(z) > 0 System of Functions in the Space Ls([t,T])

and ¥1(z)\/r(z), ..., Yp(x)\/r(z) € Lo([t, T])

In this section, we will use the multiple Wiener stochastic integral with respect
to the components of a multidimensional Wiener process to generalize Theorems
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1.5, 1.6 to the case of an arbitrary complete orthonormal with weight r(z) > 0

system of functions in the space Lo([t,T]) and ¢ (z)/7(x), ..., Yr(x)\/r(x)

€ Ly([t,T]). From the results of Sect. 1.3, 1.11 we obtain the following two
theorems.

Theorem 1.20. Suppose that ¥i(x)\/7(x), ..., Yp(x)\/r(x) € Lo([t,T)]),

where r(x) > 0. Moreover, let

{w@vi@}

j=0

is an arbitrary complete orthonormal system of functions in the space Lo([t,T]).
Then, for the iterated Ito stochastic integral

T ty
™, = / Dt/ (tr) - / by (0)y/r(E)dw™ . dw™  (1.330)
t t

the following expansion

[k/2]

jW(k)]T,t = pl,l..'.i,;bigoo Z Z Cjk J1 <H CJ Z

Jj1=0 J&=0

k—2r
(iq
X Z Hl{ bgge_ 1= Z925#0} {jgzs 1 3925} H CJ | >

({{g1,92}>--{92r— 192')"}} {a1:q_or}) s5=1
{91:92,--:920—1,927+91 -2k — 20 }={1,2,....k}

(1.331)

that converges in the mean-square sense is valid, where i1,...,1, =0,1,...,m,
T
C] = /\I!] \/T dw
t

are independent standard Gaussian random variables for various i or j (in the
case when i # 0),

k
éjk---jl = / K(ty,... t) H <‘Ijjz (tg)T(tg)> dty ...dt
[t.T]* =1

is the Fourier coefficient, K(t1,...,t;) is defined by (1.310); another notations
are the same as in Theorems 1.1, 1.2, 1.5.
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Theorem 1.21. Under the conditions of Theorem 1.20 the following esti-

mate )
(70 - o) | <

< Kl / KQ(IH,.--,tk) (Hr(tl)> dt,...dtp — Z Z ki

[t.7]* =1 Jj1=0 Jr=0

18 valid for the following cases:

1.y, =1,....m and 0<T —1 < o0,

2. 01, .. ,i,=0,1,...,m, #2+...4+i >0, and 0<T —t <1,
where J[p®]r, is the stochastic integral (1.330), J[p®) 7 s the expression
on the right-hand side of (1.331) before passing to the limit lim. ; another

notations are the same as in Theorems 1.6, 1.20.

1.14 Proof of Theorems 1.16 and 1.17 on the Base of
the It6 Formula and Without Explicit Use of the
Multiple Wiener Stochastic Integral

Note that Theorems 1.16 and 1.17 can also be proved without explicit use of
the multiple Wiener stochastic integral. To do this, we introduce the following
sum of iterated Ito stochastic integrals

T to

Jr@ff 3 /.../cp(tl,...,tk)dngﬁ...dw;ik), (1.332)

(t1sesth) % t

where ®(t1,...,t:) € Lo([t, T)%), i1,...,i = 0,1,...,m, dwl? = dr; another
notations are the same as in (1.305).

Further, using the isometry property of the Ito stochastic integral as well
as the linearity property of this integral, we have

—Z chk 3" D TRy, ) w1, (1.333)

J1=0 Jr=0



DF KUZHGTJSOV Strong Apptoximation of Iterated Im and Stramnovic}l Stochastic Integmls Based on G neralized M Itiple Fo S 215

where K (t,...,t;) and Ry, p(t1,...,t;) are defined by (1.310) and (1.312)

correspondingly. Moreover, J"[¢j, ... ¢, gflt“‘) and J” [Rpl,”pk]g’l{'i’“) are defined

by (1.332). Obviously, we can consider an analogue of (1.333) for ®(¢1,..., %)
instead of K (t1,...,tx).

Passing to the limit lim. in (1.333) and using (1.317), (1.318), (1.332),
P1y--sPE—00
we obtain

P Pk
U i D DI Dl ST RN
o J1=0 Jr=0

D1 Pk
:pl,l.:.i,ﬁfboo ) Cigi Y. / ;. (th) - / biy (t)dw™ . dw!),

Jj1=0 J1k=0 (t1yeosth)
(1.334)

where permutations (¢y, . . ., t;) when summing are performed only in the values
dwgl) . dwgi’“). At the same time the indices near upper limits of integration in
the iterated stochastic integrals are changed correspondently and if ¢, swapped
with ¢, in the permutation (ti,...,%x), then ¢, swapped with ¢, in the permu-
tation (i1,...,1x).

It is easy to see that the equality (1.334) can be written as

D1 Dk
TPl = Lim, Y73 O

Jj1=0 Jr=0

< 3 /quk t). /th t)dw" . dw™) (1.335)

(]1) 7.7k)
where
(jl,"‘vjk)
means the sum with respect to all possible permutations (ji,...,ji). At the
same time if j, swapped with j, in the permutation (ji, ..., ji), then i, swapped

with i, in the permutation (iy, ..., ).
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Further, using the It6 formula, we can prove the following equality

T

[k /2]
Z / () - / b (tr)dwy, . dwy) HCJ Z

(J1yesdk) ¢
k—2r

% Z Hl{ Yoy 1= Z925#0} {]925 1 ]925} H C ql 1 336)

({{91.92},-{92r 1,927} 1 {015 0p—or}) 5=1
{91:925+-:920—1,927:91 - :9f— 2y }=1{1,2,...,k}

w. p. 1, where notations are the same as in Theorem 1.2 and (1.335).

The main difficulty in proving (1.336) using the It6 formula is related to the
need to take into account various combinations of indices ¢1,...,72, =0,1,...,m
To avoid this difficulty, consider another approach, also based on the Ito for-
mula.

First, we prove the following modification and generalization of Theorem 3.1
from [106] (1951) for the case i1,...,i, = 0,1,...,m using the It6 formula and
without explicit use of the multiple Wiener stochastic integral.

Theorem 1.22 [29]. Suppose that the condition (x*) is fulfilled for the
multi-index (i1 ...1x) (see Sect. 1.10) and the condition (1.265) is also fulfilled.
Furthermore, let {¢;(x)};2y is an arbitrary complete orthonormal system of
functions in the space Lo([t,T]). Then

‘]N[gbjl‘ ¢]k] ) =

(

H,,, (g}g)...HnW (C(’” > if i #£0

‘]hdl,l

k
=11 | Lon=oy + Limsoy $

O ni UZN] . )
=1 \ <§j(l?1>l> (CJ(’(Z;J) : it 4,=0
(1.337)
w. p. 1, where i1,...,4, = 0,1,....m; nyy + noy + ... + ngy = my;
n17l,n27l,...,ndl’l:1,...,ml; d=1,....m; l=1,...)k; mi+...+mp=k;
the numbers my,...,mg, gi,...,qr depend on (i1,...,ix) and the numbers
Ny -y ly P1gy -, hag, di depend on {ji, ..., Jr}; moreover, {jg ..., jg} =

{j1, - Jr}; Hu(x) is the Hermite polynomial (1.267); another notations are the
same as 1 Theorem 1.14.
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Proof. First, consider the case i1 = ... =4 = 1,...,m and ji,...,Jr €
{0} UN. By induction, we prove the following equality

T to
. / bilty) .. / arlt)dw? . dw!x
t t
T to
< Y / ;. (1) - .. / o, (t)dw) . dw!!) =
(1) jq)t t
T to t1 t/z
= Y [t [ [a@).. [ax
(J1seesdas 1ol ) t t t
p
xdwy .. dwydwi) .. dw]" (1.338)

w. p. 1, where p e N, [ # 71,..., j,, and

means the sum with respect to all possible permutations (g1, ..., qn)-

Consider the case p = 1. Using the It6 formula, we get w. p. 1 for s € [t,T]

s s to
a(r)dwD [ 5. (ty) ... [ 65 (t)dwi) .. dwi!) =
[ fose |
s T to
_ / $1(7)0;,(7) / i (tg1) .. / ¢ (t)dw,) .. dw," dr+
t t t
s T to
+ [ o) | byt | b t)dwi) . dwidw+
Joo [t ]

s T T to
+ / $;.(7) / & (0)dw! / 5. (tg 1) .. / ¢ (t)dw,) . dwy” | dwh.
t t t t

(1.339)
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Hereinafter in this section always s € [t,T]. Differentiating by the It6 for-
mula the expression in parentheses on the right-hand side of equality (1.339)
and combining the result of differentiation with (1.339), we obtain w. p. 1

JWys it (o) st =

S T to
_ / $i(7) 5, (7) / b, (g 1) ... / ¢ (t)dw,) .. dw," dr+

+J ), st

s T 0 ta
+ [ 63,(7) [ @i(0)65,.,(0) [ 65, (t42) . [ Spn(t)dwy) ... dw; dodwD+
oo oo foctea ]

+J(qujq,1...j1)8,t+

+j¢jq(7)]¢jq1(9)x
o 0 t

| [ ot awd [ o5, ttr0)- [ ot | awidwt)
t t t
(1.340)

where

S to
1 1) def
/ ;. (1) . / o (t)dwi) . dwi) E T
t t

Continuing the process of iterative application of the Ito formula, we have
w. p. 1

Tty ji)sit =

= Jj,i)st T JGgljorgyst T -t JGgibst T

s T to
+ [ o)y, (1) | Sips(ta) .. [ i (t)dw) . dw” dr+ ...
oo forteaf
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s i3 12}
L / ;. (1) . .. / b, (L2) / ou(1) s, (T)drdwi) .. dwi . (1.341)

Summing the equality (1.341) over permutations (ji, ..., Jj,), we get

> JsadGyse = D> Jtjpgse +S(s) (1.342)

w. p. 1, where

S T to
> / &i(1)8;, (1) / i (tg1) - / o (t)dwy) . dw, dr+ ..
t t t

(jl aaaa ]q)

s i3 1)
et / ;. (1) . - / b, (t2) / i)y, (T)drdwi) .. dwi | L (1.343)

Consider
S s to
/ &1(7)p;, (T)dr / i, (tg 1) ... / ¢ (t)dwy) . dw, .
t t t
Applying the It6 formula, we get w. p. 1

oi(1)0;, ()T [ &, (tgo1) .. [ &y (t)dwi) L dwy) =
[t [ e |

S T to
_ / $i(7) 5 (7) / TN (P / ¢ (t)dw,) .. dw," dr+

+ gqu—l (tQ*l)X
/
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tq_l tq—l to
« / 61(r) o, (7)dr / b1 (tys)... / o (0w dw®, | dw!
t t t

By iterative application of the It6 formula (as above), we obtain w. p. 1

STV, (T | by (t1) .. | ¢ (t)dwi .. dwg}l _
= | &u(7)p;,(T) | &5, (tg-1)... [ &} (tl)dwgll) . dw,ﬁqlfldf 4+ ...

s to 51

ot / i (tg1) ... / ¢, (1) / oi(1)y, (T)drdwy) . dwi . (1.344)
t t t

Summing the equality (1.344) over permutations (ji,. .., j,), we get

S / &i(1)6, () / b3 \(tar) / o (t)dwl . dw” = 5y(s),
(1.345)

w. p. 1, where

s T to
Z /¢l(7)¢jq(7) / Gj, (tg—1) - - - / b, (tl)dwéll) . dwgildT + ...

(jl 7777 ]q)

s to 131
Lt t/ bj. (tg1) ... / ¢, (1) t/ i)y, (T)drdwy)) .. dwit | . (1.346)

It is not difficult to see that
S(s) = Si(s) w.p. 1. (1.347)
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Moreover, due to the orthogonality of {¢;(z)}32, and (1.345), (1.347), we
have

S(T)=S(T)=0 w.p.1. (1.348)

Thus (see (1.342), (1.348)), the equality (1.338) is proved for the case p = 1.
Let us assume that the equality (1.338) is true for p = 2,3, ...,k —1, and prove
its validity for p = k.

From (1.342) for the case ¢ =k —1, j1 = ... = jr_1 = [ we obtain

(J1)g (B = DI (1) g, = K (Jk) g, + S2(s) (1.349)
w. p. 1, where

(k>2) and Sy(s) &0 (¢q=k—1, k=1),

jr=..=j,=l, q=k—1

def

/ /gbl t dwt . dwt( ) def (Jr)se (r€N) and (Jo),,

Taking into account (1.343), (1.345)—(1.347) and the orthonormality of
{¢;(z) 20, we have

So(T) = (k= 1)! (Jy_a); (1.350)

Combining (1.349) and (1.350), we obtain the following recurrence relation

KU () pe = (N) gy (B = DV (Jk-1)py — (= D (r2) g, (1.351)

w. p. 1.
Using (1.351) and the induction hypothesis, we get w. p. 1

T to
k!/qﬁl(tk).../¢l(t1)dw§j>...dw§i>x
t t

X Z /gb]q /(bj1 t dwt . dwt
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T T

:/¢z(7) dw'! <(k_1)!/¢(tk 1 /¢z t)dwy, . dwy!
X Z /%q /¢J1 ty th : ,dwg)>

Jla a]q

—(k — 1)!/¢,(tk_2) . ../qﬁ,(tl)dng)...dw;j}zx

X Z /¢]q /¢j1 131 th . deql) =

(J1se-dq)
T to 11 th
:/¢z(7) dw'") /% --/¢jl(t1)/¢z(t2_1)---/(ﬁz(tﬁ)x
t .1 ----- Jq ...... t t t
xdw;’ dw dwi, .. dw,)
to tq ty
k-1 Y / o (1) / b3 (1) / it s) .. / o) %
(J1yees Jq ...... ¢ + +
k—2
xdwy . dwy’ dwi! . dw]). (1.352)

Let |[| be the symbol [ which does not participate in the following sum with
respect to permutations

Using (1.342), we have w. p. 1

j o a3 / ay / %(“)Z qb’(tl“)”j o

NARTERD) ]q ......

kfl
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deg,ll) e dwgk)ldwt( ) dwt(j) =
to ty t
> /¢. ) dw! /@q o) [t [t
(J1seesdas L., t ¢ t
k—1
xdwy) .. dw)) dw) .. dw]) =

- Z J(q...j1l...l)8,t - J(jqq,l...jlz...ns,t ..

