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Preface

God does not care about our
mathematical difficulties. He
integrates empirically

— Albert Einstein

The book is devoted to the problem of strong (mean-square) approximation
of iterated Itô and Stratonovich stochastic integrals in the context of numerical
integration of Itô stochastic differential equations (SDEs) and non-commutative
semilinear stochastic partial differential equations (SPDEs) with nonlinear mul-
tiplicative trace class noise. The presented monograph opens up a new direction
in researching of iterated stochastic integrals and summarizes the author’s re-
search on the mentioned problem carried out in the period 1994–2025.

The basis of this book composes on the monographs [1]-[17] and recent
author’s results [18]-[71].

This monograph (also see books [6]-[11], [14]-[17]) is the first monograph
where the problem of strong (mean-square) approximation of iterated Itô and
Stratonovich stochastic integrals with respect to components of a multidimen-
sional Wiener process is systematically analyzed in application to the numerical
solution of SDEs.

For the first time we successfully use the generalized multiple Fourier series
converging in the sense of norm in Hilbert space L2([t, T ]

k) for the expansion and
strong approximation of iterated Itô stochastic integrals of arbitrary multiplicity
k, k ∈ N as well as for the expansion of some other types of iterated stochastic
integrals (Chapter 1).

The above result has been adapted for iterated Stratonovich stochastic in-
tegrals of multiplicities 1 to 8 for the following two cases (Chapter 2).

1. The case of continuously differentiable weight functions (multiplicities 1
to 5) and weight functions identically equal to one (multiplicities 6 to 8). In
this case, we use a complete orthonormal system of Legendre polynomials or
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trigonometric functions in L2([t, T ]).

2. The case of continuous weight functions (multiplicities 1 and 2), binomial
weight functions (multiplicities 3 and 4) and weight functions identically equal
to one (multiplicities 5 and 6). In this case, we use an arbitrary complete
orthonormal system of functions in L2([t, T ]).

Recently (in 2024), the mentioned adaptation has also been carried out for
iterated Stratonovich stochastic integrals of multiplicity k, k ∈ N (Chapter 2,
Theorems 2.59, 2.61) but under one additional condition (the case of continuous
weight functions and an arbitrary complete orthonormal system of functions in
L2([t, T ])).

Two theorems on expansions of iterated Stratonovich stochastic integrals
of multiplicity k, k ∈ N based on iterated Fourier series with the pointwise
convergence are formulated and proved (Chapter 2).

The integration order replacement technique for the class of iterated Itô
stochastic integrals has been introduced (Chapter 3). This result is generalized
for the class of iterated stochastic integrals with respect to martingales.

Four new forms of the Taylor–Itô and Taylor–Stratonovich expansions (the
so-called unified Taylor–Itô and Taylor–Stratonovich expansions) are presented
(Chapter 4).

Exact expressions are obtained for the mean-square approximation error
of iterated Itô stochastic integrals of arbitrary multiplicity k, k ∈ N (Chap-
ter 1) and iterated Stratonovich stochastic integrals of multiplicities 1 to 4
(Chapter 5). Furthermore, we provided a significant practical material (Chap-
ter 5) devoted to the expansions and approximations of specific iterated Itô and
Stratonovich stochastic integrals of multiplicities 1 to 6 from the Taylor–Itô and
Taylor–Stratonovich expansions (Chapter 4) using the system of Legendre poly-
nomials and the system of trigonometric functions.

The methods formulated in this book have been compared with some exist-
ing methods of strong approximation of iterated Itô and Stratonovich stochastic
integrals (Chapter 6).

The results of Chapter 1 were applied (Chapter 7) to the approximation
of iterated stochastic integrals with respect to the finite-dimensional approxi-
mation WM

t of the infinite-dimensional Q-Wiener process Wt (for integrals of
arbitrary multiplicity k, k ∈ N) and to the approximation of iterated stochas-
tic integrals with respect to the infinite-dimensional Q-Wiener process Wt (for
integrals of multiplicities 1 to 3).
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This book will be interesting for specialists dealing with the theory of
stochastic processes, applied and computational mathematics as well as senior
students and postgraduates of technical institutes and universities.

Exact solutions of Itô SDEs and semilinear SPDEs are known in rather rare
cases. Therefore, the need arises to construct numerical procedures for solving
these equations.

The importance of the problem of numerical integration of Itô SDEs and
semilinear SPDEs is explained by a wide range of their applications related
to the construction of adequate mathematical models of dynamic systems of
various physical nature under random disturbances and to the application of
these equations for solving various mathematical problems, among which we
mention signal filtering in the background of random noise, stochastic optimal
control, stochastic stability, evaluating the parameters of stochastic systems,
etc.

It is well known that one of the effective and perspective approaches to
the numerical integration of Itô SDEs and semilinear SPDEs is an approach
based on the stochastic analogues of the Taylor formula for solutions of these
equations. This approach uses the finite discretization of temporal variable and
performs numerical modeling of solutions of Itô SDEs and semilinear SPDEs in
discrete moments of time using stochastic analogues of the Taylor formula.

Speaking about Itô SDEs, note that the most important feature of the
mentioned stochastic analogues of the Taylor formula for solutions of Itô SDEs
is a presence in them of the so-called iterated Itô and Stratonovich stochas-
tic integrals which are the functionals of a complex structure with respect to
components of a multidimensional Wiener process. These iterated Itô and
Stratonovich stochastic integrals are subject for study in this book and are
defined by the following formulas

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk (Itô integrals),

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk (Stratonovich integrals),

where ψ1(τ), . . . , ψk(τ) : [t, T ] → R are nonrandom functions (as a rule, in
the applications they are identically equal to 1 or have a binomial form (see

Chapter 4)), wτ is a random vector with an m+ 1 components: w
(i)
τ = f

(i)
τ for
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i = 1, . . . ,m and w
(0)
τ = τ, f

(i)
τ (i = 1, . . . ,m) are independent standard Wiener

processes, i1, . . . , ik = 0, 1, . . . ,m.

Apparently, one of the first who began the study of such stochastic integrals
(the case k = 2, m = 2, ψ1(τ), ψ2(τ) ≡ 1, i1 = 1, i2 = 2) was Lévy, who
introduced the concept of the so-called Lévy stochastic area and studied its
properties.

The above iterated stochastic integrals are the specific objects in the theory
of stochastic processes. From the one side, nonrandomness of weight functions
ψl(τ) (l = 1, . . . , k) is the factor simplifying their structure. From the other

side, nonscalarity of the Wiener process fτ with independent components f
(i)
τ

(i = 1, . . . ,m) and the fact that the functions ψl(τ) (l = 1, . . . , k) are different
for various l (l = 1, . . . , k) are essential complicating factors of the structure of
iterated stochastic integrals. Taking into account features mentioned above, we
suppose that the systems of iterated Itô and Stratonovich stochastic integrals
play the extraordinary and perhaps the key role for solving the problem of
numerical integration of Itô SDEs.

A natural question arises: is it possible to construct a numerical scheme
for Itô SDE that includes only increments of the Wiener processes f

(i)
τ (i =

1, . . . ,m), but has a higher order of convergence than the Euler method? It
is known that this is impossible for m > 1 in the general case. This fact is
called the ”Clark–Cameron paradox” [72] and explains the need to use iterated
stochastic integrals for constructing high-order numerical methods for Itô SDEs.

We want to mention in short that there are two main criteria of numerical
methods convergence for Itô SDEs: a strong or mean-square criterion and a
weak criterion where the subject of approximation is not the solution of Itô
SDE, simply stated, but the distribution of Itô SDE solution. Both mentioned
criteria are independent, i.e. in general it is impossible to state that from the
execution of strong criterion follows the execution of weak criterion and vice
versa. Each of two convergence criteria is oriented on the solution of specific
classes of mathematical problems connected with Itô SDEs.

Numerical integration of Itô SDEs based on the strong convergence crite-
rion of approximation is widely used for the numerical simulation of sample
trajectories of solutions to Itô SDEs (which is required for constructing new
mathematical models based on such equations and for the numerical solution of
different mathematical problems connected with Itô SDEs). Among these prob-
lems, we note the following: signal filtering under influence of random noises in
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various statements (linear Kalman–Bucy filtering, nonlinear optimal filtering,
filtering of continuous time Markov chains with a finite space of states, etc.),
optimal stochastic control (including incomplete data control), testing estima-
tion procedures of parameters of stochastic systems, stochastic stability and
bifurcations analysis.

The problem of effective jointly numerical modeling (with respect to the
mean-square convergence criterion) of iterated Itô or Stratonovich stochastic
integrals is very important and difficult from theoretical and computing point
of view.

Seems that iterated stochastic integrals may be approximated by multiple
integral sums. However, this approach implies the partitioning of the inter-
val of integration [t, T ] for iterated stochastic integrals. The length T − t of
this interval is already fairly small (because it is a step of integration of nu-
merical methods for Itô SDEs) and does not need to be partitioned. Com-
putational experiments show that the application of numerical simulation for
iterated stochastic integrals (in which the interval of integration is partitioned)
leads to unacceptably high computational cost and accumulation of computa-
tion errors.

The problem of effective decreasing of the mentioned cost (in several times or
even in several orders) is very difficult and requires new complex investigations.
The only exception is connected with a narrow particular case, when i1 =
. . . = ik ̸= 0 and ψ1(τ), . . . , ψk(τ) ≡ ψ(τ). This case allows the investigation
with using of the Itô formula. In the more general case, when not all numbers
i1, . . . , ik are equal, the mentioned problem turns out to be more complex (it
cannot be solved using the Itô formula and requires more deep and complex
investigation). Note that even for the case i1 = . . . = ik ̸= 0, but for different
functions ψ1(τ), . . . , ψk(τ) the mentioned difficulties persist and simple sets of
iterated Itô and Stratonovich stochastic integrals, which can be often met in the
applications, cannot be expressed effectively in a finite form (with respect to
the mean-square approximation) using the system of standard Gaussian random
variables. The Itô formula is also useless in this case and as a result we need
to use more complex but effective expansions.

Why the problem of the mean-square approximation of iterated stochastic
integrals is so complex?

Firstly, the mentioned stochastic integrals (in the case of fixed limits of
integration) are the random variables, whose density functions are unknown in
the general case. The exception is connected with the narrow particular case
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which is the simplest iterated Itô stochastic integral with multiplicity 2 and
ψ1(τ), ψ2(τ) ≡ 1; i1, i2 = 1, . . . ,m. Nevertheless, the knowledge of this density
function not gives a simple way for approximation of iterated Itô stochastic
integral of multiplicity 2.

Secondly, we need to approximate not only one stochastic integral, but sev-
eral iterated stochastic integrals that are complexly dependent in a probabilistic
sense.

Often, the problem of combined mean-square approximation of iterated
Itô and Stratonovich stochastic integrals occurs even in cases when the exact
solution of Itô SDE is known. It means that even if you know the solution of Itô
SDE exactly, you cannot model it numerically without the combined numerical
modeling of iterated stochastic integrals.

Note that for a number of special types of Itô SDEs the problem of ap-
proximation of iterated stochastic integrals may be simplified but cannot be
solved. Equations with additive vector noise, with non-additive scalar noise,
with additive scalar noise, with a small parameter are related to such types of
equations. In these cases, simplifications are connected to the fact that some
members from stochastic Taylor expansions are equal to zero or we may neglect
some members from these expansions due to the presence of a small parameter.

Furthermore, the problem of combined numerical modeling (with respect to
the mean-square convergence criterion) of iterated Itô and Stratonovich stochas-
tic integrals is rather new.

One of the main and unexpected achievements of this book is the successful
usage of functional analysis methods (more concretely, we mean generalized
multiple Fourier series in various systems of basis functions that converge in
the sense of the norm in L2([t, T ]

k)) in this scientific field.

The problem of combined numerical modeling (with respect to the mean-
square convergence criterion) of systems of iterated Itô and Stratonovich
stochastic integrals was analyzed in the context of the problem of numerical
integration of Itô SDEs in the following monographs:

[I] Milstein G.N. Numerical Integration of Stochastic Differential Equations.
Kluwer Academic Publishers. Dordrecht. 1995 (Russian Ed. 1988).

[II] Kloeden P.E., Platen E. Numerical Solution of Stochastic Differential
Equations. Springer-Verlag. Berlin. 1992 (2nd Ed. 1995, 3rd Ed. 1999).

[III] Milstein G.N., Tretyakov M. V. Stochastic Numerics for Mathematical
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Physics. Springer-Verlag. Berlin. 2004.

[IV] Kuznetsov D.F. Stochastic Differential Equations: Theory and Practice
of Numerical Solution. Polytechnical University Publ. St.-Petersburg. 2007 [2]
(2nd Ed. 2007 [3], 3rd Ed. 2009 [4], 4th Ed. 2010 [5], 5th Ed. 2017 [12], 6th
Ed. 2018 [13]).

Note that the initial version of the book [IV] has been published in 2006
[1]. Also we mention the books [6] (2010), [7] (2011), [8] (2011), [9] (2012), [10]
(2013), [11] (2017) and [14] (2020), [15] (2021), [16] (2023), [17] (2024).

The books [I] and [III] analyze the problem of the mean-square approxima-
tion of iterated stochastic integrals only for two simplest iterated Itô stochastic
integrals of 1st and 2nd multiplicities (k = 1 and 2, ψ1(τ) and ψ2(τ) ≡ 1) for the
multidimensional case: i1, i2 = 0, 1, . . . ,m. In addition, the main idea is based
on the expansion of the so-called Brownian bridge process into the trigonomet-
ric Fourier series (version of the so-called Karhunen–Loève expansion). This
method is called in [I] and [III] as the Fourier method1.

In [II] using the Fourier method [I], the attempt was made to obtain the
mean-square approximation of elementary iterated Stratonovich stochastic in-
tegrals of multiplicities 1 to 3 (k = 1, . . . , 3, ψ1(τ), . . . , ψ3(τ) ≡ 1) for the
multidimensional case: i1, . . . , i3 = 0, 1, . . . ,m. However, as we can see in the
presented book, the results of the monograph [II], related to the mean-square
approximation of iterated Stratonovich stochastic integrals of 3rd multiplicity,
cause a number of critical remarks (see discussions in Sect. 2.41, 2.42, 6.2).

The main purpose of this book is to construct and develop newer and more
effective methods (than presented in the books [I]–[III]) of combined mean-
square approximation of iterated Itô and Stratonovich stochastic integrals.

Talking about the history of solving the problem of combined mean-square
approximation of iterated stochastic integrals, the idea to find a basis of random
variables using which we may represent iterated stochastic integrals turned out
to be useful. This idea was transformed several times during last decades.

Attempts to approximate the iterated stochastic integrals using various in-
tegral sums were made until 1980s and later, i.e. the interval of integration [t, T ]
of the stochastic integral was divided into n parts and the iterated stochastic
integral was represented approximately by the multiple integral sum, which in-
cluded the system of independent standard Gaussian random variables, whose

1To date, there is confusion in the literature about who first proposed the Fourier method [I], [III]. As far as
the author of this book knows, the mentioned method first appeared in the Russian edition of the monograph
by G.N. Milstein [82] (pp. 121–135), which was published in 1988.
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numerical modeling is not a problem.

However, as we noted above, it is obvious that the length T − t of integra-
tion interval [t, T ] of the iterated stochastic integrals is a step of integration
of numerical methods for Itô SDEs, which is already a rather small value even
without the additional splitting. Numerical experiments demonstrate that such
approach results in drastic increasing of computational costs accompanied by
the growth of multiplicity of the stochastic integrals (beginning from 2nd and
3rd multiplicity) that is necessary for construction of high-order strong nu-
merical methods for Itô SDEs or in the case of decrease of integration step of
numerical methods, and thereby it is almost useless for practice.

The new step for solution of the problem of combined mean-square ap-
proximation of iterated stochastic integrals was made by Milstein G.N. in his
monograph [I] (1988). For the expansion of iterated stochastic integrals, he pro-
posed to use the trigonometric Fourier expansion of the Brownian bridge process
(version of the so-called Karhunen–Loève expansion). Using this method, ex-
pansions of two simplest iterated Itô stochastic integrals of multiplicities 1 and
2 are obtained and their mean-square convergence is proved.

As we noted above, the attempt to develop this idea together with the
Wong–Zakai approximation [73]-[75] was made in the monograph [II] (1992),
where the expansions of simplest iterated Stratonovich stochastic integrals of
multiplicities 1 to 3 were obtained. However, due to a number of limitations
and technical difficulties which are typical for the method [I], in [II] and fol-
lowing publications this problem was not solved more completely. In addition,
the author has reasonable doubts about application of the Wong–Zakai results
[73]-[75] to approximation of iterated Stratonovich stochastic integrals of 3rd
multiplicity in the monograph [II] (see discussions in Sect. 2.41, 2.42, 6.2).

It is necessary to note that the computational cost for the method [I] is
significantly less than for the method of multiple integral sums.

Regardless of the method [I] positive features, the number of its limitations
are also outlined. Among them let us mention the following.

1. The absence of explicit formula for calculation of expansion coefficients
for iterated stochastic integrals.

2. The practical impossibility of exact calculation of the mean-square ap-
proximation error of iterated stochastic integrals with the exception of simplest
integrals of 1st and 2nd multiplicity (as a result, it is necessary to consider
redundant terms of expansions and it results to the growth of computational
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cost and complication of the numerical methods for Itô SDEs).

3. There is a hard limitation on the system of basis functions — it may be
only the trigonometric functions.

4. There are some technical problems if we use this method for iterated
stochastic integrals whose multiplicity is greater than 2nd.

Nevertheless, it should be noted that the analyzed method is a concrete
step forward in this scientific field.

The author thinks that the method presented by him in [IV] (for the first
time this method is appeared in the final form in [1] (2006)) and in this book
(hereafter this method is reffered to as the method of generalized multiple
Fourier series) is a breakthrough in solution of the problem of combined mean-
square approximation of iterated Itô stochastic integrals.

The idea of this method is as follows: the iterated Itô stochastic integral
of multiplicity k, k ∈ N is represented as the multiple stochastic integral from
the certain nonrandom discontinuous function of k variables defined on the
hypercube [t, T ]k, where [t, T ] is the interval of integration of the iterated Itô
stochastic integral. Then, the mentioned nonrandom function of k variables is
expanded in the hypercube [t, T ]k into the generalized multiple Fourier series
converging in the mean-square sense in the space L2([t, T ]

k). After a number
of nontrivial transformations we come to the mean-square converging expan-
sion of the iterated Itô stochastic integral into the multiple series of products
of standard Gaussian random variables. The coefficients of this series are the
coefficients of generalized multiple Fourier series for the mentioned nonrandom
function of k variables, which can be calculated using the explicit formula re-
gardless of the multiplicity k of the iterated Itô stochastic integral.

As a result, we obtain the following new possibilities and advantages in
comparison with the Fourier method [I].

1. There is an explicit formula for calculation of expansion coefficients of
iterated Itô stochastic integral with any fixed multiplicity k. In other words,
we can calculate (without any preliminary and additional work) the expansion
coefficient with any fixed number in the expansion of iterated Itô stochastic
integral of the preset fixed multiplicity. At that, we do not need any knowledge
about coefficients with other numbers or about other iterated Itô stochastic
integrals included in the considered set.

2. We have new possibilies for obtainment the exact and approximate ex-
pressions for the mean-square approximation errors of iterated Itô stochastic
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integrals. These possibilities are realized by the exact and estimate formulas
for the mentioned mean-square approximation errors. As a result, we would
not need to consider redundant terms of expansions that may complicate ap-
proximations of iterated Itô stochastic integrals.

3. Since the used multiple Fourier series is a generalized in the sense that it
is built using various complete orthonormal systems of functions in the space
L2([t, T ]

k), we have new possibilities for approximation — we can use not only
the trigonometric functions as in [I] but the Legendre polynomials as well as
the systems of Haar and Rademacher–Walsh functions.

4. As it turned out, it is more convenient to work with Legendre polynomi-
als for approximation of iterated Itô stochastic integrals. The approximations
themselves are simpler than their analogues based on the system of trigono-
metric functions. Probably for the systems of Haar and Rademacher–Walsh
functions the expansions of iterated stochastic integrals become more complex
and less effective for practice [IV]. Expansions based on Haar functions for k = 2
were also considered in [87], [95], [222]. Note that the multiple Fourier–Walsh
and Fourier–Haar series (k ∈ N) were applied to the mean-square approxima-
tion of multiple Stratonovich stochastic integrals (defined as in [143], [144]) in
[221]. The convergence of these approximations was proved with respect to the
special subsequence nm = 2m (m→ ∞) [221].

5. The question about what kind of functions (polynomial or trigonometric)
is more convenient in the context of computational costs for approximation
turns out to be nontrivial, since it is necessary to compare approximations not
for one stochastic integral but for several stochastic integrals at the same time.
At that there is a possibility that computational costs for some integrals will
be smaller for the system of Legendre polynomials and for others — for the
system of trigonometric functions. The author proved [21] (also see Sect. 5.3 in
this book) that the computational costs are significantly less for the system of
Legendre polynomials at least in the case of approximation of the special set of
iterated Itô stochastic integrals, which are necessary for the implementation of
strong numerical methods for Itô SDEs with the order of convergence γ = 1.5.
In addition, the author supposes that this effect will be more impressive when
analyzing more complex sets of iterated Itô stochastic integrals (γ = 2.0, 2.5,
3.0, . . .). This supposition is based on the fact that the polynomial system
of functions has a significant advantage (in comparison with the trigonometric
system of functions) in the mean-square approximation of iterated Itô stochastic
integrals for which not all weight functions are equal to 1.
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6. The Milstein approach [I] for approximation of iterated Itô stochastic
integrals leads to iterated applicaton of the operation of limit transition (in
contrast with the method of generalized multiple Fourier series, for which the
operation of limit transition is implemented only once) starting at least from the
second or third multiplicity of iterated Itô stochastic integrals (we mean at least
double or triple integration with respect to components of a multidimensional
Wiener process). Multiple series are more preferential for approximation than
the iterated ones, since the partial sums of multiple series converge for any
possible case of joint converging to infinity of their upper limits of summation
(let us denote them as p1, . . . , pk). For example, when p1 = . . . = pk = p→ ∞.
For iterated series, the condition p1 = . . . = pk = p → ∞ obviously does
not guarantee the convergence of this series. However, in [II] the authors use
(without rigorous proof) the condition p1 = p2 = p3 = p→ ∞ within the frames
of the Milstein approach [I] together with the Wong–Zakai approximation [73]-
[75] (see discussions in Sect. 2.41, 2.42, 6.2).

7. The convergence in the mean of degree 2n, n ∈ N as well as the con-
vergence with probability 1 of approximations from the method of generalized
multiple Fourier series are proved. The convergence rate for these two types of
convergence is estimated.

8. The method of generalized multiple Fourier series has been applied for
some other types of iterated stochastic integrals (iterated stochastic integrals
with respect to martingale Poisson random measures and iterated stochastic
integrals with respect to martingales) as well as for approximation of iterated
stochastic integrals with respect to the infinite-dimensional Q-Wiener process.

9. Another modification of the method of generalized multiple Fourier se-
ries is connected with the application of complete orthonormal with weight
r(t1) . . . r(tk) ≥ 0 systems of functions in the space L2([t, T ]

k).

10. As it turned out, the method of generalized multiple Fourier series can
be adapted for iterated Stratonovich stochastic integrals. This adaptation is
carried out in Chapter 2 for the following two cases.

1). The case of continuously differentiable weight functions (multiplicities
1 to 5) and weight functions identically equal to one (multiplicities 6 to 8). In
this case, we use a complete orthonormal system of Legendre polynomials or
trigonometric functions in L2([t, T ]).

2). The case of continuous weight functions (multiplicities 1 and 2), binomial
weight functions (multiplicities 3 and 4) and weight functions identically equal
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to one (multiplicities 5 and 6). In this case, we use an arbitrary complete
orthonormal system of functions in L2([t, T ]).

Recently (in 2024), the mentioned adaptation has also been carried out
for iterated Stratonovich stochastic integrals of multiplicity k, k ∈ N but un-
der one additional condition (the case of continuous weight functions and an
arbitrary complete orthonormal system of functions in L2([t, T ]) (Chapter 2,
Theorems 2.59, 2.61)). The rate of mean-square convergence of approximations
of iterated Stratonovich stochastic integrals is found (Sect. 2.8, 2.15, 2.16).

11. The method of generalized multiple Fourier series is reformulated us-
ing Hermite polynomials in Sect. 1.10 and generalized to the case of an ar-
bitrary complete orthonormal system of functions in the space L2([t, T ]) and
ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) in Sect. 1.11, 1.12, 1.14, 1.15. At that, in Sect. 1.11,
1.12 we use the multiple Wiener stochastic integral with respect to the compo-
nents of a multidimensional Wiener process.

12. The results of Chapter 1 (Theorems 1.1, 1.2, 1.14, 1.16) and Chapter
2 (Theorems 2.1–2.10, 2.14, 2.17, 2.30, 2.32–2.36, 2.41–2.51, 2.53, 2.55, 2.57,
2.59, 2.61–2.65) can be considered from the point of view of the Wong–Zakai
approximation [73]-[75] for the case of a multidimensional Wiener process and
the Wiener process approximation based on its series expansion using various
complete orthonormal systems of functions in the space L2([t, T ]) (see discus-
sions in Sect. 2.41, 2.42, 6.2). These results overcome a number of difficulties
that were noted above and relate to the Fourier method [I].

The theory presented in this book was realized [53], [54] in the form of a
software package in the Python programming language. The mentioned soft-
ware package implements the strong numerical methods with convergence or-
ders 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0 for Itô SDEs (with multidimensional non-
commutative noise) based on the unified Taylor–Itô and Taylor–Stratonovich
expansions (Chapter 4). At that for the numerical simulation of iterated Itô
and Stratonovich stochastic integrals of multiplicities 1 to 6 we applied the for-
mulas based on multiple Fourier–Legendre series (Chapter 5). Moreover, we
used [53], [54] the database with 270,000 exactly calculated Fourier–Legendre
coefficients.

Throughout the book, special attention is paid to two systems of basis
functions in the space L2([t, T ]). Namely, we mainly use the complete orthonor-
mal systems of Legendre polynomials and trigonometric functions in the space
L2([t, T ]). This is due to two reasons. The first of these is that the trigono-
metric basis system has already been used to approximate iterated stochastic
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integrals in the 1980s-1990s (see above), and the author needed to compare his
results with the results of other authors. The second reason is that the system
of Legendre polynomials is optimal (see Sect. 5.3) for the implementation of
strong numerical methods with convergence order 1.5 and higher for Itô SDEs
with multidimensional non-commutative noise. The system of Legendre poly-
nomials was first applied to the approximation of iterated stochastic integrals
in the author’s work [76] in 1997 (also see [77]-[79]). According to the author’s
opinion, other complete orthonormal systems of functions in the space L2([t, T ])
(for example, systems of Haar and Rademacher–Walsh functions) turn out to be
less efficient for the mean-square approximation of iterated Itô and Stratonovich
stochastic integrals.

The attentive reader will notice that Chapters 1 and 2 of this book can be
somewhat shortened since Theorem 1.16 is a generalization of Theorems 1.1, 1.2
and Theorems 2.3, 2.33, 2.34, 2.41 are generalizations of Theorems 2.1, 2.2, 2.4–
2.9. However, the author did not make the appropriate changes in Chapters 1,
2 for a number of reasons. In particular, the application of the multiple Wiener
stochastic integral with respect to the components of a multidimensional Wiener
process to the expansion of iterated Itô stochastic integrals (Theorem 1.16) and
a new approach to the expansion of iterated Stratonovich stochastic integrals
(Theorems 2.30–2.65) were obtained by the author recently (in 2021–2025),
while Theorems 1.1, 1.2, 2.4–2.9 were obtained by the author in the period
from 2005 to 2013. In addition, the proof of each of the mentioned theorems
contains some original ideas that the author would like to keep in Chapters
1 and 2. Moreover, a significant part of Chapter 2 is devoted to the proof of
Hypothesis 2.5 (Sect. 2.28) for various special cases (Theorems 2.1–2.9, 2.30,
2.33–2.36, 2.41, 2.45–2.48, 2.50, 2.51, 2.53, 2.55, 2.57, 2.59, 2.61–2.65). In order
to prove these theorems, we developed a number of approaches to the expansion
of iterated Stratonovich stochastic integrals.

Thus, the results of Chapters 1, 2 are presented primarily in the order in
which they were obtained by the author.

Dmitriy F. Kuznetsov July, 2025
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Basic Notations

N set of natural numbers

R, R1 set of real numbers

Rn n-dimensional Euclidean space

(a1, . . . , an) ordered set with elements a1, . . . , an

{a1, . . . , an} unordered set with elements a1, . . . , an

n! 1 · 2 · . . . · n for n ∈ N (0! = 1)

(2n− 1)!! 1 · 3 · . . . · (2n− 1) for n ∈ N

def
= equal by definition

≡ identically equal to

Cm
n binomial coefficient n!/(m!(n−m)!)

∅ empty set

1A indicator of the set A

x ∈ X x is an element of the set X

X
⋃
Y union of sets X and Y

X × Y Cartesian product of sets X and Y

lim
n→∞

lim sup
n→∞

lim
n→∞

lim inf
n→∞

x≪ y x much less than y

[x] largest integer number not exceeding x
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|x| absolute value of the real number x

F : X → Y function F from X into Y

A(ij) ijth element of the matrix A

Ai ith colomn of the matrix A

x(i) ith component of the vector x ∈ Rn

O(x) expression being divided by x remains bounded as x→ 0∑
(i1,...,ik)

sum with respect to all possible permutations (i1, . . . , ik)

M{ξ} expectation of ξ

M{ξ|F} conditional expectation of ξ with respect to F

ξ ∼ N(m,σ2) Gaussian random variable ξ with expectation m and variance
σ2

l.i.m.
n→∞

limit in the mean-square sense

B(X) σ-algebra of Borel subsets of X

ft scalar standard Wiener process

ft vector standard Wiener process with independent components
f
(i)
t , i = 1, . . . ,m

w. p. 1 with probability 1

wt vector with components w
(i)
t , i = 0, 1, . . . ,m and property

w
(i)
t = f

(i)
t for i = 1, . . . ,m and w

(0)
t = t

∂F

∂x(i)
partial derivative of F : Rn → R

∂2F

∂x(i)∂x(j)
2nd order partial derivative of F : Rn → R

T∫
t

. . . dw(i)
τ

Itô stochastic integral
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∗∫
t

T

. . . dw(i)
τ

Stratonovich stochastic integral

T∫
t

. . . ◦ dw(i)
τ

Stratonovich stochastic integral [143]

Wt Q-Wiener process

J [ψ(k)]T,t, I
(i1...ik)
(l1...lk)T,t

iterated Itô stochastic integrals

J∗[ψ(k)]T,t, I
∗(i1...ik)
(l1...lk)T,t

iterated Stratonovich stochastic integrals

JS[ψ(k)]
(i1...ik)
T,t iterated Stratonovich stochastic integral [144]

J̄S[ψ(k)]
(i1...ik)
T,t multiple Stratonovich stochastic integral [144]

J [ψ(k)]p1,...,pkT,t , I
(i1...ik)p
(l1...lk)T,t

approximations of iterated Itô stochastic integrals

J∗[ψ(k)]pT,t, I
∗(i1...ik)p
(l1...lk)T,t

approximations of iterated Stratonovich stochastic integrals

J [Φ]
(k)
T,t, J [Φ]

(i1...ik)
T,t multiple Stratonovich stochastic integrals

J ′[Φ]
(k)
T,t, J ′[Φ]

(i1...ik)
T,t multiple Wiener stochastic integrals

Pn(x) Legendre polynomials

Hn(x), hn(x) Hermite polynomials

Hn(x, y) polynomials related to the Hermite polynomials

L2(D) Hilbert space of square integrable functions on D

∥·∥L2(D) norm in the Hilbert space L2(D)

tr A trace of the operator A

∥·∥H norm in the Hilbert space H

⟨u, v⟩H scalar product in the Hilbert space H

LHS(U,H) space of Hilbert–Schmidt operators from U to H
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∥·∥LHS(U,H) operator norm in the space of Hilbert–Schmidt operators from
U to H

T∫
t

. . . dWτ stochastic integral with respect to the Q-Wiener process
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from Theorems 1.16 and 2.59 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 901

2.50 Expansion of Multiple Stratonovich Stochastic Integrals of Arbitrary Multiplic-
ity k. The case of a multidimensional Wiener process and a smooth function
Φ(t1, . . . , tk) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 906

3 Integration Order Replacement Technique for Iterated Itô Stochastic Inte-
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4.4 The First Form of the Unified Taylor–Itô Expansion . . . . . . . . . . . . . . . . 952

4.5 The Second Form of the Unified Taylor–Itô Expansion . . . . . . . . . . . . . . 955
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6.3 Usage of Integral Sums for Approximation of Iterated Itô Stochastic Integrals . . 1116
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Chapter 1

Method of Expansion and
Mean-Square Approximation of
Iterated Itô Stochastic Integrals Based
on Generalized Multiple Fourier Series

This chapter is devoted to the expansions of iterated Itô stochastic integrals
with respect to components of the multidimensional Wiener process based on
generalized multiple Fourier series converging in the sense of norm in the space
L2([t, T ]

k), k ∈ N. The method of generalized multiple Fourier series for ex-
pansion and mean-square approximation of iterated Itô stochastic integrals of
arbitrary multiplicity k, k ∈ N is proposed and developed. The obtained expan-
sions contain only one operation of the limit transition in contrast to existing
analogues. In this chapter it is also obtained the generalization of the proposed
method for the case of an arbitrary complete orthonormal system of functions in
the space L2([t, T ]

k), k ∈ N as well as for the case of complete orthonormal with
weight r(t1) . . . r(tk) ≥ 0 systems of functions in the space L2([t, T ]

k), k ∈ N. It
is shown that in the case of a scalar Wiener process the proposed method leads
to the well known expansion of iterated Itô stochastic integrals based on the Itô
formula and Hermite polynomials. The convergence in the mean of degree 2n,
n ∈ N as well as the convergence with probability 1 of the proposed method
are proved. The exact and approximate expressions for the mean-square ap-
proximation error of iterated Itô stochastic integrals of multiplicity k, k ∈ N
have been derived. The considered method has been applied for other types of
iterated stochastic integrals (iterated stochastic integrals with respect to mar-
tingale Poisson random measures and iterated stochastic integrals with respect
to martingales).
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1.1 Expansion of Iterated Itô Stochastic Integrals of Ar-

bitrary Multiplicity Based on Generalized Multiple

Fourier Series Converging in the Mean

1.1.1 Introduction

The idea of representing the iterated Itô and Stratonovich stochastic integrals in
the form of multiple stochastic integrals from specific discontinuous nonrandom
functions of several variables and following expansion of these functions using
multiple and iterated Fourier series in order to get effective mean-square ap-
proximations of the mentioned stochastic integrals was proposed and developed
in a lot of author’s publications [1]-[70] (also see early publications [76] (1997),
[77] (1998), [78] (2000), [79] (2001), [80] (1994), [81] (1996)). Note that another
approaches to the mean-square approximation of iterated Itô and Stratonovich
stochastic integrals can be found in [71], [82]-[99].

Specifically, the approach [1]-[70] appeared for the first time in [80], [81].
In these works the mentioned idea is formulated more likely at the level of
guess (without any satisfactory grounding), and as a result the papers [80], [81]
contain rather fuzzy formulations and a number of incorrect conclusions. Note
that in [80], [81] we used the trigonometric multiple Fourier series converging
in the sense of norm in the space L2([t, T ]

k), k = 1, 2, 3. It should be noted that
the results of [80], [81] are correct for a sufficiently narrow particular case when
the numbers i1, ..., ik are pairwise different, i1, . . . , ik = 1, . . . ,m (see Theorem
1.1 below).

Usage of Fourier series with respect to the system of Legendre polynomials
for approximation of iterated stochastic integrals took place for the first time
in the publications of the author [76]-[79] (also see [1]-[71]).

The question about what integrals (Itô or Stratonovich) are more suitable
for expansions within the frames of distinguished direction of researches has
turned out to be rather interesting and difficult.

On the one side, the results of Chapter 1 (see Theorems 1.1, 1.2, 1.16)
conclusively demonstrate that the structure of iterated Itô stochastic integrals is
rather convenient for expansions into multiple series with respect to the system
of standard Gaussian random variables regardless of the multiplicity k of the
iterated Itô stochastic integral.

On the other side, the results of Chapter 2 [6]-[23], [26], [28], [30], [32]-
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[39], [42], [43], [45]-[47], [52], [64], [65], [76]-[79] convincingly demontrate that
the final formulas for expansions of iterated Stratonovich stochastic integrals
of multiplicities 1 to 8 (the case of continuously differentiable weight functions
and a complete orthonormal system of Legendre polynomials or trigonometric
functions in L2([t, T ])) and iterated Stratonovich stochastic integrals of mul-
tiplicity k, k ∈ N (the case of continuous weight functions and an arbitrary
complete orthonormal system of functions in L2([t, T ])) are more compact than
their analogues for iterated Itô stochastic integrals.

1.1.2 Itô Stochastic Integral

Let (Ω,F,P) be a complete probability space and let f(t, ω) : [0, T ]×Ω → R be
the standard Wiener process defined on the probability space (Ω,F,P). Further,

we will use the following notation: f(t, ω)
def
= ft.

Let us consider the right-continous family of σ-algebras {Ft, t ∈ [0, T ]} de-
fined on the probability space (Ω,F,P) and connected with the Wiener process
ft in such a way that

1. Fs ⊂ Ft ⊂ F for s < t.

2. The Wiener process ft is Ft-measurable for all t ∈ [0, T ].

3. The process ft+∆− ft for all t ≥ 0, ∆ > 0 is independent with the events
of σ-algebra Ft.

Let us introduce the class M2([0, T ]) of functions ξ : [0, T ]×Ω → R, which
satisfy the conditions:

1. The function ξ(t, ω) is measurable with respect to the pair of variables
(t, ω).

2. The function ξ(t, ω) is Ft-measurable for all t ∈ [0, T ] and ξ(τ, ω) is
independent with increments ft+∆ − ft for t ≥ τ, ∆ > 0.

3. The following relation is fulfilled

T∫
0

M
{
(ξ(t, ω))2

}
dt <∞.

4. M
{
(ξ(t, ω))2

}
<∞ for all t ∈ [0, T ].
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For any partition τ
(N)
j , j = 0, 1, . . . , N of the interval [0, T ] such that

0 = τ
(N)
0 < τ

(N)
1 < . . . < τ

(N)
N = T, max

0≤j≤N−1

∣∣∣τ (N)
j+1 − τ

(N)
j

∣∣∣→ 0 if N → ∞
(1.1)

we will define the sequence of step functions

ξ(N)(t, ω) = ξj (ω) w. p. 1 for t ∈
[
τ
(N)
j , τ

(N)
j+1

)
,

where ξ(N)(t, ω) ∈ M2([0, T ]), j = 0, 1, . . . , N−1, N = 1, 2, . . . Here and further,
w. p. 1 means with probability 1.

Let us define the Itô stochastic integral for ξ(t, ω) ∈ M2([0, T ]) as the fol-
lowing mean-square limit [100], [101] (also see [84])

l.i.m.
N→∞

N−1∑
j=0

ξ(N)
(
τ
(N)
j , ω

)(
f
(
τ
(N)
j+1 , ω

)
− f

(
τ
(N)
j , ω

))
def
=

T∫
0

ξτdfτ , (1.2)

where ξ(N)(t, ω) is any step function from the class M2([0, T ]), which converges
to the function ξ(t, ω) in the following sense

lim
N→∞

T∫
0

M

{∣∣∣ξ(N)(t, ω)− ξ(t, ω)
∣∣∣2} dt = 0. (1.3)

Further, we will denote ξ(τ, ω) as ξτ .

It is well known [100] that the Itô stochastic integral exists as the limit (1.2)
and it does not depend on the selection of sequence ξ(N)(t, ω). Furthermore,
the Itô stochastic integral satisfies w. p. 1 to the following properties [100]

M


T∫

0

ξtdft

∣∣∣∣F0

 = 0,

M


∣∣∣∣∣∣
T∫

0

ξtdft

∣∣∣∣∣∣
2 ∣∣∣∣F0

 = M


T∫

0

ξ2t dt

∣∣∣∣F0

 ,

T∫
0

(αξt + βψt)dft = α

T∫
0

ξtdft + β

T∫
0

ψtdft,
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where ξt, ϕt ∈ M2([0, T ]), α, β ∈ R1.

Let us define the stochastic integral for ξτ ∈ M2([0, T ]) as the following
mean-square limit

l.i.m.
N→∞

N−1∑
j=0

ξ(N)
(
τ
(N)
j , ω

)(
τ
(N)
j+1 − τ

(N)
j

)
def
=

T∫
0

ξτdτ, (1.4)

where ξ(N)(t, ω) is any step function from the class M2([0, T ]), which converges
in the sense (1.3) to the function ξ(t, ω).

1.1.3 Theorem on Expansion of Iterated Itô Stochastic Integrals of
Multiplicity k (k ∈ N)

Let (Ω, F, P) be a complete probability space, let {Ft, t ∈ [0, T ]} be a non-
decreasing right-continuous family of σ-algebras of F, and let ft be a stan-
dard m-dimensional Wiener stochastic process, which is Ft-measurable for any
t ∈ [0, T ]. We assume that the components f

(i)
t (i = 1, . . . ,m) of this process

are independent.

Let us consider the following iterated Itô stochastic integrals

J [ψ(k)]T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (1.5)

where every ψl(τ) (l = 1, . . . , k) is a nonrandom function on [t, T ], w
(i)
τ = f

(i)
τ

for i = 1, . . . ,m and w
(0)
τ = τ, i1, . . . , ik = 0, 1, . . . ,m.

Let us consider the approach to expansion of the iterated Itô stochastic
integrals (1.5) [1]-[70] (the so-called method of generalized multiple Fourier
series). The idea of this method is as follows: the iterated Itô stochastic integral
(1.5) of multiplicity k, k ∈ N is represented as the multiple stochastic integral
from the certain discontinuous nonrandom function of k variables defined on
the hypercube [t, T ]k. Here [t, T ] is the interval of integration of the iterated
Itô stochastic integral (1.5). Then, the mentioned nonrandom function of k
variables is expanded in the hypercube [t, T ]k into the generalized multiple
Fourier series converging in the mean-square sense in the space L2([t, T ]

k). After
a number of nontrivial transformations we come to the mean-square converging
expansion of the iterated Itô stochastic integral (1.5) into the multiple series
of products of standard Gaussian random variables. The coefficients of this
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series are the coefficients of generalized multiple Fourier series for the mentioned
nonrandom function of k variables, which can be calculated using the explicit
formula regardless of the multiplicity k of the iterated Itô stochastic integral
(1.5).

Suppose that every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function
on [t, T ] (we will also consider the case ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) in Sect. 1.11,
1.12). Define the following function on the hypercube [t, T ]k

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

=
k∏
l=1

ψl(tl)
k−1∏
l=1

1{tl<tl+1},

(1.6)
where t1, . . . , tk ∈ [t, T ] (k ≥ 2) and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ]. Here 1A
denotes the indicator of the set A.

Suppose that {ϕj(x)}∞j=0 is a complete orthonormal system of functions in
the space L2([t, T ]).

The function K(t1, . . . , tk) is piecewise continuous in the hypercube [t, T ]k.
At this situation it is well known that the generalized multiple Fourier series of
K(t1, . . . , tk) ∈ L2([t, T ]

k) is converging to K(t1, . . . , tk) in the hypercube [t, T ]k

in the mean-square sense, i.e.

lim
p1,...,pk→∞

∥∥∥∥∥K(t1, . . . , tk)−
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

∥∥∥∥∥
L2([t,T ]k)

= 0, (1.7)

where

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (1.8)

is the Fourier coefficient, and

∥f∥L2([t,T ]k)
=

 ∫
[t,T ]k

f 2(t1, . . . , tk)dt1 . . . dtk


1/2

.

Consider the partition {τj}Nj=0 of [t, T ] such that

t = τ0 < . . . < τN = T, ∆N = max
0≤j≤N−1

∆τj → 0 if N → ∞, ∆τj = τj+1−τj.

(1.9)
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Theorem 1.12 [1] (2006) (also see [2]-[70]). Suppose that every ψl(τ) (l =
1, . . . , k) is a continuous nonrandom function on [t, T ] and {ϕj(x)}∞j=0 is a com-
plete orthonormal system of continuous functions in the space L2([t, T ]). Then

J [ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

)
, (1.10)

where

Gk = Hk\Lk, Hk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1

}
,

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense, i1, . . . , ik = 0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s (1.11)

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), Cjk...j1 is the Fourier coefficient (1.8), ∆w
(i)
τj = w

(i)
τj+1 − w

(i)
τj

(i = 0, 1, . . . ,m), {τj}Nj=0 is a partition of [t, T ], which satisfies the condition
(1.9).

Proof. At first, let us prove preparatory lemmas.

Lemma 1.1. Suppose that every ψl(τ) (l = 1, . . . , k) is a continuous non-
random function on [t, T ]. Then

J [ψ(k)]T,t = l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

ψl(τjl)∆w(il)
τjl

w. p. 1, (1.12)

where ∆w
(i)
τj = w

(i)
τj+1−w

(i)
τj (i = 0, 1, . . . ,m), {τj}Nj=0 is a partition of the interval

[t, T ] satisfying the condition (1.9).

2Theorem 1.1 will be generalized to the case of an arbitrary complete orthonormal system of functions
{ϕj(x)}∞j=0 in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) in Sect. 1.11 (see Theorem 1.16). Theo-
rem 1.1 marked the beginning of a systematic study of the problem of strong approximation of iterated Itô and
Stratonovich stochastic integrals that have been most fully studied to date in this book.



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series 39

Proof. It is easy to notice that using the property of stochastic integrals
additivity, we can write

J [ψ(k)]T,t =
N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

J [ψl]τjl+1,τjl
+ εN w. p. 1, (1.13)

where

J [ψl]s,θ =

s∫
θ

ψl(τ)dw
(il)
τ

and

εN =
N−1∑
jk=0

τjk+1∫
τjk

ψk(s)

s∫
τjk

ψk−1(τ)J [ψ
(k−2)]τ,tdw

(ik−1)
τ dw(ik)

s +

+
k−3∑
r=1

G[ψ
(k)
k−r+1]N×

×
jk−r+1−1∑
jk−r=0

τjk−r+1∫
τjk−r

ψk−r(s)

s∫
τjk−r

ψk−r−1(τ)J [ψ
(k−r−2)]τ,tdw

(ik−r−1)
τ dw(ik−r)

s +

+G[ψ
(k)
3 ]N

j3−1∑
j2=0

J [ψ(2)]τj2+1,τj2
,

where

G[ψ(k)
m ]N =

N−1∑
jk=0

jk−1∑
jk−1=0

. . .

jm+1−1∑
jm=0

k∏
l=m

J [ψl]τjl+1,τjl
,

(ψm, ψm+1, . . . , ψk)
def
= ψ(k)

m , (ψ1, . . . , ψk) = ψ
(k)
1

def
= ψ(k).

Using the standard estimates (1.26), (1.27) (see below) for the moments of
stochastic integrals, we obtain w. p. 1

l.i.m.
N→∞

εN = 0. (1.14)

Comparing (1.13) and (1.14), we get

J [ψ(k)]T,t = l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

J [ψl]τjl+1,τjl
w. p. 1. (1.15)
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Let us rewrite J [ψl]τjl+1,τjl
in the form

J [ψl]τjl+1,τjl
= ψl(τjl)∆w(il)

τjl
+

τjl+1∫
τjl

(ψl(τ)− ψl(τjl))dw
(il)
τ

and substitute it into (1.15). Then, due to the moment properties of stochastic
integrals and continuity (which means uniform continuity) of the functions ψl(s)
(l = 1, . . . , k) it is easy to see that the prelimit expression on the right-hand
side of (1.15) is a sum of the prelimit expression on the right-hand side of (1.12)
and the value which tends to zero in the mean-square sense if N → ∞. Lemma
1.1 is proved.

Remark 1.1. It is easy to see that if ∆w
(il)
τjl

in (1.12) for some l ∈ {1, . . . , k}
is replaced with

(
∆w

(il)
τjl

)p
(p = 2, il ̸= 0), then the differential dw

(il)
tl in the

integral J [ψ(k)]T,t will be replaced with dtl. If p = 3, 4, . . . , then the right-hand

side of the formula (1.12) will become zero w. p. 1. If we replace ∆w
(il)
τjl

in (1.12)
for some l ∈ {1, . . . , k} with (∆τjl)

p (p = 2, 3, . . .), then the right-hand side of
the formula (1.12) also will be equal to zero w. p. 1.

Let us define the following multiple stochastic integral

l.i.m.
N→∞

N−1∑
j1,...,jk=0

Φ (τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl

def
= J [Φ]

(k)
T,t, (1.16)

where Φ(t1, . . . , tk) : [t, T ]k → R1 is a nonrandom function (the properties of
this function will be specified further).

Denote
Dk = {(t1, . . . , tk) : t ≤ t1 < . . . < tk ≤ T}. (1.17)

We will use the same symbol Dk to denote the open and closed domains
corresponding to the domain Dk defined by (1.17). However, we always specify
what domain we consider (open or closed).

Also we will write Φ(t1, . . . , tk) ∈ C(Dk) if Φ(t1, . . . , tk) is a continuous
nonrandom function of k variables in the closed domain Dk.

Let us consider the iterated Itô stochastic integral

I[Φ]
(k)
T,t

def
=

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk , (1.18)
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where Φ(t1, . . . , tk) ∈ C(Dk).

Using the arguments which similar to the arguments used in the proof of
Lemma 1.1 it is easy to demonstrate that if Φ(t1, . . . , tk) ∈ C(Dk), then the
following equality is fulfilled

I[Φ]
(k)
T,t = l.i.m.

N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

Φ(τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl

w. p. 1. (1.19)

In order to explain this, let us check the correctness of the equality (1.19)
when k = 3. For definiteness we will suppose that i1, i2, i3 = 1, . . . ,m. We have

I[Φ]
(3)
T,t

def
=

T∫
t

t3∫
t

t2∫
t

Φ(t1, t2, t3)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 =

= l.i.m.
N→∞

N−1∑
j3=0

τj3∫
t

t2∫
t

Φ(t1, t2, τj3)dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
=

= l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

τj2+1∫
τj2

t2∫
t

Φ(t1, t2, τj3)dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
=

= l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

τj2+1∫
τj2

 τj2∫
t

+

t2∫
τj2

Φ(t1, t2, τj3)dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
=

= l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

Φ(t1, t2, τj3)dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
+

+l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

τj2+1∫
τj2

t2∫
τj2

Φ(t1, t2, τj3)dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
. (1.20)

Let us demonstrate that the second limit on the right-hand side of (1.20)
equals to zero.

Actually, for the second moment of its prelimit expression we get

N−1∑
j3=0

j3−1∑
j2=0

τj2+1∫
τj2

t2∫
τj2

Φ2(t1, t2, τj3)dt1dt2∆τj3 ≤M 2
N−1∑
j3=0

j3−1∑
j2=0

1

2
(∆τj2)

2∆τj3 → 0
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when N → ∞. HereM is a constant, which restricts the module of the function
Φ(t1, t2, t3) due to its continuity, ∆τj = τj+1 − τj.

Considering the obtained conclusions, we have

I[Φ]
(3)
T,t

def
=

T∫
t

t3∫
t

t2∫
t

Φ(t1, t2, t3)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 =

= l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

Φ(t1, t2, τj3)dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
=

= l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, t2, τj3)− Φ(t1, τj2, τj3)) dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
+

+l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, τj2, τj3)− Φ(τj1, τj2, τj3)) dw
(i1)
t1 dw

(i2)
t2 ∆w(i3)

τj3
+

+l.i.m.
N→∞

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

Φ(τj1, τj2, τj3)∆w(i1)
τj1

∆w(i2)
τj2

∆w(i3)
τj3
. (1.21)

In order to get the sought result, we just have to demonstrate that the first
two limits on the right-hand side of (1.21) equal to zero. Let us prove that the
first one of them equals to zero (proof for the second limit is similar).

The second moment of prelimit expression of the first limit on the right-
hand side of (1.21) equals to the following expression

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2∆τj3. (1.22)

Since the function Φ(t1, t2, t3) is continuous in the closed bounded domain
D3, then it is uniformly continuous in this domain. Therefore, if the distance
between two points of the domain D3 is less than δ(ε) (δ(ε) > 0 exists for any
ε > 0 and it does not depend on mentioned points), then the corresponding
oscillation of the function Φ(t1, t2, t3) for these two points of the domain D3 is
less than ε.
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If we assume that ∆τj < δ(ε) (j = 0, 1, . . . , N − 1), then the distance
between points (t1, t2, τj3), (t1, τj2, τj3) is obviously less than δ(ε). In this case

|Φ(t1, t2, τj3)− Φ(t1, τj2, τj3)| < ε.

Consequently, when ∆τj < δ(ε) (j = 0, 1, . . . , N − 1) the expression (1.22)
is estimated by the following value

ε2
N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

∆τj1∆τj2∆τj3 < ε2
(T − t)3

6
.

Therefore, the first limit on the right-hand side of (1.21) equals to zero.
Similarly, we can prove that the second limit on the right-hand side of (1.21)
equals to zero.

Consequently, the equality (1.19) is proved for k = 3. The cases k = 2 and
k > 3 are analyzed absolutely similarly.

It is necessary to note that the proof of correctness of (1.19) is similar when
the nonrandom function Φ(t1, . . . , tk) is continuous in the open domain Dk and
bounded at its boundary.

Let us consider the following multiple stochastic integral

l.i.m.
N→∞

N−1∑
j1,...,jk=0

jq ̸=jr ; q ̸=r; q,r=1,...,k

Φ (τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl

def
= J ′[Φ]

(k)
T,t, (1.23)

where Φ(t1, . . . , tk) : [t, T ]k → R1 is the same function as in (1.16).

According to (1.19), we get the following equality

J ′[Φ]
(k)
T,t =

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
Φ(t1, . . . , tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
w. p. 1, (1.24)

where ∑
(t1,...,tk)

means the sum with respect to all possible permutations (t1, . . . , tk). At the same
time permutations (t1, . . . , tk) when summing are performed in (1.24) only in
the expression, which is enclosed in parentheses. Moreover, the nonrandom
function Φ(t1, . . . , tk) is assumed to be continuous in the corresponding closed
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domains of integration. The case when the nonrandom function Φ(t1, . . . , tk) is
continuous in the open domains of integration and bounded at their boundaries
is also possible.