(Jseesdgs 1,01 ) k—1 k-1
N~

+ J(jq...jll...l)s,t + J(jq...jllu)s,t +.. T+ J(jq...jll...ll),s,t + S3(s) =
k—1 k=2

— Z Tgeinle 1 s+ 93(s), (1.353)
(J1seesdas 1,.1) k
k
where
S3(s) =
S T tz
= Z (/ ¢(T>¢jq(7)/¢jq—1(tq1)"'/¢j1(t1>x
(s 1ol ) \¢ t t
k—1
tq th
x/gbl(t;1).../¢(t’)dwg,ll)...dwt(%)ldwﬁ)...dwt(ql)ldrnt...

t

/ Bift) / 6112 / (1) (7)

/ di(th ) / on(ty)dwy) . dwy) drdw) .. dwi)+

t
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/%q --7¢j1(t1)/t1¢(7)¢z(7)><

/¢, th ) /¢, yawy .. dw) drdwy .. dwi) +

/qb]q ../gbjl(tl)x

tq
/ (t_ ). /¢lt2 /¢. )ou(7)drdwy, .. dw“ldw,ﬁj...dwg)).

t

Using (1.343), (1.345)—(1.347), we get w. p. 1

Ss(s) =
s s to
= Y [egmair [o)... [ 6
(Jseesdas 11 ) t t
k—1
ty ty
x/gbl(t;Q) gbl(t’l)dwg,ll) dwt(ildwgll) dw') =
t t
s s to
—k-1 Y [ogmair o). [
(Jrsesdas 1ol ) t t
tq ty
x / di(th_y) / on(ty)dwy) . dwy) dwl) . dwi)+
t t
s s 12
v oo [ et [ 65t0x
(J1sesdq—15 1,0 ) 't t t
—~
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!/
th1

3] 2
X /¢l(t§€1) . / (bl(t'l)dwi,ll) Cdwl) dwgll) . dwt(ql}lnt
t t

!
tk—l

X / o). .. / ou(t)dwy) . dwy dwi) . dwy). (1.354)
t

Applying (1.354) and the orthonormality of {¢;(x)}>°

720, we finally have

ST =E-1 3 [ ot [ontt)x

1 2
X / ot ) ... / ou(t))dwy) . dwy,) dwi! . dwy). (1.355)
t t
Combining (1.352), (1.353), (1.355), we obtain w. p. 1

T
k'/qbl t). /@(tl)dwgp...dwg&
t
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T
X Z /¢]q /¢Jl tl dw7§1) : dwlg = -
(jl aaaaa jq) t
T ty
— Z /(bl(tk)/gbl(tl)dwg) dwgi)x
(1,..0)% t
Ne
k
x Y / &5 (g / 65 (t)dwy) .. dwy) =
(J15-2Jq)
to t1 té
. / oulta)--. [ o) [ontt)... [ ontt
(J1sesdas L., t t t
k
xdwi,ll. dw dwt : .dwg), (1.356)

where [ # 71, ..., Jq.
The equality (1.338) is proved. From the other hand, (1.356) means that

g+tn n q

" " (1...1) " (m)
Tbs o by, 0 0y = T oy T 6 )Y (1.357)

w. p. 1, where n,q =0,1,2...; 1 # j1,...,j, and
def

J65 - di)ry ) E 1

for ¢ = 0.
Note that [108] (see Chapter 6, Sect. 6.6 of this book for details)

T to
[ote... [ aaw)..awl? -
t t
T T
= %Hn /gbl(T)dwg),/gle(T)dT
t t
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T T
1
/@(T)dwg), 1] = EH” /qﬁl(T)dwg) (1.358)
t t

w. p. 1, where n € N, H,(z,y) is defined by (1.276) (also see (1.277)), and
H,(x) is the Hermite polynomial (1.267).

From (1.358) we have w. p. 1

1/ (1n 1) r 7 (1) (1)
J qbl . ¢l Tt =n! / Cbl(tn) ce / Cbl(tl)dwtl .. .thn =
n t t
] T T
=n!—H, / o(r)dwl | = H, / oi(T)dwh | (1.359)
t t

where n € N.
Combining (1.357) and (1.359), we obtain

q

T (b5, .- 85,01 mm = / o) dwD | - Ty, by )
(1.360)

w. p. 1, where n,q =0,1,2...; L # j1,..., 74

The iterated application of the formula (1.360) completes the proof of The-
orem 1.22 for the case iy = ... =i, =1,...,m and ji,...,jr € {0} UN.

To prove Theorem 1.22 for the case 17 = ... = 17 = 0,1,...,m and
J1,- -5k € {0} UN, we need to prove the following formula in addition to
the previous proof

p!i¢l(tp).../thbl(tl)dtl...dtp > /@q /qﬁﬁ ty)dty ..
d : ="
= Z /gqu ../t?gbjl(tl)/tlgbl(t;).../téqbl(t'l)dtll...dt;dtl...dtq,

(1 7777 Jq ......

(1.361)
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where p € N,

means the sum with respect to all possible permutations (71, ..., j4)-

First, consider the case p = 1. We have

/ 61(0)d0 / bi(ty) ... / o, (t)dt ...dt, | =
s 12
8) / ¢jq(tq) ce / ¢j1 (tl)dtl RN dtqd3+

+¢]q /¢]q 1 q 1 /¢]1 tl dtl dtq 1° /¢l de dS

Then t
/gbl(e)dQ/qﬁjq(tq).../(bjl(tl)dtl...dt =
t t t
= I qu st
+/¢]q /¢.7q 1 q 1 /¢j1 tl dtl dtq 1 /¢(6)d9 dT,
t
where

/% /%1 bty dty S TG, (1.362)
t

Continuing this process, we get

/¢l(0)d9 Z L, Z L(1,...51)5,t (1.363)

t (]1 ''''' Jq) (]13 a]qa )

where
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means the sum with respect to all possible permutations (71, ..., j4)-

The equality (1.361) is proved for the case p = 1. Let us assume that the
equality (1.361) is true for p = 2,3,...,k — 1, and prove its validity for p = k.

From (1.363) for j1 = ... =j, =1, g =k — 1 we have
(1) (k= D! (1) = K (i) (1.364)

where k € N and

S t2
def def
/gbl(tk).../gbl(tl)dtl...dtk = (Ik)yy, (o), =1L
t t
Using (1.364) and the induction hypothesis, we obtain