It is not difficult to see that (1.24) can be rewritten in the form

J ′[Φ]
(k)
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (1.25)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).

Lemma 1.2. Suppose that Φ(t1, . . . , tk) ∈ C(Dk) or Φ(t1, . . . , tk) is a con-
tinuous nonrandom function in the open domain Dk and bounded at its bound-
ary. Then

M

{∣∣∣∣I[Φ](k)T,t

∣∣∣∣2
}

≤ Ck

T∫
t

. . .

t2∫
t

Φ2(t1, . . . , tk)dt1 . . . dtk, Ck <∞,

where I[Φ]
(k)
T,t is defined by the formula (1.18).

Proof. Using standard properties and estimates of stochastic integrals for
ξτ ∈ M2([t, T ]), we have [101]

M


∣∣∣∣∣∣
T∫
t

ξτdfτ

∣∣∣∣∣∣
2
 =

T∫
t

M{|ξτ |2}dτ, (1.26)

M


∣∣∣∣∣∣
T∫
t

ξτdτ

∣∣∣∣∣∣
2
 ≤ (T − t)

T∫
t

M{|ξτ |2}dτ. (1.27)

Let us denote

ξ[Φ]
(l)
tl+1,...,tk,t =

tl+1∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(il)
tl ,

where l = 1, . . . , k − 1 and ξ[Φ]
(0)
t1,...,tk,t

def
= Φ(t1, . . . , tk).
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By induction it is easy to demonstrate that

ξ[Φ]
(l)
tl+1,...,tk,t ∈ M2([t, T ])

with respect to the variable tl+1. Further, using the estimates (1.26), (1.27)
repeatedly we obtain the statement of Lemma 1.2.

It is not difficult to see that in the case i1, . . . , ik = 1, . . . ,m from the proof
of Lemma 1.2 we obtain

M

{∣∣∣∣I[Φ](k)T,t

∣∣∣∣2
}

=

T∫
t

. . .

t2∫
t

Φ2(t1, . . . , tk)dt1 . . . dtk. (1.28)

Lemma 1.3. Suppose that every φl(s) (l = 1, . . . , k) is a continuous non-
random function on [t, T ]. Then

k∏
l=1

J [φl]T,t = J [Φ]
(k)
T,t w. p. 1, (1.29)

where

J [φl]T,t =

T∫
t

φl(s)dw
(il)
s , Φ(t1, . . . , tk) =

k∏
l=1

φl(tl),

and the integral J [Φ]
(k)
T,t is defined by the equality (1.16).

Proof. Let at first il ̸= 0, l = 1, . . . , k. Let us denote

J [φl]N
def
=

N−1∑
j=0

φl(τj)∆w(il)
τj
.

Since
k∏
l=1

J [φl]N −
k∏
l=1

J [φl]T,t =

=
k∑
l=1

(
l−1∏
g=1

J [φg]T,t

)(
J [φl]N − J [φl]T,t

) k∏
g=l+1

J [φg]N

 , (1.30)

then due to the Minkowski inequality and the inequality of Cauchy–Bunyakov-
sky we obtain M


∣∣∣∣∣
k∏
l=1

J [φl]N −
k∏
l=1

J [φl]T,t

∣∣∣∣∣
2

1/2

≤
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≤ Ck

k∑
l=1

(
M

{∣∣∣∣J [φl]N − J [φl]T,t

∣∣∣∣4
})1/4

, (1.31)

where Ck is a constant.

Note that

J [φl]N − J [φl]T,t =
N−1∑
j=0

J [∆φl]τj+1,τj ,

J [∆φl]τj+1,τj =

τj+1∫
τj

(φl(τj)− φl(s)) dw
(il)
s .

Since J [∆φl]τj+1,τj are independent for various j, then [102]

M


∣∣∣∣∣
N−1∑
j=0

J [∆φl]τj+1,τj

∣∣∣∣∣
4
 =

N−1∑
j=0

M

{∣∣∣∣J [∆φl]τj+1,τj

∣∣∣∣4
}
+

+6
N−1∑
j=0

M

{∣∣∣∣J [∆φl]τj+1,τj

∣∣∣∣2
}

j−1∑
q=0

M

{∣∣∣∣J [∆φl]τq+1,τq

∣∣∣∣2
}
. (1.32)

Moreover, since J [∆φl]τj+1,τj is a Gaussian random variable, we have

M

{∣∣∣∣J [∆φl]τj+1,τj

∣∣∣∣2
}

=

τj+1∫
τj

(φl(τj)− φl(s))
2ds,

M

{∣∣∣∣J [∆φl]τj+1,τj

∣∣∣∣4
}

= 3

 τj+1∫
τj

(φl(τj)− φl(s))
2ds


2

.

Using these relations and continuity (which means uniform continuity) of
the functions φl(s), we get

M


∣∣∣∣∣
N−1∑
j=0

J [∆φl]τj+1,τj

∣∣∣∣∣
4
 ≤ ε4

(
3
N−1∑
j=0

(∆τj)
2 + 6

N−1∑
j=0

∆τj

j−1∑
q=0

∆τq

)
<

< 3ε4
(
δ(ε)(T − t) + (T − t)2

)
,
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where ∆τj < δ(ε), j = 0, 1, . . . , N − 1 (δ(ε) > 0 exists for any ε > 0 and it
does not depend on points of the interval [t, T ]). Then the right-hand side of
the formula (1.32) tends to zero when N → ∞. Considering this fact as well as
(1.31), we obtain (1.29).

If w
(il)
tl = tl for some l ∈ {1, . . . , k}, then the proof of Lemma 1.3 becomes

obviously simpler and it is performed similarly. Lemma 1.3 is proved.

Remark 1.2. It is easy to see that if ∆w
(il)
τjl

in (1.29) for some l ∈ {1, . . . , k}
is replaced with

(
∆w

(il)
τjl

)p
(p = 2, il ̸= 0), then the differential dw

(il)
tl in the

integral J [Φ(k)]T,t will be replaced with dtl. If p = 3, 4, . . . , then the right-hand
side of the formula (1.29) will become zero w. p. 1.

Let us consider the case p = 2 in detail. Let ∆w
(il)
τjl

in (1.29) for some

l ∈ {1, . . . , k} is replaced with
(
∆w

(il)
τjl

)2
(il ̸= 0) and

J [φl]N
def
=

N−1∑
j=0

φl(τj)
(
∆w(il)

τj

)2
, J [φl]T,t

def
=

T∫
t

φl(s)ds.

We have (
M

{∣∣∣∣J [φl]N − J [φl]T,t

∣∣∣∣4
})1/4

=

=

M


∣∣∣∣∣∣
N−1∑
j=0

φl(τj)
(
∆w(il)

τj

)2
−

T∫
t

φl(s)ds

∣∣∣∣∣∣
4



1/4

=

=

M


∣∣∣∣∣∣∣
N−1∑
j=0

φl(τj)(∆w(il)
τj

)2
−

τj+1∫
τj

(φl(s)− φl(τj) + φl(τj)) ds


∣∣∣∣∣∣∣
4



1/4

≤

≤

M


∣∣∣∣∣
N−1∑
j=0

φl(τj)

((
∆w(il)

τj

)2
−∆τj

)∣∣∣∣∣
4

1/4

+

+

∣∣∣∣∣∣∣
N−1∑
j=0

τj+1∫
τj

(φl(τj)− φl(s)) ds

∣∣∣∣∣∣∣ . (1.33)
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From the relation, which is similar to (1.32), we obtain

M


∣∣∣∣∣
N−1∑
j=0

φl(τj)

((
∆w(il)

τj

)2
−∆τj

)∣∣∣∣∣
4
 =

=
N−1∑
j=0

(φl(τj))
4M

{((
∆w(il)

τj

)2
−∆τj

)4
}
+

+6
N−1∑
j=0

(φl(τj))
2M

{((
∆w(il)

τj

)2
−∆τj

)2
}
×

×
j−1∑
q=0

(φl(τq))
2M

{((
∆w(il)

τq

)2
−∆τq

)2
}

= 60
N−1∑
j=0

(φl(τj))
4 (∆τj)

4+

+24
N−1∑
j=0

(φl(τj))
2 (∆τj)

2
j−1∑
q=0

(φl(τq))
2 (∆τq)

2 ≤ C (∆N)
2 → 0 (1.34)

if N → ∞, where constant C does not depend on N.

The second term on the right-hand side of (1.33) tends to zero if N → ∞
due to continuity (which means uniform continuity) of the function φl(s) at the
interval [t, T ]. Then, taking into account (1.30), (1.31), (1.33), (1.34), we come
to the affirmation of Remark 1.2.

Let us prove Theorem 1.1. According to Lemma 1.1, we have

J [ψ(k)]T,t = l.i.m.
N→∞

N−1∑
lk=0

. . .

l2−1∑
l1=0

ψ1(τl1) . . . ψk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

=

= l.i.m.
N→∞

N−1∑
lk=0

. . .

l2−1∑
l1=0

K(τl1, . . . , τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

=

= l.i.m.
N→∞

N−1∑
lk=0

. . .

N−1∑
l1=0

K(τl1, . . . , τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

=

= l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

K(τl1, . . . , τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

= (1.35)
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=

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
K(t1, . . . , tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
w. p. 1, (1.36)

where permutations (t1, . . . , tk) when summing are performed only in the ex-
pression enclosed in parentheses.

It is easy to see that (1.36) can be rewritten in the form

J [ψ(k)]T,t =
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

K(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (1.37)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).

Since integration of a bounded function with respect to the set with measure
zero for Riemann or Lebesgue integrals gives zero result, then the following
formula is correct for these integrals∫

[t,T ]k

|G(t1, . . . , tk)|dt1 . . . dtk =
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

|G(t1, . . . , tk)|dt1 . . . dtk, (1.38)

where permutations (t1, . . . , tk) when summing are performed only in the va-
lues dt1 . . . dtk. At the same time the indices near upper limits of integration
in the iterated integrals are changed correspondently and |G(t1, . . . , tk)| is the
integrable function on the hypercube [t, T ]k.

According to Lemmas 1.1, 1.3 and (1.24), (1.25), (1.36), (1.37), we get the
following representation

J [ψ(k)]T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
ϕj1(t1) . . . ϕjk(tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
+

+Rp1,...,pk
T,t =
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=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1 l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

+

+Rp1,...,pk
T,t = (1.39)

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

l.i.m.
N→∞

N−1∑
l1,...,lk=0

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

−

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

+

+Rp1,...,pk
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×

 k∏
l=1

ζ
(il)
jl

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

+

+Rp1,...,pk
T,t w. p. 1, (1.40)

where

Rp1,...,pk
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×dw(i1)
t1 . . . dw

(ik)
tk , (1.41)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
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with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).

Let us estimate the remainder Rp1,...,pk
T,t of the series. According to Lemma

1.2 and (1.38), we have

M

{(
Rp1,...,pk
T,t

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

= Ck

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk → 0

(1.42)

if p1, . . . , pk → ∞, where constant Ck depends only on the multiplicity k of the
iterated Itô stochastic integral J [ψ(k)]T,t. Theorem 1.1 is proved.

Note that from (1.39) and (1.42) it follows that

J [ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t w. p. 1, (1.43)

where J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t is defined by (1.23).

It is not difficult to see that for the case of pairwise different numbers
i1, . . . , ik = 0, 1, . . . ,m from Theorem 1.1 we obtain

J [ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk
. (1.44)

1.1.4 Expansions of Iterated Itô Stochastic Integrals with Multiplic-
ities 1 to 7 Based on Theorem 1.1

In order to evaluate the significance of Theorem 1.1 for practice we will demon-
strate its transformed particular cases (see Remark 1.2) for k = 1, . . . , 7 [1]-[63]

J [ψ(1)]T,t = l.i.m.
p1→∞

p1∑
j1=0

Cj1ζ
(i1)
j1
, (1.45)
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J [ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2}

)
, (1.46)

J [ψ(3)]T,t = l.i.m.
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

−

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3

−1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1

−1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2

)
, (1.47)

J [ψ(4)]T,t = l.i.m.
p1,...,p4→∞

p1∑
j1=0

. . .

p4∑
j4=0

Cj4...j1

(
4∏
l=1

ζ
(il)
jl

−

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4} + 1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}

)
, (1.48)

J [ψ(5)]T,t = l.i.m.
p1,...,p5→∞

p1∑
j1=0

. . .

p5∑
j5=0

Cj5...j1

(
5∏
l=1

ζ
(il)
jl

−

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5

−

−1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5

− 1{i1=i5 ̸=0}1{j1=j5}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i5)
j5

−

−1{i2=i5 ̸=0}1{j2=j5}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i5)
j5

−

−1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4

− 1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}ζ
(i5)
j5

+ 1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}ζ
(i4)
j4

+

+1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}ζ
(i3)
j3

+ 1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}ζ
(i5)
j5

+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}ζ
(i4)
j4

+ 1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i2)
j2

+
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+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}ζ
(i5)
j5

+ 1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}ζ
(i3)
j3

+

+1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i2)
j2

+ 1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}ζ
(i4)
j4

+

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}ζ
(i3)
j3

+ 1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i2)
j2

+

+1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1

+ 1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1

+

+1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1

)
, (1.49)

J [ψ(6)]T,t = l.i.m.
p1,...,p6→∞

p1∑
j1=0

. . .

p6∑
j6=0

Cj6...j1

(
6∏
l=1

ζ
(il)
jl

−

−1{i1=i6 ̸=0}1{j1=j6}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i2=i6 ̸=0}1{j2=j6}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

−

−1{i3=i6 ̸=0}1{j3=j6}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i4=i6 ̸=0}1{j4=j6}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5

−

−1{i5=i6 ̸=0}1{j5=j6}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

−

−1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

− 1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5
ζ
(i6)
j6

−

−1{i1=i5 ̸=0}1{j1=j5}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i6)
j6

− 1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

−

−1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i5)
j5
ζ
(i6)
j6

− 1{i2=i5 ̸=0}1{j2=j5}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i6)
j6

−

−1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i5)
j5
ζ
(i6)
j6

− 1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i6)
j6

−

−1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i6)
j6

+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}ζ
(i5)
j5
ζ
(i6)
j6

+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}ζ
(i4)
j4
ζ
(i6)
j6

+

+1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}ζ
(i3)
j3
ζ
(i6)
j6

+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}ζ
(i5)
j5
ζ
(i6)
j6

+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}ζ
(i4)
j4
ζ
(i6)
j6

+

+1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i2)
j2
ζ
(i6)
j6

+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}ζ
(i5)
j5
ζ
(i6)
j6

+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}ζ
(i3)
j3
ζ
(i6)
j6

+
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+1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i2)
j2
ζ
(i6)
j6

+

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}ζ
(i4)
j4
ζ
(i6)
j6

+

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}ζ
(i3)
j3
ζ
(i6)
j6

+

+1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i2)
j2
ζ
(i6)
j6

+

+1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1
ζ
(i6)
j6

+

+1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1
ζ
(i6)
j6

+

+1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i6)
j6

+

+1{i6=i1 ̸=0}1{j6=j1}1{i3=i4 ̸=0}1{j3=j4}ζ
(i2)
j2
ζ
(i5)
j5

+

+1{i6=i1 ̸=0}1{j6=j1}1{i3=i5 ̸=0}1{j3=j5}ζ
(i2)
j2
ζ
(i4)
j4

+

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i5 ̸=0}1{j2=j5}ζ
(i3)
j3
ζ
(i4)
j4

+

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i4 ̸=0}1{j2=j4}ζ
(i3)
j3
ζ
(i5)
j5

+

+1{i6=i1 ̸=0}1{j6=j1}1{i4=i5 ̸=0}1{j4=j5}ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i3 ̸=0}1{j2=j3}ζ
(i4)
j4
ζ
(i5)
j5

+

+1{i6=i2 ̸=0}1{j6=j2}1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1
ζ
(i4)
j4

+

+1{i6=i2 ̸=0}1{j6=j2}1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1
ζ
(i3)
j3

+

+1{i6=i2 ̸=0}1{j6=j2}1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i5)
j5

+

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i5 ̸=0}1{j1=j5}ζ
(i3)
j3
ζ
(i4)
j4

+

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i4 ̸=0}1{j1=j4}ζ
(i3)
j3
ζ
(i5)
j5

+

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i3 ̸=0}1{j1=j3}ζ
(i4)
j4
ζ
(i5)
j5

+

+1{i6=i3 ̸=0}1{j6=j3}1{i2=i5 ̸=0}1{j2=j5}ζ
(i1)
j1
ζ
(i4)
j4

+

+1{i6=i3 ̸=0}1{j6=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i6=i3 ̸=0}1{j6=j3}1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i5)
j5

+

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i5 ̸=0}1{j1=j5}ζ
(i2)
j2
ζ
(i4)
j4

+

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i5)
j5

+

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i2 ̸=0}1{j1=j2}ζ
(i4)
j4
ζ
(i5)
j5

+
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+1{i6=i4 ̸=0}1{j6=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i6=i4 ̸=0}1{j6=j4}1{i2=i5 ̸=0}1{j2=j5}ζ
(i1)
j1
ζ
(i3)
j3

+

+1{i6=i4 ̸=0}1{j6=j4}1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i5)
j5

+

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i5 ̸=0}1{j1=j5}ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i5)
j5

+

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i5)
j5

+

+1{i6=i5 ̸=0}1{j6=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i6=i5 ̸=0}1{j6=j5}1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

+

+1{i6=i5 ̸=0}1{j6=j5}1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

+

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

+

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

−
−1{i6=i1 ̸=0}1{j6=j1}1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}−
−1{i6=i1 ̸=0}1{j6=j1}1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}−
−1{i6=i1 ̸=0}1{j6=j1}1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}−
−1{i6=i2 ̸=0}1{j6=j2}1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}−
−1{i6=i2 ̸=0}1{j6=j2}1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}−
−1{i6=i2 ̸=0}1{j6=j2}1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}−
−1{i6=i3 ̸=0}1{j6=j3}1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}−
−1{i6=i3 ̸=0}1{j6=j3}1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}−
−1{i3=i6 ̸=0}1{j3=j6}1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}−
−1{i6=i4 ̸=0}1{j6=j4}1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}−
−1{i6=i4 ̸=0}1{j6=j4}1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}−
−1{i6=i4 ̸=0}1{j6=j4}1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}−
−1{i6=i5 ̸=0}1{j6=j5}1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}−
−1{i6=i5 ̸=0}1{j6=j5}1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}−

−1{i6=i5 ̸=0}1{j6=j5}1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}

)
, (1.50)
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J [ψ(7)]T,t = l.i.m.
p1,...,p7→∞

p1∑
j1=0

. . .

p7∑
j7=0

Cj7...j1

(
7∏
l=1

ζ
(il)
jl

−

−1{i1=i6 ̸=0,j1=j6}

7∏
l=1
l ̸=1,6

ζ
(il)
jl

− 1{i2=i6 ̸=0,j2=j6}

7∏
l=1
l ̸=2,6

ζ
(il)
jl

− 1{i3=i6 ̸=0,j3=j6}

7∏
l=1
l ̸=3,6

ζ
(il)
jl

−

−1{i4=i6 ̸=0,j4=j6}

7∏
l=1
l ̸=4,6

ζ
(il)
jl

− 1{i5=i6 ̸=0,j5=j6}

7∏
l=1
l ̸=5,6

ζ
(il)
jl

− 1{i1=i2 ̸=0,j1=j2}

7∏
l=1
l ̸=1,2

ζ
(il)
jl

−

−1{i1=i3 ̸=0,j1=j3}

7∏
l=1
l ̸=1,3

ζ
(il)
jl

− 1{i1=i4 ̸=0,j1=j4}

7∏
l=1
l ̸=1,4

ζ
(il)
jl

− 1{i1=i5 ̸=0,j1=j5}

7∏
l=1
l ̸=1,5

ζ
(il)
jl

−

−1{i2=i3 ̸=0,j2=j3}

7∏
l=1
l ̸=2,3

ζ
(il)
jl

− 1{i2=i4 ̸=0,j2=j4}

7∏
l=1
l ̸=2,4

ζ
(il)
jl

− 1{i2=i5 ̸=0,j2=j5}

7∏
l=1
l ̸=2,5

ζ
(il)
jl

−

−1{i3=i4 ̸=0,j3=j4}

7∏
l=1
l ̸=3,4

ζ
(il)
jl

− 1{i3=i5 ̸=0,j3=j5}

7∏
l=1
l ̸=3,5

ζ
(il)
jl

− 1{i4=i5 ̸=0,j4=j5}

7∏
l=1
l ̸=4,5

ζ
(il)
jl

−

−1{i7=i1 ̸=0,j7=j1}

7∏
l=1
l ̸=1,7

ζ
(il)
jl

− 1{i7=i2 ̸=0,j7=j2}

7∏
l=1
l ̸=2,7

ζ
(il)
jl

− 1{i7=i3 ̸=0,j7=j3}

7∏
l=1
l ̸=3,7

ζ
(il)
jl

−

−1{i7=i4 ̸=0,j7=j4}

7∏
l=1
l ̸=4,7

ζ
(il)
jl

− 1{i7=i5 ̸=0,j7=j5}

7∏
l=1
l ̸=7,5

ζ
(il)
jl

− 1{i7=i6 ̸=0,j7=j6}

7∏
l=1
l ̸=7,6

ζ
(il)
jl

+

+1{i1=i2 ̸=0,j1=j2,i3=i4 ̸=0,j3=j4}
∏

l=5,6,7

ζ
(il)
jl

+ 1{i1=i2 ̸=0,j1=j2,i3=i5 ̸=0,j3=j5}
∏

l=4,6,7

ζ
(il)
jl

+

+1{i1=i2 ̸=0,j1=j2,i4=i5 ̸=0,j4=j5}
∏

l=3,6,7

ζ
(il)
jl

+ 1{i1=i3 ̸=0,j1=j3,i2=i4 ̸=0,j2=j4}
∏

l=5,6,7

ζ
(il)
jl

+

+1{i1=i3 ̸=0,j1=j3,i2=i5 ̸=0,j2=j5}
∏

l=4,6,7

ζ
(il)
jl

+ 1{i1=i3 ̸=0,j1=j3,i4=i5 ̸=0,j4=j5}
∏

l=2,6,7

ζ
(il)
jl

+

+1{i1=i4 ̸=0,j1=j4,i2=i3 ̸=0,j2=j3}
∏

l=5,6,7

ζ
(il)
jl

+ 1{i1=i4 ̸=0,j1=j4,i2=i5 ̸=0,j2=j5}
∏

l=3,6,7

ζ
(il)
jl

+

+1{i1=i4 ̸=0,j1=j4,i3=i5 ̸=0,j3=j5}
∏

l=2,6,7

ζ
(il)
jl

+ 1{i1=i5 ̸=0,j1=j5,i2=i3 ̸=0,j2=j3}
∏

l=4,6,7

ζ
(il)
jl

+
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+1{i1=i5 ̸=0,j1=j5,i2=i4 ̸=0,j2=j4}
∏

l=3,6,7

ζ
(il)
jl

+ 1{i1=i5 ̸=0,j1=j5,i3=i4 ̸=0,j3=j4}
∏

l=2,6,7

ζ
(il)
jl

+

+1{i2=i3 ̸=0,j2=j3,i4=i5 ̸=0,j4=j5}
∏

l=1,6,7

ζ
(il)
jl

+ 1{i2=i4 ̸=0,j2=j4,i3=i5 ̸=0,j3=j5}
∏

l=1,6,7

ζ
(il)
jl

+

+1{i2=i5 ̸=0,j2=j5,i3=i4 ̸=0,j3=j4}
∏

l=1,6,7

ζ
(il)
jl

+ 1{i6=i1 ̸=0,j6=j1,i3=i4 ̸=0,j3=j4}
∏

l=2,5,7

ζ
(il)
jl

+

+1{i6=i1 ̸=0,j6=j1,i3=i5 ̸=0,j3=j5}
∏

l=2,4,7

ζ
(il)
jl

+ 1{i6=i1 ̸=0,j6=j1,i2=i5 ̸=0,j2=j5}
∏

l=3,4,7

ζ
(il)
jl

+

+1{i6=i1 ̸=0,j6=j1,i2=i4 ̸=0,j2=j4}
∏

l=3,5,7

ζ
(il)
jl

+ 1{i6=i1 ̸=0,j6=j1,i4=i5 ̸=0,j4=j5}
∏

l=2,3,7

ζ
(il)
jl

+

+1{i6=i1 ̸=0,j6=j1,i2=i3 ̸=0,j2=j3}
∏

l=4,5,7

ζ
(il)
jl

+ 1{i6=i2 ̸=0,j6=j2,i3=i5 ̸=0,j3=j5}
∏

l=1,4,7

ζ
(il)
jl

+

+1{i6=i2 ̸=0,j6=j2,i4=i5 ̸=0,j4=j5}
∏

l=1,3,7

ζ
(il)
jl

+ 1{i6=i2 ̸=0,j6=j2,i3=i4 ̸=0,j3=j4}
∏

l=1,5,7

ζ
(il)
jl

+

+1{i6=i2 ̸=0,j6=j2,i1=i5 ̸=0,j1=j5}
∏

l=3,4,7

ζ
(il)
jl

+ 1{i6=i2 ̸=0,j6=j2,i1=i4 ̸=0,j1=j4}
∏

l=3,5,7

ζ
(il)
jl

+

+1{i6=i2 ̸=0,j6=j2,i1=i3 ̸=0,j1=j3}
∏

l=4,5,7

ζ
(il)
jl

+ 1{i6=i3 ̸=0,j6=j3,i2=i5 ̸=0,j2=j5}
∏

l=1,4,7

ζ
(il)
jl

+

+1{i6=i3 ̸=0,j6=j3,i4=i5 ̸=0,j4=j5}
∏

l=1,2,7

ζ
(il)
jl

+ 1{i6=i3 ̸=0,j6=j3,i2=i4 ̸=0,j2=j4}
∏

l=1,5,7

ζ
(il)
jl

+

+1{i6=i3 ̸=0,j6=j3,i1=i5 ̸=0,j1=j5}
∏

l=2,4,7

ζ
(il)
jl

+ 1{i6=i3 ̸=0,j6=j3,i1=i4 ̸=0,j1=j4}
∏

l=2,5,7

ζ
(il)
jl

+

+1{i6=i3 ̸=0,j6=j3,i1=i2 ̸=0,j1=j2}
∏

l=4,5,7

ζ
(il)
jl

+ 1{i6=i4 ̸=0,j6=j4,i3=i5 ̸=0,j3=j5}
∏

l=1,2,7

ζ
(il)
jl

+

+1{i6=i4 ̸=0,j6=j4,i2=i5 ̸=0,j2=j5}
∏

l=1,3,7

ζ
(il)
jl

+ 1{i6=i4 ̸=0,j6=j4,i2=i3 ̸=0,j2=j3}
∏

l=1,5,7

ζ
(il)
jl

+

+1{i6=i4 ̸=0,j6=j4,i1=i5 ̸=0,j1=j5}
∏

l=2,3,7

ζ
(il)
jl

+ 1{i6=i4 ̸=0,j6=j4,i1=i3 ̸=0,j1=j3}
∏

l=2,5,7

ζ
(il)
jl

+

+1{i6=i4 ̸=0,j6=j4,i1=i2 ̸=0,j1=j2}
∏

l=3,5,7

ζ
(il)
jl

+ 1{i6=i5 ̸=0,j6=j5,i3=i4 ̸=0,j3=j4}
∏

l=1,2,7

ζ
(il)
jl

+

+1{i6=i5 ̸=0,j6=j5,i2=i4 ̸=0,j2=j4}
∏

l=1,3,7

ζ
(il)
jl

+ 1{i6=i5 ̸=0,j6=j5,i2=i3 ̸=0,j2=j3}
∏

l=1,4,7

ζ
(il)
jl

+
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+1{i6=i5 ̸=0,j6=j5,i1=i4 ̸=0,j1=j4}
∏

l=2,3,7

ζ
(il)
jl

+ 1{i6=i5 ̸=0,j6=j5,i1=i3 ̸=0,j1=j3}
∏

l=2,4,7

ζ
(il)
jl

+

+1{i6=i5 ̸=0,j6=j5,i1=i2 ̸=0,j1=j2}
∏

l=3,4,7

ζ
(il)
jl

+ 1{i7=i1 ̸=0,j7=j1,i2=i3 ̸=0,j2=j3}
∏

l=4,5,6

ζ
(il)
jl

+

+1{i7=i1 ̸=0,j7=j1,i2=i4 ̸=0,j2=j4}
∏

l=3,5,6

ζ
(il)
jl

+ 1{i7=i1 ̸=0,j7=j1,i2=i5 ̸=0,j2=j5}
∏

l=3,4,6

ζ
(il)
jl

+

+1{i7=i1 ̸=0,j7=j1,i2=i6 ̸=0,j2=j6}
∏

l=3,4,5

ζ
(il)
jl

+ 1{i7=i1 ̸=0,j7=j1,i3=i4 ̸=0,j3=j4}
∏

l=2,5,6

ζ
(il)
jl

+

+1{i7=i1 ̸=0,j7=j1,i3=i5 ̸=0,j3=j5}
∏

l=2,4,6

ζ
(il)
jl

+ 1{i7=i1 ̸=0,j7=j1,i3=i6 ̸=0,j3=j6}
∏

l=2,4,5

ζ
(il)
jl

+

+1{i7=i1 ̸=0,j7=j1,i4=i5 ̸=0,j4=j5}
∏

l=2,3,6

ζ
(il)
jl

+ 1{i7=i1 ̸=0,j7=j1,i4=i6 ̸=0,j4=j6}
∏

l=2,3,5

ζ
(il)
jl

+

+1{i1=i2 ̸=0,j7=j1,i7=i1 ̸=0,j5=j6}
∏

l=2,3,4

ζ
(il)
jl

+ 1{i7=i2 ̸=0,j7=j2,i1=i3 ̸=0,j1=j3}
∏

l=4,5,6

ζ
(il)
jl

+

+1{i7=i2 ̸=0,j7=j2,i1=i4 ̸=0,j1=j4}
∏

l=3,5,6

ζ
(il)
jl

+ 1{i7=i2 ̸=0,j7=j2,i1=i5 ̸=0,j1=j5}
∏

l=3,4,6

ζ
(il)
jl

+

+1{i7=i2 ̸=0,j7=j2,i1=i6 ̸=0,j1=j6}
∏

l=3,4,5

ζ
(il)
jl

+ 1{i7=i2 ̸=0,j7=j2,i3=i4 ̸=0,j3=j4}
∏

l=1,5,6

ζ
(il)
jl

+

+1{i7=i2 ̸=0,j7=j2,i3=i5 ̸=0,j3=j5}
∏

l=1,4,6

ζ
(il)
jl

+ 1{i7=i2 ̸=0,j7=j2,i3=i6 ̸=0,j3=j6}
∏

l=1,4,5

ζ
(il)
jl

+

+1{i7=i2 ̸=0,j7=j2,i4=i5 ̸=0,j4=j5}
∏

l=1,3,6

ζ
(il)
jl

+ 1{i7=i2 ̸=0,j7=j2,i4=i6 ̸=0,j4=j6}
∏

l=1,3,5

ζ
(il)
jl

+

+1{i7=i2 ̸=0,j7=j2,i5=i6 ̸=0,j5=j6}
∏

l=1,3,4

ζ
(il)
jl

+ 1{i7=i3 ̸=0,j7=j3,i1=i2 ̸=0,j1=j2}
∏

l=4,5,6

ζ
(il)
jl

+

+1{i7=i3 ̸=0,j7=j3,i1=i4 ̸=0,j1=j4}
∏

l=2,3,5

ζ
(il)
jl

+ 1{i7=i3 ̸=0,j7=j3,i1=i5 ̸=0,j1=j5}
∏

l=2,4,6

ζ
(il)
jl

+

+1{i7=i3 ̸=0,j7=j3,i1=i6 ̸=0,j1=j6}
∏

l=4,2,5

ζ
(il)
jl

+ 1{i7=i3 ̸=0,j7=j3,i2=i4 ̸=0,j2=j4}
∏

l=3,5,6

ζ
(il)
jl

+

+1{i7=i3 ̸=0,j7=j3,i2=i5 ̸=0,j2=j5}
∏

l=1,4,6

ζ
(il)
jl

+ 1{i7=i3 ̸=0,j7=j3,i2=i6 ̸=0,j2=j6}
∏

l=1,4,5

ζ
(il)
jl

+

+1{i7=i3 ̸=0,j7=j3,i4=i5 ̸=0,j4=j5}
∏

l=1,2,6

ζ
(il)
jl

+ 1{i7=i3 ̸=0,j7=j3,i4=i6 ̸=0,j4=j6}
∏

l=1,2,5

ζ
(il)
jl

+
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+1{i7=i3 ̸=0,j7=j3,i5=i6 ̸=0,j5=j6}
∏

l=1,2,4

ζ
(il)
jl

+ 1{i7=i4 ̸=0,j7=j4,i1=i2 ̸=0,j1=j2}
∏

l=3,5,6

ζ
(il)
jl

+

+1{i7=i4 ̸=0,j7=j4,i1=i3 ̸=0,j1=j3}
∏

l=2,5,6

ζ
(il)
jl

+ 1{i7=i4 ̸=0,j7=j4,i1=i5 ̸=0,j1=j5}
∏

l=2,3,6

ζ
(il)
jl

+

+1{i7=i4 ̸=0,j7=j4,i1=i6 ̸=0,j1=j6}
∏

l=2,3,5

ζ
(il)
jl

+ 1{i7=i4 ̸=0,j7=j4,i2=i3 ̸=0,j2=j3}
∏

l=1,5,6

ζ
(il)
jl

+

+1{i7=i4 ̸=0,j7=j4,i2=i5 ̸=0,j2=j5}
∏

l=1,3,6

ζ
(il)
jl

+ 1{i7=i4 ̸=0,j7=j4,i2=i6 ̸=0,j2=j6}
∏

l=1,3,5

ζ
(il)
jl

+

+1{i7=i4 ̸=0,j7=j4,i3=i5 ̸=0,j3=j5}
∏

l=1,2,6

ζ
(il)
jl

+ 1{i7=i4 ̸=0,j7=j4,i3=i6 ̸=0,j3=j6}
∏

l=1,2,5

ζ
(il)
jl

+

+1{i7=i4 ̸=0,j7=j4,i5=i6 ̸=0,j5=j6}
∏

l=1,2,3

ζ
(il)
jl

+ 1{i7=i5 ̸=0,j7=j5,i1=i2 ̸=0,j1=j2}
∏

l=3,4,6

ζ
(il)
jl

+

+1{i7=i5 ̸=0,j7=j5,i1=i3 ̸=0,j1=j3}
∏

l=2,4,6

ζ
(il)
jl

+ 1{i7=i5 ̸=0,j7=j5,i1=i4 ̸=0,j1=j4}
∏

l=2,3,6

ζ
(il)
jl

+

+1{i7=i5 ̸=0,j7=j5,i1=i6 ̸=0,j1=j6}
∏

l=2,3,4

ζ
(il)
jl

+ 1{i7=i5 ̸=0,j7=j5,i2=i3 ̸=0,j2=j3}
∏

l=1,4,6

ζ
(il)
jl

+

+1{i7=i5 ̸=0,j7=j5,i2=i4 ̸=0,j2=j4}
∏

l=1,3,6

ζ
(il)
jl

+ 1{i7=i5 ̸=0,j7=j5,i2=i6 ̸=0,j2=j6}
∏

l=1,3,5

ζ
(il)
jl

+

+1{i7=i5 ̸=0,j7=j5,i3=i4 ̸=0,j3=j4}
∏

l=1,2,6

ζ
(il)
jl

+ 1{i7=i5 ̸=0,j7=j5,i3=i6 ̸=0,j3=j6}
∏

l=1,2,4

ζ
(il)
jl

+

+1{i7=i5 ̸=0,j7=j5,i4=i6 ̸=0,j4=j6}
∏

l=1,2,3

ζ
(il)
jl

+ 1{i7=i6 ̸=0,j7=j6,i1=i2 ̸=0,j1=j2}
∏

l=3,4,5

ζ
(il)
jl

+

+1{i7=i6 ̸=0,j7=j6,i1=i3 ̸=0,j1=j3}
∏

l=2,4,5

ζ
(il)
jl

+ 1{i7=i6 ̸=0,j7=j6,i1=i4 ̸=0,j1=j4}
∏

l=2,3,5

ζ
(il)
jl

+

+1{i7=i6 ̸=0,j7=j6,i1=i5 ̸=0,j1=j5}
∏

l=2,3,4

ζ
(il)
jl

+ 1{i7=i6 ̸=0,j7=j6,i2=i3 ̸=0,j2=j3}
∏

l=1,4,5

ζ
(il)
jl

+

+1{i7=i6 ̸=0,j7=j6,i2=i4 ̸=0,j2=j4}
∏

l=1,3,5

ζ
(il)
jl

+ 1{i7=i6 ̸=0,j7=j6,i2=i5 ̸=0,j2=j5}
∏

l=1,3,4

ζ
(il)
jl

+

+1{i7=i6 ̸=0,j7=j6,i3=i5 ̸=0,j3=j5}
∏

l=1,2,4

ζ
(il)
jl

+ 1{i7=i6 ̸=0,j7=j6,i4=i5 ̸=0,j4=j5}
∏

l=1,2,3

ζ
(il)
jl

+

+1{i7=i6 ̸=0,j7=j6,i3=i4 ̸=0,j3=j4}
∏

l=1,2,5

ζ
(il)
jl

−
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−
(
1{i2=i3 ̸=0,j2=j3,i4=i5 ̸=0,j4=j5,i6=i7 ̸=0,j6=j7}+1{i2=i3 ̸=0,j2=j3,i4=i6 ̸=0,j4=j6,i5=i7 ̸=0,j5=j7}+

+1{i2=i3 ̸=0,j2=j3,i4=i7 ̸=0,j4=j7,i5=i6 ̸=0,j5=j6} + 1{i2=i4 ̸=0,j2=j4,i3=i5 ̸=0,j3=j5,i6=i7 ̸=0,j6=j7}+

+1{i2=i4 ̸=0,j2=j4,i3=i6 ̸=0,j3=j6,i5=i7 ̸=0,j5=j7} + 1{i2=i4 ̸=0,j2=j4,i3=i7 ̸=0,j3=j7,i5=i6 ̸=0,j5=j6}+

+1{i2=i5 ̸=0,j2=j5,i3=i4 ̸=0,j3=j4,i6=i7 ̸=0,j6=j7} + 1{i2=i5 ̸=0,j2=j5,i3=i6 ̸=0,j3=j6,i4=i7 ̸=0,j4=j7}+

+1{i2=i5 ̸=0,j2=j5,i3=i7 ̸=0,j3=j7,i4=i6 ̸=0,j4=j6} + 1{i2=i6 ̸=0,j2=j6,i3=i4 ̸=0,j3=j4,i5=i7 ̸=0,j5=j7}+

+1{i2=i6 ̸=0,j2=j6,i3=i5 ̸=0,j3=j5,i4=i7 ̸=0,j4=j7} + 1{i2=i6 ̸=0,j2=j6,i3=i7 ̸=0,j3=j7,i4=i5 ̸=0,j4=j5}+

+1{i2=i7 ̸=0,j2=j7,i3=i4 ̸=0,j3=j4,i5=i6 ̸=0,j5=j6} + 1{i2=i7 ̸=0,j2=j7,i3=i5 ̸=0,j3=j5,i4=i6 ̸=0,j4=j6}+

+1{i2=i7 ̸=0,j2=j7,i3=i6 ̸=0,j3=j6,i4=i5 ̸=0,j4=j5}

)
ζ
(i1)
j1

−

−
(
1{i1=i3 ̸=0,j1=j3,i4=i7 ̸=0,j4=j7,i5=i6 ̸=0,j5=j6} + 1{i1=i3 ̸=0,j1=j3,i4=i5 ̸=0,j4=j5,i6=i7 ̸=0,j6=j7}+

+1{i1=i3 ̸=0,j1=j3,i4=i6 ̸=0,j4=j6,i5=i7 ̸=0,j5=j7} + 1{i1=i4 ̸=0,j1=j4,i3=i5 ̸=0,j3=j5,i6=i7 ̸=0,j6=j7}+

+1{i1=i4 ̸=0,j1=j4,i3=i6 ̸=0,j3=j6,i5=i7 ̸=0,j5=j7} + 1{i1=i4 ̸=0,j1=j4,i3=i7 ̸=0,j3=j7,i5=i6 ̸=0,j5=j6}+

+1{i1=i5 ̸=0,j1=j5,i3=i4 ̸=0,j3=j4,i6=i7 ̸=0,j6=j7} + 1{i1=i5 ̸=0,j1=j5,i3=i6 ̸=0,j3=j6,i4=i7 ̸=0,j4=j7}+

+1{i1=i5 ̸=0,j1=j5,i3=i7 ̸=0,j3=j7,i4=i6 ̸=0,j4=j6} + 1{i1=i6 ̸=0,j1=j6,i3=i4 ̸=0,j3=j4,i5=i7 ̸=0,j5=j7}+

+1{i6=i1 ̸=0,j6=j1,i3=i5 ̸=0,j3=j5,i4=i7 ̸=0,j4=j7} + 1{i6=i1 ̸=0,j6=j1,i3=i7 ̸=0,j3=j7,i4=i5 ̸=0,j4=j5}+

+1{i1=i7 ̸=0,j1=j7,i3=i4 ̸=0,j3=j4,i5=i6 ̸=0,j5=j6} + 1{i1=i7 ̸=0,j1=j7,i3=i5 ̸=0,j3=j5,i4=i6 ̸=0,j4=j6}+

+1{i1=i7 ̸=0,j1=j7,i3=i6 ̸=0,j3=j6,i4=i5 ̸=0,j4=j5}

)
ζ
(i2)
j2

−

−
(
1{i1=i2 ̸=0,j1=j2,i4=i5 ̸=0,j4=j5,i6=i7 ̸=0,j6=j7} + 1{i1=i2 ̸=0,j1=j2,i4=i6 ̸=0,j4=j6,i5=i7 ̸=0,j5=j7}+

+1{i1=i2 ̸=0,j1=j2,i4=i7 ̸=0,j4=j7,i5=i6 ̸=0,j5=j6} + 1{i1=i4 ̸=0,j1=j4,i2=i5 ̸=0,j2=j5,i6=i7 ̸=0,j6=j7}+

+1{i1=i4 ̸=0,j1=j4,i2=i6 ̸=0,j2=j6,i5=i7 ̸=0,j5=j7} + 1{i1=i4 ̸=0,j1=j4,i2=i7 ̸=0,j2=j7,i5=i6 ̸=0,j5=j6}+

+1{i1=i5 ̸=0,j1=j5,i2=i4 ̸=0,j2=j4,i6=i7 ̸=0,j6=j7} + 1{i1=i5 ̸=0,j1=j5,i2=i6 ̸=0,j2=j6,i4=i7 ̸=0,j4=j7}+

+1{i1=i5 ̸=0,j1=j5,i2=i7 ̸=0,j2=j7,i4=i6 ̸=0,j4=j6} + 1{i6=i1 ̸=0,j6=j1,i2=i4 ̸=0,j2=j4,i5=i7 ̸=0,j5=j7}+

+1{i6=i1 ̸=0,j6=j1,i2=i5 ̸=0,j2=j5,i4=i7 ̸=0,j4=j7} + 1{i6=i1 ̸=0,j6=j1,i2=i7 ̸=0,j2=j7,i4=i5 ̸=0,j4=j5}+

+1{i1=i7 ̸=0,j1=j7,i2=i4 ̸=0,j2=j4,i5=i6 ̸=0,j5=j6} + 1{i1=i7 ̸=0,j1=j7,i2=i5 ̸=0,j2=j5,i4=i6 ̸=0,j4=j6}+

+1{i1=i7 ̸=0,j1=j7,i2=i6 ̸=0,j2=j6,i4=i5 ̸=0,j4=j5}

)
ζ
(i3)
j3

−
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−
(
1{i1=i2 ̸=0,j1=j2,i3=i5 ̸=0,j3=j5,i6=i7 ̸=0,j6=j7}+1{i1=i2 ̸=0,j1=j2,i3=i6 ̸=0,j3=j6,i5=i7 ̸=0,j5=j7}+

+1{i1=i2 ̸=0,j1=j2,i3=i7 ̸=0,j3=j7,i5=i6 ̸=0,j5=j6} + 1{i1=i3 ̸=0,j1=j3,i2=i5 ̸=0,j2=j5,i6=i7 ̸=0,j6=j7}+

+1{i1=i3 ̸=0,j1=j3,i2=i6 ̸=0,j2=j6,i5=i7 ̸=0,j5=j7} + 1{i1=i3 ̸=0,j1=j3,i2=i7 ̸=0,j2=j7,i5=i6 ̸=0,j5=j6}+

+1{i1=i5 ̸=0,j1=j5,i2=i3 ̸=0,j2=j3,i6=i7 ̸=0,j6=j7} + 1{i1=i5 ̸=0,j1=j5,i2=i6 ̸=0,j2=j6,i3=i7 ̸=0,j3=j7}+

+1{i1=i5 ̸=0,j1=j5,i2=i7 ̸=0,j2=j7,i3=i6 ̸=0,j3=j6} + 1{i6=i1 ̸=0,j6=j1,i2=i3 ̸=0,j2=j3,i5=i7 ̸=0,j5=j7}+

+1{i6=i1 ̸=0,j6=j1,i2=i5 ̸=0,j2=j5,i3=i7 ̸=0,j3=j7} + 1{i6=i1 ̸=0,j6=j1,i2=i7 ̸=0,j2=j7,i3=i5 ̸=0,j3=j5}+

+1{i7=i1 ̸=0,j7=j1,i2=i3 ̸=0,j2=j3,i5=i6 ̸=0,j5=j6} + 1{i7=i1 ̸=0,j7=j1,i2=i5 ̸=0,j2=j5,i3=i6 ̸=0,j3=j6}+

+1{i7=i1 ̸=0,j7=j1,i2=i6 ̸=0,j2=j6,i3=i5 ̸=0,j3=j5}

)
ζ
(i4)
j4

−

−
(
1{i1=i2 ̸=0,j1=j2,i3=i4 ̸=0,j3=j4,i6=i7 ̸=0,j6=j7}+1{i1=i2 ̸=0,j1=j2,i3=i6 ̸=0,j3=j6,i4=i7 ̸=0,j4=j7}+

+1{i1=i2 ̸=0,j1=j2,i3=i7 ̸=0,j3=j7,i4=i6 ̸=0,j4=j6} + 1{i1=i3 ̸=0,j1=j3,i2=i4 ̸=0,j2=j4,i6=i7 ̸=0,j6=j7}+

+1{i1=i3 ̸=0,j1=j3,i2=i6 ̸=0,j2=j6,i4=i7 ̸=0,j4=j7} + 1{i1=i3 ̸=0,j1=j3,i2=i7 ̸=0,j2=j7,i4=i6 ̸=0,j4=j6}+

+1{i1=i4 ̸=0,j1=j4,i2=i3 ̸=0,j2=j3,i6=i7 ̸=0,j6=j7} + 1{i1=i4 ̸=0,j1=j4,i2=i6 ̸=0,j2=j6,i3=i7 ̸=0,j3=j7}+

+1{i1=i4 ̸=0,j1=j4,i2=i7 ̸=0,j2=j7,i3=i6 ̸=0,j3=j6} + 1{i6=i1 ̸=0,j6=j1,i2=i3 ̸=0,j2=j3,i4=i7 ̸=0,j4=j7}+

+1{i6=i1 ̸=0,j6=j1,i2=i4 ̸=0,j2=j4,i3=i7 ̸=0,j3=j7} + 1{i6=i1 ̸=0,j6=j1,i2=i7 ̸=0,j2=j7,i3=i4 ̸=0,j3=j4}+

+1{i1=i7 ̸=0,j1=j7,i2=i3 ̸=0,j2=j3,i4=i6 ̸=0,j4=j6} + 1{i1=i7 ̸=0,j1=j7,i2=i4 ̸=0,j2=j4,i3=i6 ̸=0,j3=j6}+

+1{i7=i1 ̸=0,j7=j1,i2=i6 ̸=0,j2=j6,i3=i4 ̸=0,j3=j4}

)
ζ
(i5)
j5

−

−
(
1{i1=i2 ̸=0,j1=j2,i3=i4 ̸=0,j3=j4,i5=i7 ̸=0,j5=j7}+1{i1=i2 ̸=0,j1=j2,i3=i5 ̸=0,j3=j5,i4=i7 ̸=0,j4=j7}+

+1{i1=i2 ̸=0,j1=j2,i3=i7 ̸=0,j3=j7,i4=i5 ̸=0,j4=j5} + 1{i1=i3 ̸=0,j1=j3,i2=i4 ̸=0,j2=j4,i5=i7 ̸=0,j5=j7}+

+1{i1=i3 ̸=0,j1=j3,i2=i5 ̸=0,j2=j5,i4=i7 ̸=0,j4=j7} + 1{i1=i3 ̸=0,j1=j3,i2=i7 ̸=0,j2=j7,i4=i5 ̸=0,j4=j5}+

+1{i1=i4 ̸=0,j1=j4,i2=i3 ̸=0,j2=j3,i5=i7 ̸=0,j5=j7} + 1{i1=i4 ̸=0,j1=j4,i2=i5 ̸=0,j2=j5,i3=i7 ̸=0,j3=j7}+

+1{i1=i4 ̸=0,j1=j4,i2=i7 ̸=0,j2=j7,i3=i5 ̸=0,j3=j5} + 1{i1=i5 ̸=0,j1=j5,i2=i3 ̸=0,j2=j3,i4=i7 ̸=0,j4=j7}+

+1{i1=i5 ̸=0,j1=j5,i2=i4 ̸=0,j2=j4,i3=i7 ̸=0,j3=j7} + 1{i1=i5 ̸=0,j1=j5,i2=i7 ̸=0,j2=j7,i3=i4 ̸=0,j3=j4}+

+1{i7=i1 ̸=0,j7=j1,i2=i3 ̸=0,j2=j3,i4=i5 ̸=0,j4=j5} + 1{i7=i1 ̸=0,j7=j1,i2=i4 ̸=0,j2=j4,i3=i5 ̸=0,j3=j5}+

+1{i7=i1 ̸=0,j7=j1,i2=i5 ̸=0,j2=j5,i3=i4 ̸=0,j3=j4}

)
ζ
(i6)
j6

−
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−
(
1{i1=i2 ̸=0,j1=j2,i3=i4 ̸=0,j3=j4,i5=i6 ̸=0,j5=j6}+1{i1=i2 ̸=0,j1=j2,i3=i5 ̸=0,j3=j5,i4=i6 ̸=0,j4=j6}+

+1{i1=i2 ̸=0,j1=j2,i3=i6 ̸=0,j3=j6,i4=i5 ̸=0,j4=j5} + 1{i1=i3 ̸=0,j1=j3,i2=i4 ̸=0,j2=j4,i5=i6 ̸=0,j5=j6}+

+1{i1=i3 ̸=0,j1=j3,i2=i5 ̸=0,j2=j5,i4=i6 ̸=0,j4=j6} + 1{i1=i3 ̸=0,j1=j3,i2=i6 ̸=0,j2=j6,i4=i5 ̸=0,j4=j5}+

+1{i4=i1 ̸=0,j4=j1,i2=i3 ̸=0,j2=j3,i5=i6 ̸=0,j5=j6} + 1{i4=i1 ̸=0,j4=j1,i2=i5 ̸=0,j2=j5,i3=i6 ̸=0,j3=j6}+

+1{i4=i1 ̸=0,j4=j1,i2=i6 ̸=0,j2=j6,i3=i5 ̸=0,j3=j5} + 1{i5=i1 ̸=0,j5=j1,i2=i3 ̸=0,j2=j3,i4=i6 ̸=0,j4=j6}+

+1{i5=i1 ̸=0,j5=j1,i2=i4 ̸=0,j2=j4,i3=i6 ̸=0,j3=j6} + 1{i5=i1 ̸=0,j5=j1,i2=i6 ̸=0,j2=j6,i3=i4 ̸=0,j3=j4}+

+1{i6=i1 ̸=0,j6=j1,i2=i3 ̸=0,j2=j3,i4=i5 ̸=0,j4=j5} + 1{i6=i1 ̸=0,j6=j1,i2=i4 ̸=0,j2=j4,i3=i5 ̸=0,j3=j5}+

+1{i6=i1 ̸=0,j6=j1,i2=i5 ̸=0,j2=j5,i3=i4 ̸=0,j3=j4}

)
ζ
(i7)
j7

)
, (1.51)

where 1A is the indicator of the set A.

1.1.5 Expansion of Iterated Itô Stochastic Integrals of Multiplicity
k (k ∈ N) Based on Theorem 1.1

Consider a generalization of the formulas (1.45)–(1.51) for the case of arbitrary
multiplicity k for J [ψ(k)]T,t. In order to do this, let us consider the unordered set
{1, 2, . . . , k} and separate it into two parts: the first part consists of r unordered
pairs (sequence order of these pairs is also unimportant) and the second one
consists of the remaining k − 2r numbers. So, we have

({{g1, g2}, . . . , {g2r−1, g2r}︸ ︷︷ ︸
part 1

}, {q1, . . . , qk−2r︸ ︷︷ ︸
part 2

}), (1.52)

where {g1, g2, . . . , g2r−1, g2r, q1, . . . , qk−2r} = {1, 2, . . . , k}, braces mean an un-
ordered set, and parentheses mean an ordered set.

We will say that (1.52) is a partition and consider the sum with respect to
all possible partitions ∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

ag1g2,...,g2r−1g2r,q1...qk−2r
, (1.53)

where ag1g2,...,g2r−1g2r,q1...qk−2r
∈ R.

Below there are several examples of sums in the form (1.53)∑
({g1,g2})

{g1,g2}={1,2}

ag1g2 = a12,
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({{g1,g2},{g3,g4}})

{g1,g2,g3,g4}={1,2,3,4}

ag1g2,g3g4 = a12,34 + a13,24 + a23,14,

∑
({g1,g2},{q1,q2})

{g1,g2,q1,q2}={1,2,3,4}

ag1g2,q1q2 =

= a12,34 + a13,24 + a14,23 + a23,14 + a24,13 + a34,12,∑
({g1,g2},{q1,q2,q3})

{g1,g2,q1,q2,q3}={1,2,3,4,5}

ag1g2,q1q2q3 =

= a12,345 + a13,245 + a14,235 + a15,234 + a23,145 + a24,135+

+a25,134 + a34,125 + a35,124 + a45,123,∑
({{g1,g2},{g3,g4}},{q1})

{g1,g2,g3,g4,q1}={1,2,3,4,5}

ag1g2,g3g4,q1 =

= a12,34,5 + a13,24,5 + a14,23,5 + a12,35,4 + a13,25,4 + a15,23,4 + a12,54,3 + a15,24,3+

+a14,25,3 + a15,34,2 + a13,54,2 + a14,53,2 + a52,34,1 + a53,24,1 + a54,23,1.

Now we can formulate Theorem 1.1 (see (1.10)) using alternative form.

Theorem 1.23 [4] (2009) (also see [5]-[17], [24], [29], [39], [48], [49]). Under
the conditions of Theorem 1.1 the following expansion

J [ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql

)
(1.54)

converging in the mean-square sense is valid, where [x] is an integer part of a real

number x,
∏
∅

def
= 1,

∑
∅

def
= 0; another notations are the same as in Theorem 1.1.

Proof. The equality (1.54) will be proved by induction in Sect. 1.14 (see
the proof of Theorem 1.23).

3The connection of formulas (1.45)–(1.51), (1.54) with Hermite polynomials is studied in Sect. 1.10, 1.11 (see
Theorems 1.14–1.17).
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In particular, from (1.54) for k = 5 we obtain

J [ψ(5)]T,t = l.i.m.
p1,...,p5→∞

p1∑
j1=0

. . .

p5∑
j5=0

Cj5...j1

(
5∏
l=1

ζ
(il)
jl

−

−
∑

({g1,g2},{q1,q2,q3})
{g1,g2,q1,q2,q3}={1,2,3,4,5}

1{ig1= ig2 ̸=0}1{jg1= jg2}

3∏
l=1

ζ
(iql)

jql
+

+
∑

({{g1,g2},{g3,g4}},{q1})
{g1,g2,g3,g4,q1}={1,2,3,4,5}

1{ig1= ig2 ̸=0}1{jg1= jg2}
1{ig3= ig4 ̸=0}1{jg3= jg4 }

ζ
(iq1)

jq1

)
.

The last equality obviously agrees with (1.49).

It is now appropriate to make a remark about the structure of the formulas
(1.45)–(1.51) and (1.54). Using (1.39), (1.43), (1.45)–(1.51), (1.54), we obtain

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql

)
(1.55)

w. p. 1, where the multiple stochastic integral J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t is defined by

(1.23); another notations in (1.55) are the same as in Theorem 1.2.

The stochastic integral with respect to the scalar standard Wiener process
(i1 = . . . = ik ̸= 0) and similar to (1.23) was considered in [106] (1951) and is
called the multiple Wiener stochastic integral [106]. Note that Φ(t1, . . . , tk) ∈
L2([t, T ]

k) in [106] (this case will be considered in Sect. 1.11–1.14).

As we will see in Sect. 1.10, 1.11, 1.14, the expression on the right-hand
side of (1.55) is the Wick polynomial with arguments ζ

(i1)
j1
, . . . , ζ

(ik)
jk
. Moreover,

the given expression is an explicit representation of the Wick polynomial, in
contrast to its representation in the form of a product of Hermite polynomials
(see Sect. 1.10, 1.11, 1.14) or its another representation (or definition) using a
recurrence relation (see (1.391)).

To best of our knowledge, the representation of the multiple Wiener stochas-
tic integral in the form of a Wick polynomial (see (1.55)) for the case of



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series 65

a multidimensional Wiener process (i1, . . . , ik = 0, 1, . . . ,m) and the case
j1, . . . , jk = 0, 1, 2, . . . was first obtained in our monographs [1] (2006), [3]
(2007), and [4] (2009). More precisely, the formula (1.55) is obtained in our
monograph [4] (2009) as part of the formula (5.30) (see [4], p. 220). Moreover,
partiular cases k = 1, . . . , 5 (see (1.45)–(1.49)) of the formula (1.55) were ob-
tained in [1] (2006) as parts of the formulas on the pages 243-244 and partiular
cases k = 1, . . . , 7 (see (1.45)–(1.51)) of the formula (1.55) were obtained in [3]
(2007) as parts of the formulas on the pages 208-218.

The indicated formulas are obtained for the case when ψ1(τ), . . . , ψk(τ)
are continuous nonrandom functions on the interval [t, T ] and {ϕj(x)}∞j=0 is a
complete orthonormal system of piecewise continuous functions in the space
L2([t, T ]) (see Sect. 1.1.7 and [1] (2006), [3] (2007), and [4] (2009)). Note
that the generality of the above results is even too great when applied to the
numerical integration of Itô stochastic differential equations.

It should be noted that in [110] (1987) an L2–version of the formula (1.55)
was obtained, but only for the special case j1 = . . . = jk. The above result in
[110] (Proposition 5.1) is obtained using diagrams, i.e. (unlike our results) in
an implicit form (see Sect. 1.14 (below Remark 1.18) for details).

Let us turn to the comparison of the formula (1.55) with another interesting
work [113] (2019). An L2-version of (1.55) was obtained in [113] in terms of
Wick polynomials and for the case of vector valued random measures (see [113],
Theorem 7.2, p. 69). In earlier works of this author (see for example [112]) only
the case of scalar valued random measures was considered (see Sect. 1.14 (below
Remark 1.18) for details).

In Sect. 1.14 (Theorems 1.22, 1.23) we consider L2–versions of the formula
(1.55). At that, to prove Theorems 1.22 and 1.23 we use only the Itô formula,
in contrast to the diagram method from [113].

1.1.6 Comparison of Theorem 1.2 with the Representations of Iter-
ated Itô Stochastic Integrals Based on Hermite Polynomials

Note that the correctness of the formulas (1.45)–(1.51) can be verified in the
following way. If i1 = . . . = i7 = i = 1, . . . ,m and ψ1(s), . . . , ψ7(s) ≡ ψ(s), then
we can derive from (1.45)–(1.51) [2]-[17], [29] the well known equalities

J [ψ(1)]T,t =
1

1!
δT,t,
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J [ψ(2)]T,t =
1

2!

(
δ2T,t −∆T,t

)
,

J [ψ(3)]T,t =
1

3!

(
δ3T,t − 3δT,t∆T,t

)
,

J [ψ(4)]T,t =
1

4!

(
δ4T,t − 6δ2T,t∆T,t + 3∆2

T,t

)
,

J [ψ(5)]T,t =
1

5!

(
δ5T,t − 10δ3T,t∆T,t + 15δT,t∆

2
T,t

)
,

J [ψ(6)]T,t =
1

6!

(
δ6T,t − 15δ4T,t∆T,t + 45δ2T,t∆

2
T,t − 15∆3

T,t

)
,

J [ψ(7)]T,t =
1

7!

(
δ7T,t − 21δ5T,t∆T,t + 105δ3T,t∆

2
T,t − 105δT,t∆

3
T,t

)
w. p. 1, where

δT,t =

T∫
t

ψ(s)df (i)s , ∆T,t =

T∫
t

ψ2(s)ds,

which can be independently obtained using the Itô formula and Hermite poly-
nomials [108].

When k = 1 everything is evident. Let us consider the cases k = 2 and
k = 3 in detail. When k = 2 and p1 = p2 = p we have (see (1.46)) [2]-[17], [29]

J [ψ(2)]T,t = l.i.m.
p→∞

(
p∑

j1,j2=0

Cj2j1ζ
(i)
j1
ζ
(i)
j2

−
p∑

j1=0

Cj1j1

)
=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

(
Cj2j1 + Cj1j2

)
ζ
(i)
j1
ζ
(i)
j2

+

p∑
j1=0

Cj1j1

((
ζ
(i)
j1

)2
− 1

))
=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

Cj1Cj2ζ
(i)
j1
ζ
(i)
j2

+
1

2

p∑
j1=0

C2
j1

((
ζ
(i)
j1

)2
− 1

))
=

= l.i.m.
p→∞

1

2

p∑
j1,j2=0
j1 ̸=j2

Cj1Cj2ζ
(i)
j1
ζ
(i)
j2

+
1

2

p∑
j1=0

C2
j1

((
ζ
(i)
j1

)2
− 1

) =
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= l.i.m.
p→∞

1

2

(
p∑

j1=0

Cj1ζ
(i)
j1

)2

− 1

2

p∑
j1=0

C2
j1


=

1

2!

(
δ2T,t −∆T,t

)
w. p. 1. (1.56)

Let us explain the last step in (1.56). For the Itô stochastic integral the
following estimate [103] is valid

M


∣∣∣∣∣∣
T∫
t

ξτdfτ

∣∣∣∣∣∣
q ≤ KqM


 T∫

t

|ξτ |2dτ

q/2
 , (1.57)

where q > 0 is a fixed number, fτ is a scalar standard Wiener process, ξτ ∈
M2([t, T ]), Kq is a constant depending only on q,

T∫
t

|ξτ |2dτ <∞ w. p. 1,

M


 T∫

t

|ξτ |2dτ

q/2
 <∞.

Since

δT,t −
p∑

j1=0

Cj1ζ
(i)
j1

=

T∫
t

(
ψ(s)−

p∑
j1=0

Cj1ϕj1(s)

)
df (i)s ,

then applying the estimate (1.57) to the right-hand side of this expression and
considering that

T∫
t

(
ψ(s)−

p∑
j1=0

Cj1ϕj1(s)

)2

ds → 0

if p→ ∞, we obtain

T∫
t

ψ(s)df (i)s = q - l.i.m.
p→∞

p∑
j1=0

Cj1ζ
(i)
j1
, q > 0. (1.58)
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Here q - l.i.m.
p→∞

is a limit in the mean of degree q. Hence, if q = 4, then it is

easy to conclude that w. p. 1

l.i.m.
p→∞

(
p∑

j1=0

Cj1ζ
(i)
j1

)2

= δ2T,t.

This equality as well as Parseval’s equality were used in the last step of the
formula (1.56).

When k = 3 and p1 = p2 = p3 = p we obtain (see (1.47)) [2]-[17], [29]

J [ψ(3)]T,t = l.i.m.
p→∞

(
p∑

j1,j2,j3=0

Cj3j2j1ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
−

−
p∑

j1,j3=0

Cj3j1j1ζ
(i)
j3

−
p∑

j1,j2=0

Cj2j2j1ζ
(i)
j1

−
p∑

j1,j2=0

Cj1j2j1ζ
(i)
j2

)
=

= l.i.m.
p→∞

(
p∑

j1,j2,j3=0

Cj3j2j1ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3

−
p∑

j1,j3=0

(
Cj3j1j1 + Cj1j1j3 + Cj1j3j1

)
ζ
(i)
j3

)
=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

j2−1∑
j3=0

(
Cj3j2j1 + Cj3j1j2 + Cj2j1j3 + Cj2j3j1 + Cj1j2j3 + Cj1j3j2

)
×

×ζ(i)j1 ζ
(i)
j2
ζ
(i)
j3
+

+

p∑
j1=0

j1−1∑
j3=0

(
Cj3j1j3 + Cj1j3j3 + Cj3j3j1

)(
ζ
(i)
j3

)2
ζ
(i)
j1
+

+

p∑
j1=0

j1−1∑
j3=0

(
Cj3j1j1 + Cj1j1j3 + Cj1j3j1

)(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+

p∑
j1=0

Cj1j1j1

(
ζ
(i)
j1

)3
−

p∑
j1,j3=0

(Cj3j1j1 + Cj1j1j3 + Cj1j3j1) ζ
(i)
j3

)
=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

j2−1∑
j3=0

Cj1Cj2Cj3ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
+

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+
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+
1

6

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3
− 1

2

p∑
j1,j3=0

C2
j1
Cj3ζ

(i)
j3

)
=

= l.i.m.
p→∞

(
1

6

p∑
j1,j2,j3=0

j1 ̸=j2,j2 ̸=j3,j1 ̸=j3

Cj1Cj2Cj3ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
+

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+
1

6

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3
− 1

2

p∑
j1,j3=0

C2
j1
Cj3ζ

(i)
j3

)
=

= l.i.m.
p→∞

(
1

6

p∑
j1,j2,j3=0

Cj1Cj2Cj3ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
−

−1

6

(
3

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+ 3

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3)
+

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+
1

6

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3
− 1

2

p∑
j1,j3=0

C2
j1
Cj3ζ

(i)
j3

)
=

= l.i.m.
p→∞

1

6

(
p∑

j1=0

Cj1ζ
(i)
j1

)3

− 1

2

p∑
j1=0

C2
j1

p∑
j3=0

Cj3ζ
(i)
j3

 =

=
1

3!

(
δ3T,t − 3δT,t∆T,t

)
w. p. 1. (1.59)

The last step in (1.59) follows from Parseval’s equality, Theorem 1.1 for
k = 1, and the equality

l.i.m.
p→∞

(
p∑

j1=0

Cj1ζ
(i)
j1

)3

= δ3T,t w. p. 1,
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which can be obtained easily when q = 8 (see (1.58)).

In addition, we used the following relations between Fourier coefficients for
the considered case

Cj1j2 + Cj2j1 = Cj1Cj2, 2Cj1j1 = C2
j1
, (1.60)

Cj1j2j3 + Cj1j3j2 + Cj2j3j1 + Cj2j1j3 + Cj3j2j1 + Cj3j1j2 = Cj1Cj2Cj3, (1.61)

2 (Cj1j1j3 + Cj1j3j1 + Cj3j1j1) = C2
j1
Cj3, (1.62)

6Cj1j1j1 = C3
j1
. (1.63)

1.1.7 On Usage of Discontinuous Complete Orthonormal Systems
of Functions in Theorem 1.1

Analyzing the proof of Theorem 1.1, we can ask the question: can we weaken
the continuity condition for the functions ϕj(x), j = 1, 2, . . .?4

We will say that the function f(x) : [t, T ] → R satisfies the condition (⋆),
if it is continuous at the interval [t, T ] except may be for the finite number of
points of the finite discontinuity as well as it is right-continuous at the interval
[t, T ].

Furthermore, let us suppose that {ϕj(x)}∞j=0 is a complete orthonormal
system of functions in the space L2([t, T ]), each function ϕj(x) of which for
j <∞ satisfies the condition (⋆).

It is easy to see that continuity of the functions ϕj(x) was used substantially
for the proof of Theorem 1.1 in two places. More precisely, we mean Lemma
1.3 and the formula (1.19). It is clear that without the loss of generality the
partition {τj}Nj=0 of the interval [t, T ] in Lemma 1.3 and (1.19) can be taken so
“dense” that among the points τj of this partition there will be all points of
jumps of the functions φ1(τ) = ϕj1(τ), . . . , φk(τ) = ϕjk(τ) (j1, . . . , jk <∞) and
among the points (τj1, . . . , τjk) for which 0 ≤ j1 < . . . < jk ≤ N − 1 there will
be all points of jumps of the function Φ(t1, . . . , tk).

Let us demonstrate how to modify the proofs of Lemma 1.3 and the formula
(1.19) in the case when {ϕj(x)}∞j=0 is a complete orthonormal system of func-
tions in the space L2([t, T ]), each function ϕj(x) of which for j < ∞ satisfies
the condition (⋆).

4The results of this section will be generalized to the case of an arbitrary complete orthonormal system of
functions {ϕj(x)}∞j=0 in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) in Sect. 1.11 (see Theorem 1.16).
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At first, appeal to Lemma 1.3. From the proof of this lemma it follows that

M


∣∣∣∣∣
N−1∑
j=0

J [∆φl]τj+1,τj

∣∣∣∣∣
4
 =

N−1∑
j=0

M

{∣∣∣∣J [∆φl]τj+1,τj

∣∣∣∣4
}
+

+6
N−1∑
j=0

M

{∣∣∣∣J [∆φl]τj+1,τj

∣∣∣∣2
}

j−1∑
q=0

M

{∣∣∣∣J [∆φl]τq+1,τq

∣∣∣∣2
}
, (1.64)

M
{∣∣J [∆φl]τj+1,τj

∣∣2} =

τj+1∫
τj

(φl(τj)− φl(s))
2ds,

M
{∣∣J [∆φl]τj+1,τj

∣∣4} = 3

 τj+1∫
τj

(φl(τj)− φl(s))
2ds


2

.

Suppose that the functions φl(s) (l = 1, . . . , k) satisfy the condition (⋆)
and the partition {τj}Nj=0 includes all points of jumps of the functions φl(s)
(l = 1, . . . , k). It means that for the integral

τj+1∫
τj

(φl(τj)− φl(s))
2ds

the integrand function is continuous at the interval [τj, τj+1], except possibly
the point τj+1 of finite discontinuity.

Let µ ∈ (0,∆τj) be fixed. Due to continuity (which means uniform con-
tinuity) of the functions φl(s) (l = 1, . . . , k) at the interval [τj, τj+1 − µ] we
have

τj+1∫
τj

(φl(τj)− φl(s))
2ds =

=

τj+1−µ∫
τj

(φl(τj)− φl(s))
2ds+

τj+1∫
τj+1−µ

(φl(τj)− φl(s))
2ds <

< ε2(∆τj − µ) +M 2µ. (1.65)
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When obtaining the inequality (1.65) we supposed that ∆τj < δ(ε) for all
j = 0, 1, . . . , N − 1 (here δ(ε) > 0 exists for any ε > 0 and it does not depend
on s),

|φl(τj)− φl(s)| < ε

for s ∈ [τj, τj+1 − µ] (due to uniform continuity of the functions φl(s), l =
1, . . . , k),

|φl(τj)− φl(s)| < M

for s ∈ [τj+1 − µ, τj+1], M is a constant (potential discontinuity point of the
function φl(s) is the point τj+1).

Performing the passage to the limit in the inequality (1.65) when µ→ +0,
we get

τj+1∫
τj

(φl(τj)− φl(s))
2ds ≤ ε2∆τj. (1.66)

Using (1.66) to estimate the right-hand side of (1.64), we obtain

M


∣∣∣∣∣
N−1∑
j=0

J [∆φl]τj+1,τj

∣∣∣∣∣
4
 ≤ ε4

(
3
N−1∑
j=0

(∆τj)
2 + 6

N−1∑
j=0

∆τj

j−1∑
q=0

∆τq

)
<

< 3ε4
(
δ(ε)(T − t) + (T − t)2

)
. (1.67)

This implies that

M


∣∣∣∣∣
N−1∑
j=0

J [∆φl]τj+1,τj

∣∣∣∣∣
4
→ 0

when N → ∞ and Lemma 1.3 remains correct.

Now, let us present explanations concerning the correctness of (1.19), when
{ϕj(x)}∞j=0 is a complete orthonormal system of functions in the space L2([t, T ]),
each function ϕj(x) of which for j <∞ satisfies the condition (⋆).

Consider the case k = 3 and the representation (1.21). Let us demonstrate
that in the studied case the first limit on the right-hand side of (1.21) equals
to zero (similarly, we can demonstrate that the second limit on the right-hand
side of (1.21) equals to zero; proof of the second limit equality to zero on the
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right-hand side of the formula (1.20) is the same as for the case of continuous
functions ϕj(x), j = 0, 1, . . .).

The second moment of the prelimit expression of first limit on the right-
hand side of (1.21) looks as follows

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2∆τj3.

Further, for the fixed µ ∈ (0,∆τj2) and ρ ∈ (0,∆τj1) we have

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2 =

=

 τj2+1−µ∫
τj2

+

τj2+1∫
τj2+1−µ


 τj1+1−ρ∫

τj1

+

τj1+1∫
τj1+1−ρ

 (Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2 =

=

 τj2+1−µ∫
τj2

τj1+1−ρ∫
τj1

+

τj2+1−µ∫
τj2

τj1+1∫
τj1+1−ρ

+

τj2+1∫
τj2+1−µ

τj1+1−ρ∫
τj1

+

τj2+1∫
τj2+1−µ

τj1+1∫
τj1+1−ρ

×

× (Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2 <

< ε2 (∆τj2 − µ) (∆τj1 − ρ) +M 2ρ (∆τj2 − µ)+

+M 2µ (∆τj1 − ρ) +M 2µρ, (1.68)

where M is a constant, ∆τj < δ(ε) for j = 0, 1, . . . , N − 1 (δ(ε) > 0 exists
for any ε > 0 and it does not depend on points (t1, t2, τj3), (t1, τj2, τj3)). We
suppose here that the partition {τj}Nj=0 contains all discontinuity points of the
function Φ(t1, t2, t3) as points τj (for each variable with fixed remaining two
variables). When obtaining the inequality (1.68) we also supposed that poten-
tial discontinuity points of this function (for each variable with fixed remaining
two variables) are contained among the points τj1+1, τj2+1, τj3+1.
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Let us explain in detail how we obtained the inequality (1.68). Since the
function Φ(t1, t2, t3) is continuous at the closed bounded set

Q3 =

{
(t1, t2, t3) : t1 ∈ [τj1, τj1+1 − ρ], t2 ∈ [τj2, τj2+1 − µ], t3 ∈ [τj3, τj3+1 − ν]

}
,

where ρ, µ, ν are fixed small positive numbers such that

ν ∈ (0,∆τj3), µ ∈ (0,∆τj2), ρ ∈ (0,∆τj1),

then this function is also uniformly continous at this set. Moreover, the function
Φ(t1, t2, t3) is supposed to be bounded at the closed set D3 (see the proof of
Theorem 1.1).

Since the distance between points (t1, t2, τj3), (t1, τj2, τj3) ∈ Q3 is obviously
less than δ(ε) (∆τj < δ(ε) for j = 0, 1, . . . , N − 1), then

|Φ(t1, t2, τj3)− Φ(t1, τj2, τj3)| < ε.

This inequality was used to estimate the first double integral in (1.68). Esti-
mating the three remaining double integrals in (1.68) we used the boundedness
property for the function Φ(t1, t2, t3) in the form of inequality

|Φ(t1, t2, τj3)− Φ(t1, τj2, τj3)| < M.

Performing the passage to the limit in the inequality (1.68) when µ, ρ→ +0,
we obtain the estimate

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2 ≤ ε2∆τj2∆τj1.

This estimate provides

N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

τj2+1∫
τj2

τj1+1∫
τj1

(Φ(t1, t2, τj3)− Φ(t1, τj2, τj3))
2 dt1dt2∆τj3 ≤

≤ ε2
N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

∆τj1∆τj2∆τj3 < ε2
(T − t)3

6
.
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The last inequality means that in the considered case the first limit on the
right-hand side of (1.21) equals to zero (similarly, we can demonstrate that the
second limit on the right-hand side of (1.21) equals to zero).

Consequently, the formula (1.19) is correct when k = 3 in the studied case.
Similarly, we can perform the argumentation for the cases k = 2 and k > 3.

Therefore, in Theorem 1.1 we can use complete orthonormal systems of
functions {ϕj(x)}∞j=0 in the space L2([t, T ]), each function ϕj(x) of which for
j <∞ satisfies the condition (⋆).

One of the examples of such systems of functions is a complete orthonormal
system of Haar functions in the space L2([t, T ])

ϕ0(x) =
1√
T − t

, ϕnj(x) =
1√
T − t

φnj

(
x− t

T − t

)
,

where n = 0, 1, . . . , j = 1, 2, . . . , 2n, and the functions φnj(x) are defined as

φnj(x) =



2n/2, x ∈ [(j − 1)/2n, (j − 1)/2n + 1/2n+1)

−2n/2, x ∈ [(j − 1)/2n + 1/2n+1, j/2n)

0, otherwise

,

n = 0, 1, . . . , j = 1, 2, . . . , 2n (we choose the values of Haar functions in
the points of discontinuity in such a way that these functions will be right-
continuous).

The other example of similar system of functions is a complete orthonormal
system of Rademacher–Walsh functions in the space L2([t, T ])

ϕ0(x) =
1√
T − t

,

ϕm1...mk
(x) =

1√
T − t

φm1

(
x− t

T − t

)
. . . φmk

(
x− t

T − t

)
,

where 0 < m1 < . . . < mk, m1, . . . ,mk = 1, 2, . . . , k = 1, 2, . . . ,

φm(x) = (−1)[2
mx],

x ∈ [0, 1], m = 1, 2, . . . , [y] is an integer part of a real number y.
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1.1.8 Remark on Usage of Complete Orthonormal Systems of Func-
tions in Theorem 1.1

Note that actually the functions ϕj(s) from the complete orthonormal system
of functions {ϕj(s)}∞j=0 in the space L2([t, T ]) depend not only on s, but on t
and T.

For example, the complete orthonormal systems of Legendre polynomials
and trigonometric functions in the space L2([t, T ]) have the following form

ϕj(s, t, T ) =

√
2j + 1

T − t
Pj

((
s− T + t

2

)
2

T − t

)
,

Pj(y) =
1

2jj!

dj

dyj
(
y2 − 1

)j
,

where Pj(y) (j = 0, 1, 2, . . .) is the Legendre polynomial,

ϕj(s, t, T ) =
1√
T − t



1, j = 0

√
2sin (2πr(s− t)/(T − t)) , j = 2r − 1

√
2cos (2πr(s− t)/(T − t)) , j = 2r

, (1.69)

where r = 1, 2, . . .

Note that the specified systems of functions are assumed to be used in the
context of implementation of numerical methods for Itô SDEs (see Chapter 4)
for the sequences of time intervals

[T0, T1], [T1, T2], [T2, T3], . . .

and Hilbert spaces

L2([T0, T1]), L2([T1, T2]), L2([T2, T3]), . . .

We can explain that the dependence of functions ϕj(s, t, T ) on t and T

(hereinafter these constants will mean fixed moments of time) will not affect on
the main properties of independence of random variables

ζ
(i)
(j)T,t =

T∫
t

ϕj(s, t, T )dw
(i)
s ,
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where i = 1, . . . ,m and j = 0, 1, 2, . . .

Indeed, for fixed t and T due to orthonormality of the mentioned systems
of functions we have

M
{
ζ
(i)
(j)T,tζ

(r)
(g)T,t

}
= 1{i=r}1{j=g},

where i, r = 1, . . . ,m, j, g = 0, 1, 2, . . .

This means that ζ
(i)
(j)T,t and ζ

(r)
(g)T,t are independent for j ̸= g or i ̸= r (since

these random variables are Gaussian).

From the other side, the random variables

ζ
(i)
(j)T1,t1

=

T1∫
t1

ϕj(s, t1, T1)dw
(i)
s , ζ

(i)
(j)T2,t2

=

T2∫
t2

ϕj(s, t2, T2)dw
(i)
s

are independent if [t1, T1] ∩ [t2, T2] = ∅ (the case T1 = t2 is possible) according
to the properties of the Itô stochastic integral.

Therefore, the important properties of random variables ζ
(i)
(j)T,t, which are

the basic motive of their usage, are saved.

1.1.9 Convergence in the Mean of Degree 2n (n ∈ N) of Expansions
of Iterated Itô Stochastic Integrals from Theorem 1.1

Constructing the expansions of iterated Itô stochastic integrals from Theorem
1.1 we saved all information about these integrals. That is why it is natural to
expect that the mentioned expansions will converge not only in the mean-square
sense but in the stronger probabilistic senses.

We will obtain the general estimate which proves convergence in the mean
of degree 2n (n ∈ N) of expansions from Theorem 1.1.

According to the notations of Theorem 1.1 (see (1.41)), we have

Rp1,...,pk
T,t = J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t =

=
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

Rp1...pk(t1, . . . , tk)df
(i1)
t1 . . . df

(ik)
tk , (1.70)

where



78 D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Rp1...pk(t1, . . . , tk)
def
= K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl),

J [ψ(k)]T,t is the stochastic integral (1.5), J [ψ(k)]p1,...,pkT,t is the expression on the
right-hand side of (1.10) before passing to the limit l.i.m.

p1,...,pk→∞
.

Note that for definiteness we consider in this section the case i1, . . . , ik =
1, . . . ,m. Another notations from this section are the same as in the formulation
and proof of Theorem 1.1.

When proving Theorem 1.1 we obtained the following estimate (see (1.42))

M

{(
Rp1,...,pk
T,t

)2}
≤ Ck

∫
[t,T ]k

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk,

where Ck is a constant.

Assume that

η
(l−1)
tl,t

def
=

tl∫
t

. . .

t2∫
t

Rp1...pk(t1, . . . , tk)df
(i1)
t1 . . . df

(il−1)
tl−1

, l = 2, 3, . . . , k + 1,

η
(k)
T,t

def
=

T∫
t

. . .

t2∫
t

Rp1...pk(t1, . . . , tk)df
(i1)
t1 . . . df

(ik)
tk , η

(k)
tk+1,t

def
= η

(k)
T,t .

Using the Itô formula it is easy to demonstrate that [101]

M


 t∫
t0

ξτdfτ

2n
 = n(2n− 1)

t∫
t0

M


 s∫
t0

ξudfu

2n−2

ξ2s

 ds.

Using the Hölder inequality (under the integral sign on the right-hand side
of the last equality) for p = n/(n− 1), q = n (n > 1) and using the increasing
of the value

M


 t∫
t0

ξτdfτ

2n




D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series 79

with the growth of t, we get

M


 t∫
t0

ξτdfτ

2n
 ≤ n(2n− 1)

M


 t∫
t0

ξτdfτ

2n



(n−1)/n

×

×
t∫

t0

(
M
{
ξ2ns
})1/n

ds.

After raising to power n the obtained inequality and dividing the result byM


 t∫
t0

ξτdfτ

2n


n−1

,

we get the following estimate

M


 t∫
t0

ξτdfτ

2n
 ≤ (n(2n− 1))n

 t∫
t0

(
M
{
ξ2ns
})1/n

ds

n

. (1.71)

Using the estimate (1.71) repeatedly, we have

M

{(
η
(k)
T,t

)2n}
≤ (n(2n− 1))n

 T∫
t

(
M

{(
η
(k−1)
tk,t

)2n})1/n

dtk

n

≤

≤ (n(2n− 1))n×

×

 T∫
t

(n(2n− 1))n

 tk∫
t

(
M

{(
η
(k−2)
tk−1,t

)2n})1/n

dtk−1

n1/n

dtk


n

=

= (n(2n− 1))2n

 T∫
t

tk∫
t

(
M

{(
η
(k−2)
tk−1,t

)2n})1/n

dtk−1dtk

n

≤ . . .

. . . ≤ (n(2n− 1))n(k−1)

 T∫
t

tk∫
t

. . .

t3∫
t

(
M

{(
η
(1)
t2,t

)2n})1/n

dt3 . . . dtk−1dtk

n

=
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= (n(2n− 1))n(k−1)(2n− 1)!!

 T∫
t

. . .

t2∫
t

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk

n

≤

≤ (n(2n− 1))n(k−1)(2n− 1)!!×

×

 ∫
[t,T ]k

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk


n

.

The penultimate step was obtained using the formula

M

{(
η
(1)
t2,t

)2n}
= (2n− 1)!!

 t2∫
t

R2
p1...pk

(t1, . . . , tk)dt1

n

,

which follows from Gaussianity of

η
(1)
t2,t =

t2∫
t

Rp1...pk(t1, . . . , tk)df
(i1)
t1 .

Similarly, we estimate each summand on the right-hand side of (1.70). Then,
from (1.70) using the Minkowski inequality, we finally get

M

{(
Rp1,...,pk
T,t

)2n}
≤

≤

k!
(n(2n− 1))n(k−1)(2n− 1)!!

 ∫
[t,T ]k

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk


n

1/2n

2n

= (k!)2n(n(2n− 1))n(k−1)(2n− 1)!!×

×

 ∫
[t,T ]k

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk


n

. (1.72)
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Using the orthonormality of the functions ϕj(s) (j = 0, 1, 2, . . .), we obtain∫
[t,T ]k

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk =

=

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk−

−2

∫
[t,T ]k

K(t1, . . . , tk)

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)dt1 . . . dtk+

+

∫
[t,T ]k

(
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk−

−2

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk+

+

p1∑
j1=0

p1∑
j′1=0

. . .

pk∑
jk=0

pk∑
j′k=0

Cjk...j1Cj′k...j′1

k∏
l=1

T∫
t

ϕjl(tl)ϕj′l(tl)dtl =

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk − 2

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

+

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

. (1.73)

Let us substitute (1.73) into (1.72)



82 D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2n}
≤

≤ (k!)2n(n(2n− 1))n(k−1)(2n− 1)!! ×

×

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1


n

. (1.74)

Due to Parseval’s equality∫
[t,T ]k

R2
p1...pk

(t1, . . . , tk)dt1 . . . dtk =

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

→ 0 (1.75)

if p1, . . . , pk → ∞. Therefore, the inequality (1.72) (or (1.74)) means that the
expansions of iterated Itô stochastic integrals obtained using Theorem 1.1 con-
verge in the mean of degree 2n (n ∈ N) to the appropriate iterated Itô stochastic
integrals.

1.1.10 Conclusions

Thus, we obtain the following useful possibilities and modifications of the ap-
proach based on Theorem 1.1.5

1. There is an explicit formula (see (1.8)) for calculation of expansion coef-
ficients of the iterated Itô stochastic integral (1.5) with any fixed multiplicity k
(k ∈ N).

2. We have possibilities for exact calculation of the mean-square approx-
imation error of the iterated Itô stochastic integral (1.5) [14]-[18], [31] (see
Sect. 1.2).

3. Since the used multiple Fourier series is a generalized in the sense that it
is built using various complete orthonormal systems of functions in the space
L2([t, T ]), then we have new possibilities for approximation — we can use not
only the trigonometric functions as in [82]-[85], [92], [93], [96], [97], but the
Legendre polynomials.

5Theorem 1.1 will be generalized to the case of an arbitrary complete orthonormal system of functions
{ϕj(x)}∞j=0 in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) in Sect. 1.11 (see Theorem 1.16).
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4. As it turned out [1]-[63], it is more convenient to work with Legendre
polynomials for approximation of the iterated Itô stochastic integrals (1.5) (see
Chapter 5). Approximations based on Legendre polynomials essentially sim-
pler than their analogues based on trigonometric functions [1]-[63]. Another
advantages of the application of Legendre polynomials in the framework of the
mentioned problem are considered in [21], [40] (see Sect. 5.3).

5. The Milstein approach [82] (see Sect. 6.2 in this book) to expansion of
iterated stochastic integrals based on the Karhunen–Loève expansion of the
Brownian bridge process (also see [83]-[85], [92], [93], [96], [97]) leads to iterated
application of the operation of limit transition (the operation of limit transition
is implemented only once in Theorem 1.1) starting from the second or third
multiplicity of the iterated Itô stochastic integral (1.5). Multiple series (the
operation of limit transition is implemented only once) are more convenient for
approximation than the iterated ones (iterated application of the operation of
limit transition), since partial sums of multiple series converge for any possible
case of convergence to infinity of their upper limits of summation (let us denote
them as p1, . . . , pk). For example, when p1 = . . . = pk = p → ∞. For iterated
series, the condition p1 = . . . = pk = p → ∞ obviously does not guarantee the
convergence of this series. However, in [83]-[85], [93] the authors use (without
rigorous proof) the condition p1 = p2 = p3 = p → ∞ within the frames of the
Milstein approach [82] together with the Wong–Zakai approximation [73]-[75]
(see discussions in Sect. 2.41, 2.42, 6.2).

6. As we mentioned above, constructing the expansions of iterated Itô
stochastic integrals from Theorem 1.1 we saved all information about these in-
tegrals. That is why it is natural to expect that the mentioned expansions will
converge with probability 1. The convergence with probability 1 in Theorem
1.1 has been proved for some particular cases in [3]-[17], [32] (see Sect. 1.7.1)
and for the general case of iterated Itô stochastic integrals of multiplicity k
(k ∈ N) in [14]-[17], [27], [29], [31], [32] (see Sect. 1.7.2).

7. The generalizations of Theorem 1.1 for an arbitrary complete orthonor-
mal system of functions in L2([t, T ]

k) [29] and complete orthonormal with weight
r(t1) . . . r(tk) ≥ 0 systems of functions in L2([t, T ]

k) [12]-[17], [41] as well as for
iterated stochastic integrals with respect to martingale Poisson measures and
iterated stochastic integrals with respect to martingales [1]-[17], [41] are pre-
sented in Sect. 1.3–1.6, 1.11.

8. The adaptation of Theorem 1.1 for iterated Stratonovich stochastic in-
tegrals was carried out in [6]-[23], [28], [30], [32]-[39], [43], [45]-[47], [50], [52],
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[64], [65] (see Chapter 2).

9. Application of Theorem 1.1 for the mean-square approximation of it-
erated stochastic integrals with respect to the infinite-dimensional Q-Wiener
process can be found in [14]-[17], [24], [25], [48], [49] (see Chapter 7).

1.2 Exact Calculation of the Mean-Square Error in the

Method of Approximation of Iterated Itô Stochas-

tic integrals Based on Generalized Multiple Fourier

Series

This section is devoted to the obtainment of exact and approximate expres-
sions for the mean-square approximation error in Theorem 1.1 for iterated Itô
stochastic integrals of arbitrary multiplicity k (k ∈ N). As a result, we do not
need to use redundant terms of expansions of iterated Itô stochastic integrals.

1.2.1 Introduction

Recall that we called the method of expansion and mean-square approxima-
tion of iterated Itô stochastic integrals based on Theorem 1.1 as the method of
generalized multiple Fourier series. The question about how estimate or even
calculate exactly the mean-square approximation error of iterated Itô stochas-
tic integrals for the method of generalized multiple Fourier series composes the
subject of Sect. 1.2. From the one side the mentioned question is essentially
difficult in the case of a multidimensional Wiener process, because of we need
to take into account all possible combinations of the components of a multi-
dimensional Wiener process. From the other side an effective solution of the
mentioned problem allows to construct more simple expansions of iterated Itô
stochastic integrals than in [82]-[87], [92]-[94], [96], [97].

Sect. 1.2.2 is devoted to the formulation and proof of Theorem 1.3, which
allows to calculate exacly the mean-square approximation error of iterated Itô
stochastic integrals of arbitrary multiplicity k (k ∈ N) for the method of gen-
eralized multiple Fourier series. The particular cases (k = 1, . . . , 5) of Theorem
1.3 are considered in detail in Sect. 1.2.3. In Sect. 1.2.4 we prove an effective
estimate for the mean-square approximation error of iterated Itô stochastic inte-
grals of arbitrary multiplicity k (k ∈ N) for the method of generalized multiple
Fourier series.
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1.2.2 Theorem on Exact Calculation of the Mean-Square Approxi-
mation Error for Iterated Itô Stochastic integrals

Theorem 1.36 [12]-[18], [31]. Suppose that every ψl(τ) (l = 1, . . . , k) is a con-
tinuous nonrandom function on [t, T ] and {ϕj(x)}∞j=0 is a complete orthonormal
system of functions in the space L2([t, T ]), each function ϕj(x) of which for finite
j satisfies the condition (⋆) (see Sect. 1.1.7). Then

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2}
=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk−

−
p∑

j1=0

. . .

p∑
jk=0

Cjk...j1M

J [ψ(k)]T,t
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk

 ,

(1.76)

where

J [ψ(k)]T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)df
(i1)
t1 . . . df

(ik)
tk ,

J [ψ(k)]pT,t =

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

)
, (1.77)

S
(i1...ik)
j1,...,jk

= l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆f (i1)τl1
. . . ϕjk(τlk)∆f (ik)τlk

, (1.78)

the Fourier coefficient Cjk...j1 has the form (1.8),

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s (1.79)

are independent standard Gaussian random variables for various i or j (i =
1, . . . ,m), ∑

(j1,...,jk)

6Theorem 1.3 will be generalized to the case of an arbitrary complete orthonormal system of functions
{ϕj(x)}∞j=0 in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) in Sect. 1.12 (see Theorem 1.18).
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means the sum with respect to all possible permutations (j1, . . . , jk). At the same
time if jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped with
iq in the permutation (i1, . . . , ik) (see (1.76)); another notations are the same
as in Theorem 1.1.

Remark 1.3. Note that

M

J [ψ(k)]T,t

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk

 =

= M


T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)df
(i1)
t1 . . . df

(ik)
tk

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk


=

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk = Cjk...j1. (1.80)

Therefore, in the case of pairwise different numbers i1, . . . , ik from Theorem
1.3 we obtain

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2}
=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

. (1.81)

Moreover, if i1 = . . . = ik, then from Theorem 1.3 we get

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2}
=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1=0

. . .

p∑
jk=0

Cjk...j1

( ∑
(j1,...,jk)

Cjk...j1

)
,

where ∑
(j1,...,jk)
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means the sum with respect to all possible permutations (j1, . . . , jk).

For example, for the case k = 3 we have

M

{(
J [ψ(3)]T,t − J [ψ(3)]pT,t

)2}
=

T∫
t

ψ2
3(t3)

t3∫
t

ψ2
2(t2)

t2∫
t

ψ2
1(t1)dt1dt2dt3−

−
p∑

j1,j2,j3=0

Cj3j2j1

(
Cj3j2j1 + Cj3j1j2 + Cj2j3j1 + Cj2j1j3 + Cj1j2j3 + Cj1j3j2

)
.

Proof. Using Theorem 1.1 for the case i1, . . . , ik = 1, . . . ,m and p1 = . . . =
pk = p, we obtain

J [ψ(k)]T,t = l.i.m.
p→∞

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

)
. (1.82)

For n > p we can write

J [ψ(k)]nT,t =

(
p∑

j1=0

+
n∑

j1=p+1

)
. . .

(
p∑

jk=0

+
n∑

jk=p+1

)
Cjk...j1

(
k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

)
=

= J [ψ(k)]pT,t + ξ[ψ(k)]p+1,n
T,t . (1.83)

Let us prove that due to the special structure of random variables S
(i1...ik)
j1,...,jk

(see (1.45)–(1.51), (1.54), (1.78)) the following relations are correct

M

{
k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

}
= 0, (1.84)

M

{(
k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

)(
k∏
l=1

ζ
(il)
j′l

− S
(i1...ik)
j′1,...,j

′
k

)}
= 0, (1.85)

where
(j1, . . . , jk) ∈ Kp, (j′1, . . . , j

′
k) ∈ Kn\Kp

and
Kn = {(j1, . . . , jk) : 0 ≤ j1, . . . , jk ≤ n} ,
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Kp = {(j1, . . . , jk) : 0 ≤ j1, . . . , jk ≤ p} .

For the case i1, . . . , ik = 1, . . . ,m and p1 = . . . = pk = p from (1.39), (1.40)
(see the proof of Theorem 1.1) we obtain

k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

= l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

ϕj1(τl1) . . . ϕjk(τlk)∆f (i1)τl1
. . .∆f (ik)τlk

=

=
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk w. p. 1, (1.86)

where ∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the
same time if jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped
with iq in the permutation (i1, . . . , ik); another notations are the same as in
Theorem 1.1.

So, we obtain (1.84) from (1.86) due to the moment property of the Itô
stochastic integral.

Let us prove (1.85). From (1.86) we have

0 ≤

∣∣∣∣∣M
{(

k∏
l=1

ζ
(il)
jl

− S
(i1...ik)
j1,...,jk

)(
k∏
l=1

ζ
(il)
j′l

− S
(i1...ik)
j′1,...,j

′
k

)}∣∣∣∣∣ =
=

∣∣∣∣∣∣M
 ∑

(j1,...,jk)

∑
(j′1,...,j

′
k)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk ×

×
T∫
t

ϕj′k(tk) . . .

t2∫
t

ϕj′1(t1)df
(i1)
t1 . . . df

(ik)
tk


∣∣∣∣∣∣ ≤

≤
∑

(j′1,...,j
′
k)

T∫
t

ϕjk(tk)ϕj′k(tk)dtk . . .

T∫
t

ϕj1(t1)ϕj′1(t1)dt1 =
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=
∑

(j′1,...,j
′
k)

1{j1=j′1} . . .1{jk=j′k}, (1.87)

where 1A is the indicator of the set A. From (1.87) we obtain (1.85).

First, let us prove (1.87) for the cases k = 2 and k = 3. We have

M

∑
(j1,j2)

∑
(j′1,j

′
2)

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)df
(i1)
t1 df

(i2)
t2

T∫
t

ϕj′2(t2)

t2∫
t

ϕj′1(t1)df
(i1)
t1 df

(i2)
t2

 =

=

T∫
t

ϕj2(s)ϕj′2(s)ds

T∫
t

ϕj1(s)ϕj′1(s)ds+

+1{i1=i2}

T∫
t

ϕj2(s)ϕj′1(s)ds

T∫
t

ϕj1(s)ϕj′2(s)ds =

= 1{j1=j′1}1{j2=j′2} + 1{i1=i2} · 1{j2=j′1}1{j1=j′2}, (1.88)

M

 ∑
(j1,j2,j3)

∑
(j′1,j

′
2,j

′
3)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 ×

×
T∫
t

ϕj′3(t3)

t3∫
t

ϕj′2(t2)

t2∫
t

ϕj′1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3

 =

=

T∫
t

ϕj3(s)ϕj′3(s)ds

T∫
t

ϕj2(s)ϕj′2(s)ds

T∫
t

ϕj1(s)ϕj′1(s)ds+

+1{i1=i2}

T∫
t

ϕj3(s)ϕj′3(s)ds

T∫
t

ϕj1(s)ϕj′2(s)ds

T∫
t

ϕj2(s)ϕj′1(s)ds+

+1{i2=i3}

T∫
t

ϕj1(s)ϕj′1(s)ds

T∫
t

ϕj2(s)ϕj′3(s)ds

T∫
t

ϕj3(s)ϕj′2(s)ds+

+1{i1=i3}

T∫
t

ϕj1(s)ϕj′3(s)ds

T∫
t

ϕj2(s)ϕj′2(s)ds

T∫
t

ϕj3(s)ϕj′1(s)ds+
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+1{i1=i2=i3}

T∫
t

ϕj2(s)ϕj′3(s)ds

T∫
t

ϕj1(s)ϕj′2(s)ds

T∫
t

ϕj3(s)ϕj′1(s)ds+

+1{i1=i2=i3}

T∫
t

ϕj1(s)ϕj′3(s)ds

T∫
t

ϕj3(s)ϕj′2(s)ds

T∫
t

ϕj2(s)ϕj′1(s)ds =

= 1{j3=j′3}1{j2=j′2}1{j1=j′1} + 1{i1=i2} · 1{j3=j′3}1{j1=j′2}1{j2=j′1}+

+1{i2=i3} · 1{j1=j′1}1{j2=j′3}1{j3=j′2} + 1{i1=i3} · 1{j1=j′3}1{j2=j′2}1{j3=j′1}+

+1{i1=i2=i3} · 1{j2=j′3}1{j1=j′2}1{j3=j′1}+

+1{i1=i2=i3} · 1{j1=j′3}1{j3=j′2}1{j2=j′1}. (1.89)

From (1.88) and (1.89) we get∣∣∣∣∣∣M
∑

(j1,j2)

∑
(j′1,j

′
2)

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)df
(i1)
t1 df

(i2)
t2 ×

×
T∫
t

ϕj′2(t2)

t2∫
t

ϕj′1(t1)df
(i1)
t1 df

(i2)
t2


∣∣∣∣∣∣ ≤

≤ 1{j1=j′1}1{j2=j′2} + 1{j2=j′1}1{j1=j′2} =

=
∑
(j′1,j

′
2)

1{j1=j′1}1{j2=j′2},

∣∣∣∣∣∣M
 ∑

(j1,j2,j3)

∑
(j′1,j

′
2,j

′
3)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 ×

×
T∫
t

ϕj′3(t3)

t3∫
t

ϕj′2(t2)

t2∫
t

ϕj′1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3


∣∣∣∣∣∣ ≤

≤ 1{j3=j′3}1{j2=j′2}1{j1=j′1} + 1{j3=j′3}1{j1=j′2}1{j2=j′1}+

+1{j1=j′1}1{j2=j′3}1{j3=j′2} + 1{j1=j′3}1{j2=j′2}1{j3=j′1}+

+1{j2=j′3}1{j1=j′2}1{j3=j′1} + 1{j1=j′3}1{j3=j′2}1{j2=j′1} =
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=
∑

(j′1,j
′
2,j

′
3)

1{j1=j′1}1{j2=j′2}1{j3=j′3},

where we used the relation

T∫
t

ϕi(τ)ϕj(τ)dτ = 1{i=j}, i, j = 0, 1, 2 . . .

Now consider the case of an arbitrary k ∈ N. We have

M

 ∑
(j1,...,jk)

∑
(j′1,...,j

′
k)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk ×

×
T∫
t

ϕj′k(tk) . . .

t2∫
t

ϕj′1(t1)df
(i1)
t1 . . . df

(ik)
tk

 =

= M

 ∑
(j1,...,jk)

∑
(j′1,...,j

′
k)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk ×

×
T∫
t

ϕj′k(tk) . . .

t2∫
t

ϕj′1(t1)df
(i′1)
t1 . . . df

(i′k)
tk

 =

=
∑

(j1,...,jk)

∑
(j′1,...,j

′
k)

1{ik=i′k} . . .1{i1=i′1}×

×
T∫
t

ϕjk(tk)ϕj′k(tk) . . .

t2∫
t

ϕj1(t1)ϕj′1(t1)dt1 . . . dtk =

=
∑

(j′1,...,j
′
k)

1{ik=i′k} . . .1{i1=i′1}

T∫
t

ϕjk(tk)ϕj′k(tk)dtk . . .

T∫
t

ϕj1(t1)ϕj′1(t1)dt1 =

=
∑

(j′1,...,j
′
k)

1{ik=i′k} . . .1{i1=i′1}1{jk=j′k} . . .1{j1=j′1}, (1.90)

where (i′1, . . . , i
′
k) = (i1, . . . , ik). However, if j

′
r swapped with j′q in the permuta-

tion (j′1, . . . , j
′
k), then i

′
r swapped with i′q in the permutation (i′1, . . . , i

′
k) and if
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jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped with iq in
the permutation (i1, . . . , ik).

From (1.90) we obtain (1.87). The equality (1.85) is proved.

Note that the formula (1.85) (in the light of the results of Sect. 1.10, 1.11)
can be interpreted as a consequence of the orthogonality of two random variables
that are Hermite polynomials of vector random arguments.

From (1.85) we obtain

M
{
J [ψ(k)]pT,tξ[ψ

(k)]p+1,n
T,t

}
= 0.

Due to (1.77), (1.82), and (1.83) we can write

ξ[ψ(k)]p+1,n
T,t = J [ψ(k)]nT,t − J [ψ(k)]pT,t,

l.i.m.
n→∞

ξ[ψ(k)]p+1,n
T,t = J [ψ(k)]T,t − J [ψ(k)]pT,t

def
= ξ[ψ(k)]p+1

T,t .

We have

0 ≤
∣∣∣M{ξ[ψ(k)]p+1

T,t J [ψ
(k)]pT,t

}∣∣∣ =
=
∣∣∣M{(ξ[ψ(k)]p+1

T,t − ξ[ψ(k)]p+1,n
T,t + ξ[ψ(k)]p+1,n

T,t

)
J [ψ(k)]pT,t

}∣∣∣ =
≤
∣∣∣M{(ξ[ψ(k)]p+1

T,t − ξ[ψ(k)]p+1,n
T,t

)
J [ψ(k)]pT,t

}∣∣∣+ ∣∣∣M{ξ[ψ(k)]p+1,n
T,t J [ψ(k)]pT,t

}∣∣∣ =
=
∣∣∣M{(J [ψ(k)]T,t − J [ψ(k)]nT,t

)
J [ψ(k)]pT,t

}∣∣∣ ≤

≤

√
M

{(
J [ψ(k)]T,t − J [ψ(k)]nT,t

)2}√
M

{(
J [ψ(k)]pT,t

)2}
≤
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≤

√
M

{(
J [ψ(k)]T,t − J [ψ(k)]nT,t

)2}
×

×

(√
M

{(
J [ψ(k)]pT,t − J [ψ(k)]T,t

)2}
+

√
M
{(
J [ψ(k)]T,t

)2}) ≤

≤ K

√
M

{(
J [ψ(k)]T,t − J [ψ(k)]nT,t

)2}
→ 0 if n→ ∞, (1.91)

where K is a constant.

From (1.91) it follows that

M
{
ξ[ψ(k)]p+1

T,t J [ψ
(k)]pT,t

}
= 0

or

M
{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)
J [ψ(k)]pT,t

}
= 0.

The last equality means that

M
{
J [ψ(k)]T,tJ [ψ

(k)]pT,t

}
= M

{(
J [ψ(k)]pT,t

)2}
. (1.92)

Taking into account (1.92), we obtain

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2}
= M

{(
J [ψ(k)]T,t

)2}
+

+M

{(
J [ψ(k)]pT,t

)2}
− 2M

{
J [ψ(k)]T,tJ [ψ

(k)]pT,t

}
= M

{(
J [ψ(k)]T,t

)2}
−

−M
{
J [ψ(k)]T,tJ [ψ

(k)]pT,t

}
=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −M
{
J [ψ(k)]T,tJ [ψ

(k)]pT,t

}
. (1.93)
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Let us consider the value

M
{
J [ψ(k)]T,tJ [ψ

(k)]pT,t

}
.

The relations (1.77) and (1.86) imply that

J [ψ(k)]pT,t =

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk .

(1.94)

After substituting (1.94) into (1.93), we finally get

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2}
=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk−

−
p∑

j1=0

. . .

p∑
jk=0

Cjk...j1M

J [ψ(k)]T,t
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk

 .

Theorem 1.3 is proved.

1.2.3 Exact Calculation of the Mean-Square Approximation Errors
for the Cases k = 1, . . . , 5

Let us denote

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2} def
= Ep

k,

∥K∥2L2([t,T ]k)
=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk
def
= Ik.

The case k = 1

In this case from Theorem 1.3 we obtain

Ep
1 = I1 −

p∑
j1=0

C2
j1
.
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The case k = 2

In this case from Theorem 1.3 we have

(I). i1 ̸= i2:

Ep
2 = I2 −

p∑
j1,j2=0

C2
j2j1
, (1.95)

(II). i1 = i2 :

Ep
2 = I2 −

p∑
j1,j2=0

C2
j2j1

−
p∑

j1,j2=0

Cj2j1Cj1j2. (1.96)

Note that from (1.77), (1.86), (1.88), (1.92), and (1.93) we obtain

Ep
2 = I2 −

p∑
j1,j2=0

C2
j2j1

− 1{i1=i2}

p∑
j1,j2=0

Cj2j1Cj1j2. (1.97)

Obviously, the relation (1.97) is consistent with (1.95) and (1.96).

Example 1.1. Let us consider the following iterated Itô stochastic integral

I
(i1i2)
(00)T,t =

T∫
t

t2∫
t

df
(i1)
t1 df

(i2)
t2 , (1.98)

where i1, i2 = 1, . . . ,m.

Approximation of the iterated Itô stochastic integral (1.98) based on the
expansion (1.10) (Theorem 1.1, the case of Legendre polynomials) has the fol-
lowing form

I
(i1i2)p
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

p∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
.

(1.99)

Note that (1.99) has been derived for the first time in [76] (1997) (also see
[77]-[79]) with using the another approach. This approach will be considered in
Sect. 2.4. Later (1.99) was obtained [1] (2006), [2]-[63] on the base of Theorem
1.1.