KUy Y Tggnse = ) gy (k=D Tic) gy Y Tjjpgiss =

(jl aaaa jq» l7...,l ) k—1 (Jl 7777 Jas 1,..., l ) k—1
~~~ ~~~

where I jys¢ is defined by (1.362) and || is the symbol [ which does not
participate in the following sum with respect to permutations

2.

(jl?"'vjt]?l ..... l )
-~

By analogy with (1.363) we obtain

Z [()s,tI(Jq-~-j1 I,..,1)st —
(jlv"'vqu l,,l) \k—/l./

k—1

- Z I(q...jll...l)s,t - ](jqq,l...jlz...os,t T

(J1seesdgs 1,0 ) k—1 k-1
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+ ](jq...jll...l)s,t + I(jq...jlll...l)s,t Tt I(jq...jll st | T
k—1 k—2

k—1
- Z ](jq---jlu)s,t- (1366)
(jl 7777 jflvl ..... l ) k
~~

Substituting s = T into (1.365), (1.366) and combining (1.365), (1.366), we
conlude that the equality (1.361) is proved for p = k. The equality (1.361) is
proved.

Note that
T t T K
n!/gbl(tn).../gbl(tl)dtl...dtn:n!% /@(T)dT _
t t t
/gbl(T)dT : (1.367)
t
where n € N.
After substituting (1.367) into (1.361), we have for p =n
T n
T)dT Jii i = Jiioi . 1.368
/¢z( ) (qu) (get) Tt (jh“%:l ..... § (jq...jlz\.:._pz’,t ( )

The equality (1.368) means that

q

R ) ¢th / o (T J//[qul...quq](T?t"'O), (1.369)

where n,q =0,1,2... and J”[gbjl...gqu](m )d—eflforq—()

The relations (1.360) and (1.369) prove Theorem 1.22 for the case i; = . . .
1 =0,1,...,m andjl,...,jke {O}UN

Remark 1.15. Note that the equality (1.361) can be obtained in another
way. Let Dy = {(t1,...,ty) € [t,T]?: 3 i # j such thatt; =1t;} be the "diago-
nal set” of [t, T|? (¢ = 2,3,...) [109]. Since the Lebesque meashure of the set
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D, is equal to zero [109], then (see (1.332))

q

JH[@&- ¢Jq]Tt /¢J1 t). ¢J( )dtl - dtg (1.370)
[t

From (1.370) we have

p q
—~N —~

0...0 0...0
Ty T g,y )Y =

= / qul (tl) ce ¢jq(tQ)dt1 s dtq / ¢l(t1) ce ¢l<tp>dt1 . dtp =
[t.T]

[t, TP

= [ onl) o) et
[t,T|pta

p+q
—~

= J"[pj, ... 5,00 oy, . (1.371)

It is not difficult to see that the equality (1.371) is nothing but the equality
(1.361) written in another form.

To complete the proof of Theorem 1.22, we need to consider the case
Lig=0,1,...,mand ji,...,j5r € {0} UN.

Obviously, the proof of Theorem 1.22 will be completed if we prove the
following equalities

> / o;. (1, / o5 (t)dwi) . dwy") x

(J15e+Jq)

T
< Y / b (2 / by (t)dwy) . dw)) =
(Ji ﬂﬂﬂﬂ ’;L)t

T t
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xdwy) .. dwy dw( . dw", (1.372)
T
(ir) (i),
Z i, (tq ¢J1 ty)dwy, th
(J1s-sdq) ¢
T
< Y /% /qﬁj t)dwy . dw, =
(J1omsdn) 4
to t1
/ (1t / ¢j,(t1) / o / 5
Jlseees jq ...... t t
xdwy ... dwy dwi) . dw" (1.373)
( ) def

w. p. 1, where n,q € N, dw
(1.373),

=dr, i1,...,ig7# 1in (1.372) and ¢y,...,9; # 0
(J1s-2dg)

means the sum with respect to all possible permutations (ji,...,J,). At the
same time if j, swapped with j; in the permutation (ji,. .., j,), then 4, swapped
with ¢4 in the permutation (i1, ..., 1,).

The equalities (1.372) and (1.373) mean that

TGy - b3, - Sy = g e T by b)Y
(1.374)

TGy - 03,05, - D) e = T e T by 0]
(1.375)

w. p. 1, where iy,...,4, # 1 in (1.374) and i1, ...,7, # 0 in (1.375).
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First, we prove the equality (1.372). Consider the case n = 1. Using the Ito
formula, we get w. p. 1

[ en@raws? [ o / atawly) . dwl!
t t

(Lig...i1)
J(]ijqjl)s,t

+/¢Jq /gb]q 1 q 1 /(bjl tl dwtll . dwtzq ! /¢J dWQ dWT
4

—~
.

Q

~—

_ Wiy glalienei) o glignd) (1.376)

(J1dq---J1)st (Jgitdg—1---J1)s:t (Jq---J171)s,t?

where

/ b, (tr) .. / bi, (t)dwy) . dwy") E gl (1.377)

i iy =01,...,m
From (1.376) we obtain

to
/ 1 (6 dwa / ;. (ty) - / 5, (1)) dwi™ ...dwgﬂ —
7]:1 t

. (Lig...i1) (tglig—1...31) (tg...111) .
o Z (J(Jijqjl)svt T J(jqjijqfl--ujl)sv?f Tt J(Jq]l]i)s’t) o

_ (ig...i11)
o Z J(jq...jljg)s,t (1.378)

(J13-2Jq:01)
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w. p. 1, where J (Z“) is defined by (1.377). The equality (1.372) is proved

(]T jl)sat
for the case n = 1.

Let us assume that the equality (1.372) is true for n =2,3,...,k — 1, and
prove its validity for n = k.

Applying (1.342), (1.343), (1.345)—(1.347), we obtain w. p. 1

Z /% t). /gbj dwt,. dw§,>_

J1a a]k

s s to
— / MO / by (tie1) ... / oy (t)dw) . dw!!) —
t (Jsdlm1) t

S tg

Z /¢Jk ¢]k 1 /‘qul;—Q (tk*2> T / gb]i (tl)dwgll) T th(iL

(J1seesdr_1) t t

(1.379)

After substituting s = T in (1.379) and applying the orthonormality of
{oj(x)}320, we get w. p. 1

T th
S / by (L) ... / oy (t)dwll) . dwll) =
(J1seesdi) ¢ t
T T to
_ / by @Odw)) 3 / by (o) / oy () dw! . dwl!
t (J1sdio1) & t

T to
1 1
- > 1y, / by (tea) ... / i (t)dw) . dw | (1.380)
1) ¢ t

(JLsesdree

where 14 is the indicator of the set A.
Using (1.380) and the induction hypothesis, we obtain w. p. 1



DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stramnovic}l Stochastic Integmls Based on Genemlized Multip]e Fourier Series235

T lo
3 / oy (1) ... / i (t)dw . dw! x
(]i """ jl/c)t t
T o
< Y [outt e [ ot awi
(J15e0sda) t
T T to
= [op@in? S [on ). [ o). awl? x
t (J1esdh1) t t
T
X Z /gb]q /gb]l t dwt1 dwg
(]1 ----- Jq)t

o 1{Jk—9k 1}/¢Jk 2 tk 2 /¢J1 tl dwt : dwgzgx

(jl 7777 jk;f

x /% /% t)dwy . dWE )=
T

_ / 6,1 (0)dw" x
t

X > /% ~-/tz¢j1(t1)/tl¢j,gl(t21)---/t/2¢j1(t'1)><
t t t

(]17 a]qv]la"'vjk 1

><clw§,11 dwtz)ldwt )...dwgq)—
T t
1 1
DR / Gip_y(te—2) - .. / by (tr)dwy) . dw!
(J1rsdp—1) ¢ t
T

X Z /gqu /qﬁﬁ t)dwi . dwy, (1.381)
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Further, applying the induction hypothesis, we have w. p. 1

T to
1 1
Z 1{jl/c:jll<:—l} / gbjz’c—2 (tk_Q) e / gb]i (tl)dwt(1) e th(kL X
) t t

(J1smdha

to
Y / ;. (1) . - / 65, (t1)dwi) . dwy) =
t

]1a a]q

_ ( Lo / b5 (ti2) / i (t)dw . dw!) 4+
(.717 7]k: 2

th—2

+ Z L= 2}/¢]k (T2 /%k ,(tr3) /¢ (t1) %

(J1s-dr—g2dj—1)

xdw!) . dwlD dwl) 4

tk—3 tk—2

T t3 to
.ot Z 1{]-}/9:]-1} / ¢j}/€72 (tk;—2> cee / ¢j§(t2) / ¢j,’c,1(t1) X
t t t

(725 dk 1)

tg—2

xdw,gll)dwg) . dwlV ) X

12
Xy / ;. (ty) ... / ¢j1(t1)dw§j1)...dw§;q>:
t

jla 7]q

(1{Mk Y /% (tr-2) /qu t)dw) . dw) 4+

(15 dh_2)

1 —y ) /%k (tro /%k ,(te—3) /(/531 t1)x

]17 a.jk; 3a]k 1
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xdw! . aw) w4+

tk—3 th—2

+1{]k =ji} Z /¢]k 2 tk 2 /¢Jz t2 /¢jk 1 tl

(]Qa ajk 1

= 14— Z /(qu --i%(h)i%;@z(t%2)---]é¢ji(t'1)><
; ; ;

(jla a.?q7.717 7]k 2

xdw,).

" dw

dw L dw

/
tk2

ta t1
Ly / out)-.- [ontt) [0y (60)x
t t

(]15 7]!17]17 7]k 35]]€ 1

/ 5 (th_s) / oy (t)dwy . dwy) dwl) dw( . dw? +

/ /
tkS tk2

ta
g D /% --/%(tl)x
4

(]1) a]qa.727 7jk 1
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X Su(T). (1.382)

By analogy with (1.344) we obtain w. p. 1

T
/@( )y (v df/cbju ) /cbh f)dw) L dwli) =
t
T T tQ
= / &1(7)b, (7) / 5 (L) ... / o5, () dwi . dwlVdr +
t t t

/%T tr1) /Qﬁjl t1) /gbl 7). (T d7'dwtZl . dwﬁ“ll), (1.383)

where 21,...,%,,.1=0,1,...,m

Using iteratively the It6 formula, as well as (1.383) and combinatorial rea-
soning, we obtain w. p. 1 (see Remark 1.16 below for details)

T

[ ou@rawi

t

X Z | /ijq --j@sjl(tl)t/tlﬁbj,;l(t;@1)---t/tl2¢ji(t/1)><

(GRS P L [

xdwg,ll) . dwialdwgl) . .dwgq) =
to t1 t/2
- X / alt). [ oatt) [t [ onth)s
(e 1oe5%) t t t
xdwy .. dwldw( . dwi+
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to t 0
" bi(te) - [ D3(t1) [ 050005, 0) [y (tia) ..
(]1, a]q,]l,...,jk 1 </ ’ t/ ! / ’ g t/ J

. / o (t)dwl) . dwl) dwldw() . dwi+

T th1
+/¢jq /¢J1t1/¢1k1tkl/¢3k ¢Jk2 /¢]k3tk3"'
t
t
/gbj( )dwg,)...dwéﬁ)BdWé )dwéﬁ)ldwg )...dwgq)+...
t

/ A / b5, (t1) / by (tiiy) - / b35(t5) / 67, (0)65(0)dw,”

xdwi,j) . dwg,ildwgl) . dwg(I)> =
to t t/2
/ ) [[030) [0 [ ot
(J1yeers ]q,jl ..... Jr) 1 + f

><dw§,11 dw dwt e dwgq) +

+ | Z ., {/T(/bj,;(@)%g1(9)/0¢jq(tq)...iqul(tl)/thﬁjl,c2(152;2).__

(.717"'7,7q7.71a 7]]@72)

th

5 / oy (t)aw!)) . dw)

t

dwiV ... dwdw + ..

!
tk2
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T to t th th
i / bi(t) . / o5 (1) / by (th ). / o (1) / 6, (0)0y (B)dw x
t t t t t

(1)

det, ..

/
tk2

+ {/% )b ( /% ~~/t2¢j1(751)7¢3‘;1(t%1)x

(J1,- qul o Th—gTh1)

cdw!) dwg )...dwgq)}+

th_1 th
1 1 1 i iq 0
x / by (ths) ... / o (t)dwy . dwy dwy) dwi . dwi Y dwy) +
s

’ ’
tk3 tkl

X /¢j1’€ (‘9)¢j,’€,2 (9>dWé0)dW§,11) . dw( ) dw( ) dwg 1) -deQ)} I

+<J P {/qﬁjk '1(9)j¢jq(tq)---t/h%(tl)t/thﬁj;c1(t;€1),,_

../%(tg)dw(” dwl) dw L dwy w4

ty ° e
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= Z /@q ..7%(751);%@;).../té(/)ﬂ(t;)x

(1 ..... .]q ,,,,,,

X alwzg,l1 )

+/T¢j,g(9)¢j,;1(0)d9 | Z ./ /Tqﬁjq(tq).../bqul(tl)/tlgbjl,cz(t;C2)”.

(]1a"'7]qa]15 7]]@72) t

dw( )dw,g D dwﬁ?%—

t,
N / o (t)dwl) . dwl) dwl . dw(+
t
T T to t1
oo i S [o) o) o tix
f (J1resdgpd s T sode—1) 't ¢ t
-
/ i (th_s) / o (t)dwy) . dwy dwy) dwit . dwi +
T to 3]
. / OO / b3 (ta) . / b5 (t1) / by (th) .
t (J1,- csJgsJas- ]k 1 t t
N / oy (ty)dwy) . dwy dwl) . dw)? =
to t1 t/2
__— / it [ it [ oyt [oyt)x
(.1 ..... ]q7]1 ..... k t t t
xdwy . dwldwi) . dwi" + 8,(T). (1.384)

From (1.381), (1.382), and (1.384) we conclude that the equality (1.372) is
proved for n = k. The equality (1.372) is proved.
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Remark 1.16. It should be noted that the sums with respect to permutations

2.

(jlr“ajqaji?"ﬂjllcfl)

n (1.384), containing the expressions ¢y (0)pj_ (0), ..., (0)d;(0), should be
understood in a special way. Let us explain this rule on the basis of the sum

/ Pinlta) - ] bir(h1) ] 5 (0)s;_, (6) /6 it o).
t t t

tl
y / o (t)dwy . dwy dwydwit . dwi" (1.385)

t

(]h a]qa]la 7]k: 1

More precisely, permutations (jl, R P L ,j]’ﬂ_l) when summing in
(1.385) are performed in such a way that if ji swapped with j5 in the per-

mutation (]Z+k_1, e ,jf) = (jq, ey T T pe s Tpegs - - - ,j{) , then i’ swapped with
iy in the permutation

(Gt --507) = (igo---01,0,1,...,1).
k—2

Moreover, gBj: swapped with ggj; in the permutation

(@i s s @) = (Bhgr -2 Biis Do Bip_ s Dot yre -2 Pt

A similar rule should be applied to all other sums with respect to permutations

2

(J1esdqpd 1o d—1)
in (1.384) that contain the expressions ¢j (0)¢; (0),...,¢;(0)0;(0).

Let us prove the equality (1.373). Consider the case n = 1. By analogy with
(1.376) and (1.378) we obtain

to
/qu )dw! > /gqu ../¢j1(t1)dw§jl>...w§§q>:
t

.717 Jq

B (ig.i10)
= > e

(jla"quhji)
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w. p. 1, where J((Z“) is defined by (1.377). The equality (1.373) is proved

Ir 'jl)sat
for the case n = 1.

Let us assume that the equality (1.373) is true for n =2,3,...,k — 1, and
prove its validity for n = k.

In complete analogy with (1.363) we get

s S to
/¢jg(9)d9/¢j,gl(tk;—l)---/¢j1(t1)dt1---dtk—1 =

= T st TG i seasa T TG e (1.386)

(rJk—1---J1)8 Uk 1J1dr—_2--J1)8 (Jr_1---J101)8:

Applying (1.386), we have

0 0
3 /@I/C(t;).../(ﬁji(t’l)dwg,) dw') =
(]{ 7777 .71/@) t t
B 0...0) (0...0) 0...0) B
= > (Jo,;jzl---ji)at G ditaeds T J(j;’cl---jijé)&t) =
(o)
T
/ d0 Z /qﬁjk (ti1) /cp] t)dw” . dwl” . (1.387)
A

Using (1.387) and the induction hypothesis, we obtain w. p. 1

> /quk th) . /gb] t)dw.” ... dw)) x

]17 a]k

< D /% /% t)dwy" . dw§ )=
j

= [ouan S [on i) [ottim) - awi),
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to
Y / ;. (tg) . - / 65, (t1)dwi) . dwy =
t

]la a]q

T 12
:/qﬁ]é(@)de /quq ../¢j1(t1)x

+ (J1s-- 7]q7]17 Jk—1) t

/
tk 1

_ 3 /@ d@/@q --]2¢j1(t1)x

(]17 7jq7jla Jk 1

/%1%1 /cb(>dw<>...dw<>dwg>...dwggq>:

2
X / by (H_) ... / oy (t)dwy . dwy) dwit . dw(. (1388
An iterative application of the Ito formula leads to the following equality

/T¢j;(9)d9i¢jq(tq)~--/t2¢j1(t1)><

21 A
X /qb]]lc_1(t;€—l) s / iji (tll)dwgz?) e dw( ) dwg ) .. dW(Zq) =
¢ t

/
tkfl

0ig...i10...0) (ig0ig_1...i10...0) (ig.i10...0)
R (Oig—1-020--0) ., Jlian0-0)
(Urdq---d1dp—q---J0) Tt + (Jadrdq—1---J1dp_q--J1) Tt + (jq...jlj;cj;cil...ji)T,t—}_
4 flia10..0) L glia-i10..0) (1.389)
Gaotdhrdbits 0Tt T T Ggougi e dti) Tt :
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Combining (1.388) and (1.389), we finally obtain w. p. 1

S / b, (t, / 65 (t)dwi) . dw" x

(J15ees Jq
T 2
0 0
> / 1) / b )aw) vl =
(Ghodt) s t

0

xdwl?) . dw'dwl") (ia)

.dw,, dw,f codwy
The equality (1.373) is proved for n = k. The equality (1.373) is proved.
Theorem 1.22 is proved.

To complete the proof of Theorems 1.16 and 1.17, we prove the following
theorem.

Theorem 1.23. Suppose that {¢;(x)}32, is an arbitrary complete orthonor-
mal system of functions in the space Lo([t,T]). Then the following representa-

tion
k/2]

J//[¢j1' ¢]k Zl i) HCJ Z

k—2r