96 D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Using (1.95), we get

M

{(
I
(i1i2)
(00)T,t − I

(i1i2)p
(00)T,t

)2}
=

(T − t)2

2

(
1

2
−

p∑
i=1

1

4i2 − 1

)
, (1.100)

where i1 ̸= i2.

It should also be noted that the formula (1.100) has been obtained for the
first time in [76] (1997) by direct calculation.

The case k = 3

In this case from Theorem 1.3 we obtain

(I). i1 ̸= i2, i1 ̸= i3, i2 ̸= i3 :

Ep
3 = I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

, (1.101)

(II). i1 = i2 = i3 :

Ep
3 = I3 −

p∑
j1,j2,j3=0

Cj3j2j1

( ∑
(j1,j2,j3)

Cj3j2j1

)
, (1.102)

(III).1. i1 = i2 ̸= i3 :

Ep
3 = I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

−
p∑

j1,j2,j3=0

Cj3j1j2Cj3j2j1, (1.103)

(III).2. i1 ̸= i2 = i3 :

Ep
3 = I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

−
p∑

j1,j2,j3=0

Cj2j3j1Cj3j2j1, (1.104)

(III).3. i1 = i3 ̸= i2 :

Ep
3 = I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

−
p∑

j1,j2,j3=0

Cj3j2j1Cj1j2j3. (1.105)
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It is not difficult to see that from (1.77), (1.86), (1.89), (1.92), and (1.93)
we obtain

Ep
3 = I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

−

−1{i1=i2}

p∑
j1,j2,j3=0

Cj3j2j1Cj3j1j2−

−1{i2=i3}

p∑
j1,j2,j3=0

Cj3j2j1Cj2j3j1−

−1{i1=i3}

p∑
j1,j2,j3=0

Cj3j2j1Cj1j2j3−

−1{i1=i2=i3}

p∑
j1,j2,j3=0

Cj3j2j1 (Cj2j1j3 + Cj1j3j2) . (1.106)

Obviously, the relation (1.106) is consistent with (1.101)–(1.105).

Note that the cases k = 2 and k = 3 (excepting the formula (1.102)) were
investigated for the first time in [2] (2007) using the direct calculation.

Example 1.2. Let us consider the following iterated Itô stochastic integral

I
(i1i2i3)
(000)T,t =

T∫
t

t3∫
t

t2∫
t

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 , (1.107)

where i1, i2, i3 = 1, . . . ,m.

Approximation of the iterated Itô stochastic integral (1.107) based on The-
orem 1.1 (the case of Legendre polynomials and p1 = p2 = p3 = p) has the
following form [1] (2006), [2]-[63]

I
(i1i2i3)p
(000)T,t =

p∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (1.108)
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where

Cj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
(T − t)3/2C̄j3j2j1, (1.109)

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

where Pi(x) is the Legendre polynomial (i = 0, 1, 2, . . .).

For example, using (1.103) and (1.104), we obtain

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)p
(000)T,t

)2}
=

(T − t)3

6
−

p∑
j1,j2,j3=0

C2
j3j2j1

−
p∑

j1,j2,J3=0

Cj3j1j2Cj3j2j1,

where i1 = i2 ̸= i3,

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)p
(000)T,t

)2}
=

(T − t)3

6
−

p∑
j1,j2,j3=0

C2
j3j2j1

−
p∑

j1,j2,J3=0

Cj2j3j1Cj3j2j1,

where i1 ̸= i2 = i3.

The exact values of Fourier–Legendre coefficients C̄j3j2j1 can be calculated
for example using computer algebra system Derive [1]-[17], [32] (see Sect. 5.1,
Tables 5.4–5.36). For more details on calculating of C̄j3j2j1 using Python pro-
gramming language see [53], [54].

For the case i1 = i2 = i3 it is convenient to use the following well known
formula

I
(i1i1i1)
(000)T,t =

1

6
(T − t)3/2

((
ζ
(i1)
0

)3
− 3ζ

(i1)
0

)
w. p. 1.

The case k = 4

In this case from Theorem 1.3 we have

(I). i1, . . . , i4 are pairwise different:

Ep
4 = I4 −

p∑
j1,...,j4=0

C2
j4...j1

,
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(II). i1 = i2 = i3 = i4:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

( ∑
(j1,...,j4)

Cj4...j1

)
,

(III).1. i1 = i2 ̸= i3, i4; i3 ̸= i4 :

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j1,j2)

Cj4...j1

)
, (1.110)

(III).2. i1 = i3 ̸= i2, i4; i2 ̸= i4 :

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j1,j3)

Cj4...j1

)
, (1.111)

(III).3. i1 = i4 ̸= i2, i3; i2 ̸= i3 :

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j1,j4)

Cj4...j1

)
, (1.112)

(III).4. i2 = i3 ̸= i1, i4; i1 ̸= i4 :

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j2,j3)

Cj4...j1

)
, (1.113)

(III).5. i2 = i4 ̸= i1, i3; i1 ̸= i3 :

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j2,j4)

Cj4...j1

)
, (1.114)

(III).6. i3 = i4 ̸= i1, i2; i1 ̸= i2 :

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j3,j4)

Cj4...j1

)
, (1.115)
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(IV).1. i1 = i2 = i3 ̸= i4:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

( ∑
(j1,j2,j3)

Cj4...j1

)
, (1.116)

(IV).2. i2 = i3 = i4 ̸= i1:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

( ∑
(j2,j3,j4)

Cj4...j1

)
, (1.117)

(IV).3. i1 = i2 = i4 ̸= i3:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

( ∑
(j1,j2,j4)

Cj4...j1

)
, (1.118)

(IV).4. i1 = i3 = i4 ̸= i2:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

( ∑
(j1,j3,j4)

Cj4...j1

)
, (1.119)

(V).1. i1 = i2 ̸= i3 = i4:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j1,j2)

(∑
(j3,j4)

Cj4...j1

))
, (1.120)

(V).2. i1 = i3 ̸= i2 = i4:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j1,j3)

(∑
(j2,j4)

Cj4...j1

))
, (1.121)

(V).3. i1 = i4 ̸= i2 = i3:

Ep
4 = I4 −

p∑
j1,...,j4=0

Cj4...j1

(∑
(j1,j4)

(∑
(j2,j3)

Cj4...j1

))
. (1.122)
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The case k = 5

In this case from Theorem 1.3 we obtain

(I). i1, . . . , i5 are pairwise different:

Ep
5 = I5 −

p∑
j1,...,j5=0

C2
j5...j1

,

(II). i1 = i2 = i3 = i4 = i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,...,j5)

Cj5...j1

)
,

(III).1. i1 = i2 ̸= i3, i4, i5 (i3, i4, i5 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j2)

Cj5...j1

)
,

(III).2. i1 = i3 ̸= i2, i4, i5 (i2, i4, i5 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j3)

Cj5...j1

)
,

(III).3. i1 = i4 ̸= i2, i3, i5 (i2, i3, i5 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j4)

Cj5...j1

)
,

(III).4. i1 = i5 ̸= i2, i3, i4 (i2, i3, i4 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j5)

Cj5...j1

)
,

(III).5. i2 = i3 ̸= i1, i4, i5 (i1, i4, i5 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j3)

Cj5...j1

)
,
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(III).6. i2 = i4 ̸= i1, i3, i5 (i1, i3, i5 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j4)

Cj5...j1

)
,

(III).7. i2 = i5 ̸= i1, i3, i4 (i1, i3, i4 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j5)

Cj5...j1

)
,

(III).8. i3 = i4 ̸= i1, i2, i5 (i1, i2, i5 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j3,j4)

Cj5...j1

)
,

(III).9. i3 = i5 ̸= i1, i2, i4 (i1, i2, i4 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j3,j5)

Cj5...j1

)
,

(III).10. i4 = i5 ̸= i1, i2, i3 (i1, i2, i3 are pairwise different):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j4,j5)

Cj5...j1

)
,

(IV).1. i1 = i2 = i3 ̸= i4, i5 (i4 ̸= i5):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j2,j3)

Cj5...j1

)
,

(IV).2. i1 = i2 = i4 ̸= i3, i5 (i3 ̸= i5):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j2,j4)

Cj5...j1

)
,
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(IV).3. i1 = i2 = i5 ̸= i3, i4 (i3 ̸= i4):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j2,j5)

Cj5...j1

)
,

(IV).4. i2 = i3 = i4 ̸= i1, i5 (i1 ̸= i5):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j2,j3,j4)

Cj5...j1

)
,

(IV).5. i2 = i3 = i5 ̸= i1, i4 (i1 ̸= i4):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j2,j3,j5)

Cj5...j1

)
,

(IV).6. i2 = i4 = i5 ̸= i1, i3 (i1 ̸= i3):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j2,j4,j5)

Cj5...j1

)
,

(IV).7. i3 = i4 = i5 ̸= i1, i2 (i1 ̸= i2):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j3,j4,j5)

Cj5...j1

)
,

(IV).8. i1 = i3 = i5 ̸= i2, i4 (i2 ̸= i4):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j3,j5)

Cj5...j1

)
,

(IV).9. i1 = i3 = i4 ̸= i2, i5 (i2 ̸= i5):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j3,j4)

Cj5...j1

)
,
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(IV).10. i1 = i4 = i5 ̸= i2, i3 (i2 ̸= i3):

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j4,j5)

Cj5...j1

)
,

(V).1. i1 = i2 = i3 = i4 ̸= i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j2,j3,j4)

Cj5...j1

)
,

(V).2. i1 = i2 = i3 = i5 ̸= i4:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j2,j3,j5)

Cj5...j1

)
,

(V).3. i1 = i2 = i4 = i5 ̸= i3:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j2,j4,j5)

Cj5...j1

)
,

(V).4. i1 = i3 = i4 = i5 ̸= i2:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j1,j3,j4,j5)

Cj5...j1

)
,

(V).5. i2 = i3 = i4 = i5 ̸= i1:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

( ∑
(j2,j3,j4,j5)

Cj5...j1

)
,

(VI).1. i5 ̸= i1 = i2 ̸= i3 = i4 ̸= i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j2)

(∑
(j3,j4)

Cj5...j1

))
,
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(VI).2. i5 ̸= i1 = i3 ̸= i2 = i4 ̸= i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j3)

(∑
(j2,j4)

Cj5...j1

))
,

(VI).3. i5 ̸= i1 = i4 ̸= i2 = i3 ̸= i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j4)

(∑
(j2,j3)

Cj5...j1

))
,

(VI).4. i4 ̸= i1 = i2 ̸= i3 = i5 ̸= i4:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j2)

(∑
(j3,j5)

Cj5...j1

))
,

(VI).5. i4 ̸= i1 = i5 ̸= i2 = i3 ̸= i4:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j5)

(∑
(j2,j3)

Cj5...j1

))
,

(VI).6. i4 ̸= i2 = i5 ̸= i1 = i3 ̸= i4:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j5)

(∑
(j1,j3)

Cj5...j1

))
,

(VI).7. i3 ̸= i2 = i5 ̸= i1 = i4 ̸= i3:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j5)

(∑
(j1,j4)

Cj5...j1

))
,

(VI).8. i3 ̸= i1 = i2 ̸= i4 = i5 ̸= i3:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j2)

(∑
(j4,j5)

Cj5...j1

))
,
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(VI).9. i3 ̸= i2 = i4 ̸= i1 = i5 ̸= i3:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j4)

(∑
(j1,j5)

Cj5...j1

))
,

(VI).10. i2 ̸= i1 = i4 ̸= i3 = i5 ̸= i2:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j4)

(∑
(j3,j5)

Cj5...j1

))
,

(VI).11. i2 ̸= i1 = i3 ̸= i4 = i5 ̸= i2:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j3)

(∑
(j4,j5)

Cj5...j1

))
,

(VI).12. i2 ̸= i1 = i5 ̸= i3 = i4 ̸= i2:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j5)

(∑
(j3,j4)

Cj5...j1

))
,

(VI).13. i1 ̸= i2 = i3 ̸= i4 = i5 ̸= i1:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j3)

(∑
(j4,j5)

Cj5...j1

))
,

(VI).14. i1 ̸= i2 = i4 ̸= i3 = i5 ̸= i1:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j4)

(∑
(j3,j5)

Cj5...j1

))
,

(VI).15. i1 ̸= i2 = i5 ̸= i3 = i4 ̸= i1:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j5)

(∑
(j3,j4)

Cj5...j1

))
,
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(VII).1. i1 = i2 = i3 ̸= i4 = i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j4,j5)

( ∑
(j1,j2,j3)

Cj5...j1

))
,

(VII).2. i1 = i2 = i4 ̸= i3 = i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j3,j5)

( ∑
(j1,j2,j4)

Cj5...j1

))
,

(VII).3. i1 = i2 = i5 ̸= i3 = i4:

Ep = I −
p∑

j1,...,j5=0

Cj5...j1

(∑
(j3,j4)

( ∑
(j1,j2,j5)

Cj5...j1

))
,

(VII).4. i2 = i3 = i4 ̸= i1 = i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j5)

( ∑
(j2,j3,j4)

Cj5...j1

))
,

(VII).5. i2 = i3 = i5 ̸= i1 = i4:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j4)

( ∑
(j2,j3,j5)

Cj5...j1

))
,

(VII).6. i2 = i4 = i5 ̸= i1 = i3:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j3)

( ∑
(j2,j4,j5)

Cj5...j1

))
,

(VII).7. i3 = i4 = i5 ̸= i1 = i2:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j1,j2)

( ∑
(j3,j4,j5)

Cj5...j1

))
,
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(VII).8. i1 = i3 = i5 ̸= i2 = i4:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j4)

( ∑
(j1,j3,j5)

Cj5...j1

))
,

(VII).9. i1 = i3 = i4 ̸= i2 = i5:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j5)

( ∑
(j1,j3,j4)

Cj5...j1

))
,

(VII).10. i1 = i4 = i5 ̸= i2 = i3:

Ep
5 = I5 −

p∑
j1,...,j5=0

Cj5...j1

(∑
(j2,j3)

( ∑
(j1,j4,j5)

Cj5...j1

))
.

Let us make a remark about Theorem 1.3. It is easy to see that the right-
hand side of the formula (1.76) consists of two parts. The first part tends to
zero when p → ∞ by Parseval’s equality. At the same time the second part
also tends to zero when p → ∞, but due to the generalized Parseval equality.
Let us explain the above reasoning in more detail for the case k = 3.

For the case k = 3 we have (see (1.106))

Ep
3 = I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

−

−1{i1=i2}

p∑
j1,j2,j3=0

Cj3j2j1Cj3j1j2−

−1{i2=i3}

p∑
j1,j2,j3=0

Cj3j2j1Cj2j3j1−

−1{i1=i3}

p∑
j1,j2,j3=0

Cj3j2j1Cj1j2j3−

−1{i1=i2=i3}

p∑
j1,j2,j3=0

Cj3j2j1 (Cj2j1j3 + Cj1j3j2) . (1.123)
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Applying the Parseval equality, we obtain

lim
p→∞

(
I3 −

p∑
j1,j2,j3=0

C2
j3j2j1

)
= 0. (1.124)

The generalized Parseval equality gives

lim
p→∞

p∑
j1,j2,j3=0

Cj3j2j1Cj1j2j3 = 0, lim
p→∞

p∑
j1,j2,j3=0

Cj3j2j1Cj3j1j2 = 0, (1.125)

lim
p→∞

p∑
j1,j2,j3=0

Cj3j2j1Cj1j3j2 = 0, lim
p→∞

p∑
j1,j2,j3=0

Cj3j2j1Cj2j1j3 = 0, (1.126)

lim
p→∞

p∑
j1,j2,j3=0

Cj3j2j1Cj2j3j1 = 0. (1.127)

Let us explain in more detail the first equality in (1.125). Using the gener-
alized Parseval equality, we have

lim
p→∞

p∑
j1,j2,j3=0

Cj1j2j3Cj3j2j1 =

= lim
p→∞

p∑
j1,j2,j3=0

T∫
t

ψ3(t3)ϕj1(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj3(t1)dt1dt2dt3×

×
T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3 =

= lim
p→∞

p∑
j1,j2,j3=0

T∫
t

ψ1(t3)ϕj3(t3)

T∫
t3

ψ2(t2)ϕj2(t2)

T∫
t2

ψ3(t1)ϕj1(t1)dt1dt2dt3×

×
T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3 =
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= lim
p→∞

p∑
j1,j2,j3=0

∫
[t,T ]3

1{t3<t2<t1}ψ3(t1)ψ2(t2)ψ1(t3)
3∏
l=1

ϕjl(tl)dt1dt2dt3×

×
∫

[t,T ]3

1{t1<t2<t3}ψ1(t1)ψ2(t2)ψ3(t3)
3∏
l=1

ϕjl(tl)dt1dt2dt3 =

=

∫
[t,T ]3

1{t3<t2<t1}1{t1<t2<t3}ψ3(t1)ψ1(t1) (ψ2(t2))
2 ψ3(t3)ψ1(t3)dt1dt2dt3 = 0.

(1.128)

Applying (1.123), (1.124), and (1.125)–(1.127), we get (see (1.76) for the
case k = 3)

lim
p→∞

Ep
3 = 0.

1.2.4 Estimate for the Mean-Square Approximation Error of Iter-
ated Itô Stochastic Integrals Based on Theorem 1.1

In this section, we prove the useful estimate for the mean-square approximation
error in Theorem 1.1.

Theorem 1.4 [12]-[17], [31]. Suppose that every ψl(τ) (l = 1, . . . , k) is
a continuous nonrandom function on [t, T ] and {ϕj(x)}∞j=0 is a complete or-
thonormal system of functions in the space L2([t, T ]), each function ϕj(x) of
which for finite j satisfies the condition (⋆) (see Sect. 1.1.7). Then the estimate

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
≤

≤ k!

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

 (1.129)

is valid for the following cases:

1. i1, . . . , ik = 1, . . . ,m and 0 < T − t <∞,

2. i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and 0 < T − t < 1,

where J [ψ(k)]T,t is the iterated Itô stochastic integral (1.5), J [ψ(k)]p1,...,pkT,t is the
expression on the right-hand side of (1.10) before passing to the limit l.i.m.

p1,...,pk→∞
;

another notations are the same as in Theorem 1.1.
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Proof. In the proof of Theorem 1.1 we obtained w. p. 1 the following re-
presentation (see (1.40))

J [ψ(k)]T,t = J [ψ(k)]p1,...,pkT,t +Rp1,...,pk
T,t ,

where J [ψ(k)]p1,...,pkT,t is the expression on the right-hand side of (1.10) before
passing to the limit l.i.m.

p1,...,pk→∞
and

Rp1,...,pk
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×dw(i1)
t1 . . . dw

(ik)
tk , (1.130)

where ∑
(t1,...,tk)

means the sum with respect to all possible permutations (t1, . . . , tk), which are

performed only in the values dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices

near upper limits of integration in the iterated stochastic integrals are changed
correspondently and if tr swapped with tq in the permutation (t1, . . . , tk), then
ir swapped with iq in the permutation (i1, . . . , ik).

The stochastic integrals on the right-hand side of (1.130) will be dependent
in a stochastic sense (i1, . . . , ik = 1, . . . ,m, k ∈ N). Let us estimate the second
moment of

J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t .

Using (1.26), (1.38), (1.130), the orthonormality of the system {ϕj(x)}∞j=0

(see the relation (1.73)), and the elementary inequality

(a1 + a2 + . . .+ ap)
2 ≤ p

(
a21 + a22 + . . .+ a2p

)
, p ∈ N, (1.131)

we obtain the following estimate

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
≤

≤ k!
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =
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= k!

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

= k!

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

 , (1.132)

where T − t ∈ (0,∞) and i1, . . . , ik = 1, . . . ,m.

From (1.26), (1.27), (1.38), (1.130), (1.131), and the orthonormality of the
system {ϕj(x)}∞j=0 we obtain

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

= Ck

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

= Ck

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

 ,

where i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and Ck is a constant.

It is not difficult to see that the constant Ck depends on k (k is the mul-
tiplicity of the iterated Itô stochastic integral) and T − t (T − t is the length
of integration interval of the iterated Itô stochastic integral). Moreover, Ck has
the following form

Ck = k! ·max
{
(T − t)α1, (T − t)α2, . . . , (T − t)αk!

}
,

where α1, α2, . . . , αk! = 0, 1, . . . , k − 1.

However, T − t is an integration step of numerical procedures for Itô SDEs
(see Chapter 4), which is a rather small value. For example, 0 < T − t < 1.
Then Ck ≤ k!
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It means that for the case i1, . . . , ik = 0, 1, . . . ,m, i21 + . . . + i2k > 0, and
0 < T − t < 1 we get (1.129). Theorem 1.4 is proved.

Example 1.3. The particular case of the estimate (1.129) for the iterated

Itô stochastic integral I
(i1i2i3)
(000)T,t (see (1.107)) has the following form

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)p
(000)T,t

)2}
≤ 6

(
(T − t)3

6
−

p∑
j1,j2,j3=0

C2
j3j2j1

)
,

where i1, i2, i3 = 1, . . . ,m and Cj3j2j1 is defined by the formula (1.109).

Let us consider the case of pairwise different i1, . . . , ik = 1, . . . ,m and prove
the following equality

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

, (1.133)

where notations are the same as in Theorem 1.4.

The stochastic integrals on the right-hand side of (1.130) are uncorrelated
for the case of pairwise different i1, . . . , ik = 1, . . . ,m. Moreover, these integrals
have zero expectations. Then

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
=

= M


( ∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×df (i1)t1 . . . df
(ik)
tk

)2
 =

=
∑

(t1,...,tk)

M


( T∫

t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×df (i1)t1 . . . df
(ik)
tk

)2
 =
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=
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

=

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

.

1.3 Expansion of Iterated Itô Stochastic Integrals Based

on Generalized Multiple Fourier Series. The Case

of Complete Orthonormal with Weight r(t1) . . . r(tk)

Systems of Functions in the Space L2([t, T ]
k)

In this section, we consider a modification of Theorem 1.1 for the case of com-
plete orthonormal with weight r(t1) . . . r(tk) ≥ 0 systems of functions in the
space L2([t, T ]

k), k ∈ N.7

Let {Ψj(x)}∞j=0 be a complete orthonormal with weight r(x) ≥ 0 system of
functions in the space L2([t, T ]). It is well known that the Fourier series of the

function f(x)
(
f(x)

√
r(x) ∈ L2([t, T ])

)
with respect to the system {Ψj(x)}∞j=0

converges to the function f(x) in the mean-square sense with weight r(x), i.e.

lim
p→∞

T∫
t

(
f(x)−

p∑
j=0

C̃jΨj(x)

)2

r(x)dx = 0, (1.134)

where

C̃j =

T∫
t

f(x)Ψj(x)r(x)dx (1.135)

is the Fourier coefficient.

The relations (1.134), (1.135) can be obtained if we will expand the function
f(x)

√
r(x) ∈ L2([t, T ]) into a usual Fourier series with respect to the complete

7The results of this section are generalized to the case of an arbitrary complete orthonormal with weight
r(x) ≥ 0 system of functions {Ψj(x)

√
r(x)}∞j=0 in the space L2([t, T ]) and ψ1(x)

√
r(x), . . . , ψk(x)

√
r(x) ∈

L2([t, T ]) in Sect. 1.13 (see Theorems 1.20, 1.21).
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orthonormal with weight 1 system of functions{
Ψj(x)

√
r(x)

}∞

j=0

in the space L2([t, T ]). Then

lim
p→∞

T∫
t

(
f(x)

√
r(x)−

p∑
j=0

C̃jΨj(x)
√
r(x)

)2

dx =

= lim
p→∞

T∫
t

(
f(x)−

p∑
j=0

C̃jΨj(x)

)2

r(x)dx = 0, (1.136)

where C̃j is defined by (1.135).

Let us consider an obvious generalization of this approach to the case of k
variables. Let us expand the function K(t1, . . . , tk) such that

K(t1, . . . , tk)
k∏
l=1

√
r(tl) ∈ L2([t, T ]

k)

using the complete orthonormal system of functions

k∏
l=1

Ψjl(tl)
√
r(tl), jl = 0, 1, 2, . . . , l = 1, . . . , k

in the space L2([t, T ]
k) into the generalized multiple Fourier series.

It is well known that the mentioned generalized multiple Fourier series con-
verges in the mean-square sense, i.e.

lim
p1,...,pk→∞

∫
[t,T ]k

(
K(t1, . . . , tk)

k∏
l=1

√
r(tl)−

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

Ψjl(tl)
√
r(tl)

)2

×

×dt1 . . . dtk =

= lim
p1,...,pk→∞

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

Ψjl(tl)

)2 k∏
l=1

r(tl)×

×dt1 . . . dtk = 0, (1.137)
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where

C̃jk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

(
Ψjl(tl)r(tl)

)
dt1 . . . dtk.

Let us consider the following iterated Itô stochastic integrals

J̃ [ψ(k)]T,t =

T∫
t

ψk(tk)
√
r(tk) . . .

t2∫
t

ψ1(t1)
√
r(t1)dw

(i1)
t1 . . . dw

(ik)
tk , (1.138)

where every ψl(τ) (l = 1, . . . , k) is a nonrandom function on [t, T ], w
(i)
τ = f

(i)
τ

for i = 1, . . . ,m and w
(0)
τ = τ, i1, . . . , ik = 0, 1, . . . ,m.

So, we obtain the following version of Theorem 1.1.

Theorem 1.5 [13]-[17], [29], [41]. Suppose that every ψl(τ) (l = 1, . . . , k)
is a continuous nonrandom function on [t, T ]. Moreover, let {Ψj(x)

√
r(x)}∞j=0

(r(x) ≥ 0) is a complete orthonormal system of functions in the space L2([t, T ]),
each function Ψj(x)

√
r(x) of which for finite j satisfies the condition (⋆) (see

Sect. 1.1.7). Then

J̃ [ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

(
k∏
l=1

ζ̃
(il)
jl

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

Ψj1(τl1)
√
r(τl1)∆w(i1)

τl1
. . .Ψjk(τlk)

√
r(τlk)∆w(ik)

τlk

)
, (1.139)

where

Gk = Hk\Lk, Hk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1

}
,

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense, i1, . . . , ik = 0, 1, . . . ,m,

ζ̃
(i)
j =

T∫
t

Ψj(s)
√
r(s)dw(i)

s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), ∆w
(i)
τj = w

(i)
τj+1 −w

(i)
τj (i = 0, 1, . . . ,m), {τj}Nj=0 is a partition
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of [t, T ], which satisfies the condition (1.9),

C̃jk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

(
Ψjl(tl)r(tl)

)
dt1 . . . dtk (1.140)

is the Fourier coefficient,

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

, t1, . . . , tk ∈ [t, T ], k ≥ 2,

and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ].

Proof. According to Lemmas 1.1, 1.3 and (1.24), (1.25), (1.36), (1.37), we
get the following representation

J̃ [ψ(k)]T,t =
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

K(t1, . . . , tk)
k∏
l=1

√
r(tl)dw

(i1)
t1 . . . dw

(ik)
tk =

=

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
k∏
l=1

(
Ψjl(tl)

√
r(tl)

)
dw

(i1)
t1 . . . dw

(ik)
tk

)
+

+R̃p1,...,pk
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1×

×l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

Ψj1(τl1)
√
r(τl1)∆w(i1)

τl1
. . .Ψjk(τlk)

√
r(τlk)∆w(ik)

τlk
+

+R̃p1,...,pk
T,t =
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=

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1×

×

l.i.m.
N→∞

N−1∑
l1,...,lk=0

Ψj1(τl1)
√
r(τl1)∆w(i1)

τl1
. . .Ψjk(τlk)

√
r(τlk)∆w(ik)

τlk
−

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

Ψj1(τl1)
√
r(τl1)∆w(i1)

τl1
. . .Ψjk(τlk)

√
r(τlk)∆w(ik)

τlk

+

+R̃p1,...,pk
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1×

×

 k∏
l=1

ζ̃
(il)
jl

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

Ψj1(τl1)
√
r(τl1)∆w(i1)

τl1
. . .Ψjk(τlk)

√
r(τlk)∆w(ik)

τlk

+
+R̃p1,...,pk

T,t w. p. 1,

where

R̃p1,...,pk
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)

k∏
l=1

√
r(tl)−

−
p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

(
Ψjl(tl)

√
r(tl)

))
dw

(i1)
t1 . . . dw

(ik)
tk ,

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).
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Let us estimate the remainder R̃p1,...,pk
T,t of the series.

According to Lemma 1.2 and (1.38), we have

M

{(
R̃p1,...,pk
T,t

)2}
≤ Ck

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)

k∏
l=1

√
r(tl) −

−
p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

(
Ψjl(tl)

√
r(tl)

))2

dt1 . . . dtk = (1.141)

= Ck

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

Ψjl(tl)

)2

×

×

(
k∏
l=1

r(tl)

)
dt1 . . . dtk → 0 (1.142)

if p1, . . . , pk → ∞, where constant Ck depends only on the multiplicity k of the
iterated Itô stochastic integral (1.138). Theorem 1.5 is proved.

Let us formulate the version of Theorem 1.4.

Theorem 1.6 [14]-[17], [29], [41]. Suppose that every ψl(τ) (l = 1, . . . , k)
is a continuous nonrandom function on [t, T ]. Moreover, let {Ψj(x)

√
r(x)}∞j=0

(r(x) ≥ 0) is a complete orthonormal system of functions in the space L2([t, T ]),
each function Ψj(x)

√
r(x) of which for finite j satisfies the condition (⋆) (see

Sect. 1.1.7). Then the estimate

M

{(
J̃ [ψ(k)]T,t − J̃ [ψ(k)]p1,...,pkT,t

)2}
≤

≤ k!

 ∫
[t,T ]k

K2(t1, . . . , tk)

(
k∏
l=1

r(tl)

)
dt1 . . . dtk −

p1∑
j1=0

. . .

pk∑
jk=0

C̃2
jk...j1

 (1.143)

is valid for the following cases:

1. i1, . . . , ik = 1, . . . ,m and 0 < T − t <∞,

2. i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and 0 < T − t < 1,
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where J̃ [ψ(k)]T,t is the stochastic integral (1.138), J̃ [ψ(k)]p1,...,pkT,t is the expression
on the right-hand side of (1.139) before passing to the limit l.i.m.

p1,...,pk→∞
; another

notations are the same as in Theorem 1.5.

1.4 Expansion of Iterated Stochastic Integrals with Re-

spect to Martingale Poisson Measures Based on

Generalized Multiple Fourier Series

In this section, we consider the version of Theorem 1.1 connected with the
expansion of iterated stochastic integrals with respect to martingale Poisson
measures.

1.4.1 Stochastic Integral with Respect to Martingale Poisson Mea-
sure

Let us consider the Poisson random measure on the set [0, T ]×Y (Rn def
= Y).

We will denote the value of this measure at the set ∆×A (∆ ⊆ [0, T ], A ⊂ Y)
as ν(∆, A). Assume that

M {ν(∆, A)} = |∆|Π(A),

where |∆| is the Lebesgue measure of ∆, Π(A) is a measure on σ-algebra B of
Borel subsets of Y, and B0 is a subalgebra of B consisting of sets A ⊂ B that
satisfy the condition Π(A) <∞.

Let us consider the martingale Poisson measure

ν̃(∆, A) = ν(∆, A)− |∆|Π(A).

Let (Ω,F,P) be a fixed probability space, let {Ft, t ∈ [0, T ]} be a non-
decreasing family of σ-algebras Ft ⊂ F.

Assume that the following conditions are fulfilled:

1. The random variables ν([0, t), A) are Ft-measurable for all A ⊆ B0,

t ∈ [0, T ].

2. The random variables ν([t, t + h), A), A ⊆ B0, h > 0 do not depend on
events of σ-algebra Ft.

Let us define the class Hl(Π, [0, T ]) of random functions φ : [0, T ]×Y×Ω →
R1 that are Ft-measurable for all t ∈ [0, T ], y ∈ Y and satisfy the following
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condition
T∫

0

∫
Y

M
{
|φ(t,y)|l

}
Π(dy)dt <∞.

Consider the partition {τj}Nj=0 of the interval [0, T ], which satisfies the con-
dition (1.9), and define the stochastic integral with respect to the martingale
Poisson measure for φ(t,y) ∈ H2(Π, [0, T ]) as the following mean-square limit
[100]

T∫
0

∫
Y

φ(t,y)ν̃(dt, dy)
def
= l.i.m.

N→∞

T∫
0

∫
Y

φ(N)(t,y)ν̃(dt, dy), (1.144)

where φ(N)(t,y) is any sequence of step functions from the class H2(Π, [0, T ])
such that

lim
N→∞

T∫
0

∫
Y

M

{∣∣∣φ(t,y)− φ(N)(t,y)
∣∣∣2}Π(dy)dt→ 0.

It is well known [100] that the stochastic integral (1.144) exists, it does not
depend on selection of the sequence φ(N)(t,y) and it satisfies w. p. 1 to the
following properties

M


T∫

0

∫
Y

φ(t,y)ν̃(dt, dy)

∣∣∣∣F0

 = 0,

T∫
0

∫
Y

(αφ1(t,y) + βφ2(t,y))ν̃(dt, dy) =

= α

T∫
0

∫
Y

φ1(t,y)ν̃(dt, dy) + β

T∫
0

∫
Y

φ2(t,y)ν̃(dt, dy),

M


∣∣∣∣∣∣
T∫

0

∫
Y

φ(t,y)ν̃(dt, dy)

∣∣∣∣∣∣
2 ∣∣∣∣F0

 =

T∫
0

∫
Y

M
{
|φ(t,y)|2

∣∣∣F0

}
Π(dy)dt,

where α, β ∈ R1 and φ1(t,y), φ2(t,y), φ(t,y) from the class H2(Π, [0, T ]).



122D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

The stochastic integral

T∫
0

∫
Y

φ(t,y)ν(dt, dy)

with respect to the Poisson measure will be defined as follows [100]

T∫
0

∫
Y

φ(t,y)ν(dt, dy) =

T∫
0

∫
Y

φ(t,y)ν̃(dt, dy) +

T∫
0

∫
Y

φ(t,y)Π(dy)dt, (1.145)

where we suppose that the right-hand side of the last equality exists.

According to the Itô formula for Itô processes with jumps, we get [100]

(zt)
p =

t∫
0

∫
Y

(
(zτ− + γ(τ,y))p − (zτ−)

p
)
ν(dτ, dy) w. p. 1, (1.146)

where p ∈ N and zτ− means the left-sided limit value of the process zτ at the
point τ ,

zt =

t∫
0

∫
Y

γ(τ,y)ν(dτ, dy).

We suppose that the function γ(τ,y) satisfies the conditions of existence of
the right-hand side of (1.146) [100].

Let us consider the useful estimate for moments of stochastic integrals with
respect to the Poisson measure [100]

ap(T ) ≤ max
j∈{p, 1}


 T∫

0

∫
Y

((
(bp(τ,y))

1/p + 1
)p

− 1
)
Π(dy)dτ

j
 , (1.147)

where
ap(t) = sup

0≤τ≤t
M
{
|zτ |p

}
, bp(τ,y) = M

{
|γ(τ,y)|p

}
.

We suppose that the right-hand side of (1.147) exists. According to (see
(1.145))

t∫
0

∫
Y

γ(τ,y)ν̃(dτ, dy) =

t∫
0

∫
Y

γ(τ,y)ν(dτ, dy)−
t∫

0

∫
Y

γ(τ,y)Π(dy)dτ
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and the Minkowski inequality, we obtain

(
M
{
|z̃t|2p

})1/2p
≤
(
M
{
|zt|2p

})1/2p
+
(
M
{
|ẑt|2p

})1/2p
, (1.148)

where

z̃t =

t∫
0

∫
Y

γ(τ,y)ν̃(dτ, dy)

and

ẑt
def
=

t∫
0

∫
Y

γ(τ,y)Π(dy)dτ.

The value M
{
|ẑτ |2p

}
can be estimated using the well known inequality [100]

M
{
|ẑt|2p

}
≤ t2p−1

t∫
0

M


∣∣∣∣∣∣
∫
Y

γ(τ,y)Π(dy)

∣∣∣∣∣∣
2p
 dτ, (1.149)

where we suppose that

t∫
0

M


∣∣∣∣∣∣
∫
Y

γ(τ,y)Π(dy)

∣∣∣∣∣∣
2p
 dτ <∞.

1.4.2 Expansion of Iterated Stochastic Integrals with Respect to
Martingale Poisson Measures

Let us consider the following iterated stochastic integrals

P [χ(k)]T,t =

=

T∫
t

∫
X

χk(tk,yk) . . .

t2∫
t

∫
X

χ1(t1,y1)ν̃
(i1)(dt1, dy1) . . . ν̃

(ik)(dtk, dyk), (1.150)

where i1, . . . , ik = 0, 1, . . . ,m, Rn def
= X, χl(τ,y) = ψl(τ)φl(y) (l = 1, . . . , k),

every function ψl(τ) : [t, T ] → R1 (l = 1, . . . , k) and every function φl(y) :
X → R1 (l = 1, . . . , k) such that
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χl(τ,y) ∈ H2(Π, [t, T ]) (l = 1, . . . , k),

where definition of the class H2(Π, [t, T ]) see above, ν(i)(dt, dy) (i = 1, . . . ,m)
are independent Poisson measures for various i, which are defined on [0, T ]×X,

ν̃(i)(dt, dy) = ν(i)(dt, dy)− Π(dy)dt (i = 1, . . . ,m)

are independent martingale Poisson measures for various i, ν̃(0)(dt, dy)
def
=

Π(dy)dt, ν(0)(dt, dy)
def
= Π(dy)dt.

Let us formulate an analogue of Theorem 1.1 for the iterated stochastic
integrals (1.150).

Theorem 1.7 [1]-[17], [41]. Suppose that the following conditions are hold:

1. Every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function at the
interval [t, T ].

2. {ϕj(x)}∞j=0 is a complete orthonormal system of functions in the space
L2([t, T ]), each function ϕj(x) of which for finite j satisfies the condition (⋆)
(see Sect. 1.1.7).

3. For l = 1, . . . , k and q = 2k+1 the following condition is satisfied∫
X

|φl(y)|q Π(dy) <∞.

Then, for the iterated stochastic integral with respect to martingale Poisson
measures P [χ(k)]T,t defined by (1.150) the following expansion

P [χ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
g=1

π
(g,ig)
jg

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

k∏
g=1

ϕjg(τlg)

∫
X

φg(y)ν̃
(ig)([τlg , τlg+1), dy)

)
(1.151)

that converges in the mean-square sense is valid, where {τj}Nj=0 is a partition of
the interval [t, T ] satisfying the condition (1.9),

Gk = Hk\Lk, Hk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1

}
,

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense, i1, . . . , ik = 0, 1, . . . ,m, random vari-
ables
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π
(g,ig)
j =

T∫
t

ϕj(τ)

∫
X

φg(y)ν̃
(ig)(dτ, dy)

are independent for various ig (if ig ̸= 0) and uncorrelated for various j,

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk

is the Fourier coefficient,

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

, t1, . . . , tk ∈ [t, T ], k ≥ 2,

and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ].

Proof. The scheme of the proof of Theorem 1.7 is the same with the sche-
me of the proof of Theorem 1.1. Some differences will take place in the proof of
Lemmas 1.4, 1.5 (see below) and in the final part of the proof of Theorem 1.7.

Lemma 1.4. Suppose that every ψl(τ) (l = 1, . . . , k) is a continuous func-
tion at the interval [t, T ] and every function φl(y) (l = 1, . . . , k) such that∫

X

|φl(y)|2Π(dy) <∞.

Then, the following equality

P [χ̄(k)]T,t = l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

∫
X

χl(τjl,y)ν̄
(il)([τjl, τjl+1), dy) (1.152)

is valid w. p. 1, where {τj}Nj=0 is a partition of the interval [t, T ] satisfying the
condition (1.9),

ν̄(i)([τ, s), dy) =


ν̃(i)([τ, s), dy)

ν(i)([τ, s), dy)

(i = 0, 1, . . . ,m).

In contrast to the integral P [χ(k)]T,t defined by (1.150), ν̄(il)(dtl, dyl) is used in
the integral P [χ̄(k)]T,t instead of ν̃(il)(dtl, dyl) (l = 1, . . . , k).
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Proof. Using the moment properties of stochastic integrals with respect
to the Poisson measure (see above) and the conditions of Lemma 1.4, it is easy
to notice that the integral sum of the integral P [χ̄(k)]T,t can be represented as
a sum of the prelimit expression from the right-hand side of (1.152) and the
value, which converges to zero in the mean-square sense if N → ∞. Lemma 1.4
is proved.

Note that in the case when the functions ψl(τ) (l = 1, . . . , k) satisfy the
condition (⋆) (see Sect. 1.1.7) we can suppose that among the points τj, j =
0, 1, . . . , N there are all points of jumps of the functions ψl(τ) (l = 1, . . . , k).
Further, we can apply the argumentation as in Sect. 1.1.7.

Let us consider the following multiple and iterated stochastic integrals

l.i.m.
N→∞

N−1∑
j1,...,jk=0

Φ(τj1, . . . , τjk)
k∏
l=1

∫
X

φl(y)ν̃
(il)([τjl, τjl+1), dy)

def
= P [Φ]

(k)
T,t,

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)

∫
X

φ1(y)ν̃
(i1)(dt1, dy) . . .

∫
X

φk(y)ν̃
(ik)(dtk, dy)

def
=

def
= P̂ [Φ]

(k)
T,t,

where Φ(t1, . . . , tk) : [t, T ]k → R1 is a bounded nonrandom function and the
sense of notations of the formula (1.152) is remaining.

Note that if the functions φl(y) (l = 1, . . . , k) satisfy the conditions of
Lemma 1.4 and the function Φ(t1, . . . , tk) is continuous in the domain of in-

tegration, then for the integral P̂ [Φ]
(k)
T,t the equality similar to (1.152) is valid

w. p. 1.

Lemma 1.5. Assume that the following representation takes place:

gl(τ,y) = hl(τ)φl(y) (l = 1, . . . , k),

where the functions hl(τ) : [t, T ] → R1 (l = 1, . . . , k) satisfy the condition (⋆)
(see Sect. 1.1.7) and the functions φl(y) : X → R1 (l = 1, . . . , k) satisfy the
condition ∫

X

|φl(y)|pΠ(dy) <∞ for p = 2k+1.



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series127

Then
k∏
l=1

T∫
t

∫
X

gl(s,y)ν̄
(il)(ds, dy) = P [Φ]

(k)
T,t w. p. 1, (1.153)

where il = 0, 1, . . . ,m (l = 1, . . . , k) and

Φ(t1, . . . , tk) =
k∏
l=1

hl(tl).

Proof. Let us introduce the following notations

J [ḡl]N
def
=

N−1∑
j=0

∫
X

gl(τj,y)ν̄
(il)([τj, τj+1), dy),

J [ḡl]T,t
def
=

T∫
t

∫
X

gl(s,y)ν̄
(il)(ds, dy),

where {τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition (1.9).

It is easy to see that

k∏
l=1

J [ḡl]N −
k∏
l=1

J [ḡl]T,t =

=
k∑
l=1

(
l−1∏
q=1

J [ḡq]T,t

)
(J [ḡl]N − J [ḡl]T,t)

 k∏
q=l+1

J [ḡq]N

 .

Using the Minkowski inequality and the inequality of Cauchy–Bunyakovsky
together with the estimates of moments of stochastic integrals with respect to
the Poisson measure and the conditions of Lemma 1.5, we obtainM


∣∣∣∣∣
k∏
l=1

J [ḡl]N −
k∏
l=1

J [ḡl]T,t

∣∣∣∣∣
2

1/2

≤ Ck

k∑
l=1

(
M

{∣∣∣∣J [ḡl]N − J [ḡl]T,t

∣∣∣∣4
})1/4

,

(1.154)
where Ck <∞.

We have

J [ḡl]N − J [ḡl]T,t =
N−1∑
q=0

J [∆ḡl]τq+1,τq ,
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where

J [∆ḡl]τq+1,τq =

τq+1∫
τq

(hl(τq)− hl(s))

∫
X

ϕl(y)ν̄
(il)(ds, dy).

Let us introduce the notation

h
(N)
l (s) = hl(τq), s ∈ [τq, τq+1), q = 0, 1, . . . , N − 1.

Then

J [ḡl]N − J [ḡl]T,t =
N−1∑
q=0

J [∆ḡl]τq+1,τq =

=

T∫
t

(
h
(N)
l (s)− hl(s)

)∫
X

ϕl(y)ν̄
(il)(ds, dy).

Applying the estimates (1.147) (for p = 4) and (1.148), (1.149) (for p = 2)
to the value

M


∣∣∣∣∣∣
T∫
t

(
h
(N)
l (s)− hl(s)

)∫
X

ϕl(y)ν̄
(il)(ds, dy)

∣∣∣∣∣∣
4
 ,

taking into account (1.154), the conditions of Lemma 1.5, and the estimate

|hl(τq)− hl(s)| < ε, s ∈ [τq, τq+1], q = 0, 1, . . . , N − 1, (1.155)

where ε is an arbitrary small positive real number and |τq+1 − τq| < δ(ε), we
obtain that the right-hand side of (1.154) converges to zero when N → ∞.
Therefore, we come to the affirmation of Lemma 1.5.

It should be noted that (1.155) is valid if the functions hl(s) are continu-
ous at the interval [t, T ], i.e. these functions are uniformly continuous at this
interval. So, |hl(τq)− hl(s)| < ε if s ∈ [τq, τq+1], where |τq+1 − τq| < δ(ε),
q = 0, 1, . . . , N − 1 (δ(ε) > 0 exists for any ε > 0 and it does not depend on
points of the interval [t, T ]).

In the case when the functions hl(s) (l = 1, . . . , k) satisfy the condition (⋆)
(see Sect. 1.1.7) we can suppose that among the points τq, q = 0, 1, . . . , N there
are all points of jumps of the functions hl(s) (l = 1, . . . , k). Further, we can
apply the argumentation as in Sect. 1.1.7.

Obviously, if il = 0 for some l = 1, . . . , k, then we also come to the affirma-
tion of Lemma 1.5. Lemma 1.5 is proved.
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Proving Theorem 1.7 by the scheme of the proof of Theorem 1.1 using
Lemmas 1.4, 1.5 and moment properties of stochastic integrals with respect to
the martingale Poisson measures, we obtain

M

{(
Rp1,...,pk
T,t

)2
}

≤ Ck

k∏
l=1

∫
X

φ2
l (y)Π(dy)×

×
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk =

= Ck

k∏
l=1

∫
X

φ2
l (y)Π(dy)

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk ≤

≤ C̄k

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk → 0

if p1, . . . , pk → ∞, where constant C̄k depends only on k (k is the multiplic-
ity of the iterated stochastic integral with respect to the martingale Poisson
measures). Moreover, Rp1,...,pk

T,t has the following form

Rp1,...,pk
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×
∫
X

φ1(y)ν̃
(i1)(dt1, dy) . . .

∫
X

φk(y)ν̃
(ik)(dtk, dy), (1.156)

where permutations (t1, . . . , tk) when summing in (1.156) are performed only
in the values φ1(y)ν̃

(i1)(dt1, dy) . . . φk(y)ν̃
(ik)(dtk, dy). At the same time, the

indices near upper limits of integration in the iterated stochastic integrals
are changed correspondently and if tr swapped with tq in the permutation
(t1, . . . , tk), then ir swapped with iq in the permutation (i1, . . . , ik). Moreover,
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φr(y) swapped with φq(y) in the permutation (φ1(y), . . . , φk(y)). Theorem 1.7
is proved.

Let us consider the application of Theorem 1.7. Let i1 ̸= i2 and i1, i2 =
1, . . . ,m. Using Theorem 1.7 and the system of Legendre polynomials, we obtain

T∫
t

∫
X

φ2(y2)

t2∫
t

∫
X

φ1(y1)ν̃
(i1)(dt1, dy1)ν̃

(i2)(dt2, dy2) =

=
T − t

2

(
π
(1,i1)
0 π

(2,i2)
0 +

∞∑
i=1

1√
4i2 − 1

(
π
(1,i1)
i−1 π

(2,i2)
i − π

(1,i1)
i π

(2,i2)
i−1

))
,

T∫
t

∫
X

φ1(y1)ν̃
(i1)(dt1, dy1) =

√
T − tπ

(1,i1)
0 ,

where

π
(l,il)
j =

T∫
t

ϕj(τ)

∫
X

φl(y)ν̃
(il)(dτ, dy) (l = 1, 2)

and {ϕj(τ)}∞j=0 is a complete orthonormal system of Legendre polynomials in
the space L2([t, T ]).

1.5 Expansion of Iterated Stochastic Integrals with Re-

spect to Martingales Based on Generalized Multiple

Fourier Series

1.5.1 Stochastic Integral with Respect to Martingale

Let (Ω,F,P) be a fixed probability space, let {Ft, t ∈ [0, T ]} be a non-decreasing
family of σ-algebras Ft ⊂ F, and let M2(ρ, [0, T ]) be a class of Ft-measurable
for each t ∈ [0, T ] martingales Mt satisfying the conditions

M
{
(Ms −Mt)

2
}
=

s∫
t

ρ(τ)dτ, (1.157)

M
{
|Ms −Mt|p

}
≤ Cp|s− t|, p = 3, 4, . . . ,
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where 0 ≤ t < s ≤ T, ρ(τ) is a non-negative and continuously differentiable
nonrandom function at the interval [0, T ], Cp <∞ is a constant.

Let us define the class H2(ρ, [0, T ]) of stochastic processes ξt, t ∈ [0, T ],
which are Ft-measurable for all t ∈ [0, T ] and satisfy the condition

T∫
0

M
{
|ξt|2

}
ρ(t)dt <∞.

For any partition
{
τ
(N)
j

}N
j=0

of the interval [0, T ] such that

0 = τ
(N)
0 < τ

(N)
1 < . . . < τ

(N)
N = T, max

0≤j≤N−1

∣∣∣τ (N)
j+1 − τ

(N)
j

∣∣∣→ 0 if N → ∞
(1.158)

we will define the sequence of step functions ξ(N)(t, ω) by the following relation

ξ(N)(t, ω) = ξj (ω) w. p. 1 for t ∈
[
τ
(N)
j , τ

(N)
j+1

)
,

where ξ(N)(t, ω) ∈ H2(ρ, [0, T ]), j = 0, 1, . . . , N − 1, N = 1, 2, . . .

Let us define the stochastic integral with respect to martingale from the
process ξ(t, ω) ∈ H2(ρ, [0, T ]) as the following mean-square limit [100]

l.i.m.
N→∞

N−1∑
j=0

ξ(N)
(
τ
(N)
j , ω

)(
M
(
τ
(N)
j+1 , ω

)
−M

(
τ
(N)
j , ω

))
def
=

T∫
0

ξτdMτ , (1.159)

where ξ(N)(t, ω) is any step function from the classH2(ρ, [0, T ]), which converges
to the function ξ(t, ω) in the following sense

lim
N→∞

T∫
0

M

{∣∣∣ξ(N)(t, ω)− ξ(t, ω)
∣∣∣2} ρ(t)dt = 0.

It is well known [100] that the stochastic integral (1.159) exists, it does not
depend on selection of the sequence ξ(N)(t, ω) and it satisfies w. p. 1 to the
following properties

M


T∫

0

ξtdMt

∣∣∣∣F0

 = 0,
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M


∣∣∣∣∣∣
T∫

0

ξtdMt

∣∣∣∣∣∣
2 ∣∣∣∣F0

 = M


T∫

0

ξ2t ρ(t)dt

∣∣∣∣F0

 ,

T∫
0

(αξt + βψt)dMt = α

T∫
0

ξtdMt + β

T∫
0

ψtdMt,

where ξt, ψt ∈ H2(ρ, [0, T ]), α, β ∈ R1.

1.5.2 Expansion of Iterated Stochastic Integrals with Respect to
Martingales

Let Q4(ρ, [0, T ]) be the class of martingales Mt, t ∈ [0, T ], which satisfy the
following conditions:

1. Mt, t ∈ [0, T ] belongs to the class M2(ρ, [0, T ]).

2. For some α > 0 the following estimate is correct

M


∣∣∣∣∣∣
τ∫
t

g(s)dMs

∣∣∣∣∣∣
4
 ≤ K4

τ∫
t

|g(s)|αds, (1.160)

where 0 ≤ t < τ ≤ T, g(s) is a bounded nonrandom function at the interval
[0, T ], K4 <∞ is a constant.

Let Gn(ρ, [0, T ]) be the class of martingales Mt, t ∈ [0, T ], which satisfy the
following conditions:

1. Mt, t ∈ [0, T ] belongs to the class M2(ρ, [0, T ]).

2. The following estimate is correct

M


∣∣∣∣∣∣
τ∫
t

g(s)dMs

∣∣∣∣∣∣
n <∞,

where 0 ≤ t < τ ≤ T, n ∈ N, g(s) is the same function as in the definition of
the class Q4(ρ, [0, T ]).

Let us remind that if (ξt)
n ∈ H2(ρ, [0, T ]) with ρ(t) ≡ 1, then the following

estimate is correct [100]

M


∣∣∣∣∣∣
τ∫
t

ξsds

∣∣∣∣∣∣
2n
 ≤ (τ − t)2n−1

τ∫
t

M
{
|ξs|2n

}
ds, 0 ≤ t < τ ≤ T. (1.161)
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Let us consider the iterated stochastic integral with respect to martingales

J [ψ(k)]MT,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dM
(1,i1)
t1 . . . dM

(k,ik)
tk , (1.162)

where i1, . . . , ik = 0, 1, . . . ,m, every ψl(τ) (l = 1, . . . , k) is a continuous non-

random function at the interval [t, T ], M
(r,i)
s (r = 1, . . . , k, i = 1, . . . ,m) are

independent martingales for various i = 1, . . . ,m, M
(r,0)
s

def
= s.

Now we can formulate the following theorem.

Theorem 1.8 [1]-[17], [41]. Suppose that the following conditions are hold:

1. Every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function at the
interval [t, T ].

2. {ϕj(x)}∞j=0 is a complete orthonormal system of functions in the space
L2([t, T ]), each function ϕj(x) of which for finite j satisfies the condition (⋆)
(see Sect. 1.1.7).

3. M
(l,il)
s ∈ Q4(ρ, [t, T ]), Gn(ρ, [t, T ]) with n = 2k+1, il = 1, . . . ,m, l =

1, . . . , k (k ∈ N).

Then, for the iterated stochastic integral J [ψ(k)]MT,t with respect to martin-
gales defined by (1.162) the following expansion

J [ψ(k)]MT,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ξ
(l,il)
jl

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆M
(1,i1)
τl1

. . . ϕjk(τlk)∆M
(k,ik)
τlk

)

that converges in the mean-square sense is valid, where i1, . . . , ik = 0, 1, . . . ,m,
{τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition similar to

(1.158), ∆M
(r,i)
τj =M

(r,i)
τj+1 −M

(r,i)
τj (i = 0, 1, . . . ,m, r = 1, . . . , k),

Gk = Hk\Lk, Hk = {(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1},

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense,

ξ
(l,il)
j =

T∫
t

ϕj(s)dM
(l,il)
s
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are independent for various il (if il ̸= 0) and uncorrelated for various j (if ρ(τ)
is a constant, il ̸= 0) random variables,

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk

is the Fourier coefficient,

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

, t1, . . . , tk ∈ [t, T ], k ≥ 2,

and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ].

Remark 1.4. Note that from Theorem 1.8 for the case ρ(τ) ≡ 1 we obtain
the variant of Theorem 1.1.

Proof. The proof of Theorem 1.8 is similar to the proof of Theorem 1.1.
Some differences will take place in the proof of Lemmas 1.6, 1.7 (see below) and
in the final part of the proof of Theorem 1.8.

Lemma 1.6. Assume that M
(r,i)
s ∈ M2(ρ, [t, T ]) (i = 1, . . . ,m), M

(r,0)
s = s

(r = 1, . . . , k), and every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom func-
tion at the interval [t, T ]. Then

J [ψ(k)]MT,t = l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

ψl(τjl)∆M
(l,il)
τjl

w. p. 1, (1.163)

where {τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition similar
to (1.158), il = 0, 1, . . . ,m, l = 1, . . . , k; another notations are the same as in
Theorem 1.8.

Proof. According to the properties of the stochastic integral with respect
to martingales, we have [100]

M


 τ∫

t

ξsdM
(l,il)
s

2
 =

τ∫
t

M
{
|ξs|2

}
ρ(s)ds, (1.164)

M


 τ∫

t

ξsds

2
 ≤ (τ − t)

τ∫
t

M
{
|ξs|2

}
ds, (1.165)
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where ξs ∈ H2(ρ, [0, T ]), 0 ≤ t < τ ≤ T, il = 1, . . . ,m, l = 1, . . . , k. Then
the integral sum for the integral J [ψ(k)]MT,t under the conditions of Lemma 1.6
can be represented as a sum of the prelimit expression from the right-hand side
of (1.163) and the value, which converges to zero in the mean-square sense if
N → ∞. More detailed proof of the similar lemma for the case ρ(τ) ≡ 1 can be
found in Sect. 1.1.3 (see Lemma 1.1).

In the case when the functions ψl(τ) (l = 1, . . . , k) satisfy the condition (⋆)
(see Sect. 1.1.7) we can suppose that among the points τj, j = 0, 1, . . . , N there
are all points of jumps of the functions ψl(τ) (l = 1, . . . , k). So, we can apply
the argumentation as in Sect. 1.1.7.

Let us define the following multiple stochastic integral

l.i.m.
N→∞

N−1∑
j1,...,jk=0

Φ(τj1, . . . , τjk)
k∏
l=1

∆M (l,il)
τjl

def
= I[Φ]

(k)
T,t, (1.166)

where {τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition similar
to (1.158) and Φ(t1, . . . , tk) : [t, T ]k → R1 is a bounded nonrandom function;
another notations are the same as in Theorem 1.8.

Lemma 1.7. Let M
(l,il)
s ∈ Q4(ρ, [t, T ]), Gn(ρ, [t, T ]) with n = 2k+1, k ∈ N

(il = 1, . . . ,m, l = 1, . . . , k) and the functions g1(s), . . . , gk(s) satisfy the con-
dition (⋆) (see Sect. 1.1.7). Then

k∏
l=1

T∫
t

gl(s)dM
(l,il)
s = I[Φ]

(k)
T,t w. p. 1,

where il = 0, 1, . . . ,m, l = 1, . . . , k,

Φ(t1, . . . , tk) =
k∏
l=1

gl(tl).

Proof. Let us denote

J [gl]N
def
=

N−1∑
j=0

gl(τj)∆M
(l,il)
τj

, J [gl]T,t
def
=

T∫
t

gl(s)dM
(l,il)
s ,

where {τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition similar
to (1.158).
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Note that
k∏
l=1

J [gl]N −
k∏
l=1

J [gl]T,t =

=
k∑
l=1

(
l−1∏
q=1

J [gq]T,t

)
(J [gl]N − J [gl]T,t)

 k∏
q=l+1

J [gq]N

 .

Using the Minkowski inequality and the inequality of Cauchy-Bunyakovsky
as well as the conditions of Lemma 1.7, we obtainM


∣∣∣∣∣
k∏
l=1

J [gl]N −
k∏
l=1

J [gl]T,t

∣∣∣∣∣
2

1/2

≤

≤ Ck

k∑
l=1

(
M

{∣∣∣∣J [gl]N − J [gl]T,t

∣∣∣∣4
})1/4

, (1.167)

where Ck <∞ is a constant.

We have

J [gl]N − J [gl]T,t =
N−1∑
q=0

J [∆gl]τq+1,τq ,

J [∆gl]τq+1,τq =

τq+1∫
τq

(gl(τq)− gl(s)) dM
(l,il)
s .

Let us introduce the notation

g
(N)
l (s) = gl(τq), s ∈ [τq, τq+1), q = 0, 1, . . . , N − 1.

Then

J [gl]N − J [gl]T,t =
N−1∑
q=0

J [∆gl]τq+1,τq =

=

T∫
t

(
g
(N)
l (s)− gl(s)

)
dM (l,il)

s .
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Applying the estimate (1.160), we obtain

M


∣∣∣∣∣∣
T∫
t

(
g
(N)
l (s)− gl(s)

)
dM (l,il)

s

∣∣∣∣∣∣
4
 ≤

≤ K4

T∫
t

∣∣∣g(N)
l (s)− gl(s)

∣∣∣α ds =
= K4

N−1∑
q=0

τq+1∫
τq

|gl(τq)− gl(s)|α ds <

< K4ε
α

N−1∑
q=0

(τq+1 − τq) = K4ε
α(T − t). (1.168)

Note that we used the estimate

|gl(τq)− gl(s)| < ε, s ∈ [τq, τq+1], q = 0, 1, . . . , N − 1 (1.169)

to derive (1.168), where |τq+1 − τq| < δ(ε) and ε is an arbitrary small positive
real number.

The inequality (1.169) is valid if the functions gl(s) are continuous at the
interval [t, T ], i.e. these functions are uniformly continuous at this interval. So,
|gl(τq)− gl(s)| < ε if s ∈ [τq, τq+1], where |τq+1 − τq| < δ(ε), q = 0, 1, . . . , N − 1
(δ(ε) > 0 exists for any ε > 0 and it does not depend on points of the interval
[t, T ]).

Thus, taking into account (1.168), we obtain that the right-hand side of
(1.167) converges to zero when N → ∞. Hence, we come to the affirmation of
Lemma 1.7.

In the case when the functions gl(s) (l = 1, . . . , k) satisfy the condition (⋆)
(see Sect. 1.1.7) we can suppose that among the points τq, q = 0, 1, . . . , N there
are all points of jumps of the functions gl(s) (l = 1, . . . , k). So, we can apply
the argumentation as in Sect. 1.1.7.

Obviously if il = 0 for some l = 1, . . . , k, then we also come to the affirma-
tion of Lemma 1.7. Lemma 1.7 is proved.

Proving Theorem 1.8 similar to the proof of Theorem 1.1 using Lemmas 1.6,
1.7 and moment properties of stochastic integrals with respect to martingales
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(see (1.164), (1.165)), we obtain

M

{(
Rp1,...,pk
T,t

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

×

×ρ̃1(t1)dt1 . . . ρ̃k(tk)dtk ≤ (1.170)

≤ C̄k
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

= C̄k

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk → 0

if p1, . . . , pk → ∞, where constant C̄k depends only on k (k is the multiplicity
of the iterated stochastic integral with respect to martingales) and ρ̃l(s) ≡ ρ(s)
or ρ̃l(s) ≡ 1 (l = 1, . . . , k). Moreover, Rp1,...,pk

T,t has the following form

Rp1,...,pk
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×dM (1,i1)
t1 . . . dM

(k,ik)
tk , (1.171)

where permutations (t1, . . . , tk) when summing in (1.171) are performed only in

the values dM
(1,i1)
t1 . . . dM

(k,ik)
tk . At the same time the indices near upper limits of

integration in the iterated stochastic integrals are changed correspondently and
if tr swapped with tq in the permutation (t1, . . . , tk), then ir swapped with iq in
the permutation (i1, . . . , ik). Moreover, r swapped with q in the permutation
(1, . . . , k). Theorem 1.8 is proved.
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1.6 One Modification of Theorems 1.5 and 1.8

1.6.1 Expansion of Iterated Stochastic Integrals with Respect to
Martingales Based on Generalized Multiple Fourier Series.
The Case ρ(x)/r(x) <∞

Let us compare the expressions (1.141) and (1.170). If we suppose that r(x) ≥ 0
and

ρ(x)

r(x)
≤ C <∞,

where ρ(x) as in (1.157), then∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

Ψjl(tl)

)2

×

×ρ(t1)dt1 . . . ρ(tk)dtk =

=

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

Ψjl(tl)

)2

×

×ρ(t1)
r(t1)

r(t1)dt1 . . .
ρ(tk)

r(tk)
r(tk)dtk ≤

≤ C ′
k

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

k∏
l=1

Ψjl(tl)

)2

×

×

(
k∏
l=1

r(tl)

)
dt1 . . . dtk → 0

if p1, . . . , pk → ∞ (see (1.142)), where C ′
k is a constant, {Ψj(x)}∞j=0 is a complete

orthonormal with weight r(x) ≥ 0 system of functions in the space L2([t, T ]),
and the Fourier coefficient C̃jk...j1 has the form (1.140).

So, we obtain the following modification of Theorems 1.5 and 1.8.

Theorem 1.9 [13]-[17], [41]. Suppose that the following conditions are
fulfilled:

1. Every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function at the
interval [t, T ].
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2. {Ψj(x)}∞j=0 is a complete orthonormal with weight r(x) ≥ 0 system
of functions in the space L2([t, T ]), each function Ψj(x) of which for finite j
satisfies the condition (⋆) (see Sect. 1.1.7). Moreover,

ρ(x)

r(x)
≤ C <∞.

3. M
(l,il)
s ∈ Q4(ρ, [t, T ]), Gn(ρ, [t, T ]) with n = 2k+1, il = 1, . . . ,m, l =

1, . . . , k (k ∈ N).

Then, for the iterated stochastic integral J [ψ(k)]MT,t with respect to martin-
gales defined by (1.162) the following expansion

J [ψ(k)]MT,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

(
k∏
l=1

ξ
(l,il)
jl

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

Ψj1(τl1)∆M
(1,i1)
τl1

. . .Ψjk(τlk)∆M
(k,ik)
τlk

)

that converges in the mean-square sense is valid, where i1, . . . , ik = 1, . . . ,m,
{τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition similar to

(1.158), ∆M
(r,i)
τj =M

(r,i)
τj+1 −M

(r,i)
τj (i = 1, . . . ,m, r = 1, . . . , k),

Gk = Hk\Lk, Hk = {(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1},

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense,

ξ
(l,il)
j =

T∫
t

Ψj(s)dM
(l,il)
s

are independent for various il = 1, . . . ,m (l = 1, . . . , k) and uncorrelated for
various j (if ρ(x) ≡ r(x)) random variables,

C̃jk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

(
Ψjl(tl)r(tl)

)
dt1 . . . dtk
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is the Fourier coefficient,

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

, t1, . . . , tk ∈ [t, T ], k ≥ 2,

and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ].

Remark 1.5. Note that if ρ(x), r(x) ≡ 1 in Theorem 1.9, then we obtain
the variant of Theorem 1.1.

1.6.2 Example on Application of Theorem 1.9 and the System of
Bessel Functions

Let us consider the following boundary-value problem

(p(x)Φ′(x))
′
+ q(x)Φ(x) = −λr(x)Φ(x),

αΦ(a) + βΦ′(a) = 0, γΦ(b) + δΦ′(b) = 0,

where the functions p(x), q(x), r(x) satisfy the well known conditions and α,

β, γ, δ, λ are real numbers.

It is well known (Steklov V.A.) that the eigenfunctions Φ0(x), Φ1(x), . . .
of this boundary-value problem form a complete orthonormal with weight r(x)
system of functions in the space L2([a, b]). It means that the Fourier series of
the function

√
r(x)f(x) ∈ L2([a, b]) with respect to the system of functions√

r(x)Φ0(x),
√
r(x)Φ1(x), . . . converges in the mean-square sense to the func-

tion
√
r(x)f(x) at the interval [a, b]. Moreover, the Fourier coefficients are

defined by the formula

C̃j =

b∫
a

f(x)Φj(x)r(x)dx. (1.172)

It is known that when solving the problem on oscillations of a circular
membrane (general case), a boundary-value problem arises for the following
Euler–Bessel equation

r2R′′(r) + rR′(r) +
(
λ2r2 − n2

)
R(r) = 0 (λ ∈ R, n ∈ N). (1.173)

The eigenfunctions of this problem, taking into account specific boundary con-
ditions, are the following functions

Jn

(
µj
τ

L

)
, (1.174)
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where τ ∈ [0, L] and µj (j = 0, 1, 2, . . .) are positive roots of the Bessel function
Jn(µ) (n = 0, 1, 2, . . .) numbered in ascending order.

The problem on radial oscillations of a circular membrane leads to the
boundary-value problem for the equation (1.173) for n = 0, the eigenfunctions
of which are the functions (1.174) when n = 0.

Let us consider the system of functions

Ψj(τ) =

√
2

TJn+1(µj)
Jn

(µj
T
τ
)
, j = 0, 1, 2, . . . , (1.175)

where

Jn(x) =
∞∑
m=0

(−1)m
(x
2

)n+2m 1

Γ(m+ 1)Γ(m+ n+ 1)

is the Bessel function of the first kind,

Γ(z) =

∞∫
0

e−xxz−1dx

is the gamma-function, µj are positive roots of the function Jn(x) numbered in
ascending order, and n is a natural number or zero.

Due to the well known properties of the Bessel functions, the system
{Ψj(τ)}∞j=0 is a complete orthonormal with weight τ system of continuous func-
tions in the space L2([0, T ]).

Let us use the system of functions (1.175) in Theorem 1.9.

Consider the following iterated stochastic integral with respect to martin-
gales

T∫
0

s∫
0

dM (1)
τ dM (2)

s ,

where

M (i)
s =

s∫
0

√
τdf (i)τ (i = 1, 2),

f
(i)
τ (i = 1, 2) are independent standard Wiener processes, M

(i)
s (i = 1, 2) are

martingales (here ρ(τ) ≡ τ), 0 ≤ s ≤ T. In addition, M
(i)
s has a Gaussian

distribution.

It is obvious that the conditions of Theorem 1.9 are fulfilled for k = 2.
Using Theorem 1.9, we obtain
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T∫
0

s∫
0

dM (1)
τ dM (2)

s = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

C̃j2j1ζ
(1)
j1
ζ
(2)
j2
,

where

ζ
(i)
j =

T∫
0

Ψj(τ)dM
(i)
τ

are independent standard Gaussian random variables for various i or j (i = 1, 2,
j = 0, 1, 2, . . .),

C̃j2j1 =

T∫
0

sΨj2(s)

s∫
0

τΨj1(τ)dτds

is the Fourier coefficient.

It is obvious that we can get the same result using the another approach:
we can use Theorem 1.1 for the iterated Itô stochastic integral

T∫
0

√
s

s∫
0

√
τdf (1)τ df (2)s ,

and as a system of functions {ϕj(s)}∞j=0 in Theorem 1.1 we can take

ϕj(s) =

√
2s

TJn+1(µj)
Jn

(µj
T
s
)
, j = 0, 1, 2, . . .

As a result, we obtain

T∫
0

√
s

s∫
0

√
τdf (1)τ df (2)s = l.i.m.

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(1)
j1
ζ
(2)
j2
,

where

ζ
(i)
j =

T∫
0

ϕj(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j (i = 1, 2,
j = 0, 1, 2, . . .),

Cj2j1 =

T∫
0

√
sϕj2(s)

s∫
0

√
τϕj1(τ)dτds
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is the Fourier coefficient. Obviously that Cj2j1 = C̃j2j1.

Easy calculation demonstrates that

ϕ̃j(s) =

√
2(s− t)

(T − t)Jn+1(µj)
Jn

(
µj

T − t
(s− t)

)
, j = 0, 1, 2, . . .

is a complete orthonormal system of functions in the space L2([t, T ]).

Then, using Theorem 1.1, we obtain

T∫
t

√
s− t

s∫
t

√
τ − tdf (1)τ df (2)s = l.i.m.

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1 ζ̃
(1)
j1
ζ̃
(2)
j2
,

where

ζ̃
(i)
j =

T∫
t

ϕ̃j(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j (i = 1, 2,
j = 0, 1, 2, . . .),

Cj2j1 =

T∫
t

√
s− tϕ̃j2(s)

s∫
t

√
τ − tϕ̃j1(τ)dτds

is the Fourier coefficient.

1.7 Convergence with Probability 1 of Expansions of It-

erated Itô Stochastic Integrals in Theorem 1.1

1.7.1 Convergence with Probability 1 of Expansions of Iterated Itô
Stochastic Integrals of Multiplicities 1 and 2

Let us address now to the convergence with probability 1 (w. p. 1). Consider
in detail the iterated Itô stochastic integral (1.98) and its expansion, which is
corresponds to (1.99) for the case i1 ̸= i2

I
(i1i2)
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

))
. (1.176)

First, note the well known fact [104].
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Lemma 1.8. If for the sequence of random variables ξp and for some α > 0
the number series ∞∑

p=1

M {|ξp|α}

converges, then the sequence ξp converges to zero w. p. 1.

In our specific case (i1 ̸= i2)

I
(i1i2)
(00)T,t = I

(i1i2)p
(00)T,t + ξp, ξp =

T − t

2

∞∑
i=p+1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
,

where

I
(i1i2)p
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

p∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

))
. (1.177)

Furthermore,

M
{
|ξp|2

}
=

(T − t)2

2

∞∑
i=p+1

1

4i2 − 1
≤ (T − t)2

2

∞∫
p

1

4x2 − 1
dx =

= −(T − t)2

2

1

4
ln

∣∣∣∣1− 2

2p+ 1

∣∣∣∣ ≤ C

p
, (1.178)

where constant C is independent of p.

Therefore, taking α = 2 in Lemma 1.8, we cannot prove the convergence of
ξp to zero w. p. 1, since the series

∞∑
p=1

M
{
|ξp|2

}
will be majorized by the divergent Dirichlet series with the index 1. Let us take
α = 4 and estimate the value M

{
|ξp|4

}
.

From (1.74) for k = 2, n = 2 and (1.178) we obtain

M
{
|ξp|4

}
≤ K

p2
(1.179)

and ∞∑
p=1

M
{
|ξp|4

}
≤ K

∞∑
p=1

1

p2
<∞, (1.180)
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where constant K is independent of p.

Since the series on the right-hand side of (1.180) converges, then according
to Lemma 1.8, we obtain that ξp → 0 when p→ ∞ w. p. 1. Then

I
(i1i2)p
(00)T,t → I

(i1i2)
(00)T,t when p→ ∞ w. p. 1.

Let us analyze the following iterated Itô stochastic integrals

I
(i1i2)
(01)T,t =

T∫
t

(t− s)

s∫
t

df (i1)τ df (i2)s , I
(i1i2)
(10)T,t =

T∫
t

s∫
t

(t− τ)df (i1)τ df (i2)s ,

whose expansions based on Theorem 1.1 and Legendre polynomials have the
following form (also see Chapter 5, Sect. 5.1)

I
(i1i2)
(01)T,t = −T − t

2
I
(i1i2)p
(00)T,t −

(T − t)2

4

(
ζ
(i1)
0 ζ

(i2)
1√
3

+

+

p∑
i=0

(
(i+ 2)ζ

(i1)
i ζ

(i2)
i+2 − (i+ 1)ζ

(i1)
i+2ζ

(i2)
i√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
+ ξ(01)p ,

I
(i1i2)
(10)T,t = −T − t

2
I
(i1i2)p
(00)T,t −

(T − t)2

4

(
ζ
(i2)
0 ζ

(i1)
1√
3

+

+

p∑
i=0

(
(i+ 1)ζ

(i2)
i+2ζ

(i1)
i − (i+ 2)ζ

(i2)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
+ ξ(10)p ,

where

ξ(01)p = −(T − t)2

4

( ∞∑
i=p+1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
+

+
∞∑

i=p+1

(
(i+ 2)ζ

(i1)
i ζ

(i2)
i+2 − (i+ 1)ζ

(i1)
i+2ζ

(i2)
i√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
,

ξ(10)p = −(T − t)2

4

( ∞∑
i=p+1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
+
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+
∞∑

i=p+1

(
(i+ 1)ζ

(i1)
i ζ

(i2)
i+2 − (i+ 2)ζ

(i1)
i+2ζ

(i2)
i√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
.

Then for the case i1 ̸= i2 we obtain

M

{∣∣∣ξ(01)p

∣∣∣2} =
(T − t)4

16
×

×
∞∑

i=p+1

(
2

4i2 − 1
+

(i+ 2)2 + (i+ 1)2

(2i+ 1)(2i+ 5)(2i+ 3)2
+

1

(2i− 1)2(2i+ 3)2

)
≤

≤ K
∞∑

i=p+1

1

i2
≤ K

p
, (1.181)

where constant K is independent of p.

Analogously, we get

M

{∣∣∣ξ(10)p

∣∣∣2} ≤ K

p
, (1.182)

where constant K does not depend on p.

From (1.74) for k = 2, n = 2 and (1.181), (1.182) we have

M

{∣∣∣ξ(01)p

∣∣∣4}+M

{∣∣∣ξ(10)p

∣∣∣4} ≤ K1

p2

and
∞∑
p=1

(
M

{∣∣∣ξ(01)p

∣∣∣4}+M

{∣∣∣ξ(10)p

∣∣∣4}) ≤ K1

∞∑
p=1

1

p2
<∞, (1.183)

where constant K1 is independent of p.

According to (1.183) and Lemma 1.8, we obtain that ξ
(01)
p , ξ

(10)
p → 0 when

p→ ∞ w. p. 1. Then

I
(i1i2)p
(01)T,t → I

(i1i2)
(01)T,t, I

(i1i2)p
(10)T,t → I

(i1i2)
(10)T,t when p→ ∞ w. p. 1,

where i1 ̸= i2.

Let us consider the case i1 = i2

I
(i1i1)
(01)T,t =

(T − t)2

4
− (T − t)2

4

((
ζ
(i1)
0

)2
+
ζ
(i1)
0 ζ

(i1)
1√
3

+
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+

p∑
i=0

(
ζ
(i1)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i1)
i

(2i− 1)(2i+ 3)

))
+ µ(01)p ,

I
(i1i1)
(10)T,t =

(T − t)2

4
− (T − t)2

4

((
ζ
(i1)
0

)2
+
ζ
(i1)
0 ζ

(i1)
1√
3

+

+

p∑
i=0

(
−

ζ
(i1)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(i1)
i ζ

(i1)
i

(2i− 1)(2i+ 3)

))
+ µ(10)p ,

where

µ(01)p = −(T − t)2

4

∞∑
i=p+1

(
ζ
(i1)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i1)
i

(2i− 1)(2i+ 3)

)
,

µ(10)p = −(T − t)2

4

∞∑
i=p+1

(
−

ζ
(i1)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(i1)
i ζ

(i1)
i

(2i− 1)(2i+ 3)

)
.

Then

M

{(
µ(01)p

)2}
= M

{(
µ(10)p

)2}
=

(T − t)4

16
×

×

( ∞∑
i=p+1

1

(2i+ 1)(2i+ 5)(2i+ 3)2
+

∞∑
i=p+1

2

(2i− 1)2(2i+ 3)2
+

+

( ∞∑
i=p+1

1

(2i− 1)(2i+ 3)

)2)
≤ K

p2

and

∞∑
p=1

(
M

{∣∣∣µ(01)p

∣∣∣2}+M

{∣∣∣µ(10)p

∣∣∣2}) ≤ K
∞∑
p=1

1

p2
<∞, (1.184)

where constant K is independent of p.

According to Lemma 1.8 and (1.184), we obtain that µ
(01)
p , µ

(10)
p → 0 when

p→ ∞ w. p. 1. Then

I
(i1i1)p
(01)T,t → I

(i1i1)
(01)T,t, I

(i1i1)p
(10)T,t → I

(i1i1)
(10)T,t when p→ ∞ w. p. 1.
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Analogously, we have

I
(i1i2)p
(02)T,t → I

(i1i2)
(02)T,t, I

(i1i2)p
(11)T,t → I

(i1i2)
(11)T,t, I

(i1i2)p
(20)T,t → I

(i1i2)
(20)T,t when p→ ∞ w. p. 1,

where

I
(i1i2)
(02)T,t =

T∫
t

(t− s)2
s∫
t

df (i1)τ df (i2)s , I
(i1i2)
(20)T,t =

T∫
t

s∫
t

(t− τ)2df (i1)τ df (i2)s ,

I
(i1i2)
(11)T,t =

T∫
t

(t− s)

s∫
t

(t− τ)df (i1)τ df (i2)s ,

i1, i2 = 1, . . . ,m. This result is based on the expansions of stochastic integrals
I
(i1i2)
(02)T,t, I

(i1i2)
(20)T,t, I

(i1i2)
(11)T,t (see the formulas (5.27)–(5.29) in Chapter 5).

Let us denote

I
(i1)
(l)T,t =

T∫
t

(t− s)ldf (i1)s ,

where l = 0, 1, 2 . . .

The expansions (5.7)–(5.9), (5.30), (5.38) (see Chapter 5) for stochastic

integrals I
(i1)
(0)T,t, I

(i1)
(1)T,t, I

(i1)
(2)T,t, I

(i1)
(3)T,t, I

(i1)
(l)T,t are correct w. p. 1 (they include

1, 2, 3, 4, and l + 1 members of expansion, correspondently).

1.7.2 Convergence with Probability 1 of Expansions of Iterated Itô
Stochastic Integrals of Multiplicity k (k ∈ N)

In this section, we formulate and prove the theorem on convergence with prob-
ability 1 (w. p. 1) of expansions of iterated Itô stochastic integrals in Theorem
1.1 for the case of multiplicity k (k ∈ N). This section is written on the base
of Sect. 1.7.2 from [14]-[17] as well as on Sect. 6 from [31] and Sect. 9 from [29].

Let us remind the well known fact from the mathematical analysis, which
is connected to existence of iterated limits.

Proposition 1.1. Let
{
xn,m

}∞
n,m=1

be a double sequence and let there exists
the limit

lim
n,m→∞

xn,m = a <∞.
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Moreover, let there exist the limits

lim
n→∞

xn,m <∞ for any m, lim
m→∞

xn,m <∞ for any n.

Then there exist the iterated limits

lim
n→∞

lim
m→∞

xn,m, lim
m→∞

lim
n→∞

xn,m

and moreover,

lim
n→∞

lim
m→∞

xn,m = lim
m→∞

lim
n→∞

xn,m = a.

Theorem 1.10 [14]-[17], [27], [29], [31], [32]. Let ψl(τ) (l = 1, . . . , k)
are continuously differentiable nonrandom functions on the interval [t, T ] and
{ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials or
trigonometric functions in the space L2([t, T ]). Then

J [ψ(k)]p,...,pT,t → J [ψ(k)]T,t if p→ ∞

w. p. 1, where J [ψ(k)]p,...,pT,t is the expression on the right-hand side of (1.10)
before passing to the limit l.i.m.

p1,...,pk→∞
for the case p1 = . . . = pk = p, i.e. (see

Theorem 1.1)

J [ψ(k)]p,...,pT,t =

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

−

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

)
,

where i1, . . . , ik = 1, . . . ,m, rest notations are the same as in Theorem 1.1.

Proof. Let us consider the Parseval equality∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk = lim
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

, (1.185)

where

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

=
k∏
l=1

ψl(tl)
k−1∏
l=1

1{tl<tl+1},

(1.186)
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where t1, . . . , tk ∈ [t, T ] for k ≥ 2 and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ], 1A denotes
the indicator of the set A,

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (1.187)

is the Fourier coefficient.

Using (1.186), we obtain

Cjk...j1 =

T∫
t

ϕjk(tk)ψk(tk) . . .

t2∫
t

ϕj1(t1)ψ1(t1)dt1 . . . dtk.

Further, we denote

lim
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

def
=

∞∑
j1,...,jk=0

C2
jk...j1

.

If p1 = . . . = pk = p, then we also write

lim
p→∞

p∑
j1=0

. . .

p∑
jk=0

C2
jk...j1

def
=

∞∑
j1,...,jk=0

C2
jk...j1

.

From the other hand, for iterated limits we write

lim
p1→∞

. . . lim
pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

def
=

∞∑
j1=0

. . .

∞∑
jk=0

C2
jk...j1

,

lim
p1→∞

lim
p2,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

def
=

∞∑
j1=0

∞∑
j2,...,jk=0

C2
jk...j1

and so on.

Let us consider the following lemma.

Lemma 1.9. The following equalities are fulfilled

∞∑
j1,...,jk=0

C2
jk...j1

=
∞∑
j1=0

. . .

∞∑
jk=0

C2
jk...j1

=

=
∞∑
jk=0

. . .
∞∑
j1=0

C2
jk...j1

=
∞∑

jq1=0

. . .

∞∑
jqk=0

C2
jk...j1

(1.188)
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for any permutation (q1, . . . , qk) such that {q1, . . . , qk} = {1, . . . , k}.
Proof. Let us consider the value

p∑
jql=0

. . .

p∑
jqk=0

C2
jk...j1

(1.189)

for any permutation (ql, . . . , qk), where l = 1, 2, . . . , k, {q1, . . . , qk} = {1, . . . , k}.
Obviously, the expression (1.189) defines the non-decreasing sequence with

respect to p. Moreover,

p∑
jql=0

. . .

p∑
jqk=0

C2
jk...j1

≤
p∑

jq1=0

p∑
jq2=0

. . .

p∑
jqk=0

C2
jk...j1

≤

≤
∞∑

j1,...,jk=0

C2
jk...j1

<∞.

Then the following limit

lim
p→∞

p∑
jql=0

. . .

p∑
jqk=0

C2
jk...j1

=
∞∑

jql ,...,jqk=0

C2
jk...j1

exists.

Let pl, . . . , pk simultaneously tend to infinity. Then g, r → ∞, where g =
min{pl, . . . , pk} and r = max{pl, . . . , pk}. Moreover,

g∑
jql=0

. . .

g∑
jqk=0

C2
jk...j1

≤
pl∑

jql=0

. . .

pk∑
jqk=0

C2
jk...j1

≤
r∑

jql=0

. . .
r∑

jqk=0

C2
jk...j1

.

This means that the existence of the limit

lim
p→∞

p∑
jql=0

. . .

p∑
jqk=0

C2
jk...j1

(1.190)

implies the existence of the limit

lim
pl,...,pk→∞

pl∑
jql=0

. . .

pk∑
jqk=0

C2
jk...j1

(1.191)

and equality of the limits (1.190) and (1.191).
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Taking into account the above reasoning, we have

lim
p,q→∞

q∑
jql=0

p∑
jql+1

=0

. . .

p∑
jqk=0

C2
jk...j1

= lim
p→∞

p∑
jql=0

. . .

p∑
jqk=0

C2
jk...j1

=

= lim
pl,...,pk→∞

pl∑
jql=0

. . .

pk∑
jqk=0

C2
jk...j1

. (1.192)

Since the limit ∞∑
j1,...,jk=0

C2
jk...j1

exists (see the Parseval equality (1.185)), then from Proposition 1.1 we have

∞∑
jq1=0

∞∑
jq2 ,...,jqk=0

C2
jk...j1

= lim
q→∞

lim
p→∞

q∑
jq1=0

p∑
jq2=0

. . .

p∑
jqk=0

C2
jk...j1

=

= lim
q,p→∞

q∑
jq1=0

p∑
jq2=0

. . .

p∑
jqk=0

C2
jk...j1

=
∞∑

j1,...,jk=0

C2
jk...j1

. (1.193)

Using (1.192) and Proposition 1.1, we get

∞∑
jq2=0

∞∑
jq3 ,...,jqk=0

C2
jk...j1

= lim
q→∞

lim
p→∞

q∑
jq2=0

p∑
jq3=0

. . .

p∑
jqk=0

C2
jk...j1

=

= lim
q,p→∞

q∑
jq2=0

p∑
jq3=0

. . .

p∑
jqk=0

C2
jk...j1

=
∞∑

jq2 ,...,jqk=0

C2
jk...j1

. (1.194)

Combining (1.194) and (1.193), we obtain

∞∑
jq1=0

∞∑
jq2=0

∞∑
jq3 ,...,jqk=0

C2
jk...j1

=
∞∑

j1,...,jk=0

C2
jk...j1

.

Repeating the above steps, we complete the proof of Lemma 1.9.

Further, let us show that for s = 1, . . . , k

∞∑
j1=0

. . .

∞∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

=
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=
∞∑

js=p+1

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

. (1.195)

Using the arguments which we used in the proof of Lemma 1.9, we have

lim
n→∞

n∑
j1=0

. . .
n∑

js−1=0

p∑
js=0

n∑
js+1=0

. . .
n∑

jk=0

C2
jk...j1

=

=

p∑
js=0

∞∑
j1,...,js−1,js+1,...,jk=0

C2
jk...j1

=

p∑
js=0

∞∑
jq1=0

. . .
∞∑

jqk−1
=0

C2
jk...j1

(1.196)

for any permutation (q1, . . . , qk−1) such that {q1, . . . , qk−1} = {1, . . . , s− 1, s +
1, . . . , k}, where p is a fixed natural number.

Obviously, we obtain

p∑
js=0

∞∑
jq1=0

. . .

∞∑
jqk−1

=0

C2
jk...j1

=
∞∑

jq1=0

. . .

p∑
js=0

. . .

∞∑
jqk−1

=0

C2
jk...j1

= . . . =

=
∞∑

jq1=0

. . .

∞∑
jqk−1

=0

p∑
js=0

C2
jk...j1

. (1.197)

Using (1.196), (1.197) and Lemma 1.9, we get

∞∑
j1=0

. . .

∞∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .

∞∑
jk=0

C2
jk...j1

=
∞∑
j1=0

. . .

∞∑
js−1=0

∞∑
js=0

∞∑
js+1=0

. . .

∞∑
jk=0

C2
jk...j1

−

−
∞∑
j1=0

. . .
∞∑

js−1=0

p∑
js=0

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

=

=
∞∑
js=0

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

−
p∑

js=0

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

=

=
∞∑

js=p+1

∞∑
js−1=0

. . .

∞∑
j1=0

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

.

So, the equality (1.195) is proved.
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Using the Parseval equality and Lemma 1.9, we obtain∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

=

=
∞∑

j1,...,jk=0

C2
jk...j1

−
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

=

=
∞∑
j1=0

. . .
∞∑
jk=0

C2
jk...j1

−
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

=

=

p∑
j1=0

∞∑
j2=0

. . .
∞∑
jk=0

C2
jk...j1

+
∞∑

j1=p+1

∞∑
j2=0

. . .
∞∑
jk=0

C2
jk...j1

−
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

=

=

p∑
j1=0

p∑
j2=0

∞∑
j3=0

. . .

∞∑
jk=0

C2
jk...j1

+

p∑
j1=0

∞∑
j2=p+1

∞∑
j3=0

. . .

∞∑
jk=0

+

+
∞∑

j1=p+1

∞∑
j2=0

. . .

∞∑
jk=0

C2
jk...j1

−
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

= . . . =

=
∞∑

j1=p+1

∞∑
j2=0

. . .

∞∑
jk=0

C2
jk...j1

+

p∑
j1=0

∞∑
j2=p+1

∞∑
j2=0

. . .

∞∑
jk=0

C2
jk...j1

+

+

p∑
j1=0

p∑
j2=0

∞∑
j3=p+1

∞∑
j4=0

. . .

∞∑
jk=0

C2
jk...j1

+ . . .+

p∑
j1=0

. . .

p∑
jk−1=0

∞∑
jk=p+1

C2
jk...j1

≤

≤
∞∑

j1=p+1

∞∑
j2=0

. . .
∞∑
jk=0

C2
jk...j1

+
∞∑
j1=0

∞∑
j2=p+1

∞∑
j2=0

. . .
∞∑
jk=0

C2
jk...j1

+

+
∞∑
j1=0

∞∑
j2=0

∞∑
j3=p+1

∞∑
j4=0

. . .

∞∑
jk=0

C2
jk...j1

+ . . .+
∞∑
j1=0

. . .

∞∑
jk−1=0

∞∑
jk=p+1

C2
jk...j1

=

=
k∑
s=1

 ∞∑
j1=0

. . .
∞∑

js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

 . (1.198)
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Note that we use the following

p∑
j1=0

. . .

p∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

≤

≤
m1∑
j1=0

. . .

ms−1∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

≤

≤ lim
ms−1→∞

m1∑
j1=0

. . .

ms−1∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

=

=

m1∑
j1=0

. . .

ms−2∑
js−2=0

∞∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

≤

≤ . . . ≤

≤
∞∑
j1=0

. . .
∞∑

js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

to derive (1.198), where m1, . . . ,ms−1 > p.

Denote

Cjs...j1(τ) =

τ∫
t

ϕjs(ts)ψs(ts) . . .

t2∫
t

ϕj1(t1)ψ1(t1)dt1 . . . dts,

where s = 1, . . . , k − 1.

Let us remind the Dini Theorem, which we will use further.

Theorem (Dini). Let the functional sequence un(x) be non-decreasing at
each point of the interval [a, b]. In addition, all the functions un(x) of this
sequence and the limit function u(x) are continuous on the interval [a, b]. Then
the convergence un(x) to u(x) is uniform on the interval [a, b].

For s < k due to the Parseval equality and Dini Theorem as well as (1.195)
we obtain

∞∑
j1=0

. . .
∞∑

js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

=

=
∞∑

js=p+1

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑
jk=0

C2
jk...j1

=
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=
∞∑

js=p+1

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑

jk−1=0

T∫
t

ψ2
k(tk)

(
Cjk−1...j1(tk)

)2
dtk =

=
∞∑

js=p+1

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑

jk−2=0

T∫
t

ψ2
k(tk)

∞∑
jk−1=0

(
Cjk−1...j1(tk)

)2
dtk =

=
∞∑

js=p+1

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑

jk−2=0

T∫
t

ψ2
k(tk)

tk∫
t

ψ2
k−1(tk−1)

(
Cjk−2...j1(tk−1)

)2×
×dtk−1dtk ≤

≤ C
∞∑

js=p+1

∞∑
js−1=0

. . .
∞∑
j1=0

∞∑
js+1=0

. . .
∞∑

jk−2=0

T∫
t

(
Cjk−2...j1(τ)

)2
dτ =

= C

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j1=0

∞∑
js+1=0

. . .

∞∑
jk−3=0

T∫
t

∞∑
jk−2=0

(
Cjk−2...j1(τ)

)2
dτ =

= C

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j1=0

∞∑
js+1=0

. . .

∞∑
jk−3=0

T∫
t

τ∫
t

ψ2
k−2(θ)

(
Cjk−3...j1(θ)

)2
dθdτ ≤

≤ K

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j1=0

∞∑
js+1=0

. . .

∞∑
jk−3=0

T∫
t

(
Cjk−3...j1(τ)

)2
dτ ≤

≤ . . . ≤

≤ Ck

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j1=0

T∫
t

(Cjs...j1(τ))
2 dτ =

= Ck

∞∑
js=p+1

∞∑
js−1=0

. . .
∞∑
j2=0

T∫
t

∞∑
j1=0

(Cjs...j1(τ))
2 dτ, (1.199)

where constants C, K depend on T −t and constant Ck depends on k and T −t.
Let us explane more precisely how we obtain (1.199). For any function

g(s) ∈ L2([t, T ]) we have the following Parseval equality
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∞∑
j=0

 τ∫
t

ϕj(s)g(s)ds

2

=
∞∑
j=0

 T∫
t

1{s<τ}ϕj(s)g(s)ds

2

=

=

T∫
t

(
1{s<τ}

)2
g2(s)ds =

τ∫
t

g2(s)ds. (1.200)

The equality (1.200) has been applied repeatedly when we obtaining (1.199).

Using the replacement of integration order in Riemann integrals, we have

Cjs...j1(τ) =

τ∫
t

ϕjs(ts)ψs(ts) . . .

t2∫
t

ϕj1(t1)ψ1(t1)dt1 . . . dts =

=

τ∫
t

ϕj1(t1)ψ1(t1)

τ∫
t1

ϕj2(t2)ψ2(t2) . . .

τ∫
ts−1

ϕjs(ts)ψs(ts)dts . . . dt2dt1
def
=

def
= C̃js...j1(τ).

For l = 1, . . . , s we will use the following notation

C̃js...jl(τ, θ) =

=

τ∫
θ

ϕjl(tl)ψl(tl)

τ∫
tl

ϕjl+1
(tl+1)ψl+1(tl+1) . . .

τ∫
ts−1

ϕjs(ts)ψs(ts)dts . . . dtl+1dtl.

Using the Parseval equality and Dini Theorem, from (1.199) we obtain

∞∑
j1=0

. . .

∞∑
js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .

∞∑
jk=0

C2
jk...j1

≤

≤ Ck

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j2=0

T∫
t

∞∑
j1=0

(Cjs...j1(τ))
2 dτ =

= Ck

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j2=0

T∫
t

∞∑
j1=0

(
C̃js...j1(τ)

)2
dτ =
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= Ck

∞∑
js=p+1

∞∑
js−1=0

. . .
∞∑
j2=0

T∫
t

τ∫
t

ψ2
1(t1)

(
C̃js...j2(τ, t1)

)2
dt1dτ = (1.201)

= Ck

∞∑
js=p+1

∞∑
js−1=0

. . .
∞∑
j3=0

T∫
t

τ∫
t

ψ2
1(t1)

∞∑
j2=0

(
C̃js...j2(τ, t1)

)2
dt1dτ = (1.202)

= Ck

∞∑
js=p+1

∞∑
js−1=0

. . .
∞∑
j3=0

T∫
t

τ∫
t

ψ2
1(t1)

τ∫
t1

ψ2
2(t2)

(
C̃js...j3(τ, t2)

)2
dt2dt1dτ ≤

≤ Ck

∞∑
js=p+1

∞∑
js−1=0

. . .
∞∑
j3=0

T∫
t

τ∫
t

ψ2
1(t1)

τ∫
t

ψ2
2(t2)

(
C̃js...j3(τ, t2)

)2
dt2dt1dτ ≤

≤ C
′

k

∞∑
js=p+1

∞∑
js−1=0

. . .

∞∑
j3=0

T∫
t

τ∫
t

ψ2
2(t2)

(
C̃js...j3(τ, t2)

)2
dt2dτ ≤

≤ . . . ≤

≤ C
′′

k

∞∑
js=p+1

T∫
t

τ∫
t

ψ2
s−1(ts−1)

(
C̃js(τ, ts−1)

)2
dts−1dτ ≤

≤ C̃k

∞∑
js=p+1

T∫
t

τ∫
t

 τ∫
u

ϕjs(θ)ψs(θ)dθ

2

dudτ, (1.203)

where constants C
′

k, C
′′

k , C̃k depend on k and T − t.

Let us explane more precisely how we obtain (1.203). For any function
g(s) ∈ L2([t, T ]) we have the following Parseval equality

∞∑
j=0

 τ∫
θ

ϕj(s)g(s)ds

2

=
∞∑
j=0

 T∫
t

1{θ<s<τ}ϕj(s)g(s)ds

2

=

=

T∫
t

(
1{θ<s<τ}

)2
g2(s)ds =

τ∫
θ

g2(s)ds. (1.204)

The equality (1.204) has been applied repeatedly when we obtaining (1.203).
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Let us explane more precisely the passing from (1.201) to (1.202) (the same
steps have been used when we derive (1.203)).

We have
T∫
t

τ∫
t

ψ2
1(t1)

∞∑
j2=0

(
C̃js...j2(τ, t1)

)2
dt1dτ−

−
n∑

j2=0

T∫
t

τ∫
t

ψ2
1(t1)

(
C̃js...j2(τ, t1)

)2
dt1dτ =

=

T∫
t

τ∫
t

ψ2
1(t1)

∞∑
j2=n+1

(
C̃js...j2(τ, t1)

)2
dt1dτ =

= lim
N→∞

N−1∑
j=0

τj∫
t

ψ2
1(t1)

∞∑
j2=n+1

(
C̃js...j2(τj, t1)

)2
dt1∆τj, (1.205)

where {τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition (1.9).

Since the non-decreasing functional sequence un(τj, t1) and its limit function
u(τj, t1) are continuous on the interval [t, τj] ⊆ [t, T ] with respect to t1, where

un(τj, t1) =
n∑

j2=0

(
C̃js...j2(τj, t1)

)2
,

u(τj, t1) =
∞∑
j2=0

(
C̃js...j2(τj, t1)

)2
=

τj∫
t1

ψ2
2(t2)

(
C̃js...j3(τj, t2)

)2
dt2,

then by Dini Theorem we have the uniform convergence of un(τj, t1) to u(τj, t1)
at the interval [t, τj] ⊆ [t, T ] with respect to t1. As a result, we obtain

∞∑
j2=n+1

(
C̃js...j2(τj, t1)

)2
< ε, t1 ∈ [t, τj] (1.206)

for n > N(ε) ∈ N (N(ε) exists for any ε > 0 and it does not depend on t1).

From (1.205) and (1.206) we obtain

lim
N→∞

N−1∑
j=0

τj∫
t

ψ2
1(t1)

∞∑
j2=n+1

(
C̃js...j2(τj, t1)

)2
dt1∆τj ≤
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≤ ε lim
N→∞

N−1∑
j=0

τj∫
t

ψ2
1(t1)dt1∆τj = ε

T∫
t

τ∫
t

ψ2
1(t1)dt1dτ. (1.207)

From (1.207) we get

lim
n→∞

T∫
t

τ∫
t

ψ2
1(t1)

∞∑
j2=n+1

(
C̃js...j2(τ, t1)

)2
dt1dτ = 0.

This fact completes the proof of passing from (1.201) to (1.202).

Let us estimate the integral

τ∫
u

ϕjs(θ)ψs(θ)dθ (1.208)

from (1.203) for the cases when {ϕj(s)}∞j=0 is a complete orthonormal system
of Legendre polynomials or trigonometric functions in the space L2([t, T ]).

Note that the estimates for the integral

τ∫
t

ϕj(θ)ψ(θ)dθ, j ≥ p+ 1, (1.209)

where ψ(θ) is a continuously differentiable function on the interval [t, T ], have
been obtained in [6]-[17], [22], [33] (also see Sect. 2.2.5).

Let us estimate the integral (1.208) using the approach from [22], [33].

First, consider the case of Legendre polynomials. Then ϕj(s) is defined as
follows

ϕj(θ) =

√
2j + 1

T − t
Pj

((
θ − T + t

2

)
2

T − t

)
, j ≥ 0,

where Pj(x) (j = 0, 1, 2 . . .) is the Legendre polynomial.

Further, we have

x∫
v

ϕj(θ)ψ(θ)dθ =

√
T − t

√
2j + 1

2

z(x)∫
z(v)

Pj(y)ψ(u(y))dy =
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=

√
T − t

2
√
2j + 1

(
(Pj+1(z(x))− Pj−1(z(x)))ψ(x)− (Pj+1(z(v))− Pj−1(z(v)))ψ(v)−

−T − t

2

z(x)∫
z(v)

((Pj+1(y)− Pj−1(y))ψ
′(u(y))dy

)
, (1.210)

where x, v ∈ (t, T ), j ≥ p + 1, u(y) and z(x) are defined by the following
relations

u(y) =
T − t

2
y +

T + t

2
, z(x) =

(
x− T + t

2

)
2

T − t
,

ψ′ is a derivative of the function ψ(θ) with respect to the variable u(y).

Note that in (1.210) we used the following well known property of the
Legendre polynomials

dPj+1

dx
(x)− dPj−1

dx
(x) = (2j + 1)Pj(x), j = 1, 2, . . .

From (1.210) and the well known estimate for the Legendre polynomials
[115] (also see [121])

|Pj(y)| <
K√

j + 1(1− y2)1/4
, y ∈ (−1, 1), j ∈ N,

where constant K does not depend on y and j, it follows that∣∣∣∣∣∣
x∫
v

ϕj(θ)ψ(θ)dθ

∣∣∣∣∣∣ < C

j

(
1

(1− (z(x))2)1/4
+

1

(1− (z(v))2)1/4
+ C1

)
, (1.211)

where j ∈ N, z(x), z(v) ∈ (−1, 1), x, v ∈ (t, T ) and constants C,C1 do not
depend on j.

From (1.211) we obtain x∫
v

ϕj(θ)ψ(θ)dθ

2

<
C2

j2

(
1

(1− (z(x))2)1/2
+

1

(1− (z(v))2)1/2
+ C3

)
, (1.212)

where j ∈ N, constants C2, C3 do not depend on j.
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Let us apply (1.212) for the estimate of the right-hand side of (1.203). We
have

T∫
t

τ∫
t

 τ∫
u

ϕjs(θ)ψs(θ)dθ

2

dudτ ≤

≤ K1

j2s

 1∫
−1

dy

(1− y2)1/2
+

1∫
−1

x∫
−1

dy

(1− y2)1/2
dx+K2

 ≤

≤ K3

j2s
, (1.213)

where js ∈ N, constants K1, K2, K3 are independent of js.

Now consider the trigonometric case. The complete orthonormal system of
trigonometric functions in the space L2([t, T ]) has the following form

ϕj(θ) =
1√
T − t



1, j = 0

√
2sin (2πr(θ − t)/(T − t)) , j = 2r − 1

√
2cos (2πr(θ − t)/(T − t)) , j = 2r

, (1.214)

where r = 1, 2, . . .

Using the system of functions (1.214), we have

x∫
v

ϕ2r−1(θ)ψ(θ)dθ =

√
2

T − t

x∫
v

sin
2πr(θ − t)

T − t
ψ(θ)dθ =

= −
√
T − t

2

1

πr

(
ψ(x)cos

2πr(x− t)

T − t
− ψ(v)cos

2πr(v − t)

T − t
−

−
x∫
v

cos
2πr(θ − t)

T − t
ψ′(θ)dθ

)
, (1.215)

x∫
v

ϕ2r(θ)ψ(θ)dθ =

√
2

T − t

x∫
v

cos
2πr(θ − t)

T − t
ψ(θ)dθ =
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=

√
T − t

2

1

πr

(
ψ(x)sin

2πr(x− t)

T − t
− ψ(v)sin

2πr(v − t)

T − t
−

−
x∫
v

sin
2πr(θ − t)

T − t
ψ′(θ)dθ

)
, (1.216)

where ψ′(θ) is a derivative of the function ψ(θ) with respect to the variable θ.

Combining (1.215) and (1.216), we obtain for the trigonometric case x∫
v

ϕj(θ)ψ(θ)dθ

2

≤ C4

j2
, (1.217)

where j ∈ N, constant C4 is independent of j.

From (1.217) we finally have

T∫
t

τ∫
t

 τ∫
u

ϕjs(θ)ψs(θ)dθ

2

dudτ ≤ K4

j2s
, (1.218)

where js ∈ N, constant K4 is independent of js.

Combining (1.203), (1.213), and (1.218), we obtain

∞∑
j1=0

. . .
∞∑

js−1=0

∞∑
js=p+1

∞∑
js+1=0

. . .

∞∑
jk=0

C2
jk...j1

≤

≤ Lk

∞∑
js=p+1

1

j2s
≤ Lk

∞∫
p

dx

x2
=
Lk
p
, (1.219)

where constant Lk depends on k and T − t.

Obviously, the case s = k can be considered absolutely analogously to the
case s < k. Then from (1.198) and (1.219) we obtain∫

[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

≤ Gk

p
, (1.220)

where constant Gk depends on k and T − t.
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For the further consideration we will use the estimate (1.74). Using (1.220)
and the estimate (1.74) for the case p1 = . . . = pk = p and n = 2, we obtain

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)4
}

≤

≤ C2,k

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1


2

≤

≤ H2,k

p2
, (1.221)

where

Cn,k = (k!)2n(n(2n− 1))n(k−1)(2n− 1)!!

and H2,k = G2
kC2,k.

Let α and ξp in Lemma 1.8 be chosen as follows

α = 4, ξp =

∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣.
From (1.221) we obtain

∞∑
p=1

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)4
}

≤ H2,k

∞∑
p=1

1

p2
<∞. (1.222)

Using Lemma 1.8 and the estimate (1.222), we have

J [ψ(k)]p,...,pT,t → J [ψ(k)]T,t if p→ ∞

w. p. 1, where (see Theorem 1.1)

J [ψ(k)]p,...,pT,t =

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

−

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

)
(1.223)
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or (see Theorem 1.2)

J [ψ(k)]p,...,pT,t =

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql

)
,

(1.224)

where i1, . . . , ik = 1, . . . ,m in (1.223) and (1.224). Theorem 1.10 is proved.

Remark 1.6. From Theorem 1.4 and Lemma 1.9 we obtain

lim
pq1→∞

lim
pq2→∞

. . . lim
pqk→∞

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
≤

≤ k! · lim
pq1→0

. . . lim
pqk→∞

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

 =

= k!

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
∞∑

jq1=0

. . .
∞∑

jqk=0

C2
jk...j1

 = 0

for the following cases:

1. i1, . . . , ik = 1, . . . ,m and 0 < T − t <∞,

2. i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and 0 < T − t < 1.

At that, (q1, . . . , qk) is any permutation such that {q1, . . . , qk} = {1, . . . , k},
J [ψ(k)]T,t is the stochastic integral (1.5), J [ψ(k)]p1,...,pkT,t is the expression on

the right-hand side of (1.10) before passing to the limit l.i.m.
p1,...,pk→∞

, lim means

lim sup; another notations are the same as in Theorem 1.1.

Remark 1.7. Taking into account Theorem 1.4 and the estimate (1.220),
we obtain the following inequality

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)2}
≤ k!Pk(T − t)k

p
, (1.225)

where i1, . . . , ik = 1, . . . ,m and constant Pk depends only on k.
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The estimate (1.225) can be written in a slightly different form. Let us
consider this question in more detail.