X Z H {1925 1 1925#0} {]925 1 ]925} H C ql 1 390

({{g1.92}-{92r— 192r}} (a1 ap—2r}) s=1
{91:92:-92r 1,927,901 ag—2r }={1,2,... .k}
is valid w. p. 1, where iy,...,ix = 0,1,...,m, [x] is an integer part of a real
def def
number x, [[ = 1, Z = 0; the sum in the second line of the formula (1.390) is
0

the sum with respect to all possible partitions (1.53); another notations are the
same as 1 Theorems 1.1, 1.2.

Remark 1.17. [t should be noted that the formulas (1.338), (1.371), (1.374),
(1.375) follow from (1.390). It is only necessary to set the values of the cor-

responding indicators of the form 14 from the formula (1.390) equal to 0 or
1.
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Proof. The proof of Theorem 1.23 is carried out by induction using the
following recurrence relation

J”[¢j1 e ¢3k]f(zz,lt k) J”[¢jk] J//[¢]1 . ¢]k 1] (41 0p— 1)

k—1

o Z 1{il:ik3’é0}1{jl:jk} ) J”[¢j1 - ¢jzf1¢jl+1 . ijk 1] (G it i) (1.391)
=1

w. p. L.

Let us prove the recurrence relation (1.391). Using iteratively the Ito for-
mula, the orthonormality of {¢;(z)}32, as well as (1.383) and combinatorial
reasoning, we obtain w. p. 1 (see Remark 1.18 below for details)

J/l[¢]k] ‘]”[ng1' ¢]k 1] i) -

/ijk dwalk Z /ijk (1) /%1 t1) dwtll : thZk V=

7]k 1

> /gbjk )dw' /(/)jkltkl /gbﬁtldwt dwit) =
)%

(J1semsdr—1

T to
=Y /a;jk(tk).../apﬁ(tl)dw,ﬁj’l)...dwgku
(J1s-sdk) ¢ +
+ Z (1{% =lk— 1750}/¢Jk: ¢]k 1 /¢]k 2 tk 2 /Qbh tl
J1seesJh— 1
xdwg 1 dwgl’“ 2>dwéo)—l—
tk—1

+1{2k =i 2#0}/¢]k 1 tk 1 /¢]k ¢]k 2 /¢]k 3 tk 3 /¢]1 tl



DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stramnovich Stochastic Integmls Based on Genemlized Multip]e Foun'er Series247

xdwgfl) . dw,gl’“ 3)dwé )dwt(”“ ) + ...

T t3 to
--+1{iki1¢o}/¢jk_1(?fk—1)---/¢j2(t2)/¢jk(9)¢j1(9)><
t t t

xdwéo)dwt(iz). dwgzk 1)> =

.....

T Z Lii=in- 1#0}{/¢3k ) By ( /Cb]k ,(th—2) /Cbgl t1)x

(]17 a]k 2)

xdw\™ . dw* D aw 4.

/d)ch 2 tk 2 /¢j1 tl /¢]k quk 1 dwe dwt( )"'dwgzk;)}+

lp—1
+ Z 1{% =ik 27’50}{/¢Jk ¢]k 2 /¢]k 1 tk 1 /¢Jk 3 tk 3

(jla"'vjk—Sajk 1
/ 5, () dwi™ L dwit Y dw w4

th—1

/¢jk1tk1/¢jk3tk3 /%Nﬁ/ﬁbgk )Pji (0

xdwy dw,") ... dw}" 3>dw“’“)} —
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Y e u#O}{/% )¢, (0 /sb]k (tr—1) /th ty) x

(32, k- 1)
xdwgz ?) dwgz’“ 1)dwé,o) + ...
/¢]k 1 t/f 1 /¢J2 t2 /¢Jk ¢J1 dw@ th ) dwﬁzk 11)}
123
(jl 7777 jk) t t

T tk—1
/¢Jk ¢]k 2 Z 1{ik=ik—27é0}/¢jkl(tk_l) / ¢jk73 (tk—?)) s
csJk=3:0k—1) t t

tk—1

. / Pjy (h)dwg dwgzk Daw! 4

T
+ ¢]k(9>¢]1 (9>d9 1{% =117#0} Qb]k 1 tk 1 gb]z t2
j oot

J2sees ]kl

- J//[gbjl ' ¢]k Zl ) + 1{ik:ik717é0}1{jk:jk71} ’ J//[¢j1 N ijk_g]gz’ltmlk_ﬁ"_

+1{ik:ik*27’é0}1{jk:jk72} ' J/l[¢j1 : ¢]k 3¢]k 1] Rt + ...
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oo Lgminz0y L=y - J”[ijQ . quk,l]éfft"'““—l) —

=T[5, dalii

k—1
+ Z l{iz:iksféO}l{jl:jk} ) J//[¢j1 I ¢jl—1¢jl+1 - ¢jk—1]gz,ltm“_”“rlu%_l)' (1'392)
=1

The equality (1.391) is proved. Theorem 1.23 is proved.

Remark 1.18. It should be noted that the sums with respect to permutations

2.

(J1sesdr—1)

in (1.392), containing the expressions

iy =iy 20105 ()5, (0), -+ o, Li—i, 20y 5 (0) 95, (6),

should be understood in a special way. Let us explain this rule on the basis of
the sum

(jl?"‘vjkfl

T 0 to
Y Vimiry [ 05005, (0) [ 65, (tha) . [ d5(t)x
e o fo

xdw(™ . dw* 2 dw . (1.393)

: tk—2 0

More precisely, permutations (j1,...,Jk—1) when summing in (1.393) are
performed in such a way that if 7, swapped with j; in the permutation
(J1y- -+ Jk—1), then i, swapped with iq in the permutation (iy, ..., ix_2,ix_1) (note
that ix_1 = 0). Moreover, q_ﬁj swapped with ggjd in the permutation

(éjw R éjkfl) — (¢j1? KR ¢jk727 1{%:%—1#0} ’ ¢jk ) ¢jkfl)?

where ngk_l(T) = 1{¢k:¢k,1¢0}¢jk(7)¢jk_1(7')-

A similar rule should be applied to all other sums with respect to permuta-

tions
)

(jla"'?jk—l)
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in (1.392) that contain the expressions

1{ik:ik—2#0}¢jk (0)¢jk—2 (9)7 SRR 1{ik:i17£0}¢jk (‘9)¢J1 (0)

The relations (1.334), (1.337), (1.390) prove Theorem 1.16. An analogue of
the formula (1.334) for ® (¢4, ..., 1)) instead of K (t1,...,t;) and (1.337), (1.390)
prove Theorem 1.17.

We note a number of works [110]-[113] in which the properties of multiple
Wiener stochastic integrals were studied using measure theory, in particular,
the formulas for the product of such integrals were obtained.

First of all, let us compare Theorem 1.23 with Proposition 5.1 from [110].
An analogue of the right-hand side of (1.390) for nonrandom x, ..., xj is con-
structed in [110] using diagrams (see the formula (5.1) in [110]). This means
that the application of the formula (5.1) from [110], unlike the formula (1.390),
is difficult when performing algebraic transformations.

Further, we note that the formula (5.1) from [110] was applied to the repre-
sentation of the multiple Wiener stochastic integral somewhat differently than
the formula (1.390). Namely, using Proposition 5.1 [110]. Let us expain this
difference in more detail.

Proposition 5.1 from [110] in our degree of generality and in our notations
can be written as

T3 ™ =

mi m2 mp

A\ A\ A\

LN
('L]...Zml Zm1+1...lm2“' ’Lm1+“.+mp_1+1...'&k>

~~ ~—1 Tt
mi mo myp
mq mo %
" Zl Zml 11 Zm1+1 ng) 1/ Zm1+ M1+l Zk)
=J [gbjl ¢]1] +J [¢j2 . ¢12] o [¢Jp gb]pi|
(1.394)
w. p. 1, where
mi mo mp

J” [gb ¢ ] ll Zml J// [Cb Cb ]Zml‘*‘l ’ng) J” [¢ ¢ ] Zm1+ Amp_p+1- ’ék)
Jie JuT J2 J21T Yt Jp Jp | T
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are defined by the right-hand side of the formula (5.1) from [110], mi+...4+m, =

kymy,....mp,>0,4,#ja(q#d, ¢, d=1,....p), 41,...,ig=1,...,m.
This actually means that in [110] an analogue of the formula (1.390) is
constructed for the special case j; = ... = ji. Moreover, the specified analogue

is based on the formula (5.1) [110] obtained using diagrams.

Comparing the formulas (1.390) and (1.394) (or (5.1) from [110]), it is easy
to understand that the transition from (1.390) to (1.394) is obvious. It is only
necessary to set the values of the corresponding indicators of the form 1,4 from
the formula (1.390) equal to 0 or 1. The reverse transition from the formula
(1.394) to the formula (1.390) is not obvious. Note that the formula (1.390)
(not the formula (1.394)) is convenient for the numerical integration of It6
stochastic differential equations (see Chapter 5 of this book for details).

Let us turn to the comparison of Theorem 1.23 with another interesting
work [113] (2019). As it turned out, a version of Theorem 1.23 was obtained in
terms of Wick polynomials and for the case of vector valued random measures
n [113] (see Theorem 7.2, p. 69). However, much earlier the formula (1.390)
(Theorem 1.23) is obtained in our monograph [4] (2009) as part of the formula
(5.30) (see [4], p. 220). Moreover, particular cases of the formula (1.390) were
obtained even earlier in our works [1] (2006) and [3] (2007). More precisely,
partiular cases k = 1,...,5 of the formula (1.390) were obtained in [1] (2006)
as parts of the formulas on the pages 243-244 and partiular cases k =1,...,7
of the formula (1.390) were obtained in [3] (2007) as parts of the formulas on
the pages 208-218.

We also note that we have found an expllclt expressmn for the Wick poly-
nomial of degree k of the arguments C ...,C (ix) (see the formula (1.390)),
which is very convenient for the numerlcal 31mulat10n of iterated Ito stochastic
integrals (1.5) [53], [54]. Note that the representation of the Wick polynomial of

the arguments ¢ ](-fl), oy C j(zk) in terms of the product of Hermite polynomials is
less convenient for the numerical simulation of iterated Ito stochastic integrals
(1.5). For example, the expression for J"[¢; ¢;,0;,05.]7; U12i514) i) terms of the
product of Hermite polynomials, even under the condltlon 11 = g = 13 = 14,
already contains 15 different expressions (see Sect. 1.10). At the same time, all
these 15 expressions are contained in one formula (1.390) provided that k = 4
and i1 = i3 = i3 = 44. It is very convenient, since in computer simulation using
the formula (1.390), in addition to modeling of random variables ¢ ;jl), o ](-z’“),
it remains only to set the values of the corresponding indicators of the form 14
from the formula (1.390) equal to 0 or 1.
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[t should be noted that in [111] (Theorem 6.1) a diagram formula was ob-
tained for the product of two multiple Wiener stochastic integrals with respect
to vector valued random measures. The formula (1.372) can be derived from
the diagram formula [111]. Although the proof of the diagram formula [111] is
much more complicated than our proof of the formula (1.372).

To conclude this section, we say a few words about expansions (1.320) and
(1.321). The transition from the expansion (1.321) to the expansion (1.320) is
obvious. It is only necessary to set the values of the corresponding indicators
of the form 14 from the formula (1.321) equal to 0 or 1. The reverse transition
from the formula (1.320) to the formula (1.321) is also possible but not obvious.
However, Theorems 1.22 and 1.23 provide a transition from (1.320) to (1.321)
and vice versa. Note that the expansion (1.320) is interesting from the point
of view of studying the structure of the expansion of iterated Ito stochastic
integrals. On the orther hand, the expansion (1.321) is exceptionally convenient
for applications (see Chapter 5 of this book and [53], [54]).

1.15 Generalization of Theorem 1.11 to the Case of an
Arbitrary Complete Orthonormal System of Func-
tions in the Space Lo([t,T]) and (1), ..., ¢¥i(T) €
L2([t7T])

Suppose that (1), ..., ¥x(7) € Lo([t,T]). Define the following function on
the hypercube [t, T]*

K(ty, ... tg,s) = 1{tk<s}K(t1> o tr),

where the function K(ty,...,1%;) has the form (1.6), s € (¢,7T] (s is fixed), and
14 is the indicator of the set A.

Further, we have (see (1.6))

K(tlv oty 5) - 1{t1<...<tk<s}¢l(t1) - wk(tk) =
i(ty) . p(te), t1<...<tp<s
0, otherwise

where K (ty,...,tr,s) € Lo([t,T]¥), k > 1, t1,...,t; € [t,T], and s € (¢,T).
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Note that

s Lo
T W]y = /W(tk)---/¢1(t1)dwgfl)---dwgiw =
t t

T 2
_ /1{tk<8}¢k(tk).../¢1(t1)dw§j1>...dw§2k> w. p. 1, (1.395)

t
where s € (t,T] (s is fixed), i1,...,i,=0,1,...,m

Applying Theorem 1.16 to the iterated Ito stochastic integral (1.395), we
obtain the following generalization of Theorem 1.11 to the case of an arbitrary
complete orthonormal system of functions in the space Lo([t,T]) and (1),

(7)€ Lo([t, T1).

Theorem 1.24. Suppose that 1(7), ..., ¥r(T) € La([t, T]) and {¢;(x)}3,
is an arbitrary complete orthonormal system of functions in the space Lo([t,T]).
Then, the following expansion

[k/2]

P1 Pk k )
TG = Lim S Y Ci(s) (H@(f +2
i =1

J1=0 Jx=0

k—2r
Zq
X > H figy, = iy, #0010y, = o } H G, l)

({{91,92}>--{92r— 192')"}} {a1,ap—or ) $=1
{91:92,--:920—1,927+91 -2k — 20 }={1,2,...,k}

converging in the mean-square sense is valid, where [x] is an integer part of a
real number x,

k
Cipi( / K(ty, ... tr,s) [ [ on(t)dty ... dty =
=1

S

t

is the Fourier coefficient, [] e Y e 0; another notations are the same as
0 0

i Theorem 1.2.
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Note that the estimates (1.251) and (1.253) will also be valid under the
conditions of Theorem 1.24.



Chapter 2

Expansions of Iterated Stratonovich
Stochastic Integrals Based on
Generalized Multiple and Iterated

Fourier Series

This chapter is devoted to the adaptation of Theorems 1.1, 1.16 for iterated
Stratonovich stochastic integrals. The case of continuously differentiable weight
functions (multiplicities 1 to 5) and weight functions identically equal to one
(multiplicities 6 to 8) is considered. In this case, we use a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in Lo([t, T]).
In addition, the case of continuous weight functions (multiplicities 1 and 2),
binomial weight functions (multiplicities 3 and 4) and weight functions identi-
cally equal to one (multiplicities 5 and 6) is studied. In this case, we use an
arbitrary complete orthonormal system of functions in Ly([t,T]). Recently (in
2024), the above adaptation has also been carried out for iterated Stratonovich
stochastic integrals of multiplicity k, & € N (Theorems 2.59, 2.61) but under
one additional condition.

2.1 Expansions of Iterated Stratonovich Stochastic Inte-