By analogy with (1.128) we have

lim
p→∞

p∑
j1,...,jk=0

Cjk...j1Cjmk
...jm1

= 0, (1.226)

where (m1, . . . ,mk) is any permutation of the set {1, . . . , k} such that
(mk, . . . ,m1) ̸= (k, . . . , 1); braces mean an unordered set, and parentheses mean
an ordered set.

Further, using (1.226) and the estimate (1.220), we obtain∣∣∣∣∣
p∑

j1,...,jk=0

Cjk...j1Cjmk
...jm1

∣∣∣∣∣ =
∣∣∣∣∣

∞∑
j1,...,jk=0

Cjk...j1Cjmk
...jm1

−
p∑

j1,...,jk=0

Cjk...j1Cjmk
...jm1

∣∣∣∣∣ ≤
≤

( ∞∑
j1,...,jk=0

−
p∑

j1,...,jk=0

)∣∣∣Cjk...j1Cjmk
...jm1

∣∣∣ ≤
≤ 1

2

( ∞∑
j1,...,jk=0

−
p∑

j1,...,jk=0

)(
C2
jk...j1

+ C2
jmk

...jm1

)
=

( ∞∑
j1,...,jk=0

−
p∑

j1,...,jk=0

)
C2
jk...j1

=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1,...,jk=0

C2
jk...j1

≤ Gk

p
, (1.227)

where constant Gk depends on k and T − t.

Combining (1.76), (1.80), (1.220), and (1.227), we get

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)2}
≤ P̃k(T − t)k

p
,

where i1, . . . , ik = 1, . . . ,m and constant P̃k depends only on k.

It is easy to see that from the proof of Theorem 1.4 and (1.220) we obtain
the estimate

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)2}
≤ Qk

p
, (1.228)

where i1, . . . , ik = 0, 1, . . . ,m and constant Qk depends only on k and T − t.
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Remark 1.8. The estimates (1.74) and (1.220) imply the following inequal-
ity

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)2n}
≤

≤ (k!)2n(n(2n− 1))n(k−1)(2n− 1)!!
(Pk)

n (T − t)nk

pn
, (1.229)

where i1, . . . , ik = 1, . . . ,m, n ∈ N, and constant Pk depends only on k.

1.7.3 Rate of Convergence with Probability 1 of Expansions of It-
erated Itô Stochastic Integrals of Multiplicity k (k ∈ N)

Consider the question on the rate of convergence w. p. 1 in Theorem 1.10. Using
the inequality (1.229), we obtain(

M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)2n})1/2n

≤ Qn,k√
p
, (1.230)

where n ∈ N and

Qn,k = k! (n(2n− 1))(k−1)/2 ((2n− 1)!!)1/2n
√
Pk (T − t)k/2.

According to the Lyapunov inequality, we have(
M

{(
J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

)n})1/n

≤ Qn,k√
p

(1.231)

for all n ∈ N. Following [105] (Lemma 2.1), we get∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣ = p1/2−ε

p1/2−ε

∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣ ≤

≤ 1

p1/2−ε
sup
p∈N

(
p1/2−ε

∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣) =
ηε

p1/2−ε
(1.232)
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w. p. 1, where

ηε = sup
p∈N

(
p1/2−ε

∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣)
and ε > 0 is fixed.

For q > 1/ε, q ∈ N we obtain (see (1.231)) [105]

M {|ηε|q} = M

{(
sup
p∈N

(
p1/2−ε

∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣))q} =

= M

{
sup
p∈N

(
p(1/2−ε)q

∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣q)} ≤

≤ M

{ ∞∑
p=1

p(1/2−ε)q
∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣q
}

=

=
∞∑
p=1

p(1/2−ε)qM

{∣∣∣∣J [ψ(k)]T,t − J [ψ(k)]p,...,pT,t

∣∣∣∣q} ≤

≤
∞∑
p=1

p(1/2−ε)q
(Qq,k)

q

pq/2
= (Qq,k)

q
∞∑
p=1

1

pεq
<∞. (1.233)

From (1.232) we obtain that for all ε > 0 there exists a random variable ηε
such that the inequality (1.232) is fulfilled w. p. 1 for all p ∈ N. Moreover, from
the Lyapunov inequality and (1.233), we obtain M {|ηε|q} <∞ for all q ≥ 1.

1.8 Modification of Theorem 1.1 for the Case of Integra-

tion Interval [t, s] (s ∈ (t, T ]) of Iterated Itô Stochastic

Integrals

1.8.1 Formulation and Proof of Theorem 1.1 Modification

Suppose that every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function on
[t, T ]. Define the following function on the hypercube [t, T ]k
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K̄(t1, . . . , tk, s) = 1{tk<s}K(t1, . . . , tk), (1.234)

where the function K(t1, . . . , tk) is defined by (1.6), s ∈ (t, T ] (s is fixed), and
1A is the indicator of the set A. So, we have

K̄(t1, . . . , tk, s) = 1{t1<...<tk<s}ψ1(t1) . . . ψk(tk) =

=


ψ1(t1) . . . ψk(tk), t1 < . . . < tk < s

0, otherwise

, (1.235)

where k ≥ 1, t1, . . . , tk ∈ [t, T ], and s ∈ (t, T ].

Suppose that {ϕj(x)}∞j=0 is a complete orthonormal system of functions in
the space L2([t, T ]).

The function K̄(t1, . . . , tk, s) defined by (1.235) is piecewise continuous in
the hypercube [t, T ]k. At this situation it is well known that the generalized mul-
tiple Fourier series of K̄(t1, . . . , tk, s) ∈ L2([t, T ]

k) is converging to this function
in the hypercube [t, T ]k in the mean-square sense, i.e.

lim
p1,...,pk→∞

∥∥∥∥∥K̄(t1, . . . , tk, s)−
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)

∥∥∥∥∥
L2([t,T ]k)

= 0,

(1.236)

where

Cjk...j1(s) =

∫
[t,T ]k

K̄(t1, . . . , tk, s)
k∏
l=1

ϕjl(tl)dt1 . . . dtk =

=

s∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (1.237)

is the Fourier coefficient, and

∥f∥L2([t,T ]k)
=

 ∫
[t,T ]k

f 2(t1, . . . , tk)dt1 . . . dtk


1/2

.

Note that
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J [ψ(k)]s,t =

s∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk = (1.238)

=

T∫
t

1{tk<s}ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1,

where s ∈ (t, T ] (s is fixed), i1, . . . , ik = 0, 1, . . . ,m.

Consider the partition {τj}Nj=0 of [t, T ] such that

t = τ0 < . . . < τN = T, ∆N = max
0≤j≤N−1

∆τj → 0 if N → ∞, ∆τj = τj+1−τj.

(1.239)

Theorem 1.11 [15]–[17], [29]. Suppose that every ψl(τ) (l = 1, . . . , k) is
a continuous nonrandom function on [t, T ] and {ϕj(x)}∞j=0 is a complete or-
thonormal system of continuous functions in the space L2([t, T ]). Then

J [ψ(k)]s,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)

(
k∏
l=1

ζ
(il)
jl

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

)
, (1.240)

where J [ψ(k)]s,t is defined by (1.238), s ∈ (t, T ] (s is fixed),

Gk = Hk\Lk, Hk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1

}
,

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense, i1, . . . , ik = 0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in

the case when i ̸= 0), Cjk...j1(s) is the Fourier coefficient (1.237), ∆w
(i)
τj =



172D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

w
(i)
τj+1 −w

(i)
τj (i = 0, 1, . . . ,m), {τj}Nj=0 is a partition of [t, T ], which satisfies the

condition (1.239).

Proof. Let us consider the multiple stochastic integrals (1.16), (1.23). We

will write J [Φ]
(k)
s,t and J ′[Φ]

(k)
s,t (s ∈ (t, T ], s is fixed) if the function Φ(t1, . . . , tk)

in (1.16) and (1.23) is replaced by 1{t1,...,tk<s}Φ(t1, . . . , tk).

By analogy with (1.24), we have

J ′[Φ]
(k)
s,t =

T∫
t

. . .

t2∫
t

1{tk<s}
∑

(t1,...,tk)

(
Φ(t1, . . . , tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
w. p. 1,

(1.241)
where ∑

(t1,...,tk)

means the sum with respect to all possible permutations (t1, . . . , tk). At the same
time permutations (t1, . . . , tk) when summing are performed in (1.241) only in
the expression, which is enclosed in parentheses. Moreover, the nonrandom
function Φ(t1, . . . , tk) is assumed to be continuous in the corresponding closed
domains of integration. The case when the nonrandom function Φ(t1, . . . , tk) is
continuous in the open domains of integration and bounded at their boundaries
is also possible.

Let us write (1.241) as

J ′[Φ]
(k)
s,t =

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
1{tk<s}Φ(t1, . . . , tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
w. p. 1,

(1.242)
where permutations (t1, . . . , tk) when summing are performed in (1.242) only

in the expression Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk .

It is not difficult to notice that (1.241), (1.242) can be rewritten in the form
(see (1.25))

J ′[Φ]
(k)
s,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)1{tk<s}dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (1.243)

where permutations (t1, . . . , tk) when summing are performed only in the val-

ues 1{tk<s}dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of
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integration in the iterated stochastic integrals are changed correspondently and
if tr swapped with tq in the permutation (t1, . . . , tk), then ir swapped with iq in
the permutation (i1, . . . , ik).

According to Lemma 1.1, we have

J [ψ(k)]s,t = l.i.m.
N→∞

N−1∑
lk=0

. . .

l2−1∑
l1=0

1{τlk<s}ψ1(τl1) . . . ψk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

=

= l.i.m.
N→∞

N−1∑
lk=0

. . .
N−1∑
l1=0

1{τlk<s}K(τl1, . . . , τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

=

= l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

1{τlk<s}K(τl1, . . . , τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

=

=

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
1{tk<s}K(t1, . . . , tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
w. p. 1, (1.244)

where K(t1, . . . , tk) is defined by (1.6) and permutations (t1, . . . , tk) when sum-

ming are performed only in the expression K(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk .

According to Lemmas 1.1, 1.3 and (1.24), (1.25), (1.242)–(1.244), we get
the following representation

J [ψ(k)]s,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
ϕj1(t1) . . . ϕjk(tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
+

+Rp1,...,pk
T,t,s =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)×

× l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

+ Rp1,...,pk
T,t,s =
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=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)

l.i.m.
N→∞

N−1∑
l1,...,lk=0

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

−

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

+

+Rp1,...,pk
T,t,s =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)×

×

 k∏
l=1

ζ
(il)
jl

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

+

+Rp1,...,pk
T,t,s w. p. 1,

where

Rp1,...,pk
T,t,s =

=
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
1{tk<s}K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)

)
×

×dw(i1)
t1 . . . dw

(ik)
tk =

=
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

K(t1, . . . , tk)1{tk<s}dw
(i1)
t1 . . . dw

(ik)
tk − (1.245)

−
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)dw
(i1)
t1 . . . dw

(ik)
tk (1.246)
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w. p. 1, where permutations (t1, . . . , tk) when summing in (1.245) are per-

formed only in the values 1{tk<s}dw
(i1)
t1 . . . dw

(ik)
tk . At the same time permu-

tations (t1, . . . , tk) when summing in (1.246) are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . Moreover, the indices near upper limits of integration in the

iterated stochastic integrals in (1.245), (1.246) are changed correspondently and
if tr swapped with tq in the permutation (t1, . . . , tk), then ir swapped with iq in
the permutation (i1, . . . , ik).

Let us estimate the remainder Rp1,...,pk
T,t,s of the series. According to Lemma

1.2, we have

M

{(
Rp1,...,pk
T,t,s

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)1{tk<s} −

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk, (1.247)

where constant Ck depends only on the multiplicity k of the iterated Itô stochas-
tic integral J [ψ(k)]s,t and permutations (t1, . . . , tk) when summing in (1.247) are
performed only in the values 1{tk<s} and dt1 . . . dtk. At the same time the indices
near upper limits of integration in the iterated integrals in (1.247) are changed
correspondently.

Since K(t1, . . . , tk) ≡ 0 if the condition t1 < . . . < tk is not fulfilled, then

M

{(
Rp1,...,pk
T,t,s

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)1{tk<s} −

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk, (1.248)

where permutations (t1, . . . , tk) when summing in (1.248) are performed only
in the values dt1 . . . dtk. At the same time the indices near upper limits of
integration in the iterated integrals in (1.248) are changed correspondently.
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Then from (1.38), (1.236), and (1.248) we obtain

M

{(
Rp1,...,pk
T,t,s

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)1{tk<s} −

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk =

= Ck

∫
[t,T ]k

(
K̄(t1, . . . , tk, s)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)
k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk → 0

if p1, . . . , pk → ∞, where constant Ck depends only on the multiplicity k of the
iterated Itô stochastic integral J [ψ(k)]s,t. Theorem 1.11 is proved.

Remark 1.9. Obviously from Theorem 1.11 for the case s = T we obtain
Theorem 1.1.

Remark 1.10. It is not difficult to see that Theorem 1.11 is valid for the
case when {ϕj(x)}∞j=0 is a complete orthonormal system of functions in the space
L2([t, T ]), each function ϕj(x) of which for finite j satisfies the condition (⋆)
(see Sect. 1.1.7 for details).

From Theorem 1.11 for the case of pairwise different numbers i1, . . . , ik =
1, . . . ,m we obtain

J [ψ(k)]s,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)ζ
(i1)
j1

. . . ζ
(ik)
jk
. (1.249)

Note that the expression on the right-hand side of (1.249) coincides for the
case k = 1, ψ1(t1) ≡ 1 with the right-hand side of the formula (6.2) (approxi-
mation of the increment of the Wiener process based on its series expansion).

Remark 1.11. Note that by analogy with the proof of estimate (1.220) we
obtain the following inequality∫

[t,T ]k

K̄2(t1, . . . , tk, s)dt1 . . . dtk −
p∑

j1=0

. . .

p∑
jk=0

C2
jk...j1

(s) ≤ Gk(s)

p
, (1.250)
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where K̄(t1, . . . , tk, s) and Cjk...j1(s) are defined by the equalities (1.234) and
(1.237), respectively; constant Gk(s) depends on k and s − t (s ∈ (t, T ], s is
fixed).

The following obvious modification of Theorem 1.4 takes place.

Theorem 1.12. Suppose that every ψl(τ) (l = 1, . . . , k) is a continuous
nonrandom function on [t, T ] and {ϕj(x)}∞j=0 is a complete orthonormal system
of functions in the space L2([t, T ]), each function ϕj(x) of which for finite j
satisfies the condition (⋆) (see Sect. 1.1.7). Then

M

{(
J [ψ(k)]s,t − J [ψ(k)]p1,...,pks,t

)2}
≤

≤ Ck(s)

 ∫
[t,T ]k

K̄2(t1, . . . , tk, s)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

(s)

 , (1.251)

where i1, . . . , ik = 0, 1, . . . ,m, constant Ck(s) depends only on k and s − t.

Moreover, Ck(s) ≤ k! for the following cases:

1. i1, . . . , ik = 1, . . . ,m and 0 < T − t <∞,

2. i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and 0 < T − t < 1,

where J [ψ(k)]s,t is the stochastic integral (1.238), J [ψ(k)]p1,...,pks,t is the expres-
sion on the right-hand side of (1.240) before passing to the limit l.i.m.

p1,...,pk→∞
,

K̄(t1, . . . , tk, s) and Cjk...j1(s) are defined by the equalities (1.234) and (1.237),
respectively; s ∈ (t, T ] (s is fixed); another notations are the same as in Theorem
1.11.

Remark 1.12. Combining the estimates (1.250) and (1.251), we obtain

M

{(
J [ψ(k)]s,t − J [ψ(k)]p,...,ps,t

)2}
≤ Qk(s)

p
, (1.252)

where i1, . . . , ik = 0, 1, . . . ,m, constant Qk(s) depends only on k and s − t;
another notations are the same as in (1.250) and (1.251).

Remark 1.13. An analogue of the estimate (1.74) for the iterated Itô
stochastic integral (1.238) has the following form
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M

{(
J [ψ(k)]s,t − J [ψ(k)]p1,...,pks,t

)2n}
≤

≤ (k!)2n(n(2n− 1))n(k−1)(2n− 1)!! ×

×

 ∫
[t,T ]k

K̄2(t1, . . . , tk, s)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

(s)


n

, (1.253)

where J [ψ(k)]p1,...,pks,t is the expression on the right-hand side of (1.240) before
passing to the limit

l.i.m.
p1,...,pk→∞

,

K̄(t1, . . . , tk, s) and Cjk...j1(s) are defined by the equalities (1.234) and (1.237),
respectively; s ∈ (t, T ] (s is fixed); i1, . . . , ik = 1, . . . ,m.

Remark 1.14. The estimates (1.250) and (1.253) imply the following in-
equality

M

{(
J [ψ(k)]s,t − J [ψ(k)]p,...,ps,t

)2n}
≤

≤ (k!)2n(n(2n− 1))n(k−1)(2n− 1)!!
(Pk)

n (s− t)nk

pn
,

where i1, . . . , ik = 1, . . . ,m, n ∈ N, and constant Pk depends only on k.

1.8.2 Expansions of Iterated Itô Stochastic Integrals with Multiplic-
ities 1 to 5 and Miltiplicity k Based on Theorem 1.11

Consider particular cases of Theorem 1.11 for k = 1, . . . , 5

J [ψ(1)]s,t = l.i.m.
p1→∞

p1∑
j1=0

Cj1(s)ζ
(i1)
j1
, (1.254)

J [ψ(2)]s,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1(s)

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2}

)
, (1.255)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series179

J [ψ(3)]s,t = l.i.m.
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1(s)

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

−

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3

−1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1

−1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2

)
, (1.256)

J [ψ(4)]s,t = l.i.m.
p1,...,p4→∞

p1∑
j1=0

. . .

p4∑
j4=0

Cj4...j1(s)

(
4∏
l=1

ζ
(il)
jl

−

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4} + 1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}

)
, (1.257)

J [ψ(5)]s,t = l.i.m.
p1,...,p5→∞

p1∑
j1=0

. . .

p5∑
j5=0

Cj5...j1(s)

(
5∏
l=1

ζ
(il)
jl

−

−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5

−

−1{i1=i4 ̸=0}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5

− 1{i1=i5 ̸=0}1{j1=j5}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i2=i4 ̸=0}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i5)
j5

−

−1{i2=i5 ̸=0}1{j2=j5}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i5)
j5

−

−1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4

− 1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}ζ
(i5)
j5

+ 1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}ζ
(i4)
j4

+

+1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}ζ
(i3)
j3

+ 1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}ζ
(i5)
j5

+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}ζ
(i4)
j4

+ 1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i2)
j2

+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}ζ
(i5)
j5

+ 1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}ζ
(i3)
j3

+

+1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i2)
j2

+ 1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}ζ
(i4)
j4

+
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+1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}ζ
(i3)
j3

+ 1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i2)
j2

+

+1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}ζ
(i1)
j1

+ 1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}ζ
(i1)
j1

+

+1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}ζ
(i1)
j1

)
,

where 1A is the indicator of the set A, Cjk...j1(s) (k = 1, . . . , 5) has the form
(1.237), s ∈ (t, T ] (s is fixed).

Consider a generalization of the above formulas

J [ψ(k)]s,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql

)
,

where k ∈ N, Cjk...j1(s) has the form (1.237); another notations are the same
as in Theorem 1.2.

1.9 Expansion of Multiple Wiener Stochastic Integral

Based on Generalized Multiple Fourier Series

Let us consider the multiple stochastic integral (1.23)

l.i.m.
N→∞

N−1∑
j1,...,jk=0

jq ̸=jr ; q ̸=r; q,r=1,...,k

Φ (τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl

def
= J ′[Φ]

(k)
T,t, (1.258)

where for simplicity we assume that Φ(t1, . . . , tk) : [t, T ]k → R1 is a continuous
nonrandom function on [t, T ]k. Moreover, {τj}Nj=0 is a partition of [t, T ], which
satisfies the condition (1.9).

The stochastic integral with respect to the scalar standard Wiener process
(i1 = . . . = ik ̸= 0) and similar to (1.258) was considered in [106] and is
called the multiple Wiener stochastic integral [106]. Note that Φ(t1, . . . , tk) ∈
L2([t, T ]

k) in [106] (this case will be considered in Sect. 1.11, 1.12).
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Consider the following theorem on expansion of the multiple Wiener
stochastic integral (1.258) based on generalized multiple Fourier series.

Theorem 1.13.8 Suppose that Φ(t1, . . . , tk) : [t, T ]k → R1 is a continuous
nonrandom function on [t, T ]k and {ϕj(x)}∞j=0 is a complete orthonormal system
of functions in the space L2([t, T ]), each function ϕj(x) of which for finite j
satisfies the condition (⋆) (see Sect. 1.1.7). Then the following expansions

J ′[Φ]
(k)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

−

−l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

)
, (1.259)

J ′[Φ]
(k)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql

)

(1.260)

converging in the mean-square sense are valid, where

Gk = Hk\Lk, Hk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N − 1

}
,

Lk =
{
(l1, . . . , lk) : l1, . . . , lk = 0, 1, . . . , N−1; lg ̸= lr (g ̸= r); g, r = 1, . . . , k

}
,

l.i.m. is a limit in the mean-square sense, i1, . . . , ik = 0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the
case when i ̸= 0),

Cjk...j1 =

∫
[t,T ]k

Φ(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (1.261)

8Theorem 1.13 will be generalized to the case of an arbitrary complete orthonormal system of functions
{ϕj(x)}∞j=0 in the space L2([t, T ]) and Φ(t1, . . . , tk) ∈ L2([t, T ]

k) (see Sect. 1.11, Theorem 1.17).
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is the Fourier coefficient, ∆w
(i)
τj = w

(i)
τj+1 − w

(i)
τj (i = 0, 1, . . . ,m), {τj}Nj=0 is a

partition of [t, T ], which satisfies the condition (1.9); [x] is an integer part of a
real number x; another notations are the same as in Theorem 1.2.

Proof. Using Lemma 1.3 and (1.24), (1.25), we get the following represen-
tation

J ′[Φ]
(k)
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
ϕj1(t1) . . . ϕjk(tk)dw

(i1)
t1 . . . dw

(ik)
tk

)
+

+Rp1,...,pk
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1 l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lr ; q ̸=r; q,r=1,...,k

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

+

+Rp1,...,pk
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

l.i.m.
N→∞

N−1∑
l1,...,lk=0

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(ik)
τlk

−

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

+

+Rp1,...,pk
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×

 k∏
l=1

ζ
(il)
jl

− l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

ϕj1(τl1)∆w(i1)
τl1

. . . ϕjk(τlk)∆w(ik)
τlk

+



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series183

+Rp1,...,pk
T,t w. p. 1,

where

Rp1,...,pk
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
Φ(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×dw(i1)
t1 . . . dw

(ik)
tk ,

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).

Let us estimate the remainder Rp1,...,pk
T,t of the series using Lemma 1.2 and

(1.38). We have

M

{(
Rp1,...,pk
T,t

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
Φ(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk =

= Ck

∫
[t,T ]k

(
Φ(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

×

×dt1 . . . dtk → 0

if p1, . . . , pk → ∞, where constant Ck depends only on the multiplicity k of the
multiple Wiener stochastic integral J ′[Φ]

(k)
T,t. The expansion (1.259) is proved.

Using (1.259) and Remark 1.2, we get the expansion (1.260) (see Theorem 1.2).
Theorem 1.13 is proved.

Note that particular cases of the expansion (1.260) are determined by the
equalities (1.45)–(1.51), in which the Fourier coefficient Cjk...j1 (k = 1, . . . , 7)
has the form (1.261).
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1.10 Reformulation of Theorems 1.1, 1.2, and 1.13 Using

Hermite Polynomials

In [107] it was noted that Theorem 3.1 ([106], p. 162) can be applied to the
case of multiple Wiener stochastic integral with respect to components of the
multidimensional Wiener process. As a result, Theorems 1.1, 1.2, and 1.13
can be reformulated using Hermite polynomials. Consider this approach using
our notations. Note that we derive the formula (1.266) (see below) in two
different ways. One of them is not based on Theorem 3.1 [106] (see the proof
of Theorem 1.22 below for details).

We will say that the condition (⋆⋆) is fulfilled for the multi-index (i1 . . . ik)
(i1, . . . , ik = 0, 1, . . . ,m) if m1, . . . ,mk are multiplicities of the elements
i1, . . . , ik, respectively, i.e.

{i1, . . . , ik}= {
m1︷ ︸︸ ︷

i1, . . . , i1,

m2︷ ︸︸ ︷
i2, . . . , i2, . . . ,

mr︷ ︸︸ ︷
ir, . . . , ir} (mr+1 = . . . = mk = 0),

where r = 1, . . . , k, braces mean an unordered set, and parentheses mean an
ordered set. At that, m1 + . . . + mk = k, m1, . . . ,mk = 0, 1, . . . , k, and all
elements with nonzero multiplicities are pairwise different.

In this section, we consider the case i1, . . . , ik = 0, 1, . . . ,m. Note that in
[107] the case i1, . . . , ik = 1, . . . ,m was considered.

Let the condition (⋆⋆) is fulfilled for the multi-index (i1 . . . ik). Then

J ′ [ϕj1 . . . ϕjk]
(i1...ik)
T,t = J ′

[
ϕjg1 . . . ϕjgm1︸ ︷︷ ︸

m1

ϕjgm1+1
. . . ϕjgm1+m2︸ ︷︷ ︸
m2

. . .

. . . ϕjgm1+m2+...+mk−1+1
. . . ϕjgm1+m2+...+mk︸ ︷︷ ︸

mk

]( m1︷︸︸︷
i1...i1

m2︷︸︸︷
i2...i2 ...

mk︷︸︸︷
ik...ik )

T,t

(1.262)

w. p. 1, where J ′ [ϕj1 . . . ϕjk]
(i1...ik)
T,t is defined by (1.23) (also see (1.258)),

Φ(t1, . . . , tk) = ϕj1(t1) . . . ϕjk(tk), {ϕj(x)}∞j=0 is a complete orthonormal system
of functions in the space L2([t, T ]), each function ϕj(x) of which for finite j sat-
isfies the condition (⋆) (see Sect. 1.1.7), {jg1, . . . , jgm1+m2+...+mk

} = {j1, . . . , jk}.
From (1.262) we have

J ′ [ϕj1 . . . ϕjk]
(i1...ik)
T,t = J ′

[
ϕjg1 . . . ϕjgm1

]( m1︷︸︸︷
i1...i1 )

T,t
· J ′
[
ϕjgm1+1

. . . ϕjgm1+m2

]( m2︷︸︸︷
i2...i2 )

T,t
· . . .
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. . . · J ′
[
ϕjgm1+m2+...+mk−1+1

. . . ϕjgm1+m2+...+mk

]( mk︷︸︸︷
ik...ik )

T,t
(1.263)

w. p. 1, where

J ′
[
ϕjgm1+m2+...+ml−1+1

. . . ϕjgm1+m2+...+ml

]( ml︷︸︸︷
il...il )

T,t

def
= 1 for ml = 0. (1.264)

The detailed proof of the equality (1.263) will be given in Sect. 1.14 (see
the proof of Theorem 1.22).

Let us consider the following multiple Wiener stochastic integral

J ′
[
ϕjgm1+m2+...+ml−1+1

. . . ϕjgm1+m2+...+ml

]( ml︷︸︸︷
il...il )

T,t
(ml > 0),

where we suppose that{
jgm1+m2+...+ml−1+1

, . . . , jgm1+m2+...+ml

}
=

=
{
jh1,l, . . . , jh1,l︸ ︷︷ ︸

n1,l

, jh2,l, . . . , jh2,l︸ ︷︷ ︸
n2,l

, . . . , jhdl,l, . . . , jhdl,l︸ ︷︷ ︸
ndl,l

}
, (1.265)

where n1,l+n2,l+ . . .+ndl,l = ml; n1,l, n2,l, . . . , ndl,l = 1, . . . ,ml; dl = 1, . . . ,ml;
l = 1, . . . , k. Note that the numbersm1, . . . ,mk, g1, . . . , gk depend on (i1, . . . , ik)
and the numbers n1,l, . . . , ndl,l, h1,l, . . . , hdl,l, dl depend on {j1, . . . , jk}. More-
over, {jg1, . . . , jgk} = {j1, . . . , jk}.

Using Theorem 3.1 [106], we get w. p. 1

J ′
[
ϕjgm1+m2+...+ml−1+1

. . . ϕjgm1+m2+...+ml

]( ml︷︸︸︷
il...il )

T,t
=

=


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0

(ml > 0), (1.266)

where Hn(x) is the Hermite polynomial of degree n

Hn(x) = (−1)nex
2/2 d

n

dxn

(
e−x

2/2
)
= n!

[n/2]∑
m=0

(−1)mxn−2m

m!(n− 2m)!2m
(n ∈ N), (1.267)
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and ζ
(i)
j (i = 0, 1, . . . ,m, j = 0, 1, . . .) is defined by (1.11).

For example,

H0(x) = 1, H1(x) = x, H2(x) = x2 − 1,

H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3,

H5(x) = x5 − 10x3 + 15x.

From (1.264) and (1.266) we obtain w. p. 1

J ′
[
ϕjgm1+m2+...+ml−1+1

. . . ϕjgm1+m2+...+ml

]( ml︷︸︸︷
il...il )

T,t
=

= 1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0

, (1.268)

where 1A denotes the indicator of the set A.

Using (1.263) and (1.268), we get w. p. 1

J ′ [ϕj1 . . . ϕjk]
(i1...ik)
T,t =

=
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0

 ,

(1.269)

where notations are the same as in (1.265) and (1.266).

The equality (1.269) allows us to reformulate Theorems 1.1, 1.2, and 1.13
using the Hermite polynomials.9

9Theorems 1.14, 1.15 (see below) will be generalized to the case of an arbitrary complete orthonormal system
of functions {ϕj(x)}∞j=0 in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), Φ(t1, . . . , tk) ∈ L2([t, T ]

k) in
Sect. 1.11 (see Theorems 1.16, 1.17).



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series187

Theorem 1.14 [29] (reformulation of Theorems 1.1 and 1.2). Suppose that
the condition (⋆⋆) is fulfilled for the multi-index (i1 . . . ik) and the condition
(1.265) is also fulfilled. Furthermore, let every ψl(τ) (l = 1, . . . , k) is a contin-
uous nonrandom function on [t, T ] and {ϕj(x)}∞j=0 is a complete orthonormal
system of functions in the space L2([t, T ]), each function ϕj(x) of which for finite
j satisfies the condition (⋆) (see Sect. 1.1.7). Then the following expansion

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0


(1.270)

converging in the mean-square sense is valid, where we denote the stochastic
integral (1.5) as J [ψ(k)]

(i1...ik)
T,t ; n1,l + n2,l + . . . + ndl,l = ml; n1,l, n2,l, . . . , ndl,l =

1, . . . ,ml; dl = 1, . . . ,ml; l = 1, . . . , k; m1 + . . . + mk = k; the num-
bers m1, . . . ,mk, g1, . . . , gk depend on (i1, . . . , ik) and the numbers n1,l, . . . , ndl,l,
h1,l, . . . , hdl,l, dl depend on {j1, . . . , jk}; moreover, {jg1, . . . , jgk} = {j1, . . . , jk};
Hn(x) is the Hermite polynomial (1.267); another notations are the same as in
Theorem 1.1.

Theorem 1.15 [29] (reformulation of Theorem 1.13). Suppose that the con-
dition (⋆⋆) is fulfilled for the multi-index (i1 . . . ik) and the condition (1.265) is
also fulfilled. Furthermore, let Φ(t1, . . . , tk) : [t, T ]k → R1 is a continuous non-
random function on [t, T ]k and {ϕj(x)}∞j=0 is a complete orthonormal system
of functions in the space L2([t, T ]), each function ϕj(x) of which for finite j
satisfies the condition (⋆) (see Sect. 1.1.7). Then the following expansion

J ′[Φ]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0


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converging in the mean-square sense is valid, where we denote the multiple
Wiener stochastic integral (1.258) as J ′[Φ]

(i1...ik)
T,t ; n1,l + n2,l + . . . + ndl,l = ml;

n1,l, n2,l, . . . , ndl,l = 1, . . . ,ml; dl = 1, . . . ,ml; l = 1, . . . , k; m1+ . . .+mk = k;
the numbers m1, . . . ,mk, g1, . . . , gk depend on (i1, . . . , ik) and the numbers
n1,l, . . . , ndl,l, h1,l, . . . , hdl,l, dl depend on {j1, . . . , jk}; moreover, {jg1, . . . , jgk} =
{j1, . . . , jk}; Hn(x) is the Hermite polynomial (1.267); another notations are the
same as in Theorem 1.13.

From (1.268) we have w. p. 1

J ′[ϕj1 . . . ϕj1︸ ︷︷ ︸
k

]
(

k︷︸︸︷
i1...i1 )

T,t =


Hk

(
ζ
(i1)
j1

)
, if i1 ̸= 0

(
ζ
(0)
j1

)k
, if i1 = 0

(k > 0). (1.271)

Let us show how the relation (1.271) can be obtained from Theorem 1.2. To
prove (1.271) using Theorem 1.2 we choose i1 = . . . = ik and j1 = . . . = jk (i1 =
0, 1, . . . ,m) in the following formula (this formula follows from a comparison of
(1.43) and (1.54) or can be obtained using the recurrence relation (1.391))

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql
(1.272)

w. p. 1, where notations are the same as in Theorem 1.2.

The case i1 = 0 of (1.271) is obvious. Simple combinatorial reasoning shows
that ∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql
=

=
C2
k · C2

k−2 · . . . · C2
k−(r−1)2

r!

(
ζ
(i1)
j1

)k−2r

, (1.273)

where i1 = . . . = ik, j1 = . . . = jk (i1 = 1, . . . ,m), and

C l
k =

k!

l!(k − l)!
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is the binomial coefficient.

We have

C2
k · C2

k−2 · . . . · C2
k−(r−1)2

r!
=

k!

r!(k − 2r)!2r
. (1.274)

Combining (1.272), (1.273), and (1.274), we get w. p. 1

J ′[ϕj1 . . . ϕj1︸ ︷︷ ︸
k

]
(

k︷︸︸︷
i1...i1 )

T,t =
(
ζ
(i1)
j1

)k
+ k!

[k/2]∑
r=1

(−1)r

r!(k − 2r)!2r

(
ζ
(i1)
j1

)k−2r

=

= k!

[k/2]∑
r=0

(−1)r

r!(k − 2r)!2r

(
ζ
(i1)
j1

)k−2r

= Hk

(
ζ
(i1)
j1

)
.

The relation (1.271) is proved using (1.272).

From (1.269) and (1.272) we obtain the following equalities for multiple
Wiener stochastic integral

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql
=

=
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0


(1.275)

w. p. 1, where notations are the same as in Theorem 1.2 and (1.265), (1.266).

Let us make a remark about how it is possible to obtain the formula (1.266)
without using Theorem 3.1 [106].
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Consider the set of polynomials Hn(x, y), n = 0, 1, . . . defined by [108]

Hn(x, y) =

(
dn

dαn
eαx−α

2y/2

)∣∣∣∣∣
α=0

(H0(x, y)
def
= 1). (1.276)

It is well known that polynomials Hn(x, y) are connected with the Hermite
polynomials (1.267) by the formula [108]

Hn(x, y) = yn/2Hn

(
x
√
y

)
= n!

[n/2]∑
i=0

(−1)ixn−2iyi

i!(n− 2i)!2i
. (1.277)

For example,
H1(x, y) = x,

H2(x, y) = x2 − y,

H3(x, y) = x3 − 3xy,

H4(x, y) = x4 − 6x2y + 3y2,

H5(x, y) = x5 − 10x3y + 15xy2.

From (1.267) and (1.277) we get

Hn(x, 1) = Hn(x). (1.278)

Obviously, without loss of generality, we can write

(j1 . . . jk) =
(
j1 . . . j1︸ ︷︷ ︸

m1

j2 . . . j2︸ ︷︷ ︸
m2

. . . jr . . . jr︸ ︷︷ ︸
mr

)
, (1.279)

where m1 + . . . + mr = k, m1, . . . ,mr = 1, . . . , k, r = 1, . . . , k, k > 0, and
j1, . . . , jr are pairwise different.

Analyzing the proof of Theorem 1.1 and using (1.338), (1.361) (see the
proof of Theorem 1.22 below), we can notice that w. p. 1 (we suppose that the
condition (1.279) is fulfilled)

J ′[ϕj1 . . . ϕjk]
(i1...i1)
T,t =

= l.i.m.
N→∞

N−1∑
l1,...,lk=0

lq ̸=lg ; q ̸=g; q,g=1,...,k

ϕj1(τl1) . . . ϕjk(τlk)∆w(i1)
τl1

. . .∆w(i1)
τlk

=
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= l.i.m.
N→∞

N−1∑
l1,...,lm1=0

lq ̸=lg ; q ̸=g; q,g=1,...,m1

ϕj1(τl1) . . . ϕj1(τlm1
)∆w(i1)

τl1
. . .∆w(i1)

τlm1
×

×l.i.m.
N→∞

N−1∑
lm1+1,...,lm1+m2

=0

lq ̸=lg ; q ̸=g; q,g=m1+1,...,m1+m2

ϕj2(τlm1+1
) . . . ϕj2(τlm1+m2

)∆w(i1)
τlm1+1

. . .∆w(i1)
τlm1+m2

×

. . .

×l.i.m.
N→∞

N−1∑
lk−mr+1,...,lk=0

lq ̸=lg ; q ̸=g; q,g=k−mr+1,...,k

ϕjr(τlk−mr+1
) . . . ϕjr(τlk)∆w(i1)

τlk−mr+1
. . .∆w(i1)

τlk
=

= l.i.m.
N→∞

N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

. . .

N−1∑
lm1

=0

ϕj1(τlm1
)∆w(i1)

τlm1
−

−
∑

(l1,...,lm1
)∈G′

1,m1

ϕj1(τl1)∆w(i1)
τl1

. . . ϕj1(τlm1
)∆w(i1)

τlm1

×

×l.i.m.
N→∞

 N−1∑
lm1+1=0

ϕj2(τlm1
+1)∆w(i1)

τlm1+1
. . .

N−1∑
lm1+m2

=0

ϕj2(τlm1+m2
)∆w(i1)

τlm1+m2

−

−
∑

(lm1+1,...,lm1+m2
)∈G′

m1+1,m1+m2

ϕj2(τlm1
+1)∆w(i1)

τlm1+1
. . . ϕj2(τlm1+m2

)∆w(i1)
τlm1+m2

×

. . .

×l.i.m.
N→∞

 N−1∑
lk−mr+1=0

ϕjr(τlk−mr+1
)∆w(i1)

τlk−mr+1
. . .

N−1∑
lk=0

ϕjr(τlk)∆w(i1)
τlk

−

−
∑

(lk−mr+1,...,lk)∈G′
k−mr+1,k

ϕjr(τlk−mr+1
)∆w(i1)

τk−mr+1
. . . ϕjr(τlk)∆w(i1)

τlk

 ,
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where the set G′
m,n is defined according to the same rule as the set Gk in (1.10).

However, the elements of the set G′
m,n are the numbers lm, . . . , ln (n > m), while

the elements of the set Gk are the numbers l1, . . . , lk.

We have (see the proof of Theorem 1.1) w. p. 1 (i1 ̸= 0)

l.i.m.
N→∞

N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

. . .
N−1∑
lm1

=0

ϕj1(τlm1
)∆w(i1)

τlm1
−

−
∑

(l1,...,lm1
)∈G′

1,m1

ϕj1(τl1)∆w(i1)
τl1

. . . ϕj1(τlm1
)∆w(i1)

τlm1

 =

= l.i.m.
N→∞

(N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

)m1

+

[m1/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qm1−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qm1−2r}={1,2,...,m1}

(
N−1∑
l1=0

ϕ2j1(τl1)
(
∆w(i1)

τl1

)2)r

×

×

(
N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

)m1−2r
 =

= l.i.m.
N→∞

(N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

)m1

+

[m1/2]∑
r=1

(−1)rm1!

r!(m1 − 2r)!2r
×

×

(
N−1∑
l1=0

ϕ2j1(τl1)
(
∆w(i1)

τl1

)2)r(N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

)m1−2r
 =

= l.i.m.
N→∞

[m1/2]∑
r=0

(−1)rm1!

r!(m1 − 2r)!2r

(
N−1∑
l1=0

ϕ2j1(τl1)
(
∆w(i1)

τl1

)2)r

×

×

(
N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1

)m1−2r

=
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= l.i.m.
N→∞

Hm1

(
N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1
,
N−1∑
l1=0

ϕ2j1(τl1)
(
∆w(i1)

τl1

)2)
,

where notations are the same as in Theorems 1.1, 1.2.

Similarly we get w. p. 1

l.i.m.
N→∞

 N−1∑
lm1+1=0

ϕj2(τlm1
+1)∆w(i1)

τlm1+1
. . .

N−1∑
lm1+m2

=0

ϕj2(τlm1+m2
)∆w(i1)

τlm1+m2

−

−
∑

(lm1+1,...,lm1+m2
)∈G′

m1+1,m1+m2

ϕj2(τlm1
+1)∆w(i1)

τlm1+1
. . . ϕj2(τlm1+m2

)∆w(i1)
τlm1+m2

 =

= l.i.m.
N→∞

Hm2

(
N−1∑
l1=0

ϕj2(τl1)∆w(i1)
τl1
,

N−1∑
l1=0

ϕ2j2(τl1)
(
∆w(i1)

τl1

)2)
,

. . .

l.i.m.
N→∞

 N−1∑
lk−mr+1=0

ϕjr(τlk−mr+1
)∆w(i1)

τlk−mr+1
. . .

N−1∑
lk=0

ϕjr(τlk)∆w(i1)
τlk

−

−
∑

(lk−mr+1,...,lk)∈G′
k−mr+1,k

ϕjr(τlk−mr+1
)∆w(i1)

τk−mr+1
. . . ϕjr(τlk)∆w(i1)

τlk

 =

= l.i.m.
N→∞

Hmr

(
N−1∑
l1=0

ϕjr(τl1)∆w(i1)
τl1
,
N−1∑
l1=0

ϕ2jr(τl1)
(
∆w(i1)

τl1

)2)
.

Then

J ′[ϕj1 . . . ϕjk]
(i1...i1)
T,t =

= l.i.m.
N→∞

Hm1

(
N−1∑
l1=0

ϕj1(τl1)∆w(i1)
τl1
,

N−1∑
l1=0

ϕ2j1(τl1)
(
∆w(i1)

τl1

)2)
×
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×l.i.m.
N→∞

Hm2

(
N−1∑
l1=0

ϕj2(τl1)∆w(i1)
τl1
,
N−1∑
l1=0

ϕ2j2(τl1)
(
∆w(i1)

τl1

)2)
× . . .

. . .× l.i.m.
N→∞

Hmr

(
N−1∑
l1=0

ϕjr(τl1)∆w(i1)
τl1
,
N−1∑
l1=0

ϕ2jr(τl1)
(
∆w(i1)

τl1

)2)
(1.280)

w. p. 1 for i1 ̸= 0 and

J ′[ϕj1 . . . ϕjk]
(0...0)
T,t = lim

N→∞

(
N−1∑
l1=0

ϕj1(τl1)∆τl1

)m1

. . .

(
N−1∑
lr=0

ϕjr(τlr)∆τlr

)mr

=

=

 T∫
t

ϕj1(s)ds

m1

. . .

 T∫
t

ϕjr(s)ds

mr

=
(
ζ
(0)
j1

)m1

. . .
(
ζ
(0)
jr

)mr

(1.281)

for i1 = 0, where we suppose that the condition (1.279) is fulfilled; also we use
in (1.280) and (1.281) the same notations as in the proof of Theorem 1.1.

Applying (1.277), (1.278), Lemma 1.3, and Remark 1.2 to the right-hand
side of (1.280), we finally obtain w. p. 1

J ′[ϕj1 . . . ϕjk]
(i1...i1)
T,t = Hm1

 T∫
t

ϕj1(s)dw
(i1)
s ,

T∫
t

ϕ2j1(s)ds

×

×Hm2

 T∫
t

ϕj2(s)dw
(i1)
s ,

T∫
t

ϕ2j2(s)ds

 . . . Hmr

 T∫
t

ϕjr(s)dw
(i1)
s ,

T∫
t

ϕ2jr(s)ds

 =

= Hm1

(
ζ
(i1)
j1
, 1
)
Hm2

(
ζ
(i1)
j2
, 1
)
. . . Hmr

(
ζ
(i1)
jr
, 1
)
=

= Hm1

(
ζ
(i1)
j1

)
Hm2

(
ζ
(i1)
j2

)
. . . Hmr

(
ζ
(i1)
jr

)
for i1 ̸= 0, where we suppose that the condition (1.279) is fulfilled. Thus, an
equality similar to (1.266) is proved without using Theorem 3.1 [106].
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Consider particular cases of the equality (1.275) for k = 1, . . . , 4 and
i1, . . . , i4 = 1, . . . ,m (see (1.45)–(1.48)). We have w. p. 1

J ′[ϕj1]
(i1)
T,t = ζ

(i1)
j1

= H1

(
ζ
(i1)
j1

)
;

J ′[ϕj1ϕj2]
(i1i2)
T,t = ζ

(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2} =

=


H2

(
ζ
(i1)
j1

)
H0

(
ζ
(i2)
j2

)
, if i1 = i2, j1 = j2

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
, otherwise

; (1.282)

J ′[ϕj1ϕj2ϕj3]
(i1i1i1)
T,t = ζ

(i1)
j1
ζ
(i1)
j2
ζ
(i1)
j3

− 1{j1=j2}ζ
(i1)
j3

− 1{j2=j3}ζ
(i1)
j1

− 1{j1=j3}ζ
(i1)
j2

=

=



H3

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
, if j1 = j2 = j3

H2

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
, if j1 = j2 ̸= j3

H1

(
ζ
(i1)
j1

)
H2

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
, if j2 = j3 ̸= j1

H0

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H2

(
ζ
(i1)
j3

)
, if j1 = j3 ̸= j2

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
, if j1 ̸= j2, j2 ̸= j3, j1 ̸= j3

; (1.283)

J ′[ϕj1ϕj2ϕj3]
(i1i2i3)
T,t = ζ

(i1)
j1
ζ
(i2)
j2
ζ
(i2)
j3

= H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
H1

(
ζ
(i3)
j3

)
,

where i1, i2, i3 are pairwise different;

J ′[ϕj1ϕj2ϕj3]
(i1i1i3)
T,t = ζ

(i1)
j1
ζ
(i1)
j2
ζ
(i3)
j3

− 1{j1=j2}ζ
(i3)
j3

=

=
(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

)
ζ
(i3)
j3

= J ′[ϕj1ϕj2]
(i1i1)
T,t J ′[ϕj3]

(i3)
T,t =
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=


H2

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H1

(
ζ
(i3)
j3

)
, if j1 = j2

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H1

(
ζ
(i3)
j3

)
, if j1 ̸= j2

,

where i1 = i2 ̸= i3;

J ′[ϕj1ϕj2ϕj3]
(i1i2i2)
T,t = ζ

(i1)
j1
ζ
(i2)
j2
ζ
(i2)
j3

− 1{j2=j3}ζ
(i1)
j1

=

= ζ
(i1)
j1

(
ζ
(i2)
j2
ζ
(i2)
j3

− 1{j2=j3}

)
= J ′[ϕj1]

(i1)
T,t J

′[ϕj2ϕj3]
(i2i2)
T,t =

=


H1

(
ζ
(i1)
j1

)
H2

(
ζ
(i2)
j2

)
H0

(
ζ
(i2)
j3

)
, if j2 = j3

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
H1

(
ζ
(i2)
j3

)
, if j1 ̸= j2

,

where i1 ̸= i2 = i3;

J ′[ϕj1ϕj2ϕj3]
(i1i2i1)
T,t = ζ

(i1)
j1
ζ
(i2)
j2
ζ
(i1)
j3

− 1{j1=j3}ζ
(i2)
j2

=

= ζ
(i2)
j2

(
ζ
(i1)
j1
ζ
(i1)
j3

− 1{j1=j3}

)
= J ′[ϕj2]

(i2)
T,t J

′[ϕj1ϕj3]
(i1i1)
T,t =

=


H2

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
H0

(
ζ
(i1)
j3

)
, if j1 = j3

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
H1

(
ζ
(i1)
j3

)
, if j1 ̸= j3

,

where i1 = i3 ̸= i2;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i1i1i1)
T,t = ζ

(i1)
j1
ζ
(i1)
j2
ζ
(i1)
j3
ζ
(i1)
j4

−

−1{j1=j2}ζ
(i1)
j3
ζ
(i1)
j4

− 1{j1=j3}ζ
(i1)
j2
ζ
(i1)
j4

− 1{j1=j4}ζ
(i1)
j2
ζ
(i1)
j3

−

−1{j2=j3}ζ
(i1)
j1
ζ
(i1)
j4

− 1{j2=j4}ζ
(i1)
j1
ζ
(i1)
j3

− 1{j3=j4}ζ
(i1)
j1
ζ
(i1)
j2

+

+1{j1=j2}1{j3=j4} + 1{j1=j3}1{j2=j4} + 1{j1=j4}1{j2=j3} =
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=



H4

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H0

(
ζ
(i1)
j4

)
, if (I)

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
H1

(
ζ
(i1)
j4

)
, if (II)

H2

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
H1

(
ζ
(i1)
j4

)
, if (III)

H0

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H2

(
ζ
(i1)
j3

)
H1

(
ζ
(i1)
j4

)
, if (IV)

H0

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
H2

(
ζ
(i1)
j4

)
, if (V)

H1

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H2

(
ζ
(i1)
j3

)
H1

(
ζ
(i1)
j4

)
, if (VI)

H1

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
H2

(
ζ
(i1)
j4

)
, if (VII)

H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H2

(
ζ
(i1)
j4

)
, if (VIII)

H3

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H1

(
ζ
(i1)
j4

)
, if (IX)

H1

(
ζ
(i1)
j1

)
H3

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H0

(
ζ
(i1)
j4

)
, if (X)

H0

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H1

(
ζ
(i1)
j3

)
H3

(
ζ
(i1)
j4

)
, if (XI)

H0

(
ζ
(i1)
j1

)
H1

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H3

(
ζ
(i1)
j4

)
, if (XII)

H2

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H2

(
ζ
(i1)
j4

)
, if (XIII)

H2

(
ζ
(i1)
j1

)
H2

(
ζ
(i1)
j2

)
H0

(
ζ
(i1)
j3

)
H0

(
ζ
(i1)
j4

)
, if (XIV)

H2

(
ζ
(i1)
j1

)
H0

(
ζ
(i1)
j2

)
H2

(
ζ
(i1)
j3

)
H0

(
ζ
(i1)
j4

)
, if (XV)

,
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where Hn(x) is the Hermite polynomial (1.267) of degree n and (I)–(XV) are
the following conditions

(I). j1 = j2 = j3 = j4,

(II). j1, j2, j3, j4 are pairwise different,

(III). j1 = j2 ̸= j3, j4; j3 ̸= j4,

(IV). j1 = j3 ̸= j2, j4; j2 ̸= j4,

(V). j1 = j4 ̸= j2, j3; j2 ̸= j3,

(VI). j2 = j3 ̸= j1, j4; j1 ̸= j4,

(VII). j2 = j4 ̸= j1, j3; j1 ̸= j3,

(VIII). j3 = j4 ̸= j1, j2; j1 ̸= j2,

(IX). j1 = j2 = j3 ̸= j4,

(X). j2 = j3 = j4 ̸= j1,

(XI). j1 = j2 = j4 ̸= j3,

(XII). j1 = j3 = j4 ̸= j2,

(XIII). j1 = j2 ̸= j3 = j4,

(XIV). j1 = j3 ̸= j2 = j4,

(XV). j1 = j4 ̸= j2 = j3.

Moreover, from (1.263) we have w. p. 1

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i3i4)
T,t = H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
H1

(
ζ
(i3)
j3

)
H1

(
ζ
(i4)
j4

)
,

where i1, i2, i3, i4 are pairwise different;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i1i3i4)
T,t = J ′[ϕj1ϕj2]

(i1i1)
T,t H1

(
ζ
(i3)
j3

)
H1

(
ζ
(i4)
j4

)
, (1.284)

where i1 = i2 ̸= i3, i4; i3 ̸= i4;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i1i4)
T,t = J ′[ϕj1ϕj3]

(i1i1)
T,t H1

(
ζ
(i2)
j2

)
H1

(
ζ
(i4)
j4

)
, (1.285)

where i1 = i3 ̸= i2, i4; i2 ̸= i4;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i3i1)
T,t = J ′[ϕj1ϕj4]

(i1i1)
T,t H1

(
ζ
(i2)
j2

)
H1

(
ζ
(i3)
j3

)
, (1.286)
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where i1 = i4 ̸= i2, i3; i2 ̸= i3;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i2i4)
T,t = J ′[ϕj2ϕj3]

(i2i2)
T,t H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i4)
j4

)
, (1.287)

where i2 = i3 ̸= i1, i4; i1 ̸= i4;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i3i2)
T,t = J ′[ϕj2ϕj4]

(i2i2)
T,t H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i3)
j3

)
, (1.288)

where i2 = i4 ̸= i1, i3; i1 ̸= i3;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i3i3)
T,t = J ′[ϕj3ϕj4]

(i3i3)
T,t H1

(
ζ
(i1)
j1

)
H1

(
ζ
(i2)
j2

)
, (1.289)

where i3 = i4 ̸= i1, i2; i1 ̸= i2;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i1i1i4)
T,t = J ′[ϕj1ϕj2ϕj3]

(i1i1i1)
T,t H1

(
ζ
(i4)
j4

)
, (1.290)

where i1 = i2 = i3 ̸= i4;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i2i2)
T,t = J ′[ϕj2ϕj3ϕj4]

(i2i2i2)
T,t H1

(
ζ
(i1)
j1

)
, (1.291)

where i2 = i3 = i4 ̸= i1;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i1i3i1)
T,t = J ′[ϕj1ϕj2ϕj4]

(i1i1i1)
T,t H1

(
ζ
(i3)
j3

)
, (1.292)

where i1 = i2 = i4 ̸= i3;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i1i1)
T,t = J ′[ϕj1ϕj3ϕj4]

(i1i1i1)
T,t H1

(
ζ
(i2)
j2

)
, (1.293)

where i1 = i3 = i4 ̸= i2;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i1i3i3)
T,t = J ′[ϕj1ϕj2]

(i1i1)
T,t J ′[ϕj3ϕj4]

(i3i3)
T,t , (1.294)

where i1 = i2 ̸= i3 = i4;



200D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i1i2)
T,t = J ′[ϕj1ϕj3]

(i1i1)
T,t J ′[ϕj2ϕj4]

(i2i2)
T,t , (1.295)

where i1 = i3 ̸= i2 = i4;

J ′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i2i1)
T,t = J ′[ϕj1ϕj4]

(i1i1)
T,t J ′[ϕj2ϕj3]

(i2i2)
T,t , (1.296)

where i1 = i4 ̸= i2 = i3.

Note that the right-hand sides of (1.284)–(1.296) contain multiple Wiener
stochastic integrals of multiplicities 2 and 3. These integrals are considered in
detail in (1.282), (1.283).

It should be noted that the formulas (1.54) (Theorem 1.2) and (1.270)
(Theorem 1.14) are interesting from various points of view. The formulas
(1.45)–(1.50) (these formulas are particular cases of (1.54) for k = 1, . . . , 6)
are convenient for numerical modeling of iterated Itô stochastic integrals of
multiplicities 1 to 6 (see Chapter 5). For example, in [53] and [54], approxima-
tions of iterated Itô stochastic integrals of multiplicities 1 to 6 in the Python
programming language were successfully implemented using (1.45)–(1.50) and
Legendre polynomials.

On the other hand, the equality (1.270) is interesting by a number of rea-
sons. Firstly, this equality connects Itô’s results on multiple Wiener stochastic
integral ([106], Theorem 3.1) with the theory of mean-square approximation of
iterated Itô stochastic integrals presented in this book. Secondly, the equal-
ity (1.270) is based on the Hermite polynomials, which have the orthogonality
property on R with a Gaussian weight. This feature opens up new possibilities
in the study of iterated Itô stochastic integrals. Note that the indicated orthog-
onality property is indirectly reflected by the formula (1.85) (see the proof of
Theorem 1.3).

1.11 Generalization of Theorems 1.1, 1.2, 1.14, and 1.15

to the Case of an Arbitrary Complete Orthonormal

System of Functions in the Space L2([t, T ]) and ψ1(τ ),

. . . , ψk(τ ) ∈ L2([t, T ]), Φ(t1, . . . , tk) ∈ L2([t, T ]
k)

In this section, we will use the definition of the multiple Wiener stochastic
integral from [106], [109] to generalize Theorems 1.1, 1.2, 1.14, and 1.15 to
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the case of an arbitrary complete orthonormal system of functions in the space
L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), Φ(t1, . . . , tk) ∈ L2([t, T ]

k).

Consider the following step function on the hypercube [t, T ]k

ΦN(t1, . . . , tk) =
N−1∑

l1,...,lk=0

al1...lk1[τl1 ,τl1+1)(t1) . . .1[τlk ,τlk+1)(tk), (1.297)

where al1...lk ∈ R and such that al1...lk = 0 if lp = lq for some p ̸= q,

1A(τ) =


1 if τ ∈ A

0 otherwise

,

N ∈ N, {τj}Nj=0 is a partition of [t, T ], which satisfies the condition (1.9):

t = τ0 < . . . < τN = T, ∆N = max
0≤j≤N−1

∆τj → 0 if N → ∞, ∆τj = τj+1−τj.

(1.298)

Let us define the multiple Wiener stochastic integral for ΦN(t1, . . . , tk) [106],
[109]

J ′[ΦN ]
(i1...ik)
T,t

def
=

N−1∑
l1,...,lk=0

al1...lk∆w(i1)
τl1

. . .∆w(ik)
τlk
, (1.299)

where ∆w
(i)
τj = w

(i)
τj+1 −w

(i)
τj , i = 0, 1, . . . ,m, w

(0)
τ = τ.

It is known (see [109], Lemma 9.6.4) that for any Φ(t1, . . . , tk) ∈ L2([t, T ]
k)

there exists a sequence of step functions ΦN(t1, . . . , tk) of the form (1.297) such
that

lim
N→∞

∫
[t,T ]k

(Φ(t1, . . . , tk)− ΦN(t1, . . . , tk))
2 dt1 . . . dtk = 0. (1.300)

We have

ΦN(t1, . . . , tk) =
N−1∑

l1,...,lk=0

al1...lk1[τl1 ,τl1+1)(t1) . . .1[τlk ,τlk+1)(tk) =

=
∑

(l1,...,lk)

N−1∑
l1,...,lk=0

l1<l2<...<lk

al1...lk1[τl1 ,τl1+1)(t1) . . .1[τlk ,τlk+1)(tk), (1.301)
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where permutations (l1, . . . , lk) when summing are performed only in the ex-
pression l1 < l2 < . . . < lk (recall that al1...lk = 0 if lp = lq for some p ̸= q).

Using (1.301), we get

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

ΦN(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk = (1.302)

=
∑

(l1,...,lk)

N−1∑
l1,...,lk=0

l1<l2<...<lk

al1...lk∆w(i1)
τl1

. . .∆w(ik)
τlk

=

=
N−1∑

l1,...,lk=0
lq ̸=lr ; q ̸=r; q,r=1,...,k

al1...lk∆w(i1)
τl1

. . .∆w(ik)
τlk

= J ′[ΦN ]
(i1...ik)
T,t w. p. 1, (1.303)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk and permutations (l1, . . . , lk) when summing are performed only

in the expression l1 < l2 < . . . < lk. At the same time the indices near upper
limits of integration in the iterated stochastic integrals in (1.302) are changed
correspondently and if tr swapped with tq in the permutation (t1, . . . , tk), then
ir swapped with iq in the permutation (i1, . . . , ik) (see (1.302)). In addition, the

multiple Wiener stochastic integral J ′[ΦN ]
(i1...ik)
T,t is defined by (1.299) and

T∫
t

. . .

t2∫
t

ΦN(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk

is the iterated Itô stochastic integral.

Using (1.300), (1.303), Lemma 1.2 for Φ(t1, . . . , tk) ∈ L2(Dk), and (1.38)
for Lebesgue integrals, we have

M

{(
J ′[ΦN ]

(i1...ik)
T,t − J ′[ΦM ]

(i1...ik)
T,t

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(ΦN(t1, . . . , tk)− ΦM(t1, . . . , tk))
2 dt1 . . . dtk =

= Ck

∫
[t,T ]k

(ΦN(t1, . . . , tk)− ΦM(t1, . . . , tk))
2 dt1 . . . dtk =
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= Ck ∥ΦN − ΦM∥2L2([t,T ]k)
≤

≤ 2Ck

(
∥ΦN − Φ∥2L2([t,T ]k)

+ ∥Φ− ΦM∥2L2([t,T ]k)

)2
→ 0

if N,M → ∞, where constant Ck depends only on the multiplicity k of the
multiple Wiener stochastic integral.

Thus, there exists the limit

l.i.m.
N→∞

J ′[ΦN ]
(i1...ik)
T,t .

We will define the multiple Wiener stochastic integral for Φ(t1, . . . , tk) ∈
L2([t, T ]

k) by the formula [106], [109]

J ′[Φ]
(i1...ik)
T,t

def
= l.i.m.

N→∞
J ′[ΦN ]

(i1...ik)
T,t = l.i.m.

N→∞

N−1∑
l1,...,lk=0

al1...lk∆w(i1)
τl1

. . .∆w(ik)
τlk
,

(1.304)

where ΦN(t1, . . . , tk) is defined by (1.297), ∆w
(i)
τj = w

(i)
τj+1 −w

(i)
τj , i = 0, 1, . . . ,m,

w
(0)
τ = τ.

It is easy to see that the above definition coincides with (1.23) if the function
Φ(t1, . . . , tk) : [t, T ]k → R is continuous in the hypercube [t, T ]k.

Let us prove the following equality

J ′[Φ]
(i1...ik)
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (1.305)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permuta-

tion (i1, . . . , ik). In addition, the multiple Wiener stochastic integral J ′[Φ]
(i1...ik)
T,t

is defined by (1.304) and

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk

is the iterated Itô stochastic integral.

The equality (1.305) has already been proved for the case Φ(t1, . . . , tk) =
ΦN(t1, . . . , tk) (see (1.303)).
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From (1.303) we have

J ′[ΦN ]
(i1...ik)
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

ΦN(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk =

=
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk +

+
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(ΦN(t1, . . . , tk)− Φ(t1, . . . , tk)) dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1.

(1.306)

Passing to the limit l.i.m.
N→∞

in the equality (1.306), we obtain

J ′[Φ]
(i1...ik)
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk +

+l.i.m.
N→∞

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(ΦN(t1, . . . , tk)− Φ(t1, . . . , tk)) dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1.

(1.307)

Using Lemma 1.2 for Φ(t1, . . . , tk) ∈ L2(Dk), (1.38) for Lebesgue integrals,
and (1.300), we get

M


 ∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(ΦN(t1, . . . , tk)− Φ(t1, . . . , tk)) dw
(i1)
t1 . . . dw

(ik)
tk

2
 ≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(ΦN(t1, . . . , tk)− Φ(t1, . . . , tk))
2 dt1 . . . dtk =

= Ck

∫
[t,T ]k

(ΦN(t1, . . . , tk)− Φ(t1, . . . , tk))
2 dt1 . . . dtk → 0 (1.308)

if N → ∞, where constant Ck depends only on the multiplicity k of the multiple
Wiener stochastic integral. The relations (1.307) and (1.308) prove the equality
(1.305).
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Using (1.305) and the isometry property of the Itô stochastic integral, we
have

J [ψ(k)]
(i1...ik)
T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk = J ′[K]

(i1...ik)
T,t w. p. 1,

(1.309)
where K = K(t1, . . . , tk) is defined by (1.6), i.e.

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

(ψl(τ) ∈ L2([t, T ])) ,

(1.310)
where l = 1, . . . , k, t1, . . . , tk ∈ [t, T ] (k ≥ 2) and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ].

Applying (1.309) and the linearity property of the Itô stochastic integral,
we obtain

J [ψ(k)]
(i1...ik)
T,t = J ′[K]

(i1...ik)
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t + J ′[Rp1...pk]

(i1...ik)
T,t w. p. 1, (1.311)

where

Rp1...pk(t1, . . . , tk)
def
= K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl) (1.312)

and

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (1.313)

is the Fourier coefficient corresponding to K(t1, . . . , tk).

Using the Itô formula, we have

∑
(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . .w

(iq)
tq ×

×
∑

(j′1,...,j
′
n)

T∫
t

ϕj′n(t
′
n) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(g)
t′1
. . .w

(g)
t′n

=
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=
∑

(j1,...,jq,j′1,...,j
′
n)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′n(t
′
n) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(g)
t′1
. . . dw

(g)
t′n
dw

(i1)
t1 . . . dw

(iq)
tq (1.314)

w. p. 1, where g = 0 or g = 1, n, q ∈ N, i1, . . . , iq ̸= 0, 1,∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the
same time if jr swapped with jd in the permutation (j1, . . . , jk), then ir swapped
with id in the permutation (i1, . . . , ik).

The detailed proof of (1.314) will be given in Sect. 1.14 (see the proof of
Theorem 1.22). The equality (1.314) means that (see (1.305))

J ′[ϕj1 . . . ϕjq ]
(i1...iq)
T,t · J ′[ϕj′1 . . . ϕj′n]

(g...g)
T,t =

= J ′[ϕj1 . . . ϕjqϕj′1 . . . ϕj′n]
(i1...iqg...g)
T,t (1.315)

w. p. 1, where g = 0 or g = 1, n, q ∈ {0} ∪ N, i1, . . . , iq ̸= 0, 1, and

J ′[ϕj1 . . . ϕjq ]
(i1...iq)
T,t

def
= 1 for q = 0.

Using the equality (1.315), we obtain (1.263) for the case of an arbitrary
complete orthonormal system {ϕj(x)}∞j=0 of functions in L2([t, T ]).

Suppose that the conditions (⋆⋆) (see Sect. 1.10) and (1.265) are fulfilled.
Applying Theorem 9.6.9 [109] (also see [106], Theorem 3.1) and (1.275) (also
see Theorem 1.23 below), we get

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

=
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0

 =
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=
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql
(1.316)

w. p. 1, where notations are the same as in Theorems 1.2 and 1.14; the multiple
Wiener stochastic integral J ′[ϕj1 . . . ϕjk]

(i1...ik)
T,t is defined by (1.304).

Again applying (1.305), we have

J ′[Rp1...pk]
(i1...ik)
T,t =

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)
×

×dw(i1)
t1 . . . dw

(ik)
tk , (1.317)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integra-

tion in the iterated stochastic integrals are changed correspondently and if tr
swapped with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the
permutation (i1, . . . , ik). In addition, the multiple Wiener stochastic integral

J ′[Rp1...pk]
(i1...ik)
T,t is defined by (1.304).

According to Lemma 1.2 for Φ(t1, . . . , tk) ∈ L2(Dk), (1.7), and (1.38) for
Lebesgue integrals, we have

M

{(
J ′[Rp1...pk]

(i1...ik)
T,t

)2}
≤

≤ Ck
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk =

= Ck

∫
[t,T ]k

(
K(t1, . . . , tk)−

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

)2

dt1 . . . dtk → 0

(1.318)
if p1, . . . , pk → ∞, where constant Ck depends only on the multiplicity k of the
iterated Itô stochastic integral J [ψ(k)]

(i1...ik)
T,t . Thus (see (1.311) and (1.318)),
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J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t (1.319)

and the following theorem is proved.

Theorem 1.16 [29] (generalization of Theorems 1.1, 1.2, and 1.14). Suppose
that the condition (⋆⋆) is fulfilled for the multi-index (i1 . . . ik) (see Sect. 1.10)
and the condition (1.265) is also fulfilled. Furthermore, let ψl(τ) ∈ L2([t, T ])
(l = 1, . . . , k) and {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in the space L2([t, T ]). Then the following expansions

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0

 ,

(1.320)

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql

)

(1.321)

converging in the mean-square sense are valid, where [x] is an integer part of a
real number x; n1,l+n2,l+ . . .+ndl,l = ml; n1,l, n2,l, . . . , ndl,l = 1, . . . ,ml; dl =
1, . . . ,ml; l = 1, . . . , k; m1+ . . .+mk = k; the numbers m1, . . . ,mk, g1, . . . , gk
depend on (i1, . . . , ik) and the numbers n1,l, . . . , ndl,l, h1,l, . . . , hdl,l, dl depend
on {j1, . . . , jk}; moreover, {jg1, . . . , jgk} = {j1, . . . , jk}; Hn(x) is the Hermite
polynomial (1.267); another notations as in Theorems 1.1, 1.2, and 1.14.

Replacing the function K(t1, . . . , tk) by Φ(t1, . . . , tk) we get the following
theorem.

Theorem 1.17 [29] (generalization of Theorems 1.13, 1.15). Suppose that
the condition (⋆⋆) is fulfilled for the multi-index (i1 . . . ik) (see Sect. 1.10) and
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the condition (1.265) is also fulfilled. Furthermore, let Φ(t1, . . . , tk) ∈ L2([t, T ]
k)

and {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in the
space L2([t, T ]). Then the following expansions

J ′[Φ]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0

 ,

(1.322)

J ′[Φ]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql

)

(1.323)

converging in the mean-square sense are valid, where [x] is an integer part of
a real number x; n1,l + n2,l + . . . + ndl,l = ml; n1,l, n2,l, . . . , ndl,l = 1, . . . ,ml;
dl = 1, . . . ,ml; l = 1, . . . , k; m1 + . . . + mk = k; the numbers m1, . . . ,mk,

g1, . . . , gk depend on (i1, . . . , ik) and the numbers n1,l, . . . , ndl,l, h1,l, . . . , hdl,l,
dl depend on {j1, . . . , jk}; moreover, {jg1, . . . , jgk} = {j1, . . . , jk}; the multiple

Wiener stochastic integral J ′[Φ]
(i1...ik)
T,t is defined by (1.304); Hn(x) is the Hermite

polynomial (1.267); another notations as in Theorems 1.13, 1.15.

It should be noted that an analogue of Theorem 1.17 (more precisely, the
expansion like (1.322) for the case i1, . . . , ik ̸= 0) was considered in [107]. Also
note that the proof in [107] is different from the proof given in this section.
In [107], the author interprets the multiple Wiener stochastic integral from
a finite-dimensional kernel as a linear operator and proves that this operator
is bounded. In our proof of Theorems 1.16, 1.17 we several times use the
representation (1.305) of the multiple Wiener stochastic integral as the sum
(with respect to permutations) of iterated Itô stochastic integrals and then
estimate the remainder of the series (see (1.318) for details).
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Note that the results of work [107], as well as the results of Chapter 1 of
this book, are based on our idea [1] (2006) on the expansion of the kernel (1.6)
(or Φ(t1, . . . , tk) ∈ L2([t, T ]

k)) into a generalized multiple Fourier series (see [1],
Chapter 5, Theorem 5.1, pp. 235-245 or Sect. 1.1.3 of this book for details).

1.12 Generalization of Theorems 1.3, 1.4 to the Case

of an Arbitrary Complete Orthonormal System of

Functions in the Space L2([t, T ]) and ψ1(τ ), . . . , ψk(τ )

∈ L2([t, T ])

In this section, we will use the multiple Wiener stochastic integral with respect
to the components of a multidimensional Wiener process to generalize Theorems
1.3, 1.4 to the case of an arbitrary complete orthonormal system of functions
in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

Theorem 1.18. Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then

M

{(
J [ψ(k)]T,t − J [ψ(k)]pT,t

)2}
=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk−

−
p∑

j1=0

. . .

p∑
jk=0

Cjk...j1M

J [ψ(k)]T,t
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk

 ,

(1.324)

where

J [ψ(k)]T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)df
(i1)
t1 . . . df

(ik)
tk ,

J [ψ(k)]pT,t =

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t , (1.325)

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t is the multiple Wiener stochastic integral defined by (1.304),

the Fourier coefficient Cjk...j1 has the form (1.313), K(t1, . . . , tk) is defined by
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(1.310),

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j (i =
1, . . . ,m), ∑

(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the same
time if jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped with
iq in the permutation (i1, . . . , ik) (see (1.324)).

Proof. First, note that the formula (1.325) appears due to the equality
(1.311). Using the equality (1.305), we get

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

∑
(t1,...,tk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk w. p. 1,

(1.326)

where permutations (t1, . . . , tk) when summing are performed only in the values

df
(i1)
t1 . . . df

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).

It is easy to see that the equality (1.326) can be written in the form

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

∑
(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)df
(i1)
t1 . . . df

(ik)
tk w. p. 1,

(1.327)
where ∑

(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the
same time if jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped
with iq in the permutation (i1, . . . , ik).

Thus, an analogue of the equality (1.86) is proved under the conditions of
Theorem 1.18 (compare (1.77), (1.86) and (1.325), (1.327)). Further proof of
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Theorem 1.18 is similar to the proof of Theorem 1.3. Theorem 1.18 is proved.

Consider the following obvious generalization of Theorem 1.4.

Theorem 1.19. Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then the estimate

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2}
≤

≤ k!

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

 (1.328)

is valid for the following cases:

1. i1, . . . , ik = 1, . . . ,m and 0 < T − t <∞,

2. i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and 0 < T − t < 1,

where J [ψ(k)]T,t is the iterated Itô stochastic integral (1.5), J [ψ(k)]p1,...,pkT,t is the
expression on the right-hand side of (1.321) before passing to the limit l.i.m.

p1,...,pk→∞
;

another notations are the same as in Theorems 1.1, 1.2, 1.16.

In addition, under the conditions of Theorem 1.19 we have the estimate
(also see (1.74))

M

{(
J [ψ(k)]T,t − J [ψ(k)]p1,...,pkT,t

)2n}
≤

≤ (k!)2n(n(2n− 1))n(k−1)(2n− 1)!! ×

×

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1


n

. (1.329)

1.13 Generalization of Theorems 1.5, 1.6 to the Case of

an Arbitrary Complete Orthonormal with Weight

r(x) ≥ 0 System of Functions in the Space L2([t, T ])

and ψ1(x)
√
r(x), . . . , ψk(x)

√
r(x) ∈ L2([t, T ])

In this section, we will use the multiple Wiener stochastic integral with respect
to the components of a multidimensional Wiener process to generalize Theorems
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1.5, 1.6 to the case of an arbitrary complete orthonormal with weight r(x) ≥ 0
system of functions in the space L2([t, T ]) and ψ1(x)

√
r(x), . . . , ψk(x)

√
r(x)

∈ L2([t, T ]). From the results of Sect. 1.3, 1.11 we obtain the following two
theorems.

Theorem 1.20. Suppose that ψ1(x)
√
r(x), . . . , ψk(x)

√
r(x) ∈ L2([t, T ]),

where r(x) ≥ 0. Moreover, let {
Ψj(x)

√
r(x)

}∞

j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, for the iterated Itô stochastic integral

J̃ [ψ(k)]T,t =

T∫
t

ψk(tk)
√
r(tk) . . .

t2∫
t

ψ1(t1)
√
r(t1)dw

(i1)
t1 . . . dw

(ik)
tk (1.330)

the following expansion

J̃ [ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

C̃jk...j1

(
k∏
l=1

ζ̃
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ̃
(iql)

jql

)

(1.331)

that converges in the mean-square sense is valid, where i1, . . . , ik = 0, 1, . . . ,m,

ζ̃
(i)
j =

T∫
t

Ψj(s)
√
r(s)dw(i)

s

are independent standard Gaussian random variables for various i or j (in the
case when i ̸= 0),

C̃jk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

(
Ψjl(tl)r(tl)

)
dt1 . . . dtk

is the Fourier coefficient, K(t1, . . . , tk) is defined by (1.310); another notations
are the same as in Theorems 1.1, 1.2, 1.5.
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Theorem 1.21. Under the conditions of Theorem 1.20 the following esti-
mate

M

{(
J̃ [ψ(k)]T,t − J̃ [ψ(k)]p1,...,pkT,t

)2}
≤

≤ k!

 ∫
[t,T ]k

K2(t1, . . . , tk)

(
k∏
l=1

r(tl)

)
dt1 . . . dtk −

p1∑
j1=0

. . .

pk∑
jk=0

C̃2
jk...j1


is valid for the following cases:

1. i1, . . . , ik = 1, . . . ,m and 0 < T − t <∞,

2. i1, . . . , ik = 0, 1, . . . ,m, i21 + . . .+ i2k > 0, and 0 < T − t < 1,

where J̃ [ψ(k)]T,t is the stochastic integral (1.330), J̃ [ψ(k)]p1,...,pkT,t is the expression
on the right-hand side of (1.331) before passing to the limit l.i.m.

p1,...,pk→∞
; another

notations are the same as in Theorems 1.6, 1.20.

1.14 Proof of Theorems 1.16 and 1.17 on the Base of

the Itô Formula and Without Explicit Use of the

Multiple Wiener Stochastic Integral

Note that Theorems 1.16 and 1.17 can also be proved without explicit use of
the multiple Wiener stochastic integral. To do this, we introduce the following
sum of iterated Itô stochastic integrals

J ′′[Φ]
(i1...ik)
T,t

def
=

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ(t1, . . . , tk)dw
(i1)
t1 . . . dw

(ik)
tk , (1.332)

where Φ(t1, . . . , tk) ∈ L2([t, T ]
k), i1, . . . , ik = 0, 1, . . . ,m, dw

(0)
τ = dτ ; another

notations are the same as in (1.305).

Further, using the isometry property of the Ito stochastic integral as well
as the linearity property of this integral, we have

J [ψ(k)]
(i1...ik)
T,t = J ′′[K]

(i1...ik)
T,t =

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′′[ϕj1 . . . ϕjk]

(i1...ik)
T,t + J ′′[Rp1...pk]

(i1...ik)
T,t w. p. 1, (1.333)
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where K(t1, . . . , tk) and Rp1...pk(t1, . . . , tk) are defined by (1.310) and (1.312)

correspondingly. Moreover, J ′′[ϕj1 . . . ϕjk]
(i1...ik)
T,t and J ′′[Rp1...pk]

(i1...ik)
T,t are defined

by (1.332). Obviously, we can consider an analogue of (1.333) for Φ(t1, . . . , tk)
instead of K(t1, . . . , tk).

Passing to the limit l.i.m.
p1,...,pk→∞

in (1.333) and using (1.317), (1.318), (1.332),

we obtain

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′′[ϕj1 . . . ϕjk]

(i1...ik)
T,t =

= l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1
∑

(t1,...,tk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk ,

(1.334)

where permutations (t1, . . . , tk) when summing are performed only in the values

dw
(i1)
t1 . . . dw

(ik)
tk . At the same time the indices near upper limits of integration in

the iterated stochastic integrals are changed correspondently and if tr swapped
with tq in the permutation (t1, . . . , tk), then ir swapped with iq in the permu-
tation (i1, . . . , ik).

It is easy to see that the equality (1.334) can be written as

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (1.335)

where ∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the
same time if jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped
with iq in the permutation (i1, . . . , ik).
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Further, using the Itô formula, we can prove the following equality

∑
(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk =

k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql
(1.336)

w. p. 1, where notations are the same as in Theorem 1.2 and (1.335).

The main difficulty in proving (1.336) using the Itô formula is related to the
need to take into account various combinations of indices i1, . . . , ik = 0, 1, . . . ,m.
To avoid this difficulty, consider another approach, also based on the Itô for-
mula.

First, we prove the following modification and generalization of Theorem 3.1
from [106] (1951) for the case i1, . . . , ik = 0, 1, . . . ,m using the Itô formula and
without explicit use of the multiple Wiener stochastic integral.

Theorem 1.22 [29]. Suppose that the condition (⋆⋆) is fulfilled for the
multi-index (i1 . . . ik) (see Sect. 1.10) and the condition (1.265) is also fulfilled.
Furthermore, let {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in the space L2([t, T ]). Then

J ′′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

=
k∏
l=1

1{ml=0} + 1{ml>0}


Hn1,l

(
ζ
(il)
jh1,l

)
. . . Hndl,l

(
ζ
(il)
jhdl,l

)
, if il ̸= 0

(
ζ
(0)
jh1,l

)n1,l
. . .
(
ζ
(0)
jhdl,l

)ndl,l
, if il = 0


(1.337)

w. p. 1, where i1, . . . , ik = 0, 1, . . . ,m; n1,l + n2,l + . . . + ndl,l = ml;
n1,l, n2,l, . . . , ndl,l = 1, . . . ,ml; dl = 1, . . . ,ml; l = 1, . . . , k; m1+ . . .+mk = k;
the numbers m1, . . . ,mk, g1, . . . , gk depend on (i1, . . . , ik) and the numbers
n1,l, . . . , ndl,l, h1,l, . . . , hdl,l, dl depend on {j1, . . . , jk}; moreover, {jg1, . . . , jgk} =
{j1, . . . , jk}; Hn(x) is the Hermite polynomial (1.267); another notations are the
same as in Theorem 1.14.
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Proof. First, consider the case i1 = . . . = ik = 1, . . . ,m and j1, . . . , jk ∈
{0} ∪N. By induction, we prove the following equality

p!

T∫
t

ϕl(tp) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tp ×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
p

)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
p) . . .

t′2∫
t

ϕl(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′p
dw

(1)
t1 . . . dw

(1)
tq (1.338)

w. p. 1, where p ∈ N, l ̸= j1, . . . , jq, and∑
(q1,...,qn)

means the sum with respect to all possible permutations (q1, . . . , qn).

Consider the case p = 1. Using the Itô formula, we get w. p. 1 for s ∈ [t, T ]

s∫
t

ϕl(τ)dw
(1)
τ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq =

=

s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ+

+

s∫
t

ϕl(τ)

τ∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq dw

(1)
τ +

+

s∫
t

ϕjq(τ)

 τ∫
t

ϕl(θ)dw
(1)
θ

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dw(1)
τ .

(1.339)
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Hereinafter in this section always s ∈ [t, T ]. Differentiating by the Itô for-
mula the expression in parentheses on the right-hand side of equality (1.339)
and combining the result of differentiation with (1.339), we obtain w. p. 1

J(l)s,tJ(jq...j1)s,t =

=

s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ+

+J(ljq...j1)s,t+

+

s∫
t

ϕjq(τ)

τ∫
t

ϕl(θ)ϕjq−1
(θ)

θ∫
t

ϕjq−2
(tq−2) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−2

dθdw(1)
τ +

+J(jqljq−1...j1)s,t+

+

s∫
t

ϕjq(τ)

τ∫
t

ϕjq−1
(θ)×

×

 θ∫
t

ϕl(u) dw
(1)
u

θ∫
t

ϕjq−2
(tq−2) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−2

 dw
(1)
θ dw(1)

τ ,

(1.340)

where
s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq

def
= J(jq...j1)s,t.

Continuing the process of iterative application of the Itô formula, we have
w. p. 1

J(l)s,tJ(jq...j1)s,t =

= J(ljq...j1)s,t + J(jqljq−1...j1)s,t + . . .+ J(jq...j1l)s,t+

+

s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ + . . .
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. . .+

s∫
t

ϕjq(tq) . . .

t3∫
t

ϕj2(t2)

t2∫
t

ϕl(τ)ϕj1(τ)dτdw
(1)
t2 . . . dw

(1)
tq . (1.341)

Summing the equality (1.341) over permutations (j1, . . . , jq), we get∑
(j1,...,jq)

J(l)s,tJ(jq...j1)s,t =
∑

(j1,...,jq,l)

J(ljq...j1)s,t + S(s) (1.342)

w. p. 1, where

S(s) =

=
∑

(j1,...,jq)

 s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ + . . .

. . .+

s∫
t

ϕjq(tq) . . .

t3∫
t

ϕj2(t2)

t2∫
t

ϕl(τ)ϕj1(τ)dτdw
(1)
t2 . . . dw

(1)
tq

 . (1.343)

Consider

s∫
t

ϕl(τ)ϕjq(τ)dτ

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

.

Applying the Itô formula, we get w. p. 1

s∫
t

ϕl(τ)ϕjq(τ)dτ

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

=

=

s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ+

+

s∫
t

ϕjq−1
(tq−1)×



220D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

×

 tq−1∫
t

ϕl(τ)ϕjq(τ)dτ

tq−1∫
t

ϕjq−2
(tq−2) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−2

 dw
(1)
tq−1

.

By iterative application of the Itô formula (as above), we obtain w. p. 1

s∫
t

ϕl(τ)ϕjq(τ)dτ

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

=

=

s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ + . . .

. . .+

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(τ)ϕjq(τ)dτdw
(1)
t1 . . . dw

(1)
tq−1

. (1.344)

Summing the equality (1.344) over permutations (j1, . . . , jq), we get

∑
(j1,...,jq)

s∫
t

ϕl(τ)ϕjq(τ)dτ

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

= S1(s),

(1.345)

w. p. 1, where
S1(s) =

=
∑

(j1,...,jq)

 s∫
t

ϕl(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq−1

dτ + . . .

. . .+

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(τ)ϕjq(τ)dτdw
(1)
t1 . . . dw

(1)
tq−1

 . (1.346)

It is not difficult to see that

S(s) = S1(s) w. p. 1. (1.347)
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Moreover, due to the orthogonality of {ϕj(x)}∞j=0 and (1.345), (1.347), we
have

S(T ) = S1(T ) = 0 w. p. 1. (1.348)

Thus (see (1.342), (1.348)), the equality (1.338) is proved for the case p = 1.
Let us assume that the equality (1.338) is true for p = 2, 3, . . . , k−1, and prove
its validity for p = k.

From (1.342) for the case q = k − 1, j1 = . . . = jk−1 = l we obtain

(J1)s,t (k − 1)! (Jk−1)s,t = k! (Jk)s,t + S2(s) (1.349)

w. p. 1, where

S2(s) = S(s)

∣∣∣∣
j1=...=jq=l, q=k−1

(k ≥ 2) and S2(s)
def
= 0 (q = k − 1, k = 1),

s∫
t

ϕl(tr) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tr

def
= (Jr)s,t (r ∈ N) and (J0)s,t

def
= 1.

Taking into account (1.343), (1.345)–(1.347) and the orthonormality of
{ϕj(x)}∞j=0, we have

S2(T ) = (k − 1)! (Jk−2)T,t . (1.350)

Combining (1.349) and (1.350), we obtain the following recurrence relation

k! (Jk)T,t = (J1)T,t (k − 1)! (Jk−1)T,t − (k − 1)! (Jk−2)T,t (1.351)

w. p. 1.

Using (1.351) and the induction hypothesis, we get w. p. 1

k!

T∫
t

ϕl(tk) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tk ×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq =
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=

T∫
t

ϕl(τ) dw
(1)
τ

(
(k − 1)!

T∫
t

ϕl(tk−1) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tk−1

×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq

)
−

−(k − 1)!

T∫
t

ϕl(tk−2) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tk−2

×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq =

=

T∫
t

ϕl(τ) dw
(1)
τ

∑
(j1,...,jq, l,...,l︸︷︷︸

k−1

)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq −

−(k − 1)
∑

(j1,...,jq, l,...,l︸︷︷︸
k−2

)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
k−2) . . .

t′2∫
t

ϕl(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k−2

dw
(1)
t1 . . . dw

(1)
tq . (1.352)

Let l be the symbol l which does not participate in the following sum with
respect to permutations ∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

.

Using (1.342), we have w. p. 1

s∫
t

ϕl(τ) dw
(1)
τ

∑
(j1,...,jq, l,...,l︸︷︷︸

k−1

)

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)×
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×dw(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

s∫
t

ϕ
l
(τ) dw(1)

τ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

J
( l jq...j1 l . . . l︸ ︷︷ ︸

k−1

)s,t
+ J

(jq l jq−1...j1 l . . . l︸ ︷︷ ︸
k−1

)s,t
+ . . .

. . .+ J
(jq...j1 l l . . . l︸ ︷︷ ︸

k−1

)s,t
+ J

(jq...j1l l l . . . l︸ ︷︷ ︸
k−2

)s,t
+ . . .+ J

(jq...j1l . . . l︸ ︷︷ ︸
k−1

l )s,t

+ S3(s) =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k

)

J(jq...j1l . . . l︸ ︷︷ ︸
k

)s,t + S3(s), (1.353)

where
S3(s) =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

( s∫
t

ϕ
l
(τ)ϕjq(τ)

τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq−1

dτ + . . .

+ . . .

s∫
t

ϕjq(tq) . . .

t3∫
t

ϕj2(t2)

t2∫
t

ϕ
l
(τ)ϕj1(τ)×

×
τ∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−1

dτdw
(1)
t2 . . . dw

(1)
tq +
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+

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕ
l
(τ)ϕl(τ)×

×
τ∫
t

ϕl(t
′
k−2) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dτdw
(1)
t1 . . . dw

(1)
tq + . . .

. . .+

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕl(t
′
k−1) . . .

t′3∫
t

ϕl(t
′
2)

t′2∫
t

ϕ
l
(τ)ϕl(τ)dτdw

(1)
t′2
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq

)
.

Using (1.343), (1.345)–(1.347), we get w. p. 1

S3(s) =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

s∫
t

ϕ
l
(τ)ϕl(τ)dτ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕl(t
′
k−2) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(1)
t1 . . . dw

(1)
tq =

= (k − 1)
∑

(j1,...,jq, l,...,l︸︷︷︸
k−2

)

s∫
t

ϕ
l
(τ)ϕl(τ)dτ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕl(t
′
k−2) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(1)
t1 . . . dw

(1)
tq +

+
∑

(j1,...,jq−1, l,...,l︸︷︷︸
k−1

)

s∫
t

ϕ
l
(τ)ϕjq(τ)dτ

s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)×
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×
t1∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq−1

+

+
∑

(j1,...,jq−2,jq l,...,l︸︷︷︸
k−1

)

s∫
t

ϕ
l
(τ)ϕjq−1

(τ)dτ

s∫
t

ϕjq(tq)

tq∫
t

ϕjq−2
(tq−2) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t1 . . . dw

(1)
tq−2

dw
(1)
tq +

. . .

+
∑

(j2,...,jq l,...,l︸︷︷︸
k−1

)

s∫
t

ϕ
l
(τ)ϕj1(τ)dτ

s∫
t

ϕjq(tq) . . .

t3∫
t

ϕj2(t2)×

×
t2∫
t

ϕl(t
′
k−1) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−1

dw
(1)
t2 . . . dw

(1)
tq . (1.354)

Applying (1.354) and the orthonormality of {ϕj(x)}∞j=0, we finally have

S3(T ) = (k − 1)
∑

(j1,...,jq, l,...,l︸︷︷︸
k−2

)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕl(t
′
k−2) . . .

t′2∫
t

ϕl(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(1)
t1 . . . dw

(1)
tq . (1.355)

Combining (1.352), (1.353), (1.355), we obtain w. p. 1

k!

T∫
t

ϕl(tk) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tk ×
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×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq =

=
∑

( l,...,l︸︷︷︸
k

)

T∫
t

ϕl(tk) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tk ×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(1)
t1 . . . dw

(1)
tq =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k

)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
k) . . .

t′2∫
t

ϕl(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k
dw

(1)
t1 . . . dw

(1)
tq , (1.356)

where l ̸= j1, . . . , jq.

The equality (1.338) is proved. From the other hand, (1.356) means that

J ′′[ϕj1 . . . ϕjq ϕl . . . ϕl︸ ︷︷ ︸
n

]
(

q+n︷ ︸︸ ︷
1 . . . 1 )
T,t = J ′′[ϕl . . . ϕl︸ ︷︷ ︸

n

]
(

n︷ ︸︸ ︷
1 . . . 1 )
T,t · J ′′[ϕj1 . . . ϕjq ]

(

q︷ ︸︸ ︷
1 . . . 1 )
T,t (1.357)

w. p. 1, where n, q = 0, 1, 2 . . . ; l ̸= j1, . . . , jq and

J ′′[ϕj1 . . . ϕjq ]
(

q︷ ︸︸ ︷
1 . . . 1 )
T,t

def
= 1

for q = 0.

Note that [108] (see Chapter 6, Sect. 6.6 of this book for details)

T∫
t

ϕl(tn) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tn =

=
1

n!
Hn

 T∫
t

ϕl(τ)dw
(1)
τ ,

T∫
t

ϕ2l (τ)dτ

 =
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=
1

n!
Hn

 T∫
t

ϕl(τ)dw
(1)
τ , 1

 =
1

n!
Hn

 T∫
t

ϕl(τ)dw
(1)
τ

 (1.358)

w. p. 1, where n ∈ N, Hn(x, y) is defined by (1.276) (also see (1.277)), and
Hn(x) is the Hermite polynomial (1.267).

From (1.358) we have w. p. 1

J ′′[ϕl . . . ϕl︸ ︷︷ ︸
n

]
(

n︷ ︸︸ ︷
1 . . . 1 )
T,t = n!

T∫
t

ϕl(tn) . . .

t2∫
t

ϕl(t1)dw
(1)
t1 . . . dw

(1)
tn =

= n!
1

n!
Hn

 T∫
t

ϕl(τ)dw
(1)
τ

 = Hn

 T∫
t

ϕl(τ)dw
(1)
τ

 , (1.359)

where n ∈ N.

Combining (1.357) and (1.359), we obtain

J ′′[ϕj1 . . . ϕjq ϕl . . . ϕl︸ ︷︷ ︸
n

]
(

q+n︷ ︸︸ ︷
1 . . . 1 )
T,t = Hn

 T∫
t

ϕl(τ)dw
(1)
τ

 · J ′′[ϕj1 . . . ϕjq ]
(

q︷ ︸︸ ︷
1 . . . 1 )
T,t

(1.360)
w. p. 1, where n, q = 0, 1, 2 . . . ; l ̸= j1, . . . , jq.

The iterated application of the formula (1.360) completes the proof of The-
orem 1.22 for the case i1 = . . . = ik = 1, . . . ,m and j1, . . . , jk ∈ {0} ∪N.

To prove Theorem 1.22 for the case i1 = . . . = ik = 0, 1, . . . ,m and
j1, . . . , jk ∈ {0} ∪ N, we need to prove the following formula in addition to
the previous proof

p!

T∫
t

ϕl(tp) . . .

t2∫
t

ϕl(t1)dt1 . . . dtp
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtq =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
p

)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(t
′
p) . . .

t′2∫
t

ϕl(t
′
1)dt

′
1 . . . dt

′
pdt1 . . . dtq,

(1.361)



228D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

where p ∈ N, ∑
(j1,...,jd)

means the sum with respect to all possible permutations (j1, . . . , jd).

First, consider the case p = 1. We have

d

 s∫
t

ϕl(θ)dθ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtq

 =

= ϕl(s)

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtqds+

+ϕjq(s)

 s∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtq−1 ·
s∫
t

ϕl(θ)dθ

 ds.

Then
s∫
t

ϕl(θ)dθ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtq =

= I(ljq...j1)s,t+

+

s∫
t

ϕjq(τ)

 τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtq−1 ·
τ∫
t

ϕl(θ)dθ

 dτ,

where
s∫
t

ϕjr(tr) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtr
def
= I(jr...j1)s,t. (1.362)

Continuing this process, we get

s∫
t

ϕl(θ)dθ
∑

(j1,...,jq)

I(jq...j1)s,t =
∑

(j1,...,jq,l)

I(ljq...j1)s,t, (1.363)

where ∑
(j1,...,jd)
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means the sum with respect to all possible permutations (j1, . . . , jd).

The equality (1.361) is proved for the case p = 1. Let us assume that the
equality (1.361) is true for p = 2, 3, . . . , k − 1, and prove its validity for p = k.

From (1.363) for j1 = . . . = jq = l, q = k − 1 we have

(I1)s,t (k − 1)! (Ik−1)s,t = k! (Ik)s,t , (1.364)

where k ∈ N and

s∫
t

ϕl(tk) . . .

t2∫
t

ϕl(t1)dt1 . . . dtk
def
= (Ik)s,t , (I0)s,t

def
= 1.

Using (1.364) and the induction hypothesis, we obtain

k! (Ik)s,t
∑

(j1,...,jq)

I(jq...j1)s,t = (I1)s,t (k − 1)! (Ik−1)s,t
∑

(j1,...,jq)

I(jq...j1)s,t =

= I(l)s,t
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

I(jq...j1 l,...,l︸︷︷︸
k−1

)s,t =
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

I
( l )s,t

I(jq...j1 l,...,l︸︷︷︸
k−1

)s,t, (1.365)

where I(jr...j1)s,t is defined by (1.362) and l is the symbol l which does not
participate in the following sum with respect to permutations∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

.

By analogy with (1.363) we obtain∑
(j1,...,jq, l,...,l︸︷︷︸

k−1

)

I
( l )s,t

I(jq...j1 l,...,l︸︷︷︸
k−1

)s,t =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k−1

)

I
( l jq...j1 l . . . l︸ ︷︷ ︸

k−1

)s,t
+ I

(jq l jq−1...j1 l . . . l︸ ︷︷ ︸
k−1

)s,t
+ . . .
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. . .+ I
(jq...j1 l l . . . l︸ ︷︷ ︸

k−1

)s,t
+ I

(jq...j1l l l . . . l︸ ︷︷ ︸
k−2

)s,t
+ . . .+ I

(jq...j1l . . . l︸ ︷︷ ︸
k−1

l )s,t

 =

=
∑

(j1,...,jq, l,...,l︸︷︷︸
k

)

I(jq...j1l . . . l︸ ︷︷ ︸
k

)s,t. (1.366)

Substituting s = T into (1.365), (1.366) and combining (1.365), (1.366), we
conlude that the equality (1.361) is proved for p = k. The equality (1.361) is
proved.

Note that

n!

T∫
t

ϕl(tn) . . .

t2∫
t

ϕl(t1)dt1 . . . dtn = n!
1

n!

 T∫
t

ϕl(τ)dτ

n

=

=

 T∫
t

ϕl(τ)dτ

n

, (1.367)

where n ∈ N.

After substituting (1.367) into (1.361), we have for p = n T∫
t

ϕl(τ)dτ

n ∑
(j1,...,jq)

J(jq...j1)T,t =
∑

(j1,...,jq, l,...,l︸︷︷︸
n

)

J(jq...j1l . . . l︸ ︷︷ ︸
n

)T,t. (1.368)

The equality (1.368) means that

J ′′[ϕj1 . . . ϕjq ϕl . . . ϕl︸ ︷︷ ︸
n

]
(

q+n︷ ︸︸ ︷
0 . . . 0 )
T,t =

 T∫
t

ϕl(τ)dτ

n

· J ′′[ϕj1 . . . ϕjq ]
(

q︷ ︸︸ ︷
0 . . . 0 )
T,t , (1.369)

where n, q = 0, 1, 2 . . . and J ′′[ϕj1 . . . ϕjq ]
(0...0)
T,t

def
= 1 for q = 0.

The relations (1.360) and (1.369) prove Theorem 1.22 for the case i1 = . . . =
ik = 0, 1, . . . ,m and j1, . . . , jk ∈ {0} ∪N.

Remark 1.15. Note that the equality (1.361) can be obtained in another
way. Let Dq = {(t1, . . . , tq) ∈ [t, T ]q : ∃ i ̸= j such that ti = tj} be the ”diago-
nal set” of [t, T ]q (q = 2, 3, . . .) [109]. Since the Lebesgue meashure of the set
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Dq is equal to zero [109], then (see (1.332))

J ′′[ϕj1 . . . ϕjq ]
(

q︷ ︸︸ ︷
0 . . . 0 )
T,t =

∫
[t,T ]q

ϕj1(t1) . . . ϕjq(tq)dt1 . . . dtq. (1.370)

From (1.370) we have

J ′′[ϕl . . . ϕl]
(

p︷ ︸︸ ︷
0 . . . 0 )
T,t · J ′′[ϕj1 . . . ϕjq ]

(

q︷ ︸︸ ︷
0 . . . 0 )
T,t =

=

∫
[t,T ]q

ϕj1(t1) . . . ϕjq(tq)dt1 . . . dtq

∫
[t,T ]p

ϕl(t1) . . . ϕl(tp)dt1 . . . dtp =

=

∫
[t,T ]p+q

ϕj1(t1) . . . ϕjq(tq)ϕl(t
′
1) . . . ϕl(t

′
p)dt

′
1 . . . dt

′
pdt1 . . . dtq =

= J ′′[ϕj1 . . . ϕjqϕl . . . ϕl]
(

p+q︷ ︸︸ ︷
0 . . . 0 )
T,t . (1.371)

It is not difficult to see that the equality (1.371) is nothing but the equality
(1.361) written in another form.

To complete the proof of Theorem 1.22, we need to consider the case
i1, . . . , ik = 0, 1, . . . ,m and j1, . . . , jk ∈ {0} ∪N.

Obviously, the proof of Theorem 1.22 will be completed if we prove the
following equalities

∑
(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq ×

×
∑

(j′1,...,j
′
n)

T∫
t

ϕj′n(t
′
n) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′n

=

=
∑

(j1,...,jq,j′1,...,j
′
n)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′n(t
′
n) . . .

t′2∫
t

ϕj′1(t
′
1)×
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×dw(1)
t′1
. . . dw

(1)
t′n
dw

(i1)
t1 . . . dw

(iq)
tq , (1.372)

∑
(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq ×

×
∑

(j′1,...,j
′
n)

T∫
t

ϕj′n(t
′
n) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′n

=

=
∑

(j1,...,jq,j′1,...,j
′
n)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′n(t
′
n) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(0)
t′1
. . . dw

(0)
t′n
dw

(i1)
t1 . . . dw

(iq)
tq (1.373)

w. p. 1, where n, q ∈ N, dw
(0)
τ

def
= dτ, i1, . . . , iq ̸= 1 in (1.372) and i1, . . . , iq ̸= 0

in (1.373), ∑
(j1,...,jg)

means the sum with respect to all possible permutations (j1, . . . , jg). At the
same time if jr swapped with jd in the permutation (j1, . . . , jg), then ir swapped
with id in the permutation (i1, . . . , ig).

The equalities (1.372) and (1.373) mean that

J ′′[ϕj1 . . . ϕjqϕj′1 . . . ϕj′n]
(i1...iq1...1)
T,t = J ′′[ϕj1 . . . ϕjq ]

(i1...iq)
T,t · J ′′[ϕj′1 . . . ϕj′n]

(1...1)
T,t ,
(1.374)

J ′′[ϕj1 . . . ϕjqϕj′1 . . . ϕj′n]
(i1...iq0...0)
T,t = J ′′[ϕj1 . . . ϕjq ]

(i1...iq)
T,t · J ′′[ϕj′1 . . . ϕj′n]

(0...0)
T,t

(1.375)

w. p. 1, where i1, . . . , iq ̸= 1 in (1.374) and i1, . . . , iq ̸= 0 in (1.375).
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First, we prove the equality (1.372). Consider the case n = 1. Using the Itô
formula, we get w. p. 1

s∫
t

ϕj′1(θ)dw
(1)
θ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

= J
(1iq...i1)

(j′1jq...j1)s,t
+

+

s∫
t

ϕjq(τ)

 τ∫
t

ϕjq−1
(tq−1) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq−1)
tq−1

τ∫
t

ϕj′1(θ)dw
(1)
θ

dw(iq)
τ

= . . . =

= J
(1iq...i1)

(j′1jq...j1)s,t
+ J

(iq1iq−1...i1)

(jqj′1jq−1...j1)s,t
+ . . .+ J

(iq...i11)

(jq...j1j′1)s,t
, (1.376)

where
s∫
t

ϕjr(tr) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ir)
tr

def
= J

(ir...i1)
(jr...j1)s,t

, (1.377)

i1, . . . , ir = 0, 1, . . . ,m.

From (1.376) we obtain

s∫
t

ϕj′1(θ)dw
(1)
θ

∑
(j1,...,jq)

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=
∑

(j1,...,jq)

s∫
t

ϕj′1(θ)dw
(1)
θ

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=
∑

(j1,...,jq)

(
J
(1iq...i1)

(j′1jq...j1)s,t
+ J

(iq1iq−1...i1)

(jqj′1jq−1...j1)s,t
+ . . .+ J

(iq...i11)

(jq...j1j′1)s,t

)
=

=
∑

(j1,...,jq,j′1)

J
(iq...i11)

(jq...j1j′1)s,t
(1.378)
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w. p. 1, where J
(ir...i1)
(jr...j1)s,t

is defined by (1.377). The equality (1.372) is proved
for the case n = 1.

Let us assume that the equality (1.372) is true for n = 2, 3, . . . , k − 1, and
prove its validity for n = k.

Applying (1.342), (1.343), (1.345)–(1.347), we obtain w. p. 1

∑
(j′1,...,j

′
k)

s∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k

=

=

s∫
t

ϕj′k(θ)dw
(1)
θ

∑
(j′1,...,j

′
k−1)

s∫
t

ϕj′k−1
(tk−1) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−1

−

−
∑

(j′1,...,j
′
k−1)

s∫
t

ϕj′k(θ)ϕj′k−1
(θ)dθ

s∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

.

(1.379)

After substituting s = T in (1.379) and applying the orthonormality of
{ϕj(x)}∞j=0, we get w. p. 1

∑
(j′1,...,j

′
k)

T∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k

=

=

T∫
t

ϕj′k(θ)dw
(1)
θ

∑
(j′1,...,j

′
k−1)

T∫
t

ϕj′k−1
(tk−1) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−1

−

−
∑

(j′1,...,j
′
k−1)

1{j′k=j′k−1}

T∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

, (1.380)

where 1A is the indicator of the set A.

Using (1.380) and the induction hypothesis, we obtain w. p. 1
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∑
(j′1,...,j

′
k)

T∫
t

ϕj′k(tk) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk ×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=

T∫
t

ϕj′k(θ)dw
(1)
θ

∑
(j′1,...,j

′
k−1)

T∫
t

ϕj′k−1
(tk−1) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−1

×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq −

−
∑

(j′1,...,j
′
k−1)

1{j′k=j′k−1}

T∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=

T∫
t

ϕj′k(θ)dw
(1)
θ ×

×
∑

(j1,...,jq,j′1,...,j
′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq −

−
∑

(j′1,...,j
′
k−1)

1{j′k=j′k−1}

T∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq . (1.381)
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Further, applying the induction hypothesis, we have w. p. 1

∑
(j′1,...,j

′
k−1)

1{j′k=j′k−1}

T∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=

( ∑
(j′1,...,j

′
k−2)

1{j′k=j′k−1}

T∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

+

+
∑

(j′1,...,j
′
k−3,j

′
k−1)

1{j′k=j′k−2}

T∫
t

ϕj′k−1
(tk−2)

tk−2∫
t

ϕj′k−3
(tk−3) . . .

t2∫
t

ϕj′1(t1)×

×dw(1)
t1 . . . dw

(1)
tk−3

dw
(1)
tk−2

+ . . .

. . .+
∑

(j′2,...,j
′
k−1)

1{j′k=j′1}

T∫
t

ϕj′k−2
(tk−2) . . .

t3∫
t

ϕj′2(t2)

t2∫
t

ϕj′k−1
(t1)×

×dw(1)
t1 dw

(1)
t2 . . . dw

(1)
tk−2

)
×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=

(
1{j′k=j′k−1}

∑
(j′1,...,j

′
k−2)

T∫
t

ϕj′k−2
(tk−2) . . .

t2∫
t

ϕj′1(t1)dw
(1)
t1 . . . dw

(1)
tk−2

+

+1{j′k=j′k−2}
∑

(j′1,...,j
′
k−3,j

′
k−1)

T∫
t

ϕj′k−1
(tk−2)

tk−2∫
t

ϕj′k−3
(tk−3) . . .

t2∫
t

ϕj′1(t1)×
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×dw(1)
t1 . . . dw

(1)
tk−3

dw
(1)
tk−2

+ . . .

. . .+ 1{j′k=j′1}
∑

(j′2,...,j
′
k−1)

T∫
t

ϕj′k−2
(tk−2) . . .

t3∫
t

ϕj′2(t2)

t2∫
t

ϕj′k−1
(t1)×

×dw(1)
t1 dw

(1)
t2 . . . dw

(1)
tk−2

)
×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

= 1{j′k=j′k−1}
∑

(j1,...,jq,j′1,...,j
′
k−2)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−2
(t′k−2) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k−2

dw
(i1)
t1 . . . dw

(iq)
tq +

+1{j′k=j′k−2}
∑

(j1,...,jq,j′1,...,j
′
k−3,j

′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−2)×

×

t′k−2∫
t

ϕj′k−3
(t′k−3) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−3

dw
(1)
t′k−2

dw
(i1)
t1 . . . dw

(iq)
tq + . . .

. . .

. . .+ 1{j′k=j′1}
∑

(j1,...,jq,j′2,...,j
′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕj′k−2
(t′k−2) . . .

t′3∫
t

ϕj′2(t
′
2)

t′2∫
t

ϕj′k−1
(t′1)dw

(1)
t′1
dw

(1)
t′2
. . . dw

(1)
t′k−2

dw
(i1)
t1 . . . dw

(iq)
tq

def
=
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def
= S4(T ). (1.382)

By analogy with (1.344) we obtain w. p. 1

T∫
t

ϕl(τ)ϕjr(τ)dτ

T∫
t

ϕjr−1
(tr−1) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ir−1)
tr−1

=

=

T∫
t

ϕl(τ)ϕjr(τ)

τ∫
t

ϕjr−1
(tr−1) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ir−1)
tr−1

dτ + . . .