grals of Multiplicity 2 Based on Theorem 1.1. The
case pi,ps — oo and Smooth Weight Functions

2.1.1 Approach Based on Theorem 1.1 and Integration by Parts
Let (2, F,P) be a complete probability space and let f(t,w) def fr 10, T]xQ —
R be the standard Wiener process defined on the probability space (€2, F, P).

255
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Consider the family of o-algebras {F;, ¢ € [0, T]} defined on the probability
space (2, F,P) and connected with the Wiener process f; in such a way that

1. F, CF;, CF for s < t.
2. The Wiener process f; is Fi-measurable for all t € [0, 7.

3. The process fiin — f; for allt > 0, A > 0 is independent with the events
of o-algebra F;.

Let Mo([t,T]) (t > 0) be the class of random functions &(7,w) e [t, T]x
(2 — R defined as in Sect. 1.1.2.

We introduce the class Q,,([t,7]) (t > 0) of It6 processes n,, 7 € [t,T] of
the form

N zm+/a5ds+/bsdf5, (2.1)
t t

where (a,)™, (b;)™ € My([t, T]) and lim M{|bs — b,|*} = 0 for all 7 € [t, T]. The
S—T

second integral on the right-hand side of (2.1) is the It6 stochastic integral (see

Sect. 1.1.2).

Let C*1(Rx[t,T]) (t > 0) be the space of functions F(z,7) : Rx[t,T] — R
such that

or

O*F
%(:& 7-)

oF
W(%T)

<K, |—(z,7)

< K
- or

< K,

for all x € R and 7 € [t, T], where constant K does not depend on x, 7.

Let T;N), j=0,1,..., N be a partition of the interval [t, T], ¢ > 0 such that
_ (N) () (N) _ (N) () :
t=1y '"<7 '<...<71y =T, OSI%%(_l‘TjH—Tj ’—>O it N — oo.
(2.2)
The mean-square limit
N-1 1 ) « T
Li.m Z F (— <7]T(N) + T7T(m> ,T;N)> (fTuv) - fT(m) & / F(n-,7)df; (2.3)
N—oo ‘=3 2\ G+ j+i i
j= t

is called [114] the Stratonovich stochastic integral of the process F(n,,7), T €
[, T], where T](N), j=0,1,..., N is a partition of the interval [t, T] satisfying
the condition (2.2).

It is known [114] (also see [84]) that under proper conditions, the following

relation between Stratonovich and [to stochastic integrals holds
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x T T T
1 [OF
/ F(n.,)df, = /F(?]T,T)dfT -+ 3 %(nT,T)deT w.p. 1. (2.4)
¢ t ¢
If the Wiener processes in (2.1) and (2.3) are independent, then
« T T
/ F(n,,7)df, = /F(?]T,T)dfT w. p. L. (2.5)
¢ t

A possible variant of conditions under which the formulas (2.4) and (2.5)
are correct, for example, consists of the conditions: 1, € Qu([t,T]), F(n,,7) €
My([t, T)), F(x,7) € C*Y (R x [t,T]).

Note that if F'(x,7) = Fi(z)F5(7), then it suffices to require that F'(z, 7) be
twice differentiable with respect to x (with bounded derivatives) and continuous
with respect to 7 (instead of the condition F(z,7) € C*Y (R x [t,T])).

In Sect. 2.1-2.17, in most cases, {¢;(z)}32, is a complete orthonormal sys-
tems of Legendre polynomials or trigonometric functions in Ls([t,T]). There-
fore, we will pay attention on the following well known facts about these two
systems of functions [115].

Suppose that the function f(x) is bounded at the interval [t,T]. Moreover,
its derivative f'(x) is continuous function at the interval [t,T] except may be
the finite number of points of the finite discontinuity. Then the Fourier series

ZC}@(m), C} :/f(x)@(x)dx
=0 J

converges at any internal point x of the interval [t,T] to the wvalue
(f(x+0)+ f(x —0)) /2 and converges uniformly to f(x) on any closed inter-
val (of continuity of the function f(x)) lying inside [t,T]. At the same time the
Fourier—Legendre series converges if t =t and x =T to f(t+0) and f(T —0)
correspondently, and the trigonometric Fourier series converges if x = t and
x =T to (f(t+0)+ f(T —0))/2 in the case of periodic continuation of the
function f(x).

In Sect. 2.1 we consider the case k = 2 of the following iterated Stratonovich
and Ito stochastic integrals

« T b2

T W) gy = / it - .. / D (t)dwi . dw™ (2.6)

t t
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Ny = /zpk t). /zpl t)dwi . dw™) (2.7)
where every ¢y(7) (I = 1,...,k) is a continuous nonrandom function at the
interval [t,T], w @ = f() for i=1,...,mand w =7, £ (t=1,...,m) are

independent standard Wiener processes.

Let us formulate and prove the following theorem on expansion of iterated
Stratonovich stochastic integrals of multiplicity 2.

Theorem 2.1 [8] (2011), [10]-[22], [33]. Suppose that {$;(x)}32, is a com-
plete orthonormal system of Legendre polynomials or trigonometric functions
in the space Lo([t,T]). At the same time 15(s) is a continuously differentiable
nonrandom function on [t,T] and 1 (s) is twice continuously differentiable non-
random function on [t,T|. Then, for the iterated Stratonovich stochastic integral

x 1 xlo
T W@, = / ha(ts) / G (t)dE AR (i =1, m)
t t

the following expansion

[ ]Tt = p} ;172I—I>1c>o Z Z le

0]2 0

that converges in the mean-square sense is valid, where

T S9
Oj2j1 = /@02(52)4%(32)/¢1(31)¢j1(31)d81d82
t t

and
T

(= [ ot
t

are 1ndependent standard Gaussian random variables for various v or j.

Proof. In accordance to the standard relations between Stratonovich and
[t6 stochastic integrals (see (2.4) and (2.5)) we have w. p. 1

T
J* [w(Q)]T,t = J[¢(2)]T,t + %1{2'122'2} /wl(h)’g/}Q(tl)dtl, (28)
t
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where here and further 14 is the indicator of the set A.

From the other side according to (1.46), we have

2
J[w( )]Tt - pllézr—{loo Z Z Cjﬂl ( J1 Sj2 1{21 12}1{31 ]2}>

032 0
p1 P2 min{p;,pz}
= lim. E g C -1 lim E C s 2.9
Prpao 4 J2]1CJ o {i1= zz}p Py . Jij1 ( )
J1=0 j2=0 j1=0

From (2.8) and (2.9) it follows that Theorem 2.1 will be proved if

T o0
%/%(tl)%(h)dtl = Z Ciyji- (2.10)
f J1=0

Note that in this section and in Sect. 2.1.2 we present two different proofs
(under different conditions) of the existence of a limit on the right-hand side of
(2.10) for the polynomial and trigonometric cases.

Let us prove (2.10). Consider the function
1
K*(t1,t2) = K(t1,t2) + 51{t1:t2}¢1(t1)¢2(t1)7 (2.11)

where t1,ty € [t,T] and K (t1,ts) is defined by (1.6) for k = 2.

Let us expand the function K*(t1,t2) defined by (2.11) using the variable
t1, when t9 is fixed, into the generalized Fourier series at the interval (¢,7)

K*(t1,t9) = Z Cj(t2)gy, (1) (b #¢,T), (2.12)

where
T ta
Cj (ta) = /K*(th@)%(tl)dtl :¢2(t2)/¢1(751)¢j1(t1)dt1- (2.13)

The equality (2.12) is satisfied pointwise in each point of the interval (¢,T")
with respect to the variable ¢, when ty € [t,T] is fixed, due to a piecewise
smoothness of the function K*(t1,t2) with respect to the variable t; € [t,T] (t2
is fixed).
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Note also that due to well known properties of the Fourier—Legendre series
and trigonometric Fourier series, the series (2.12) converges when t; = ¢, T

Obtaining (2.12) we also used the fact that the right-hand side of (2.12)
converges when t; = t5 (point of a finite discontinuity of the function K(t1,t5))
to the value

1

S (K12 = 0,12) + K {1+ 0,12)) = %wl(tg)ng(h) = Kty ).

The function Cj, (t2) is a continuously differentiable one at the interval [¢, T7.
Let us expand it into the generalized Fourier series at the interval (¢,T")

]1 t2 Z CJ2]1¢]2 t2 (tQ #t, T)7 (2'14)

J2=0

where

T to

T
Chuir /0]1 t2) @), (ta)dty = /¢2(t2)¢jz(t2)/wl(tl)%(h)dhdtz,
t t

t

and the equality (2.14) is satisfied pointwise at any point of the interval (¢,7)
(the right-hand side of (2.14) converges when to = ¢, 7).

Let us substitute (2.14) into (2.12)
“(tr,t) = Z Zcmﬁ (t)d(ta),  (t,t2) € (KT, (2.15)
J1=0 j2=0

where the series on the right-hand side of (2.15) converges at the boundary of
the square [t, T)?.
It is easy to see that substituting ¢t; = to in (2.15), we obtain

—1/)1 t1)a(ta) Z ZCJ231¢11 t1) ¢, (t1). (2.16)

J1=0j2=0

From (2.16) we formally have

T T Y.
/¢1 t1)o(t1)dty = /Z Z Ciin;, (1), (1) dty =
t ¢

3120 j2=0

N | —
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ZZ / Clj 0, (1) 5, (1) dty =

P P2

= lim lim E g (OF (t1)o;, (t1)dty =
1100 Pa—+o0 J2J1 ¢]1 1 gb]z 1) 1=
]1 0]2 O
D1 D2 mln{pl,pz} o0
= lim lim g E C:.:1l¢_;v= lim lim E C’~:E C: .
p1—>oop2—>oo J2J1 {]1—]2} D100 P00 ' J1J1 . nn
J1=072=0 j1=0 j1=0

(2.17)

Let us explain the second step in (2.17) (the fourth step in (2.17) follows
from the orthonormality of functions ¢;(s) at the interval [t,T]).

We have

T T
/Z Cjy (1) ¢y (1) dity — Z/Ch t1)d;, (t1)dtr| <
t J

120 J1= =0 t

T
< [10a(tnG )l des < € [ 16y (t0)]dis, (2.15)

where C' < oco and

T

S / 01(5)6,(5)dsey(7) < Gy (7).

J=p+1%

Let us consider the case of Legendre polynomials. Then

z(t1)
1| «— .
Guitdl =5 | X @i+ D) [ aul) P )y, ((0)]. (219
Ji=p1+1 —1
where T—1 T+1 T+t 2
= + +
w =T T = (s T ) )
and Pj(s) is the Legendre polynomial.
From (2.19) and the well known formula
dPj dP;_q , :
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we obtain

Gt =5 D {(Pj1+1(z(t1))_Pj11(Z(t1)))¢1(t1)_

Ji=p1+1

o

| Y (P (=(t)) Py (2(h)) = Piyoa(2(1)) Py (2(11)))

T—1

ey {M(tl)(#(&mm)&(z(tl»)

J1=p1+1 2j1 +3

_|_

1
2 — 1

z(t1)
T —t 1
—T / (m(le+2(y)—le(y))—

(P (y) — Pﬁz(Q))) i’(U(y))dy}le(Z(tl))‘, (2.22)

(P, (2(t)) = Pj12(z<t1)))> -

1
271 — 1

where Cj is a constant, 1] and ] are derivatives of the function ;(s) with
respect to the variable u(y).

From (2.22) and the well known estimate for Legendre polynomials [115]
K
Vi 1(1 — y2) U4

where constant K does not depend on y and n, we have

|Pa(y)| <

ye(=1,1), neN, (2.23)

|Gy, (t1)] <
< Co| lim - > (P (z(t0) Py (2(t1) = Pioa(2(1)) Py (2(1))) | +
- z(t1)
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< o lim (Poy1(2(t1)) Pa(2(t1)) = B, (2(t1) Bpr41(2(81)) |+

Ji=p1+1 Ji=p1+
K 1 1
< — o5+ — . (2.24)
P\ (1= (2(t1))*) (1= (2(t)))"
where Cy, (4, ...,Cy, K are constants, t; € (¢,7), and
1 [dz 1
Y <S5 =— (2.25)
n=p+l Ji ” v p1
From (2.18) and (2.24) we get
T T
/Z .71(t1)¢.71 tl dtl Z/Ch t ¢]1(t1)dt1 <
t J1=0 n= Ot
K / d / d
pr\J (=¢)"" J (1-9%
if p; — 0o. So, we obtain
X T T
§/¢1(t1)¢2(t1)dt1 = /Zle(t1)¢j1(t1)dt1 =
t J1=0

00 T T
= Z/le t1) g, (t1)dt, = Z/Zcﬂﬂlgbﬂ? (t1)@j, (t1)dty =

J1=0% 71=07% J2=0
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o Z Z/OJ2J1¢J2 31 ¢]1 (tl dtl = ZC]Lh (2_26)

J1=0 j2=0% J1=0

In (2.26) we used the fact that the Fourier-Legendre series

Z Claii 5o (1)

J2=0

of the smooth function Cj},(¢;) converges uniformly to this function at the in-
terval [t + ¢, T — €] for any € > 0, converges to this function at the any point
t1 € (t,T), and converges to C;,(t+0) and C;,(T'—0) when ¢t; =¢, T.

More precisely, we have

T—¢ 50

T
/Z ]2J1¢J2 131 ¢]1(t1)dt1 — / Z Cjzhgbjz (t1)¢j1 (tl)dtl + Ag + B, =

t+e 9270

Z JeJ1 / ¢32 ty ¢31(t1)dt1 + A. + B.
2=0 t+e

50 T t+e T

Z J2in / /—/ 05 (t1) @), (t)dtr + Ac + B: =

2=0 t t T—¢

Z J2J1 (1{31 =j2} — (¢j2 ()‘)¢]1()‘) + ¢j2 (6)¢]1(0))> + A+ B, =

J2=0

31]1 (Z 032]1%2 ¢]1 + Z Cjzjlqb,h ¢]1( )) + AE + BE? (227)

J2=0 Jo=

where 0 € [t,t +¢|, A € [T —¢,T], and

t+¢

Ac _/ZCJQJ1¢J2 t1)¢31(t1)dt17 B. = / ZCJQJ1¢]2 t1)¢31(t1)dt1

J2=0 T€]2O

In obtaining (2.27) we used the theorem on the mean value for the Riemann
integral and orthonormality of the functions ¢;(x) for j = 0,1, 2
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Further, we have |A.| + |B:| < eC, where C' < oo is a constant. Performing
the passage to the limit lim in the equality (2.27), we get

e——+0

J2=0

T
/Z ]2]1¢J2 ty ¢j1 (tl)dtl - Cj1j1'
t

Then (see (2.26))

o T N
Z / Z ]2]1¢j2 131 ¢]1(t1)dt1 = Zlejl
=0 720 J1=0

and the relation (2.10) is proved for the case of Legendre polynomials.

Let us consider the trigonometric case and suppose that {¢;(z)}32, is a
complete orthonormal system of trigonometric functions in Ly([t, T1).

Denote
A o0 b1
ef
Sp1 = /Z ]1(t1)¢]1 tl dtl Z/ J1 tl gb]l(tl)dtl -
t 71=0 J1=0
T
S (o (t) / 01(0)6,,(6) 0t
+ Ji=pitl
We have
T op, T
Sop, = /Z (t1) o), (t1)dt; — Z/Cﬁ t1)oj, (t1)dt,| =
t 51=0 1=0%
T

Z @DQ t1 ¢]1 tl /101 ¢J1 )d@dtl =

+ Ji=2p1+l

2
=73 /¢2(t1
=p1+1 \}

2 —1 2m91(t1 — t
/% cos Ml i )d cos—m}(_lt ) dt;| =

S Sin

 2mji(s—t) . 2wt —t)
ST T W s ginem AN
om0,
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T o0 .
:% /(%(t)%(tl) Z %Sm%_lt_t)—i—

¢ Ji=pi+l

T - x N
+ 27Tt¢2(t1) Z _%<¢/1(t1)—¢/1(t)cosm_

Ji=p1+l J =t
ty
2 1(s —t 2my1(t; — ¢t
- /sin—ﬂ‘;(it ) {(s)ds Sin—ﬂ]}(_lt )_

2m71(s — ¢ 2wy (ty — ¢t

T—1t T—t
t
T 0 C
1 2m91(t1 — ¢
t Ji=p1+1 J1 P
2 C:
Z /@Dg sin le( )dtl —2, (2.28)
J1 —t P1
Jl—p1+1

where constants C7, Cy do not depend on p;.

Here we used the fact that the functional series

21 (t; — ¢
Z— i —Jl 1= 1) (2.29)

—1

n= 17

converges uniformly at the interval [t +¢,T — €] for any € > 0 due to Dirichlet—
Abel Theorem, and converges to zero at the points t and T". Moreover, the series
(2.29) (with accuracy to a linear transformation) is the trigonometric Fourier
series of the smooth function K(t;) =t —t, t; € [¢t,T]. Thus, (2.29) converges
to the smooth function at any point t; € (¢,7)).

From (2.28) we obtain

T
- 2 cy, C
Sop <Cs| Y = (%( ) — a(t) /COSml—_t)%( )d ) +p—12 < p_f’
Ji=p1+1 t
(2.30)

where constants Cy, C3, C'y do not depend on p;.



DF KUZHGTJSOV St 11111 g Apptoximation of Iterated Im and Stramnovich Stochastic Integmls Based on Genemlized Multip]e Foun'er Series267

Further,

Sop—1 = / Z Va(t1);, (th) /% )¢;,(0)dOdt,| =

t J1=2p1

= |Sop, + [ Ua(t1)pap, (t1) [ 1¥1(0)ay, (0)dOdt;| <
fostroncn

¢
/ (-1 (-1
2 2mp1(ty — ¢ 2mp1(0 — ¢
< _ _ .
< Sy, + T3 /@Dg(tl)cos T+ /¢1(9)COS T3 dfdty
t t
Moreover,
tq
2 t1 —t 2 60—t
/wz t1)cos Wpl( ! )/wl(ﬁ)costthl =
—t T—1t
t
Tt [ 2mpi(t1 — 1 (t— 1)
—1 T™pP1 tl—t 27Tp1 tl—t
= t t —
S, /%( 1)cos T 7 <¢1( 1)sin T
¢
[ 2mpi(6— 1)
—1
— [ ¢ (6)sin L d | dt
/wl( ) T —t 1
¢
The relations (2.30)—(2.32) imply that
Cs
Sop—1 < —
2p1—1 p1
where constant Cj is independent of p.
From (2.30) and (2.33) we obtain
’ K
S / Z wg Tfl ¢]1 tl /wl ¢]1 )d@dtl < — =0
t Ji=p1+1 P

if p; — 0o, where constant K does not depend on p; (p; € N).

(2.31)

(2.32)

(2.33)

(2.34)

Further steps are similar to the proof of (2.10) for the case of Legendre

polynomials. Theorem 2.1 is proved.
Note that the estimate (2.34) will be used further.
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2.1.2 Approach Based on Theorem 1.1 and Double Fourier—Legen-
dre Series Summarized by Pringsheim Method

In Sect. 2.1.1 we considered the proof of Theorem 2.1 based on Theorem 1.1
and double integration by parts (this procedure leads to the requirement of
double continuous differentiability of the function ;(7) at the interval [¢,T]).
In this section, we formulate and prove an analogue of Theorem 2.1 but under
the weakened conditions: the functions v (7), 12(7) only one time continuously
differentiable at the interval [t, T]. At that we will use the double Fourier series
summarized by Pringsheim method.

Theorem 2.2 [13]-[17], [28], [47]. Suppose that {¢;(x)}32, is a complete
orthonormal system of Legendre polynomaials or trigonometric functions in the
space Lo([t, T]). Moreover, 1¥1(s), 1a(s) are continuously differentiable functions
on [t,T]. Then, for the iterated Stratonovich stochastic integral

T xt
J*W(Q)]T,t =/ %(h)/
t ¢

the following expansion

G (t)dE AR (i =1, m)

P11 P2
P = Lim, e |
[Py = Lim, > > CiiGG (2.35)
J1=0 72=0
that converges in the mean-square sense is valid, where

T

Ciojr = /%(82)%(52)/¢1(81)¢j1(81)d31d82 (2.36)

t

and
T
(= [ oxts)ar?
t

are independent standard Gaussian random variables for various v or j.

Proof. Theorem 2.2 will be proved if we prove the equality (see the proof

of Theorem 2.1)
T

5 [ enltityin =3 G, (2.37)

t 71=0
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where Cj ;, is defined by the formula (1.8) for k = 2 and j; = js. At that
{#;(7)}52 is a complete orthonormal system of Legendre polynomials or trigo-
nometric functions in the space Lo([t,T]).

Firstly, consider the sufficient conditions of convergence of double Fourier—
Legendre series summarized by Pringsheim method.

Let Pj(z) ( =0,1,2,...) be the Legendre polynomial. Consider the func-
tion f(z,y) defined for (x,y) € [—1,1]>. Furthermore, consider the double
Fourier-Legendre series summarized by Pringsheim method and correspond-
ing to the function f(z,y)

i S SR D@ DO
def ]Z:(J %sz +1)(2i + 1)C;5P () Pi(y), (2.38)
where .
Cy= V@D [ S wR@P@ddy. (239

(1,12

Consider the generalization for the case of two variables [120] of the theorem
on equiconvergence for the Fourier-Legendre series [121].

Proposition 2.1 [120]. Let f(z,y) € La([—1,1]*) and the function

—1/4 ~1/4
fay) (1=a?) " (1=
is integrable on [—1,1]%. Moreover, let
[f(z,y) = flu,0)] < GY)|z — ul + H(z)ly =],

where G(y), H(x) are bounded functions on [—1,1]2. Then for all (z,y) €
(—1,1)? the following equality is satisfied

lim (Z > %\/(23' +1)(2i + 1)C5 Pi(2) Pi(y) —

n,m—00 \ < .
7=0 =0

—(1 — 27 Y41 — )48, (arccos &, arccos y, F)) = 0. (2.40)
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At that, the convergence in (2.40) is uniform on the rectangle
[—1+e,1—¢|x[-1+06,1—=06] forany e,6>0,

Sem(0, 0, F) is a partial sum of the double trigonometric Fourier series of the
auxiliary function

F(6,) = /[simdly/sing| f (cosb, cosg), 6, € [0, 7],

and the Fourier coefficient C; is defined by (2.39).
Proposition 2.1 implies that the following equality

7,M—00
j=0 i=0

. ~x~ 1 . ,

lim (ZZ§\/(2J +1)(2i + 1)C5 Pi(2) Pi(y) — f(:z:,y)) =0 (2.41)
is fulfilled for all (x,y) € (—1,1)%, and convergence in (2.41) is uniform on the
rectangle

[—1+4+¢e,1—¢] x[-14+6,1—0] forany e,d>0

if the corresponding conditions of convergence of the double trigonometric
Fourier series of the auxiliary function

g(,y) = flz,y) (1—22) " (1= (2.42)

are satisfied.

Note also that Proposition 2.1 does not imply any conclusions on the be-
havior of the double Fourier-Legendre series on the boundary of the square
[—1,1]>.

For each 6 > 0 let us call the exact upper edge of difference |f(t") — f(t")]
in the set of all points t', t" which belong to the domain D as the module of
continuity of the function f(t) (t = (t1,...,tx)) in the k-dimentional domain
D (k > 1) if the distance between t',t" satisfies the condition p (t',t") < 4.

We will say that the function of k (k > 1) wvariables f(t) (t = (t1,...,tx))
belongs to the Hélder class with the parameter o € (0,1] (f(t) € CY(D)) in the
domain D if the module of continuity of the function f(t) (t = (t1,...,tx)) in
the domain D has orders o(0%) (o € (0,1)) and O(5) (o =1).

In 1967, Zhizhiashvili L.V. proved that the rectangular sums of multiple

trigonometric Fourier series of the function of k£ variables in the hypercube
[t, T]* converge uniformly to this function in the hypercube [t, T]¥ if the function
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belongs to C([t, T]*), a > 0 (definition of the Holder class with any parameter
a > 0 can be found in the well known mathematical analysis tutorials [122]).

More precisely, the following statement is correct.

Proposition 2.2 [122]. If the function f(x1,...,x,) is periodic with period
21 with respect to each variable and belongs in R"™ to the Holder class C*(R")
for any a > 0, then the rectangular partial sums of multiple trigonometric
Fourier series of the function f(x1,...,x,) converge to this function uniformly

i R".
Let us back to the proof of Theorem 2.2 and consider the following Lemma.

Lemma 2.1. Let the function f(x,y) satisfies to the following condition

|f(33,y) - f(xhyl)’ S 01’33 _’CE1’ +C2‘y_y1‘7

where C1,Cy < 0o and (z,y), (x1,11) € [=1,1]%. Then the following inequality
15 fulfilled

l9(z,y) — g(1, )| < Kp'/*, (2.43)
where g(x,y) in defined by (2.42),
p=V(r—21)*+(y—u)

(z,y) and (z1,11) € [-1,1]*, K < 0.

Proof. First, we assume that x # x1, y # y;. In this case we have
l9(z,y) — g(z1,91)| =
1/4 1/4
= (=) (1= ) () = Flanp) +

) (=) (=) = o) =) <
<Cile—a|+ Caly =l +

Oy ((1 T ¢ o) Ry e S S Rl (2.44)

where (5 < 0.

Moreover,

(=) (=) = (=) (1= =

= ‘(1 _ x2)1/4 <(1 _ y2)1/4 B (1 B y%)l/zl) n
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(=) (=) - (1 -a)))| <

< )(1 _y2)1/4_ (1 . 1/4‘ +‘ )1/4_ (1 _x%)l/él ’

(1=t = (=) =
= ‘ ((1 —a)'t—(1- 961)1/4) (1+z)/ 4+
(=) (A2 = (@) ( <
< Ko (1= )Y = (1= ) [ )Y = (120

where K; < oo.
It is not difficult to see that

‘(1 +a) (14 x1)1/4’ —

) (1£2) = (1) _
((1 4 $)1/2 +(1+ 3;1)1/2) ((1 + :I:)l/4 +(1+ :131)1/4)

= |z — x| o — 2|2 . o1 — '
1x£2) 2+ (1+a)V2 Qxa)/A+QL£x)V4
< |£l?1 — $|1/4

The last inequality follows from the obvious inequalities

IL/2
|71 — 2| <1

(Lxa2) 2+ (1xa)2 ="

<
Qo)A+ (Lot =
From (2.44)—(2.47) we obtain
9(z,y) — g(z1, )| <
< Cile — 1] + Caly — 3| + G (Jan = o]+ o = y') <

< Csp+ Cop'* < Kp'/*,
where C5, Cg, K < 00.

(2.45)

(2.46)

(2.47)
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The cases * = x1, y # y1 and x # x1, y = y; can be considered analo-
gously to the case x # x1, y # y1. At that, the consideration begins from the
inequalities

9(x,y) — g(z1,31)] < Ky ‘(1 — )" Fla,y) — (1 yf)1/4f(:c1,y1)‘

(2 =21, y# 1) and

1/4

90 y) = glery)| < Ko | (L= fla,y) = (1= ) flanp)

(x # x1, y = y1), where Ky < co. Lemma 2.1 is proved.

Lemma 2.1 and Proposition 2.2 imply that rectangular sums of double
trigonometric Fourier series of the function g(x,y) converge uniformly to the
function g(x,y) in the square [—1,1]2. This means that the equality (2.41)
holds.

Consider the auxiliary function

Pa(t1)i(ta), t1 >ty
K'(t1,t) = , 1ty € [t,T) (2.48)

V1(t)a(ta), 1 <to

and prove that
(K (t1,t2) = K'(41,65)] < L(Jts = 5] + [t2 — 83)) (2.49)

where L < oo and (t1,12), (3,t3) € [t, T]%.
By the Lagrange formula for the functions 1 (¢]), ¥ (t}) at the interval

[min {¢1,t]}, max {¢,t]}]
and for the functions v (t5), ¥o(t5) at the interval
[min {¢9,t5} , max {to, t5}]

we obtain
|K'(t1,t2) — K'(t],15)] <

Ua(t1)1(te), t1 >to Ua(t1)n(t2), t] > 5

U1(t)a(te), t1 <ty Y1(t)a(ta), ¢ <5
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+1q |t1 — tﬂ + Lo ‘tg — t;‘ . Ly, Ly < o0. (250)
We have
Pa(t1)i(te), t1 >ty Uo(t1)hr(t2), 17 > 15

U1 (t)a(te), t1 <ty V1 (t)a(te), ¢ <15

0, t1 21, t] 215 or t <tg, t] <15

= q Yo(t1)Y1(te) — Y1(t1)a(ta), t1 > to, 1] <15 (2.51)

D1 (t)a(te) — (b))t (te), & <to, 11 > 15
By Lagrange formula for the functions 1 (t2), ¥2(t2) at the interval

[min{ty, o}, max{ty, t2}]

we obtain the estimate

Pa(t1)1(ta), t1 >ty Va(t)n(te), t7 > t5

U1 (t)a(te), t1 <ty V1(t)a(tz), 17 <15

0, & 2>t t] =215 or & <ty t] <15
< Lslts — 4] : (2.52)
L, t1 <to, 17215 or t;=>1g, 1715
where L3 < o0.
Let us show that if t; < ¢y, t7 > t5 or t1 > 19, t] < 5, then the following
inequality is satisfied
=t < I} — 0] 185 — 1. (2.59)
First, consider the case t; > ty, t] < t5. For this case

ty+ (L5 —15) <ty <t

Then
(t—t) — (5 —t) <ts—t, <0
and (2.53) is satisfied.
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For the case t; < t9, t7 > t5 we obtain
t+ (6 —t) <t <ty

Then
(h—t) — (b — 1)) <t —ty <0
and also (2.53) is satisfied.
From (2.52) and (2.53) we have

Ya(t)r(ta), t1 >t Ya(t)n(t2), ] =15

Y1(t)a(ta), 1 <ty P1(t)a(te), ] <15

O, tl 2 tg, tik Z t; or tl S tQ, tik S t;
< Ly ([t7 — ta| + [t3 — t2)) <
1, tl S tQ, tik Z t; or tl Z tg, ﬂ( S t;
L, >ty t1 215 or 1 <t t] <15
< Ly ([t — ta] + [t — t2]) =
1, tl S tg, tT Z t; or tl Z tz, tT S t;
= Ls (|t} —ta] + [t5 — t2]) - (2.54)

From (2.50), (2.54) we obtain (2.49). Let

; T—t +T+t y T—t +T+t
g aj —_— e
1 2 2 Y 2 2 y 2 Y

where z,y € [—1,1]. Then

Yo (h(x)) Y1 (h(y)), =>y

hr (M(@)) P2 (R(y)), =<y

K/(tlatQ) = K”(I’,y) -

where z,y € [—1,1] and

h(z) = 7Tt (2.55)
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The inequality (2.49) can be rewritten in the form
[K"(2,y) = K"(«", ") < L (Jo — 2" + |y = ")) , (2.56)

where L* < oo and (z,v), (z%,y*) € [-1,1]%.

Thus, the function K”(x,y) satisfies the conditions of Lemma 2.1. Hence,
for the function

K//(x,y) (1 o x2)1/4 (1 . y2)1/4
the inequality (2.43) is correct.

Due to the continuous differentiability of the functions ; (h(z)) and
Yy (h(z)) at the interval [—1, 1] we have K" (z,y) € Ly([—1, 1)?). In addition

1 T
K"(z,y)dxdy 1 1
/ (1 — 2241 — y2)1/ <C / (1— 221/ / (1— y2)1/4dyd9:—|—
[—1,1]2 —1 -1
1 1
L L dyd C
+ (1—:]52)1/4 (1—y2)1/4 yaxr | < oo, < 0.
-1 T

Thus, the conditions of Proposition 2.1 are fulfilled for the function K" (x, y).
Note that the mentioned properties of the function K" (z,y), xz,y € [—1, 1] also
correct for the function K'(ty,t5), t1,to € [t, T.

Remark 2.1. On the basis of (2.49) it can be argued that the function
K'(t1,t) belongs to the Holder class with parameter 1 in [t, T)?. Hence by Propo-
sitton 2.2 this function can be expanded into the uniformly convergent double
trigonometric Fourier series in the square [t, T]?, which summarized by Pring-
sheim method. However, the expansions of iterated stochastic integrals obtained
by using the system of Legendre polynomaials are essentially simpler than their

analogues obtained by using the trigonometric system of functions (see Chapter
5 for details).

Let us expand the function K'(1,t2) into a multiple (double) Fourier—
Legendre series or trigonometric Fourier series in the square [t, T]?. This series
is summable by the method of rectangular sums (Pringsheim method), i.e

K (tl,tg hm ZZ//K’ tl,tQ (;5]1 t1)¢j2(t2)dt1dt2 ¢]1(t1>¢]2(t2)

n1,MNo—>00
’ J1=0 j2=0
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ni

na T ta
- nhl?]i?II_l)OOZ Z /wQ(t2)¢j2(t2) /wl(t1)¢j1 (t1)dt1dt2—l—
t

J1=0 j2=0 t
T

+ / U1 (t2)dj,(t2) / Va(t1) by, (t1)dty | dtagj, (t1)@y, (t2) =

t

= lim DD (Chujy + Ciiy) 65, (1) 0, (H2), (2.57)

Jj1=0 j2=0

where (t1,t2) € (¢, T)%. At that, the convergence of the series (2.57) is uniform
on the rectangle

[t+e,T—e| x[t+0,T —0] for any £,6 > 0 (in particular, we can choose ¢ = §).

In addition, the series (2.57) converges to K'(t1,t2) at any inner point of
the square [t, T)?.

Note that Proposition 2.1 does not answer the question of convergence of
the series (2.57) on the boundary of the square [t, T]?.

In obtaining (2.57) we replaced the order of integration in the second iter-
ated integral.

Let us substitute t; = 5 in (2.57). After that, let us rewrite the limit on
the right-hand side of (2.57) as two limits. Let us replace j; with js, jo with jy,
ny with ne, and ny with nq in the second limit. Thus, we get

ni N2

im0 G (0)05(0) = Galialn), e (T). (258)
) 2—>00j1:0j2:0

According to the above reasoning, the convergence in (2.58) is uniform on
the interval [t+¢, T —¢] for any € > 0. Additionally, (2.58) holds at each interior
point of the interval [t, T7.

Let us fix ¢ > 0 and integrate the equality (2.58) at the interval [t+e, T —¢].
Due to the uniform convergence of the series (2.58) we can swap the series and
the integral

ny g T—¢ T—e
nl}ggoozzcjzjl/¢j1(t1)¢j2(t1)dt1:%/wl(tl)%(tl)dtl- (2.59)

J1=0 j2=0 t+e t+e
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Lemma 2.2. Under the conditions of Theorem 2.2 the following limit
731_{1(;10 Z C(3'1]'1
Jj1=0

exists and is finite, where C; ;, is defined by (2.36) if j1 = ja, i.e.

T ,
Cijy = /¢2(tz)¢j1(t2)/wl(tl)cﬁﬁ(h)dhdtg.

Lemma 2.2 has already been proved in Sect. 2.1.1 under stronger conditions.
Further, in this section, another proof of Lemma 2.2 is given. This will allow
us to obtain useful estimates that will be used later in Chapter 2.

Applying the equality (2.59) for n; = ny = n and Lemma 2.2, we get

/ P1(te)a(tr)dt; = hm Z Cloji / ¢j1(t1)¢j2(t1)dt1 -

t+e > j1ja=0 t+e
t+e
nh—>nolo Z Clai /¢31 t1)@j, (t1)dty — /¢J1 t1) ¢y, (t1)dir—
J1,J2=0

- / G, (t1) b, (t1)dty | =
T—e

= Jim, S G (1{1'1:;-2} - (@1(9)%‘2(9) + @1“)@2@05) -

J1,72=0

nh_{glo Z OJlJl - gr}l_fgo Z Cj2j1 <¢j1(9)¢j2 (9) + gbjl()‘)gbjé()‘))v (260)

J1=0 J1,J2=0

where 0 € [t,t +¢], A € [T —¢,T]. In obtaining (2.60) we used the theorem on
the mean value for the Riemann integral and orthonormality of the functions

¢j(z) for j =0,1,2...
Applying (2.60), we obtain

67}520 Z Oj2j1 (¢j1 (9)¢]2 (0) + ¢j1 (A)QS]Q(A)) -

j17j2:0
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7}520201131 T}l_?go Z OJ2J1 / ¢j1 t1 ¢J2(t1)dt17

.71 ]2 =0 t+e

where the limits

7}1_{10102031]17 nh—>Holo Z Cjzjl / ¢Jl t1 ¢Jz(t1)dt1

1=0 J1,J2=0 e

exist and are finite (see Lemma 2.2 and the equality (2.59)). This means that
the limit

67}1_%10 'ZO Cijl <¢j1 (9)@532(9) + gb]l()‘)gb]z()‘))
J1,J2=
also exists and is finite.

Suppose that the following relations

< K < o0, <K <o

Z Cjzjl ¢j2 (t) ¢j1 (t)

J1:J2=0

Z 03211¢J2 ¢J1( )

J1,72=0

(2.61)
are satisfied for n € N (the relations (2.61) will be proved further in this sec-
tion); constant K does not depend on n.

Note that
8nh—>r130 Z Cj2j1 <¢j1 (0)¢J2 (9) + ¢j1 (A)¢J2(/\)) ' -
J1,J2=0
nh_{&g Z Cjojr @5, (0) 05, (6) + Z Choin @7 (N)dj (M) |- (2.62)
J1,J2=0 J1,52=0
Using (2.58) (n; = ny = n) and (2.61), we obtain
5731_{20 Z Chojr 0, (0) 05, (6) + Z Cioin @7 (N @ (A)] <
J1,J2=0 J1,J2=0
<€nlggo< Z C]2]1¢]1 qb]z Z C]2]1¢]1 ¢]2( )) S25[(1 — 0
J1,J2=0 J1:J2=0

(2.63)
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if ¢ = 40, where 0 € [t,t+¢], A € [T —¢,T], constant K is independent on n.
Performing the passage to the limit 11120 in the equality (2.60) and taking
E—
into account (2.62), (2.63), we get

T
%/1/)1(751)1&2(751)61751 =Y Cjj (2.64)

J1=0

Thus, to complete the proof of Theorem 2.2, it is necessary to prove (2.61).
To prove (2.61), as well as for further consideration, we need some well known
properties of the Legendre polynomials [115], [121].

The complete orthonormal system of Legendre polynomials in the space
Ly([t, T]) looks as follows

0)(z) = 2j+1P~<<x—T+t> & ) j=01,2,..., (265)

T—t""’ 2 )T —t

where Pj(x) is the Legendre polynomial.

It is known that the Legendre polynomial P;j(x) is represented as

1 & 9 j

At the boundary points of the orthogonality interval the Legendre polyno-
mials satisfy the following relations

Pi(1) =1, Pj(-1)=(-1),
Pia(1) = P(1) =0, Paa(=1)+ Py(=1) =0,
where 7 =0,1,2,...

Relation of the Legendre polynomial Pj(x) with derivatives of the Legendre
polynomials Pj.;(z) and Pj_;(x) is expressed by the following equality

Pio) = 51 (Plal@) = PL@), d=12.. (260

The recurrent relation has the form

+ 1) P; P
J
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Orthogonality of the Legendre polynomial P;(z) to any polynomial Qx(x)
of lesser degree k we write in the following form

1

/Qk(l')Pj(x)dx =0, k=0,1,2,...,5—1.

—1
From the property

1 0 if ko
/Pk(:v)Pj(:z:)d:c =
“1 2/(2j+1) if k=

it follows that the orthonormal on the interval [—1, 1] Legendre polynomials
determined by the relation

. 27 +1 .
Pi(z) = 5 Pi(z), j=0,1,2,...

Remind that there is the following estimate [115]

K
VIT I = g7

1Pi(y)] < ye(=11), j=12..., (267

where constant K does not depend on y and j.

Moreover,

|Pi(z)] <1, ze[-1,1], j=0,1,... (2.68)

The Christoffel-Darboux formula has the form

i@j +1)Pi(z)Pi(y) = (n+ 1)P”(x)P”“(y; - fnﬂ(x)Pn(y)

J=0

. (2.69)

Let us prove (2.61) (see [28])). From (2.69) for x = +1 we obtain

S (25 + 1)Pi(y) = (n+ 1)Pn+1(zy/)_—1pn(y)

j=0

, (2.70)
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n

S @27+ (1) = (n+ (-1 W) )

o y+1

From the other hand (see (2.66))

n

> @2j+1)P _1+Z 2j +1)P
=0
=1 D (Paly) Pl =1+ (Z(Pm@) —P.7_1<y>>) -
=14 (Pa(e) 4 Pua) — 2~ 1) = (o) + Ben(@) (272
and . .
Z(QJ +1(-1)Pily) =1 +Z(—1)3(21 +1)Fi(y) =
= 14 P E) — Fa) = 14 (L0 a0 = Poat)) =

Applying (2.70)—(2.73), we get

(n+ 1)Pn+1(§>—_1pn(y) = (Pu(2) + Puya (@), (2.74)

Pn+1(y) + Pn(y) p

(n+1)

Let us prove the boundedness of the first sum in (2.61). We have

Z CJ231¢32 ¢]1( )_

J1,J2=0

1 )

- —ZZ 2+ D21+ 1) [ 6alb)Prly) [ or(hn) Py n)dndy =

J2=0j1= —1 —1
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Y n

- i/wz(h(y)) > (242 +1)P(y) /wl(h(yl)) > (251 + 1) Py, (y1)dyidy =

j2:o -1 j1:0

= i/%( (/ Y1(h(y1))d(Poya(y1) + B (%))) d(Poa(y) + Pa(y)) =

7/)1 (/ '@Dl yl n—H yl) + P (yl))> d(PTH-l(y) + Pn(y))+

+i A(h (/ P1(h(y1))d(Poa(y1) + P, (yl))) d(Pot1(y) + Puy)) =
- ih b oh,
where
A(h(y)) = s(h(y) — bu(h(w)), h(y) = Lyt T2 (@76)
Further,

(/wl Poialy +Pn(y))>2 =

— 5 (200 - [Pt + P ) <1< o

where )| is a derivative of the function ¢, with respect to the variable v,
constant C; does not depend on n.

By the Lagrange formula we obtain

Alh(y)) =wg(§<7’—t><y— 1) +T> o @(T_t)(y_ ) +T) _

— () = (D) + = 1 4506) — ¥1(6) ) 57— 1) =

= Cy + ay(y — 1), (2.77)
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where |a,| < oo and C) = o(T) — 1 (T).
Let us substitute (2.77) into the integral I

Iy = I3 + Iy,

1

I3 :/Oéy(y—l) /¢1(h(yl))d(Pn+1(y1)+Pn(yl)) d(Poy1(y) + Pu(y)),

-1

L=C / / () A(Pass (1) + Pal)) | d(Pasa (9) + Palw)).

-1 —1

Integrating by parts and using (2.74), we obtain

<w1<h<y>><Pn+l<y> + Puy))-

L / 0yy = D0+ D(Puny) = Pa(y))
y—1

= [Pusaton) + Pl b)) = o )y

Applying the etimate (2.67) and taking into account the boundedness of «,
and ¢} (h(y1)), we have that |I3] < oco.

Using the integration order replacement in Iy, we get

Iy = Cl/wl(h(yl)) /d(Pn+1(y)+Pn(y)) d(Pos1(y1) + Po(y1)) =

1

_ o / 1 (h(y2)A(Pocs (1) + Pa(y) / A(Poir(y) + Paly))—

-1
1 U1

41/@&M%D{/ﬂ&a@%#&@” d(Poy1(y1) + Pu(yr)) =

-1 —1

— I — .
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Consider I

Iy = 201/¢1(h(y1))d(Pn+1(?Jl) + Pu(y1)) =

=20, (2¢1(T) - /(Pn+1(y1) + Pn(y1))¢i(h(y1))%(T - t)dy1) :

Applying the estimate (2.68) and using the boundedness of ¢} (h(y1)), we
obtain that |/5| < oo.

Since (see (2.77))

) = v (50 -0y -1+ T) -

= a(T) + (s~ DY 65T~ 1) = o+ Byly — 1),

where |3,| < co and Cy = 91(T'), then

Is = 03/ (/ d(Pr1(y) + Pn(y))) d(Poy1(y1) + Pu(yr))+

-1 —1

)

+01/6y1(y1 —1) (/ d(Poi1(y) +Pn(y))) d(Poy1(y1) + Pu(yr)) =

_ % ( / d(P,1(y) +Pn(y))> +

—1

vy [Pl D0 D) =Bl (/ HPra ) + Pn<y>>) "

y1 — 1

—1

= 20,4 C1 [ 8,0+ D(Pass(31) = Paln))(Paoa () + Palon))
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Using the estimate (2.67) and taking into account the bounedness of f,,,
we obtain that |/g| < oo. Thus, the boundedness of the first sum in (2.61) is
proved.

Let us prove the boundedness of the second sum in (2.61). We have

Z Cj2j1¢j2 (t)¢j1 (t) -

J1,J2=0
1 Yy

- iz > (22 + 1)(251 + 1)(=1) /wz(h(y))Pjg(y) /¢1(h(y1))Pj1 (y1) ¥

J2=0j1=0 -1 -
Xdiydy =
n y

— 1 [ ) >+ 0P 1 [ )

J2=0 -1
X Y (21 + 1) Py, () (= 1) dyrdy =
71=0

B (_411) n/%(h(y)) /¢1(h(yl))d(Pn+1(yl) = Pu(y1)) | %

Xd(Pn—i-l(y) - Pn(y)) =

= i/%(h(y)) /%(fl(yl))d(Pnﬂ(yl) — Pu(yn)) | d(Posa(y) — Pu(y))+

% / A(h(y)) / U1(h(y))d(Posa(y1) = Pu(wn)) | d(Posa(y) = Pa(y)) =
1

1
= 4J1 + ZJQ,

where A(h(y)), h(y) are defined by (2.76).

Further,
2

=5 | [ oee)aPam - P | -
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1 2

=5 (2000 — (Rt - P Sy | < Ki<oc,

o (2.78)

where ] is a derivative of the function v with respect to the variable v,

constant K is independent of n.

By the Lagrange formula we obtain

A = (5T~ 0+ 1)+1) o (5T -0 1) +1) =

= 0alt) = )+ o+ 1) (W) i) ) T = ) =

=Ky +y,(y+1), (2.79)

where |y,| < oo and Ky = 1s(t) — ¢n ().
Consider Jy

1

Jo = /A(h(y))d(PnH(y) —Pn(y))/%(h(yl))d(PnH(yl) = Puy1))—

-1

1 1

—/mmw /mw@wwmmm—awm A(Poi(y) — Paly)) =

-1

= J3Jy — J;.

The integral J; was considered earlier (see J; and (2.78)), i.e. it has already
been shown that |J4| < co. Analogously, we have that |J3| < oco.

Let us substitute (2.79) into the integral J;

Js = Jg + J7,

where

1

Js = /%/(y+ 1) /wl(h(yl))d(PnH(m) — Po(tn)) | d(Pus1(y) — Pa(y)),

Y
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Jr = KQ/ /¢1(h(y1))d(Pn+1(y1) — Pu(y1)) | d(Paya(y) — Puly)).

-1 Y

Integrating by parts and using (2.75), we get

. /lw )0+ D(Paa(y) + Paly)

_ Ui, <—¢1<h<y>><Pn+l<y> ~Byy)-

[Pt = Pl )3T 1 o

Applying the etimate (2.67) and taking into account the boundedness of v,
and 9] (h(y1)), we have that |Jg| < oo.

Using the integration order replacement in .J7, we obtain

Y1

Jr = K2/¢1(h(y1)) /d(PnH(y) = Pu(y) | d(Posa(yr) — Paln)) =

—1
1

= Ka/wl(h(yl))d(PnH(yl) — Pa(y1)) / d(Poi1(y) — Paly)) — KaJs =

-1

= Ky J2(—1)" — Ky Js,

where

Js = /wl(h(yl)) /d(Pn+1(y) — Pu(y)) | d(Posa(y1) — Pu(y1))-

-1 Y1

Since (see (2.79))

Ui(h(y)) = vy G(T— Ny +1) H) _

— (1)l + D)5 (T ) = Ky byl +1), (280
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where |e,| < co and K3 = v, (t), then

/ / d(Pasi(y) = Pa(y)) | d(Pusi(yn) — Palyn)+

+/sy d(Ppi1(y) — Pa(y)) | d(Pasa(y1) — Pa(yn)) =

Y1

_ K / d(Poir(y) — Pa(y)) | +

—1

(Pn(yl) - Pn+1(y1))dy =

[ ey (1 + D)+ D (Pua (1) + Palt))
+/1 y1 + 1

= 2K+ /%(n + D)(Ba1(y1) + Fu(y1))(Pa(y1) — Paga(y1))dy.  (2.81)

-1

When obtaining the equality (2.81), we used (2.75). Applying the estimate
(2.67) and taking into account the bounedness of ¢,,, we obtain that |Js| < oo.
Thus, the boundedness of the second sum in (2.61) is proved. The relations
(2.61) are proved. Theorem 2.2 is proved.

Let us consider the proof of Lemma 2.2 under the conditions of Theorem 2.2.
We will prove that
Z Cjiji
Jj1=0

is the Cauchy sequence for the cases of Legendre polynomials and trigonometric
functions.

Consider the case of Legendre polynomials. Below in this section we write
lim instead of lim . Fix n > m (n,m € N). We have

n,m—o0 ;M —00
n>m

Z Cijy = Z /%02 )b, (s /S¢1(T)¢j1(7)d7ds:

ji=m+1 1= m+1
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1
T—t — ,
=1 (291+1)/ Pj ( /wl y)dydr =
—1

]1:m+1

L Z /101 (2)) (Pj,11(x) Py, (x) — Pj,(z)Pj,—1(x)) de—

_(Tgt)J;Jrl/%(h(m))ljﬁ(x)/(leﬂ(y) Pi () ¥ (h(y))dyda =

Pia(y) = Pur0) U (h(w) [ Pa)ia(h(e)dady —

_JTgw §;2ﬁ11/uﬁﬂww414@»1mw»x

X((leﬂ(y) P, 1(y)) a(h(y))+

*‘5—/“%H@> h1<»%<<»w>@, (2.82)

Y

where ], 1} are derivatives of the functions v, 1y with respect to the variable
h(y) (see (2.55)).

Applying the estimate (2.67) and taking into account the boundedness of
the functions 1 (7), ¥9(7) and their derivatives, we finally obtain

1

(% %)/#+

Jiji| =

=m+1
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1

1 1
1 dy 1 dx
oy L) <
N A=) =) (e
< - Y

ji=m+1
1 1 "1
<Oy | =+ — — | =0 2.83
- 3<n+7n+j2;1ﬁ> 25

if n,m — oo (n > m), where constants C1, Cs, C5 do not depend on n and m.

Now consider the trigonometric case. Fix n > m (n,m € N). Denote

def
- Z C]l]l - Z /wQ t2 ¢Jl t2 /wl tl ijl tl dtldtg
Ji=m+1 Jji=m+1
By analogy with (2.82) we obtain

Son.om = Z /% t2)d;, (t2) /¢1(t1)¢j1(t1)dt1dt2 =

J1=2m+1

to
271 (ts — 2711 (t —
_ /¢2 t)sin T 215 )/@bl(tl)sin%lt)dtldtﬁ
t

jl m—l—l

2 t — t 2 —1
/@DQ tQ cCOS—— 7T]1 2 /¢1 tl %dtldb =

n

S 1 2mi(ts — 1)
~ on2 j;ﬂg P1(t) | Ya(t) /% ts)c 1 2t ity | —
T—1t
T o
_/%(Q)COS%&Q) dt1+
ty

T
+ / @/Ji(tl)sin—Qm}(t_l t_ ) <¢2 (tl)sin—Qm}(t_l t_ ) +
/
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T
2151 (tg —
+ / wé(tz)sin%nt)d@) dty |, (2.84)

where ¥} (7), ¥4(7) are derivatives of the functions 1y (7), 1¥2(7) with respect to
the variable 7.

From (2.84) we get

|Sonam| < C Z — =0 (2.85)

Ji=m+1 ‘71

if n,m — oo (n > m), where constant C' does not depend on n and m.

Further,
S2n—1 2m — SQn 2m =

T
2 2mn(ty —t) 2mn(ty —t
_m/¢2(t2)COST—2/¢1 tl Cos%dtldtg, (286)
t
SQn 2m—1 — S2n om+
2 ’ 2 2
7rmt —t mm(t; — ¢
+m/¢2(t2)cos (t: /wl cos T(—lt >dt1dt2, (2.87)

t

S2n—1 2m—1 — SQn 2m—1—

2 t —If 2 t1 —t
/1/)2 COS——————= ity /% COS?TnT(—it)dhdtQ =
t

2

2 — 2 —
=S, 2m+—/1/}2 cos mmft, — ¢) /wl(tl)cos mm(ty t)dtldtg—

T —1t T—1
t
2 7 2
to — 1 11—t
/% coS mn Qt )/¢1(t1)cos772ﬂ(—it)dt1dtz. (2.88)

Integrating by parts in (2.86)—(2.88), we obtain

01

|S2n—1.2m| < |San.om| + — (2.89)
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Cy

|Son.2m—1] < |Son.2m| + —, (2.90)
m
1 1
1S9n—1.2m—1| < |San.2m| + Ch <— + —) ; (2.91)
m n

where constant C'; does not depend on n and m.
The relations (2.85), (2.89)—(2.91) imply that

hm |S2n,2m’ = hm ‘Sgn_ljgm‘ = hm |S2n,2m—l| = hm |S2n—1,2m—1’ = 0.
7,M— 00 7,1M— 00 n,M—00 7,M—>00
(2.92)

)

From (2.92) we get
lim |S,..| =0. (2.93)

n,M—+00

The relation (2.93) completes the proof.

2.1.3 Approach Based on Generalized Double Multiple and Iterated
Fourier Series

This section is devoted to the proof of Theorem 2.1 using a slightly different
method than the method proposed in Sect. 2.1.1. We will consider two different
parts of the expansion of iterated Stratonovich stochastic integrals of second
multiplicity. The mean-square convergence of the first part will be proved on the
base of generalized multiple Fourier series converging in the mean-square sense
in the space Ly([t,T]?). The mean-square convergence of the second part will
be proved on the base of generalized iterated (double) Fourier series converging
pointwise.

Proof. Let us consider Lemma 1.1, definition of the multiple stochastic
integral (1.16) together with the formula (1.19) when the function ®(¢1,..., )
is continuous in the open domain D; and bounded at its boundary as well as
Lemma 1.3 for the case k = 2 (see Sect. 1.1.3).

In accordance to the standard relation between Stratonovich and It6 sto-
chastic integrals (see (2.8)) we have w. p. 1

T
J* [w(Q)]T,t = J[¢(2)]T,t + %1{1'122'2} /wl(tl)@bg(tl)dtl. (294)

t
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Let us consider the function K*(t1,t5) defined by (2.11)

K (1) = K(by, 1) + %1{t1:t2}¢1(t1)¢2(t2), (2.95)

where
K(t1,ta) = L cppyn(tr)tha(ta),  tit2 € [t,T7. (2.96)

Lemma 2.3. Under the conditions of Theorem 2.2 the following relation

T3 = T [ (2.97)

is valid w. p. 1, where J[K*]gi is defined by the equality (1.16).

Proof. Substituting (2.95) into (1.16) (the case k = 2) and using Lemma
1.1 together with (1.19) (the case k = 2) it is easy to see that w. p. 1

T
1
JIK5) = T @) + 51{2'1:@'2}/%(tl)%(tl)dtl —
t

= J %), (2.98)

Let us consider the following generalized double Fourier sum

P1 P2

Z Z Cj2j1 ¢j1 (t1)¢j2 (t2)7

J1=0j2=0

where C},;, is the Fourier coefficient defined as follows

Cru = [ K0t (065 (1)t (299
[t T2

Further, subsitute the relation

K (1, t2) = ZZCyzyl% (t1) s, (t2) + K™ (t1, t2)—

J1=0 72=0
pP1 P2

n Z Z Cj2j1¢j1 (t1>¢j2 (tg)

J1=072=0
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into J[K*](T23f At that we suppose that pi, ps < oc.

Then using Lemma 1.3 (the case k = 2), we obtain

ZZCjzh J1 Z2 +J[Rp1p2](21 W. p- 17 (2100)

J1=0j2=0

where the stochastic integral J [Rplpz]% 35 is defined in accordance with (1.16) and

Ry, (t1, t2) = K*(t1, ) — ZZCM% t)bj, (t2), (2.101)

J1=0 j2=0

ty

T t T
p1p2 //Rp1p2 t17t2 df o) dftf +//Rplpz t17t2 df v2) dftfl
t t ot

T
14—, / Ry p, (t1,t1)dty.
t

Using standard moment properties of stochastic integrals [100] (see (1.26),

(1.27)), we get
M (J12) =

t 2

T t T
//Rplpz tlatQ dftfl dftf -+ //Rp1p2 tl,tg let;2 dftfl) —+
t t t

T 2

+1{i1:i2} /Rplpz (tlﬂ tl)dtl <

t
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T t2 T tl
<2 [ [t andes+ [ [ (Bt drn | +
t t t t

T 2
+1{i1:z2} / Rp1p2(t1, tl)dtl =

t

T 2
=2 / (Rppo(tl, tg))2 dtidty + 1{@'1:1'2} /Rp1p2 t1, tl dtl . (2102)
[th}z t
We have
/ (Rp,p, (t1,12))° dtydty =
t. 1]
P1 P2
( tl’ tz Z Z C]2J1¢J1 t (bh (t2)> dtydty =
[t,T)? =072=0

P11 P2
= (K(tl,tQ DY Chiti(t th(tg)) dt,dts. (2.103)
Ak

J1=0 j2=0

The function K(t1,ts) is piecewise continuous in the square [t,T]?. At
this situation it is well known that the generalized multiple Fourier series of
the function K (t1,ty) € Lo([t, T)?) is converging to this function in the square
t,T]? in the mean-square sense, i.e.

b1 P2
li K(t =
pl’plzfgoo 17 t2 Z Z Cszl H ¢]l tl 0,
=072=0 Ly ([t,T]2)
where notations are the same as in (1.7).
So, we obtain
lim / (Rplp2(t1, tg))2 dtldtg = 0. (2104)
DP1,p2—0

[t,T]?
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Note that

T
/Rp1p2 t1,t1)dty =

’ b1 P2
/ < Y1 (t1)a(ts) — ZZCM% t th(tl)) dt, =
t

]1 0]2 0

/¢ (t1)1a(ty)dt; — ZZC’MI/% ), (1) dty =

t 0]2 0
. b1 P2
/¢ (tl ,Qb? tl dtl Z 20]2]11{31 =j2} —
t J1=0 j2=0
min{py,p2}
/¢1 t1)o(ty)dty — Z Ciiy - (2.105)

From (2.105) and Lemma 2.2 we get
T
lim lim [ Ry, (t,t)dt =

P1—00 pa—00
t

pP1—00

T
= ;/w (t1)2(t1)dty — lim Zle
t

T
1 o0
= 5/7?1(751)%(751)6#1 - Cjj =
t

J1=0
T
= lim / Rp1p2 (tl, tl)dtl. (2106)

P1,p2—>00
t

If we prove the following relation

T
lim lim Rp1p2 (tl, t1>dt1 = O, (2107)

P1—00 pa—00
t
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then from (2.106) we obtain

T
1 00
§/¢1(t1)¢2(t1)dt1 = Z Ciis (2.108)
t Jj1=0
T
p1,1p}gn—1>oo Rp1p2 (tl, tl)dtl = 0. (2109)

t

From (2.102), (2.104), and (2.109) we get
lim M (J[R ]@))2 ~0
P1P2—00 Prb2lT't

and Theorem 2.1 will be proved (see (2.100)).

The proof of the equality (2.107) can be carried out in the same way as
in the proof of Theorem 2.1 or, under weaker conditions, as in the proof of
Theorem 2.2.

2.1.4 Approach Based on Arbitrary Complete Orthonormal System
of Functions in the Space Ly([t,T]) and ¥y (7),12(7) € Lo([t, T])

Let us prove the equality (2.10) under weaker restrictions. Suppose that
{¢j(z)}32, is an arbitrary complete orthonormal system of functions in the

space Lo([t,T]) and (1) = 1o(T) or

T

(1) = wg(T)/g(Q)dQ, (2.110)

t

where 7 € [t, T and ¥1(7),v2(7) € Lo([t, T)), g(T) € L1([t, T]).
Thus, we will prove the equality

T to T
/wg tQ ¢j tg /’(ﬂl tl qu tl)dtldtg = —/¢1(T)¢2(T)d7’ (2111)
J=0 t t

under the above conditions.
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Using Fubini’s Theorem, Lebesgue’s Dominated Convergence Theorem and
Parseval’s equality, we have (see (2.110))

T t
/% t2)d;(t2) /Th t)@;(t1)dtidty =
=0 %

<.

|

t t

/% t2)9;(t2) /zwg(tl)gbj(tl)/g(r)dfdtldtz = (2.112)

t t

2

T T
- Z/g /Zp? t1)o;(t1) /¢2 t2);(ta)dtedt dr =

7=0"7% T
| T T 2
==Y [ g(n) Va(t1)d;(t1)dty | dr = (2.113)
2 [\ [
- 2
1 o0
= [ g(7 Z Lirciy¥o(t)@s(t1)dty | dr = (2.114)
3 fa% framin
' T T X T T
=— [ g(7) 1{T<t1}¢§(t1)dt1d7‘:— g(1) [ Y3t dtdr =
Ry
B T t
— [ ¥3(ty) T)drdt, = (2.115)
-4 e o

_ % / (s (1)t (2.116)

where the transition from (2.113) to (2.114) is based on Lebesgue’s Dominated
Convergence Theorem. The integrable majorant exists due to Parseval’s equal-

ity
2 2

q 0
T)‘Z /% t)oi(t)dt | <|g(r |Z /1{T<t1}¢2(t1)¢j(t1)dt1 =
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7)l / (Lirery) w3 (00)dts < |g(m)] 16230y = C lo(7)]
4

where constant C' does not depend on p.

From the other hand, using Fubini’s Theorem and the generalized Parseval
equality as well as the transition from (2.112) to (2.115), we get

to

T
/¢1 t2)p;(t2) /wz t1)¢;(t)dt1dty =

t

)¢

.
|
o

to

to
¢2 t2 ¢] t2 /g(T)dT/wg(t1)¢j(t1)dt1dt2 =
t

t

>

j=0

Tt~

.

— ii¢2(tl)¢j(tl)dtl/T¢2(t2)¢j(t2)jg(T)detQ

=0
o T t ts
_Z/% t1)p;(t1) /% t2)oj tz)/ (7)dTdtodt, =
J=07% !
T ty T t
:/ ) - a(th) /9 ydrdt, — %/w% t1) / T)drdt; =
t t

tq

T T
wg tl g\7T detl = = wl(tl)wg(tl)dﬁl. (2117)
2 [ |

l\DI»—\

In addition, for the case ¥y (7) = 19(7), using the Parseval equality, we
obtain

ta

T
> [ nta)es(ta) [ en(t)e(t)dtrdts =
Fousman

j=0
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T 2 T T
1 — 1 1
=3 ; / Yit)e(t)dh | =5 / Vi(t)dh = 5 / (b)) (o) dty.
= \” J J

(2.118)
The equality (2.111) is proved for ¢1(7) = 9(7) or when the equality
(2.110) is satisfied.

Further, let us suppose that (1) = (7 — t)!, g(7) = k(t — t)*!, where
[=0,1,2,...and k= 1,2,... Note that this case is important for applications
(see Sect. 4.7 and 4.11).

From (2.110) we obtain

T

191(7):%(7)/9() T—tl/ _t’fldg_( _)H—k:

t t

Taking into account (2.116)—(2.118), we get

i / (t2 = 1)\ 5 (t2) / (tr — t)"Fg;(t1)dtrdty =

T
(0.9]
:Z/t — )Fk g, (ty) /tl—t ¢;(t1)dt dty =
t

Jj=0 t
1 2l+k
=3 (7' — )", (2.119)
t

where k£, =0,1,2,...
Let us rewrite the equality (2.119) in the following form
s T
Z / ty — 1)\, (t) / (t — )" (t1)dtydty = / (r —t)!(r — t)™dr, (2.120)
¢ ¢
where [,m =10,1,2,...

The equality similar to (2.120) was obtained in [117], [118] using other
arguments. These arguments are based on trace class operators and the equality
of matrix and integral traces for such operators (see Sect. 2.27 for details).
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In addition, the formula similar to (2.120) was used in [117], [118] to gen-
eralize the equality (2.111) to the case of an arbitrary complete orthonormal
system of functions in the space Lo([t,T]) and oy (7),¢¥9(7) € Lo([t, T]). This
means that Theorems 2.1, 2.2 can be generalized to the case of continuous
functions (1), 12(7) (this condition is related to the definition (2.3) of the
Stratonovich stochastic integral (see Sect. 2.1.1 for details)) and an arbitrary
complete orthonormal system of functions in the space Lo([t, T]).

Consider the mentioned approach [117], [118] in our interpretation (after
this, we will consider an approach that is slightly different from the approach
n [117], [118]). Since the equality (2.120) is valid for monomials with respect
toT —t (7 € [t,T]), it will obviously also be valid for Legendre polynomials
that form a complete orthonormal system of functions in the space Ls([t,T])
and finite linear combinations of Legendre polynomials.

Let 1 (1), 1(7) € Lo([t, T]) and ¥\ (7), v (7) be approximations of the
functions 11 (1), 19(7), respectively, which are partial sums of the corresponding
Fourier—Legendre series. Then we have (see (2.120))

50 T to T
Z / ¢§Q)(t2)</>j(t2) / ¢§p>(t1)¢j(t1)dt1dt2 = % / ¢§p)(r)¢§q>(7)d7, (2.121)
Jj=0 t t t

where p,q € N, the series converges absolutly and its sum does not depend on

a basis system {¢j($)};‘;0 (we mean permutation of the terms of the series on

the left-hand side of (2.121) (any permutation of basis functions ¢;(x) forms a
basis in Lo([t, T]) [127])).

Using Fubini’s Theorem, we rewrite (2.121) in the form

00 T 12>
2 / v (128 (t2) / 01 (1) (t)dtrdiyt
t

J=0 t

T
+ [ WP (t)0i(ta) [ 3 (8) s (t)dtydts WP () (r)dr. (2.122)
Fobuamia] ot

Let us fix ¢ in (2.122). The right-hand side of (2.122) for a fixed ¢ defines
(as a scalar product in Ls([t,T])) a linear bounded (and therefore continuous)

fu