. . .+

T∫
t

ϕjr−1
(tr−1) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕl(τ)ϕjr(τ)dτdw
(i1)
t1 . . . dw

(ir−1)
tr−1

, (1.383)

where i1, . . . , ir−1 = 0, 1, . . . ,m.

Using iteratively the Itô formula, as well as (1.383) and combinatorial rea-
soning, we obtain w. p. 1 (see Remark 1.16 below for details)

T∫
t

ϕj′k(θ)dw
(1)
θ ×

×
∑

(j1,...,jq,j′1,...,j
′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq =

=
∑

(j1,...,jq,j′1,...,j
′
k)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k
dw

(i1)
t1 . . . dw

(iq)
tq +
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+
∑

(j1,...,jq,j′1,...,j
′
k−1)

( T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(θ)ϕj′k−1
(θ)

θ∫
t

ϕj′k−2
(t′k−2) . . .

. . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(0)
θ dw

(i1)
t1 . . . dw

(iq)
tq +

+

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1)

t′k−1∫
t

ϕj′k(θ)ϕj′k−2
(θ)

θ∫
t

ϕj′k−3
(t′k−3) . . .

. . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−3

dw
(0)
θ dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq + . . .

. . .+

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1) . . .

t′3∫
t

ϕj′2(t
′
2)

t′2∫
t

ϕj′k(θ)ϕj′1(θ)dw
(0)
θ ×

×dw(1)
t′2
. . . dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq

)
=

=
∑

(j1,...,jq,j′1,...,j
′
k)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k
dw

(i1)
t1 . . . dw

(iq)
tq +

+
∑

(j1,...,jq,j′1,...,j
′
k−2)

{ T∫
t

ϕj′k(θ)ϕj′k−1
(θ)

θ∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−2
(t′k−2) . . .

. . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(i1)
t1 . . . dw

(iq)
tq dw

(0)
θ + . . .
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. . .+

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−2
(t′k−2) . . .

t′2∫
t

ϕj′1(t
′
1)

t′1∫
t

ϕj′k(θ)ϕj′k−1
(θ)dw

(0)
θ ×

×dw(1)
t′1
. . . dw

(1)
t′k−2

dw
(i1)
t1 . . . dw

(iq)
tq

}
+

+
∑

(j1,...,jq,j′1,...,j
′
k−3,j

′
k−1)

{ T∫
t

ϕj′k(θ)ϕj′k−2
(θ)

θ∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1)×

×

t′k−1∫
t

ϕj′k−3
(t′k−3) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−3

dw
(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq dw

(0)
θ + . . .

. . .+

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1)

t′k−1∫
t

ϕj′k−3
(t′k−3) . . .

t′2∫
t

ϕj′1(t
′
1)×

×
t′1∫
t

ϕj′k(θ)ϕj′k−2
(θ)dw

(0)
θ dw

(1)
t′1
. . . dw

(1)
t′k−3

dw
(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq

}
+ . . .

+
∑

(j1,...,jq,j′2,...,j
′
k−1)

{ T∫
t

ϕj′k(θ)ϕj′1(θ)

θ∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1) . . .

. . .

t′3∫
t

ϕj′2(t
′
2)dw

(1)
t′2
. . . dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq dw

(0)
θ + . . .

. . .+

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1) . . .

t′3∫
t

ϕj′2(t
′
2)

t′2∫
t

ϕj′k(θ)ϕj′1(θ)dw
(0)
θ ×

×dw(1)
t′2
. . . dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq

}
=
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=
∑

(j1,...,jq,j′1,...,j
′
k)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k
dw

(i1)
t1 . . . dw

(iq)
tq +

+

T∫
t

ϕj′k(θ)ϕj′k−1
(θ)dθ

∑
(j1,...,jq,j′1,...,j

′
k−2)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−2
(t′k−2) . . .

. . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(i1)
t1 . . . dw

(iq)
tq +

+

T∫
t

ϕj′k(θ)ϕj′k−2
(θ)dθ

∑
(j1,...,jq,j′1,...,j

′
k−3,j

′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1)×

×

t′k−1∫
t

ϕj′k−3
(t′k−3) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−3

dw
(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq + . . .

. . .+

T∫
t

ϕj′k(θ)ϕj′1(θ)dθ
∑

(j1,...,jq,j′2,...,j
′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k−1
(t′k−1) . . .

. . .

t′3∫
t

ϕj′2(t
′
2)dw

(1)
t′2
. . . dw

(1)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq =

=
∑

(j1,...,jq,j′1,...,j
′
k)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(1)
t′1
. . . dw

(1)
t′k
dw

(i1)
t1 . . . dw

(iq)
tq + S4(T ). (1.384)

From (1.381), (1.382), and (1.384) we conclude that the equality (1.372) is
proved for n = k. The equality (1.372) is proved.
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Remark 1.16. It should be noted that the sums with respect to permutations∑
(j1,...,jq,j′1,...,j

′
k−1)

in (1.384), containing the expressions ϕj′k(θ)ϕj′k−1
(θ), . . . , ϕj′k(θ)ϕj′1(θ), should be

understood in a special way. Let us explain this rule on the basis of the sum

∑
(j1,...,jq,j′1,...,j

′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(θ)ϕj′k−1
(θ)

θ∫
t

ϕj′k−2
(t′k−2) . . .

. . .

t′2∫
t

ϕj′1(t
′
1)dw

(1)
t′1
. . . dw

(1)
t′k−2

dw
(0)
θ dw

(i1)
t1 . . . dw

(iq)
tq . (1.385)

More precisely, permutations
(
j1, . . . , jq, j

′
1, . . . , j

′
k−1

)
when summing in

(1.385) are performed in such a way that if j∗r swapped with j∗d in the per-
mutation

(
j∗q+k−1, . . . , j

∗
1

)
=
(
jq, . . . , j1, j

′
k−1, j

′
k−2, . . . , j

′
1

)
, then i∗r swapped with

i∗d in the permutation(
i∗q+k−1, . . . , i

∗
1

)
=
(
iq, . . . , i1, 0, 1, . . . , 1︸ ︷︷ ︸

k−2

)
.

Moreover, ϕ̄j∗r swapped with ϕ̄j∗d in the permutation(
ϕ̄j∗q+k−1

, . . . , ϕ̄j∗1
)
=
(
ϕjq , . . . , ϕj1, ϕj′k ·ϕj′k−1

, ϕj′k−2
, . . . , ϕj′1

)
.

A similar rule should be applied to all other sums with respect to permutations∑
(j1,...,jq,j′1,...,j

′
k−1)

in (1.384) that contain the expressions ϕj′k(θ)ϕj′k−2
(θ), . . . , ϕj′k(θ)ϕj′1(θ).

Let us prove the equality (1.373). Consider the case n = 1. By analogy with
(1.376) and (1.378) we obtain

s∫
t

ϕj′1(θ)dw
(0)
θ

∑
(j1,...,jq)

s∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . .w

(iq)
tq =

=
∑

(j1,...,jq,j′1)

J
(iq...i10)

(jq...j1j′1)s,t
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w. p. 1, where J
(ir...i1)
(jr...j1)s,t

is defined by (1.377). The equality (1.373) is proved
for the case n = 1.

Let us assume that the equality (1.373) is true for n = 2, 3, . . . , k − 1, and
prove its validity for n = k.

In complete analogy with (1.363) we get

s∫
t

ϕj′k(θ)dθ

s∫
t

ϕj′k−1
(tk−1) . . .

t2∫
t

ϕj′1(t1)dt1 . . . dtk−1 =

= J
(0...0)
(j′kj

′
k−1...j

′
1)s,t

+ J
(0...0)
(j′k−1j

′
kj

′
k−2...j

′
1)s,t

+ . . .+ J
(0...0)
(j′k−1...j

′
1j

′
k)s,t

. (1.386)

Applying (1.386), we have

∑
(j′1,...,j

′
k)

T∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′k

=

=
∑

(j′1,...,j
′
k−1)

(
J
(0...0)
(j′kj

′
k−1...j

′
1)s,t

+ J
(0...0)
(j′k−1j

′
kj

′
k−2...j

′
1)s,t

+ . . .+ J
(0...0)
(j′k−1...j

′
1j

′
k)s,t

)
=

=

T∫
t

ϕj′k(θ)dθ
∑

(j′1,...,j
′
k−1)

T∫
t

ϕj′k−1
(tk−1) . . .

t′2∫
t

ϕj′1(t1)dw
(0)
t1 . . . dw

(0)
tk−1

. (1.387)

Using (1.387) and the induction hypothesis, we obtain w. p. 1

∑
(j′1,...,j

′
k)

T∫
t

ϕj′k(tk) . . .

t2∫
t

ϕj′1(t1)dw
(0)
t1 . . . dw

(0)
tk ×

×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=

T∫
t

ϕj′k(θ)dθ
∑

(j′1,...,j
′
k−1)

T∫
t

ϕj′k−1
(t′k−1) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′k−1

×
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×
∑

(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq =

=

T∫
t

ϕj′k(θ)dθ
∑

(j1,...,jq,j′1,...,j
′
k−1)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕj′k−1
(t′k−1) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq =

=
∑

(j1,...,jq,j′1,...,j
′
k−1)

T∫
t

ϕj′k(θ)dθ

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕj′k−1
(t′k−1) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq . (1.388)

An iterative application of the Itô formula leads to the following equality

T∫
t

ϕj′k(θ)dθ

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)×

×
t1∫
t

ϕj′k−1
(t′k−1) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′k−1

dw
(i1)
t1 . . . dw

(iq)
tq =

= J
(0iq...i10...0)

(j′kjq...j1j
′
k−1...j

′
1)T,t

+ J
(iq0iq−1...i10...0)

(jqj′kjq−1...j1j′k−1...j
′
1)T,t

+ . . . J
(iq...i10...0)

(jq...j1j′kj
′
k−1...j

′
1)T,t

+

+J
(iq...i10...0)

(jq...j1j′k−1j
′
kj

′
k−2...j

′
1)T,t

+ . . .+ J
(iq...i10...0)

(jq...j1j′k−1...j
′
1j

′
k)T,t

(1.389)

w. p. 1.
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Combining (1.388) and (1.389), we finally obtain w. p. 1

∑
(j1,...,jq)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(iq)
tq ×

×
∑

(j′1,...,j
′
k)

T∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)dw

(0)
t′1
. . . dw

(0)
t′k

=

=
∑

(j1,...,jq,j′1,...,j
′
k)

T∫
t

ϕjq(tq) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕj′k(t
′
k) . . .

t′2∫
t

ϕj′1(t
′
1)×

×dw(0)
t′1
. . . dw

(0)
t′k
dw

(i1)
t1 . . . dw

(iq)
tq .

The equality (1.373) is proved for n = k. The equality (1.373) is proved.
Theorem 1.22 is proved.

To complete the proof of Theorems 1.16 and 1.17, we prove the following
theorem.

Theorem 1.23. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonor-
mal system of functions in the space L2([t, T ]). Then the following representa-
tion

J ′′[ϕj1 . . . ϕjk]
(i1...ik) =

k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql
(1.390)

is valid w. p. 1, where i1, . . . , ik = 0, 1, . . . ,m, [x] is an integer part of a real

number x,
∏
∅

def
= 1,

∑
∅

def
= 0; the sum in the second line of the formula (1.390) is

the sum with respect to all possible partitions (1.53); another notations are the
same as in Theorems 1.1, 1.2.

Remark 1.17. It should be noted that the formulas (1.338), (1.371), (1.374),
(1.375) follow from (1.390). It is only necessary to set the values of the cor-
responding indicators of the form 1A from the formula (1.390) equal to 0 or
1.
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Proof. The proof of Theorem 1.23 is carried out by induction using the
following recurrence relation

J ′′[ϕj1 . . . ϕjk]
(i1...ik)
T,t = J ′′[ϕjk]

(ik)
T,t · J

′′[ϕj1 . . . ϕjk−1
]
(i1...ik−1)
T,t −

−
k−1∑
l=1

1{il=ik ̸=0}1{jl=jk} · J
′′[ϕj1 . . . ϕjl−1

ϕjl+1
. . . ϕjk−1

]
(i1...il−1il+1...ik−1)
T,t (1.391)

w. p. 1.

Let us prove the recurrence relation (1.391). Using iteratively the Itô for-
mula, the orthonormality of {ϕj(x)}∞j=0, as well as (1.383) and combinatorial
reasoning, we obtain w. p. 1 (see Remark 1.18 below for details)

J ′′[ϕjk]
(ik)
T,t · J

′′[ϕj1 . . . ϕjk−1
]
(i1...ik−1)
T,t =

=

T∫
t

ϕjk(θ)dw
(ik)
θ

∑
(j1,...,jk−1)

T∫
t

ϕjk−1
(tk−1) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik−1)
tk−1

=

=
∑

(j1,...,jk−1)

T∫
t

ϕjk(θ)dw
(ik)
θ

T∫
t

ϕjk−1
(tk−1) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik−1)
tk−1

=

=
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk +

+
∑

(j1,...,jk−1)

(
1{ik=ik−1 ̸=0}

T∫
t

ϕjk(θ)ϕjk−1
(θ)

θ∫
t

ϕjk−2
(tk−2) . . .

t2∫
t

ϕj1(t1)×

×dw(i1)
t1 . . . dw

(ik−2)
tk−2

dw
(0)
θ +

+1{ik=ik−2 ̸=0}

T∫
t

ϕjk−1
(tk−1)

tk−1∫
t

ϕjk(θ)ϕjk−2
(θ)

θ∫
t

ϕjk−3
(tk−3) . . .

t2∫
t

ϕj1(t1)×
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×dw(i1)
t1 . . . dw

(ik−3)
tk−3

dw
(0)
θ dw

(ik−1)
tk−1

+ . . .

. . .+ 1{ik=i1 ̸=0}

T∫
t

ϕjk−1
(tk−1) . . .

t3∫
t

ϕj2(t2)

t2∫
t

ϕjk(θ)ϕj1(θ)×

×dw(0)
θ dw

(i2)
t2 . . . dw

(ik−1)
tk−1

)
=

=
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk +

+
∑

(j1,...,jk−2)

1{ik=ik−1 ̸=0}

{ T∫
t

ϕjk(θ)ϕjk−1
(θ)

θ∫
t

ϕjk−2
(tk−2) . . .

t2∫
t

ϕj1(t1)×

×dw(i1)
t1 . . . dw

(ik−2)
tk−2

dw
(0)
θ + . . .

. . .+

T∫
t

ϕjk−2
(tk−2) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕjk(θ)ϕjk−1
(θ)dw

(0)
θ dw

(i1)
t1 . . . dw

(ik−2)
tk−2

}
+

+
∑

(j1,...,jk−3,jk−1)

1{ik=ik−2 ̸=0}

{ T∫
t

ϕjk(θ)ϕjk−2
(θ)

θ∫
t

ϕjk−1
(tk−1)

tk−1∫
t

ϕjk−3
(tk−3) . . .

. . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik−3)
tk−3

dw
(ik−1)
tk−1

dw
(0)
θ + . . .

. . .+

T∫
t

ϕjk−1
(tk−1)

tk−1∫
t

ϕjk−3
(tk−3) . . .

t2∫
t

ϕj1(t1)

t1∫
t

ϕjk(θ)ϕjk−2
(θ)×

×dw(0)
θ dw

(i1)
t1 . . . dw

(ik−3)
tk−3

dw
(ik−1)
tk−1

}
+ . . .
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. . .+
∑

(j2,...,jk−1)

1{ik=i1 ̸=0}

{ T∫
t

ϕjk(θ)ϕj1(θ)

θ∫
t

ϕjk−1
(tk−1) . . .

t3∫
t

ϕj2(t2)×

×dw(i2)
t2 . . . dw

(ik−1)
tk−1

dw
(0)
θ + . . .

. . .+

T∫
t

ϕjk−1
(tk−1) . . .

t3∫
t

ϕj2(t2)

t2∫
t

ϕjk(θ)ϕj1(θ)dw
(0)
θ dw

(i2)
t2 . . . dw

(ik−1)
tk−1

}
=

=
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk +

+

T∫
t

ϕjk(θ)ϕjk−1
(θ)dθ

∑
(j1,...,jk−2)

1{ik=ik−1 ̸=0}

T∫
t

ϕjk−2
(tk−2) . . .

t2∫
t

ϕj1(t1)×

×dw(i1)
t1 . . . dw

(ik−2)
tk−2

+

+

T∫
t

ϕjk(θ)ϕjk−2
(θ)dθ

∑
(j1,...,jk−3,jk−1)

1{ik=ik−2 ̸=0}

T∫
t

ϕjk−1
(tk−1)

tk−1∫
t

ϕjk−3
(tk−3) . . .

. . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik−3)
tk−3

dw
(ik−1)
tk−1

+ . . .

. . .+

T∫
t

ϕjk(θ)ϕj1(θ)dθ
∑

(j2,...,jk−1)

1{ik=i1 ̸=0}

T∫
t

ϕjk−1
(tk−1) . . .

t3∫
t

ϕj2(t2)×

×dw(i2)
t2 . . . dw

(ik−1)
tk−1

=

= J ′′[ϕj1 . . . ϕjk]
(i1...ik)
T,t + 1{ik=ik−1 ̸=0}1{jk=jk−1} · J

′′[ϕj1 . . . ϕjk−2
]
(i1...ik−2)
T,t +

+1{ik=ik−2 ̸=0}1{jk=jk−2} · J
′′[ϕj1 . . . ϕjk−3

ϕjk−1
]
(i1...ik−3ik−1)
T,t + . . .
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. . .+ 1{ik=i1 ̸=0}1{jk=j1} · J
′′[ϕj2 . . . ϕjk−1

]
(i2...ik−1)
T,t =

= J ′′[ϕj1 . . . ϕjk]
(i1...ik)
T,t +

+
k−1∑
l=1

1{il=ik ̸=0}1{jl=jk} · J
′′[ϕj1 . . . ϕjl−1

ϕjl+1
. . . ϕjk−1

]
(i1...il−1il+1...ik−1)
T,t . (1.392)

The equality (1.391) is proved. Theorem 1.23 is proved.

Remark 1.18. It should be noted that the sums with respect to permutations∑
(j1,...,jk−1)

in (1.392), containing the expressions

1{ik=ik−1 ̸=0}ϕjk(θ)ϕjk−1
(θ), . . . ,1{ik=i1 ̸=0}ϕjk(θ)ϕj1(θ),

should be understood in a special way. Let us explain this rule on the basis of
the sum

∑
(j1,...,jk−1)

1{ik=ik−1 ̸=0}

T∫
t

ϕjk(θ)ϕjk−1
(θ)

θ∫
t

ϕjk−2
(tk−2) . . .

t2∫
t

ϕj1(t1)×

×dw(i1)
t1 . . . dw

(ik−2)
tk−2

dw
(0)
θ . (1.393)

More precisely, permutations (j1, . . . , jk−1) when summing in (1.393) are
performed in such a way that if jr swapped with jd in the permutation
(j1, . . . , jk−1), then ir swapped with id in the permutation (i1, . . . , ik−2, ik−1) (note
that ik−1 = 0). Moreover, ϕ̄jr swapped with ϕ̄jd in the permutation(

ϕ̄j1, . . . , ϕ̄jk−1

)
=
(
ϕj1, . . . , ϕjk−2

, 1{ik=ik−1 ̸=0} · ϕjk · ϕjk−1

)
,

where ϕ̄jk−1
(τ) = 1{ik=ik−1 ̸=0}ϕjk(τ)ϕjk−1

(τ).

A similar rule should be applied to all other sums with respect to permuta-
tions ∑

(j1,...,jk−1)
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in (1.392) that contain the expressions

1{ik=ik−2 ̸=0}ϕjk(θ)ϕjk−2
(θ), . . . ,1{ik=i1 ̸=0}ϕjk(θ)ϕj1(θ).

The relations (1.334), (1.337), (1.390) prove Theorem 1.16. An analogue of
the formula (1.334) for Φ(t1, . . . , tk) instead of K(t1, . . . , tk) and (1.337), (1.390)
prove Theorem 1.17.

We note a number of works [110]-[113] in which the properties of multiple
Wiener stochastic integrals were studied using measure theory, in particular,
the formulas for the product of such integrals were obtained.

First of all, let us compare Theorem 1.23 with Proposition 5.1 from [110].
An analogue of the right-hand side of (1.390) for nonrandom x1, . . . , xk is con-
structed in [110] using diagrams (see the formula (5.1) in [110]). This means
that the application of the formula (5.1) from [110], unlike the formula (1.390),
is difficult when performing algebraic transformations.

Further, we note that the formula (5.1) from [110] was applied to the repre-
sentation of the multiple Wiener stochastic integral somewhat differently than
the formula (1.390). Namely, using Proposition 5.1 [110]. Let us expain this
difference in more detail.

Proposition 5.1 from [110] in our degree of generality and in our notations
can be written as

J ′′ [ϕj1 . . . ϕjk]
(i1...ik)
T,t =

= J ′′
[
ϕj1 . . . ϕj1︸ ︷︷ ︸

m1

ϕj2 . . . ϕj2︸ ︷︷ ︸
m2

. . . ϕjp . . . ϕjp︸ ︷︷ ︸
mp

]( m1︷ ︸︸ ︷
i1...im1

m2︷ ︸︸ ︷
im1+1...im2

...

mp︷ ︸︸ ︷
im1+...+mp−1+1...ik )

T,t

=

= J ′′ [ϕj1 . . .ϕj1]
(

m1︷ ︸︸ ︷
i1...im1

)

T,t ·J ′′ [ϕj2 . . .ϕj2]
(

m2︷ ︸︸ ︷
im1+1...im2

)

T,t ·. . .·J ′′ [ϕjp . . .ϕjp](
mp︷ ︸︸ ︷

im1+...+mp−1+1...ik )

T,t

(1.394)

w. p. 1, where

J ′′ [ϕj1 . . .ϕj1]
(

m1︷ ︸︸ ︷
i1...im1

)

T,t , J ′′ [ϕj2 . . .ϕj2]
(

m2︷ ︸︸ ︷
im1+1...im2

)

T,t , . . . , J ′′ [ϕjp . . .ϕjp](
mp︷ ︸︸ ︷

im1+...+mp−1+1...ik )

T,t
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are defined by the right-hand side of the formula (5.1) from [110],m1+. . .+mp =
k, m1, . . . ,mp > 0, jq ̸= jd (q ̸= d, q, d = 1, . . . , p), i1, . . . , ik = 1, . . . ,m.

This actually means that in [110] an analogue of the formula (1.390) is
constructed for the special case j1 = . . . = jk. Moreover, the specified analogue
is based on the formula (5.1) [110] obtained using diagrams.

Comparing the formulas (1.390) and (1.394) (or (5.1) from [110]), it is easy
to understand that the transition from (1.390) to (1.394) is obvious. It is only
necessary to set the values of the corresponding indicators of the form 1A from
the formula (1.390) equal to 0 or 1. The reverse transition from the formula
(1.394) to the formula (1.390) is not obvious. Note that the formula (1.390)
(not the formula (1.394)) is convenient for the numerical integration of Itô
stochastic differential equations (see Chapter 5 of this book for details).

Let us turn to the comparison of Theorem 1.23 with another interesting
work [113] (2019). As it turned out, a version of Theorem 1.23 was obtained in
terms of Wick polynomials and for the case of vector valued random measures
in [113] (see Theorem 7.2, p. 69). However, much earlier the formula (1.390)
(Theorem 1.23) is obtained in our monograph [4] (2009) as part of the formula
(5.30) (see [4], p. 220). Moreover, particular cases of the formula (1.390) were
obtained even earlier in our works [1] (2006) and [3] (2007). More precisely,
partiular cases k = 1, . . . , 5 of the formula (1.390) were obtained in [1] (2006)
as parts of the formulas on the pages 243-244 and partiular cases k = 1, . . . , 7
of the formula (1.390) were obtained in [3] (2007) as parts of the formulas on
the pages 208-218.

We also note that we have found an explicit expression for the Wick poly-
nomial of degree k of the arguments ζ

(i1)
j1
, . . . , ζ

(ik)
jk

(see the formula (1.390)),
which is very convenient for the numerical simulation of iterated Itô stochastic
integrals (1.5) [53], [54]. Note that the representation of the Wick polynomial of

the arguments ζ
(i1)
j1
, . . . , ζ

(ik)
jk

in terms of the product of Hermite polynomials is
less convenient for the numerical simulation of iterated Itô stochastic integrals
(1.5). For example, the expression for J ′′[ϕj1ϕj2ϕj3ϕj4]

(i1i2i3i4)
T,t in terms of the

product of Hermite polynomials, even under the condition i1 = i2 = i3 = i4,
already contains 15 different expressions (see Sect. 1.10). At the same time, all
these 15 expressions are contained in one formula (1.390) provided that k = 4
and i1 = i2 = i3 = i4. It is very convenient, since in computer simulation using
the formula (1.390), in addition to modeling of random variables ζ

(i1)
j1
, . . . , ζ

(ik)
jk

,
it remains only to set the values of the corresponding indicators of the form 1A
from the formula (1.390) equal to 0 or 1.
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It should be noted that in [111] (Theorem 6.1) a diagram formula was ob-
tained for the product of two multiple Wiener stochastic integrals with respect
to vector valued random measures. The formula (1.372) can be derived from
the diagram formula [111]. Although the proof of the diagram formula [111] is
much more complicated than our proof of the formula (1.372).

To conclude this section, we say a few words about expansions (1.320) and
(1.321). The transition from the expansion (1.321) to the expansion (1.320) is
obvious. It is only necessary to set the values of the corresponding indicators
of the form 1A from the formula (1.321) equal to 0 or 1. The reverse transition
from the formula (1.320) to the formula (1.321) is also possible but not obvious.
However, Theorems 1.22 and 1.23 provide a transition from (1.320) to (1.321)
and vice versa. Note that the expansion (1.320) is interesting from the point
of view of studying the structure of the expansion of iterated Itô stochastic
integrals. On the orther hand, the expansion (1.321) is exceptionally convenient
for applications (see Chapter 5 of this book and [53], [54]).

1.15 Generalization of Theorem 1.11 to the Case of an

Arbitrary Complete Orthonormal System of Func-

tions in the Space L2([t, T ]) and ψ1(τ ), . . . , ψk(τ ) ∈
L2([t, T ])

Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]). Define the following function on
the hypercube [t, T ]k

K̄(t1, . . . , tk, s) = 1{tk<s}K(t1, . . . , tk),

where the function K(t1, . . . , tk) has the form (1.6), s ∈ (t, T ] (s is fixed), and
1A is the indicator of the set A.

Further, we have (see (1.6))

K̄(t1, . . . , tk, s) = 1{t1<...<tk<s}ψ1(t1) . . . ψk(tk) =

=


ψ1(t1) . . . ψk(tk), t1 < . . . < tk < s

0, otherwise

,

where K̄(t1, . . . , tk, s) ∈ L2([t, T ]
k), k ≥ 1, t1, . . . , tk ∈ [t, T ], and s ∈ (t, T ].
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Note that

J [ψ(k)]s,t =

s∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk =

=

T∫
t

1{tk<s}ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (1.395)

where s ∈ (t, T ] (s is fixed), i1, . . . , ik = 0, 1, . . . ,m.

Applying Theorem 1.16 to the iterated Itô stochastic integral (1.395), we
obtain the following generalization of Theorem 1.11 to the case of an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
. . . , ψk(τ) ∈ L2([t, T ]).

Theorem 1.24. Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, the following expansion

J [ψ(k)]
(i1...ik)
s,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1(s)

(
k∏
l=1

ζ
(il)
jl

+

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql

)

converging in the mean-square sense is valid, where [x] is an integer part of a
real number x,

Cjk...j1(s) =

∫
[t,T ]k

K̄(t1, . . . , tk, s)
k∏
l=1

ϕjl(tl)dt1 . . . dtk =

=

s∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient,
∏
∅

def
= 1,

∑
∅

def
= 0; another notations are the same as

in Theorem 1.2.
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Note that the estimates (1.251) and (1.253) will also be valid under the
conditions of Theorem 1.24.



Chapter 2

Expansions of Iterated Stratonovich
Stochastic Integrals Based on
Generalized Multiple and Iterated
Fourier Series

This chapter is devoted to the adaptation of Theorems 1.1, 1.16 for iterated
Stratonovich stochastic integrals. The case of continuously differentiable weight
functions (multiplicities 1 to 5) and weight functions identically equal to one
(multiplicities 6 to 8) is considered. In this case, we use a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in L2([t, T ]).
In addition, the case of continuous weight functions (multiplicities 1 and 2),
binomial weight functions (multiplicities 3 and 4) and weight functions identi-
cally equal to one (multiplicities 5 and 6) is studied. In this case, we use an
arbitrary complete orthonormal system of functions in L2([t, T ]). Recently (in
2024), the above adaptation has also been carried out for iterated Stratonovich
stochastic integrals of multiplicity k, k ∈ N (Theorems 2.59, 2.61) but under
one additional condition.

2.1 Expansions of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 2 Based on Theorem 1.1. The

case p1, p2 → ∞ and Smooth Weight Functions

2.1.1 Approach Based on Theorem 1.1 and Integration by Parts

Let (Ω,F,P) be a complete probability space and let f(t, ω)
def
= ft : [0, T ]×Ω →

R be the standard Wiener process defined on the probability space (Ω,F,P).

255
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Consider the family of σ-algebras {Ft, t ∈ [0, T ]} defined on the probability
space (Ω,F,P) and connected with the Wiener process ft in such a way that

1. Fs ⊂ Ft ⊂ F for s < t.

2. The Wiener process ft is Ft-measurable for all t ∈ [0, T ].

3. The process ft+∆− ft for all t ≥ 0, ∆ > 0 is independent with the events
of σ-algebra Ft.

Let M2([t, T ]) (t ≥ 0) be the class of random functions ξ(τ, ω)
def
= ξτ : [t, T ]×

Ω → R defined as in Sect. 1.1.2.

We introduce the class Qm([t, T ]) (t ≥ 0) of Itô processes ητ , τ ∈ [t, T ] of
the form

ητ = ηt +

τ∫
t

asds+

τ∫
t

bsdfs, (2.1)

where (aτ)
m , (bτ)

m ∈ M2([t, T ]) and lim
s→τ

M
{
|bs − bτ |4

}
= 0 for all τ ∈ [t, T ]. The

second integral on the right-hand side of (2.1) is the Itô stochastic integral (see
Sect. 1.1.2).

Let C2,1(R×[t, T ]) (t ≥ 0) be the space of functions F (x, τ) : R×[t, T ] → R
such that∣∣∣∣∂F∂x (x, τ)

∣∣∣∣ ≤ K,

∣∣∣∣∂2F∂x2 (x, τ)
∣∣∣∣ ≤ K,

∣∣∣∣∂F∂τ (x, τ)
∣∣∣∣ ≤ K,

∣∣∣∣ ∂2F∂τ∂x
(x, τ)

∣∣∣∣ ≤ K

for all x ∈ R and τ ∈ [t, T ], where constant K does not depend on x, τ.

Let τ
(N)
j , j = 0, 1, . . . , N be a partition of the interval [t, T ], t ≥ 0 such that

t = τ
(N)
0 < τ

(N)
1 < . . . < τ

(N)
N = T, max

0≤j≤N−1

∣∣∣τ (N)
j+1 − τ

(N)
j

∣∣∣→ 0 if N → ∞.

(2.2)

The mean-square limit

l.i.m
N→∞

N−1∑
j=0

F

(
1

2

(
η
τ
(N)
j

+ η
τ
(N)
j+1

)
, τ

(N)
j

)(
f
τ
(N)
j+1

− f
τ
(N)
j

)
def
=

∗∫
t

T

F (ητ , τ)dfτ (2.3)

is called [114] the Stratonovich stochastic integral of the process F (ητ , τ), τ ∈
[t, T ], where τ

(N)
j , j = 0, 1, . . . , N is a partition of the interval [t, T ] satisfying

the condition (2.2).

It is known [114] (also see [84]) that under proper conditions, the following
relation between Stratonovich and Itô stochastic integrals holds
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∗∫
t

T

F (ητ , τ)dfτ =

T∫
t

F (ητ , τ)dfτ +
1

2

T∫
t

∂F

∂x
(ητ , τ)bτdτ w. p. 1. (2.4)

If the Wiener processes in (2.1) and (2.3) are independent, then

∗∫
t

T

F (ητ , τ)dfτ =

T∫
t

F (ητ , τ)dfτ w. p. 1. (2.5)

A possible variant of conditions under which the formulas (2.4) and (2.5)
are correct, for example, consists of the conditions: ητ ∈ Q4([t, T ]), F (ητ , τ) ∈
M2([t, T ]), F (x, τ) ∈ C2,1(R× [t, T ]).

Note that if F (x, τ) = F1(x)F2(τ), then it suffices to require that F (x, τ) be
twice differentiable with respect to x (with bounded derivatives) and continuous
with respect to τ (instead of the condition F (x, τ) ∈ C2,1(R× [t, T ])).

In Sect. 2.1–2.17, in most cases, {ϕj(x)}∞j=0 is a complete orthonormal sys-
tems of Legendre polynomials or trigonometric functions in L2([t, T ]). There-
fore, we will pay attention on the following well known facts about these two
systems of functions [115].

Suppose that the function f(x) is bounded at the interval [t, T ]. Moreover,
its derivative f ′(x) is continuous function at the interval [t, T ] except may be
the finite number of points of the finite discontinuity. Then the Fourier series

∞∑
j=0

Cjϕj(x), Cj =

T∫
t

f(x)ϕj(x)dx

converges at any internal point x of the interval [t, T ] to the value
(f(x+ 0) + f(x− 0)) /2 and converges uniformly to f(x) on any closed inter-
val (of continuity of the function f(x)) lying inside [t, T ]. At the same time the
Fourier–Legendre series converges if x = t and x = T to f(t+ 0) and f(T − 0)
correspondently, and the trigonometric Fourier series converges if x = t and
x = T to (f(t+ 0) + f(T − 0)) /2 in the case of periodic continuation of the
function f(x).

In Sect. 2.1 we consider the case k = 2 of the following iterated Stratonovich
and Itô stochastic integrals

J∗[ψ(k)]T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (2.6)
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J [ψ(k)]T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (2.7)

where every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function at the

interval [t, T ], w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ , f

(i)
τ (i = 1, . . . ,m) are

independent standard Wiener processes.

Let us formulate and prove the following theorem on expansion of iterated
Stratonovich stochastic integrals of multiplicity 2.

Theorem 2.1 [8] (2011), [10]-[22], [33]. Suppose that {ϕj(x)}∞j=0 is a com-
plete orthonormal system of Legendre polynomials or trigonometric functions
in the space L2([t, T ]). At the same time ψ2(s) is a continuously differentiable
nonrandom function on [t, T ] and ψ1(s) is twice continuously differentiable non-
random function on [t, T ]. Then, for the iterated Stratonovich stochastic integral

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following expansion

J∗[ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

that converges in the mean-square sense is valid, where

Cj2j1 =

T∫
t

ψ2(s2)ϕj2(s2)

s2∫
t

ψ1(s1)ϕj1(s1)ds1ds2

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. In accordance to the standard relations between Stratonovich and
Itô stochastic integrals (see (2.4) and (2.5)) we have w. p. 1

J∗[ψ(2)]T,t = J [ψ(2)]T,t +
1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1, (2.8)
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where here and further 1A is the indicator of the set A.

From the other side according to (1.46), we have

J [ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
=

= l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2} lim
p1,p2→∞

min{p1,p2}∑
j1=0

Cj1j1. (2.9)

From (2.8) and (2.9) it follows that Theorem 2.1 will be proved if

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =
∞∑
j1=0

Cj1j1. (2.10)

Note that in this section and in Sect. 2.1.2 we present two different proofs
(under different conditions) of the existence of a limit on the right-hand side of
(2.10) for the polynomial and trigonometric cases.

Let us prove (2.10). Consider the function

K∗(t1, t2) = K(t1, t2) +
1

2
1{t1=t2}ψ1(t1)ψ2(t1), (2.11)

where t1, t2 ∈ [t, T ] and K(t1, t2) is defined by (1.6) for k = 2.

Let us expand the function K∗(t1, t2) defined by (2.11) using the variable
t1, when t2 is fixed, into the generalized Fourier series at the interval (t, T )

K∗(t1, t2) =
∞∑
j1=0

Cj1(t2)ϕj1(t1) (t1 ̸= t, T ), (2.12)

where

Cj1(t2) =

T∫
t

K∗(t1, t2)ϕj1(t1)dt1 = ψ2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1. (2.13)

The equality (2.12) is satisfied pointwise in each point of the interval (t, T )
with respect to the variable t1, when t2 ∈ [t, T ] is fixed, due to a piecewise
smoothness of the function K∗(t1, t2) with respect to the variable t1 ∈ [t, T ] (t2
is fixed).
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Note also that due to well known properties of the Fourier–Legendre series
and trigonometric Fourier series, the series (2.12) converges when t1 = t, T .

Obtaining (2.12) we also used the fact that the right-hand side of (2.12)
converges when t1 = t2 (point of a finite discontinuity of the function K(t1, t2))
to the value

1

2
(K(t2 − 0, t2) +K(t2 + 0, t2)) =

1

2
ψ1(t2)ψ2(t2) = K∗(t2, t2).

The function Cj1(t2) is a continuously differentiable one at the interval [t, T ].
Let us expand it into the generalized Fourier series at the interval (t, T )

Cj1(t2) =
∞∑
j2=0

Cj2j1ϕj2(t2) (t2 ̸= t, T ), (2.14)

where

Cj2j1 =

T∫
t

Cj1(t2)ϕj2(t2)dt2 =

T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2,

and the equality (2.14) is satisfied pointwise at any point of the interval (t, T )
(the right-hand side of (2.14) converges when t2 = t, T ).

Let us substitute (2.14) into (2.12)

K∗(t1, t2) =
∞∑
j1=0

∞∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2), (t1, t2) ∈ (t, T )2, (2.15)

where the series on the right-hand side of (2.15) converges at the boundary of
the square [t, T ]2.

It is easy to see that substituting t1 = t2 in (2.15), we obtain

1

2
ψ1(t1)ψ2(t1) =

∞∑
j1=0

∞∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t1). (2.16)

From (2.16) we formally have

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =

T∫
t

∞∑
j1=0

∞∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t1)dt1 =
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=
∞∑
j1=0

∞∑
j2=0

T∫
t

Cj2j1ϕj1(t1)ϕj2(t1)dt1 =

= lim
p1→∞

lim
p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1

T∫
t

ϕj1(t1)ϕj2(t1)dt1 =

= lim
p1→∞

lim
p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j11{j1=j2} = lim
p1→∞

lim
p2→∞

min{p1,p2}∑
j1=0

Cj1j1 =
∞∑
j1=0

Cj1j1.

(2.17)

Let us explain the second step in (2.17) (the fourth step in (2.17) follows
from the orthonormality of functions ϕj(s) at the interval [t, T ]).

We have ∣∣∣∣∣∣
T∫
t

∞∑
j1=0

Cj1(t1)ϕj1(t1)dt1 −
p1∑
j1=0

T∫
t

Cj1(t1)ϕj1(t1)dt1

∣∣∣∣∣∣ ≤
≤

T∫
t

|ψ2(t1)Gp1(t1)| dt1 ≤ C

T∫
t

|Gp1(t1)| dt1, (2.18)

where C <∞ and

∞∑
j=p+1

τ∫
t

ψ1(s)ϕj(s)dsϕj(τ)
def
= Gp(τ).

Let us consider the case of Legendre polynomials. Then

|Gp1(t1)| =
1

2

∣∣∣∣∣∣∣
∞∑

j1=p1+1

(2j1 + 1)

z(t1)∫
−1

ψ1(u(y))Pj1(y)dyPj1(z(t1))

∣∣∣∣∣∣∣ , (2.19)

where

u(y) =
T − t

2
y +

T + t

2
, z(s) =

(
s− T + t

2

)
2

T − t
, (2.20)

and Pj(s) is the Legendre polynomial.

From (2.19) and the well known formula

dPj+1

dx
(x)− dPj−1

dx
(x) = (2j + 1)Pj(x), j = 1, 2, . . . (2.21)
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we obtain

|Gp1(t1)| =
1

2

∣∣∣∣∣
∞∑

j1=p1+1

{
(Pj1+1(z(t1))− Pj1−1(z(t1)))ψ1(t1)−

−T − t

2

z(t1)∫
−1

(Pj1+1(y)− Pj1−1(y))ψ
′
1(u(y))dy

}
Pj1(z(t1))

∣∣∣∣∣ ≤
≤ C0

∣∣∣∣∣
∞∑

j1=p1+1

(Pj1+1(z(t1))Pj1(z(t1))− Pj1−1(z(t1))Pj1(z(t1)))

∣∣∣∣∣+
+
T − t

4

∣∣∣∣∣
∞∑

j1=p1+1

{
ψ′
1(t1)

(
1

2j1 + 3
(Pj1+2(z(t1))− Pj1(z(t1)))−

− 1

2j1 − 1
(Pj1(z(t1))− Pj1−2(z(t1)))

)
−

−T − t

2

z(t1)∫
−1

(
1

2j1 + 3
(Pj1+2(y)− Pj1(y))−

− 1

2j1 − 1
(Pj1(y)− Pj1−2(y))

)
ψ′′
1(u(y))dy

}
Pj1(z(t1))

∣∣∣∣∣, (2.22)

where C0 is a constant, ψ′
1 and ψ′′

1 are derivatives of the function ψ1(s) with
respect to the variable u(y).

From (2.22) and the well known estimate for Legendre polynomials [115]

|Pn(y)| <
K√

n+ 1(1− y2)1/4
, y ∈ (−1, 1), n ∈ N, (2.23)

where constant K does not depend on y and n, we have

|Gp1(t1)| <

< C0

∣∣∣∣∣ limn→∞

n∑
j1=p1+1

(Pj1+1(z(t1))Pj1(z(t1))− Pj1−1(z(t1))Pj1(z(t1)))

∣∣∣∣∣+
+C1

∞∑
j1=p1+1

1

j21

 1

(1− (z(t1))2)
1/2

+

z(t1)∫
−1

dy

(1− y2)1/4
1

(1− (z(t1))2)
1/4

 <
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< C0

∣∣∣∣∣ limn→∞
(Pn+1(z(t1))Pn(z(t1))− Pp1(z(t1))Pp1+1(z(t1)))

∣∣∣∣∣+
+C1

∞∑
j1=p1+1

1

j21

(
1

(1− (z(t1))2)
1/2

+ C2
1

(1− (z(t1))2)
1/4

)
<

< C3 lim
n→∞

(
1

n
+

1

p1

)
1

(1− (z(t1))2)
1/2

+

+C1

∞∑
j1=p1+1

1

j21

(
1

(1− (z(t1))2)
1/2

+ C2
1

(1− (z(t1))2)
1/4

)
≤

≤ C4

((
1

p1
+

∞∑
j1=p1+1

1

j21

)
1

(1− (z(t1))2)
1/2

+
∞∑

j1=p1+1

1

j21

1

(1− (z(t1))2)
1/4

)
≤

≤ K

p1

(
1

(1− (z(t1))2)
1/2

+
1

(1− (z(t1))2)
1/4

)
, (2.24)

where C0, C1, . . . , C4, K are constants, t1 ∈ (t, T ), and

∞∑
j1=p1+1

1

j21
≤

∞∫
p1

dx

x2
=

1

p1
. (2.25)

From (2.18) and (2.24) we get∣∣∣∣∣∣
T∫
t

∞∑
j1=0

Cj1(t1)ϕj1(t1)dt1 −
p1∑
j1=0

T∫
t

Cj1(t1)ϕj1(t1)dt1

∣∣∣∣∣∣ <
<
K

p1

 1∫
−1

dy

(1− y2)1/2
+

1∫
−1

dy

(1− y2)1/4

 → 0

if p1 → ∞. So, we obtain

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =

T∫
t

∞∑
j1=0

Cj1(t1)ϕj1(t1)dt1 =

=
∞∑
j1=0

T∫
t

Cj1(t1)ϕj1(t1)dt1 =
∞∑
j1=0

T∫
t

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1 =
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=
∞∑
j1=0

∞∑
j2=0

T∫
t

Cj2j1ϕj2(t1)ϕj1(t1)dt1 =
∞∑
j1=0

Cj1j1. (2.26)

In (2.26) we used the fact that the Fourier–Legendre series

∞∑
j2=0

Cj2j1ϕj2(t1)

of the smooth function Cj1(t1) converges uniformly to this function at the in-
terval [t + ε, T − ε] for any ε > 0, converges to this function at the any point
t1 ∈ (t, T ), and converges to Cj1(t+ 0) and Cj1(T − 0) when t1 = t, T.

More precisely, we have

T∫
t

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1 =

T−ε∫
t+ε

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1 + Aε +Bε =

=
∞∑
j2=0

Cj2j1

T−ε∫
t+ε

ϕj2(t1)ϕj1(t1)dt1 + Aε +Bε =

=
∞∑
j2=0

Cj2j1

 T∫
t

−
t+ε∫
t

−
T∫

T−ε

ϕj2(t1)ϕj1(t1)dt1 + Aε +Bε =

=
∞∑
j2=0

Cj2j1

(
1{j1=j2} − ε

(
ϕj2(λ)ϕj1(λ) + ϕj2(θ)ϕj1(θ)

))
+ Aε +Bε =

= Cj1j1 − ε

( ∞∑
j2=0

Cj2j1ϕj2(λ)ϕj1(λ) +
∞∑
j2=0

Cj2j1ϕj2(θ)ϕj1(θ)

)
+ Aε +Bε, (2.27)

where θ ∈ [t, t+ ε], λ ∈ [T − ε, T ], and

Aε =

t+ε∫
t

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1, Bε =

T∫
T−ε

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1.

In obtaining (2.27) we used the theorem on the mean value for the Riemann
integral and orthonormality of the functions ϕj(x) for j = 0, 1, 2 . . .
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Further, we have |Aε|+ |Bε| ≤ εC, where C <∞ is a constant. Performing
the passage to the limit lim

ε→+0
in the equality (2.27), we get

T∫
t

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1 = Cj1j1.

Then (see (2.26))

∞∑
j1=0

T∫
t

∞∑
j2=0

Cj2j1ϕj2(t1)ϕj1(t1)dt1 =
∞∑
j1=0

Cj1j1

and the relation (2.10) is proved for the case of Legendre polynomials.

Let us consider the trigonometric case and suppose that {ϕj(x)}∞j=0 is a
complete orthonormal system of trigonometric functions in L2([t, T ]).

Denote

Sp1
def
=

∣∣∣∣∣∣
T∫
t

∞∑
j1=0

Cj1(t1)ϕj1(t1)dt1 −
p1∑
j1=0

T∫
t

Cj1(t1)ϕj1(t1)dt1

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
T∫
t

∞∑
j1=p1+1

ψ2(t1)ϕj1(t1)

t1∫
t

ψ1(θ)ϕj1(θ)dθdt1

∣∣∣∣∣∣ .
We have

S2p1 =

∣∣∣∣∣∣
T∫
t

∞∑
j1=0

Cj1(t1)ϕj1(t1)dt1 −
2p1∑
j1=0

T∫
t

Cj1(t1)ϕj1(t1)dt1

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣
T∫
t

∞∑
j1=2p1+1

ψ2(t1)ϕj1(t1)

t1∫
t

ψ1(θ)ϕj1(θ)dθdt1

∣∣∣∣∣∣ =
=

2

T − t

∣∣∣∣∣∣
T∫
t

ψ2(t1)
∞∑

j1=p1+1

 t1∫
t

ψ1(s)sin
2πj1(s− t)

T − t
ds sin

2πj1(t1 − t)

T − t
+

+

t1∫
t

ψ1(s)cos
2πj1(s− t)

T − t
ds cos

2πj1(t1 − t)

T − t

 dt1

∣∣∣∣∣∣ =
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=
1

π

∣∣∣∣∣∣
T∫
t

(
ψ1(t)ψ2(t1)

∞∑
j1=p1+1

1

j1
sin

2πj1(t1 − t)

T − t
+

+
T − t

2π
ψ2(t1)

∞∑
j1=p1+1

1

j21

(
ψ′
1(t1)− ψ′

1(t)cos
2πj1(t1 − t)

T − t
−

−
t1∫
t

sin
2πj1(s− t)

T − t
ψ′′
1(s)ds sin

2πj1(t1 − t)

T − t
−

−
t1∫
t

cos
2πj1(s− t)

T − t
ψ′′
1(s)ds cos

2πj1(t1 − t)

T − t

))
dt1

∣∣∣∣∣∣ ≤
≤ C1

∣∣∣∣∣∣
T∫
t

ψ2(t1)
∞∑

j1=p1+1

1

j1
sin

2πj1(t1 − t)

T − t
dt1

∣∣∣∣∣∣+ C2

p1
=

= C1

∣∣∣∣∣∣
∞∑

j1=p1+1

1

j1

T∫
t

ψ2(t1)sin
2πj1(t1 − t)

T − t
dt1

∣∣∣∣∣∣+ C2

p1
, (2.28)

where constants C1, C2 do not depend on p1.

Here we used the fact that the functional series

∞∑
j1=1

1

j1
sin

2πj1(t1 − t)

T − t
(2.29)

converges uniformly at the interval [t+ ε, T − ε] for any ε > 0 due to Dirichlet–
Abel Theorem, and converges to zero at the points t and T . Moreover, the series
(2.29) (with accuracy to a linear transformation) is the trigonometric Fourier
series of the smooth function K(t1) = t1 − t, t1 ∈ [t, T ]. Thus, (2.29) converges
to the smooth function at any point t1 ∈ (t, T ).

From (2.28) we obtain

S2p1 ≤ C3

∣∣∣∣∣∣
∞∑

j1=p1+1

1

j21

(
ψ2(T )− ψ2(t)−

T∫
t

cos
2πj1(s− t)

T − t
ψ′
2(s)ds

)∣∣∣∣∣∣+ C2

p1
≤ C4

p1
,

(2.30)

where constants C2, C3, C4 do not depend on p1.
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Further,

S2p1−1 =

∣∣∣∣∣∣
T∫
t

∞∑
j1=2p1

ψ2(t1)ϕj1(t1)

t1∫
t

ψ1(θ)ϕj1(θ)dθdt1

∣∣∣∣∣∣ =
=

∣∣∣∣∣∣S2p1 +

T∫
t

ψ2(t1)ϕ2p1(t1)

t1∫
t

ψ1(θ)ϕ2p1(θ)dθdt1

∣∣∣∣∣∣ ≤
≤ S2p1 +

2

T − t

∣∣∣∣∣∣
T∫
t

ψ2(t1)cos
2πp1(t1 − t)

T − t

t1∫
t

ψ1(θ)cos
2πp1(θ − t)

T − t
dθdt1

∣∣∣∣∣∣ . (2.31)

Moreover,

T∫
t

ψ2(t1)cos
2πp1(t1 − t)

T − t

t1∫
t

ψ1(θ)cos
2πp1(θ − t)

T − t
dθdt1 =

=
T − t

2πp1

T∫
t

ψ2(t1)cos
2πp1(t1 − t)

T − t

(
ψ1(t1)sin

2πp1(t1 − t)

T − t
−

−
T∫
t

ψ′
1(θ)sin

2πp1(θ − t)

T − t
dθ

)
dt1. (2.32)

The relations (2.30)–(2.32) imply that

S2p1−1 ≤
C5

p1
, (2.33)

where constant C5 is independent of p1.

From (2.30) and (2.33) we obtain

Sp1 =

∣∣∣∣∣∣
T∫
t

∞∑
j1=p1+1

ψ2(t1)ϕj1(t1)

t1∫
t

ψ1(θ)ϕj1(θ)dθdt1

∣∣∣∣∣∣ ≤ K

p1
→ 0 (2.34)

if p1 → ∞, where constant K does not depend on p1 (p1 ∈ N).

Further steps are similar to the proof of (2.10) for the case of Legendre
polynomials. Theorem 2.1 is proved.

Note that the estimate (2.34) will be used further.
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2.1.2 Approach Based on Theorem 1.1 and Double Fourier–Legen-
dre Series Summarized by Pringsheim Method

In Sect. 2.1.1 we considered the proof of Theorem 2.1 based on Theorem 1.1
and double integration by parts (this procedure leads to the requirement of
double continuous differentiability of the function ψ1(τ) at the interval [t, T ]).
In this section, we formulate and prove an analogue of Theorem 2.1 but under
the weakened conditions: the functions ψ1(τ), ψ2(τ) only one time continuously
differentiable at the interval [t, T ]. At that we will use the double Fourier series
summarized by Pringsheim method.

Theorem 2.2 [13]-[17], [28], [47]. Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). Moreover, ψ1(s), ψ2(s) are continuously differentiable functions
on [t, T ]. Then, for the iterated Stratonovich stochastic integral

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following expansion

J∗[ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

(2.35)

that converges in the mean-square sense is valid, where

Cj2j1 =

T∫
t

ψ2(s2)ϕj2(s2)

s2∫
t

ψ1(s1)ϕj1(s1)ds1ds2 (2.36)

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. Theorem 2.2 will be proved if we prove the equality (see the proof
of Theorem 2.1)

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =
∞∑
j1=0

Cj1j1, (2.37)
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where Cj1j1 is defined by the formula (1.8) for k = 2 and j1 = j2. At that
{ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials or trigo-
nometric functions in the space L2([t, T ]).

Firstly, consider the sufficient conditions of convergence of double Fourier–
Legendre series summarized by Pringsheim method.

Let Pj(x) (j = 0, 1, 2, . . .) be the Legendre polynomial. Consider the func-
tion f(x, y) defined for (x, y) ∈ [−1, 1]2. Furthermore, consider the double
Fourier–Legendre series summarized by Pringsheim method and correspond-
ing to the function f(x, y)

lim
n,m→∞

n∑
j=0

m∑
i=0

1

2

√
(2j + 1)(2i+ 1)C∗

ijPi(x)Pj(y)
def
=

def
=

∞∑
i,j=0

1

2

√
(2j + 1)(2i+ 1)C∗

ijPi(x)Pj(y), (2.38)

where

C∗
ij =

1

2

√
(2j + 1)(2i+ 1)

∫
[−1,1]2

f(x, y)Pi(x)Pj(y)dxdy. (2.39)

Consider the generalization for the case of two variables [120] of the theorem
on equiconvergence for the Fourier–Legendre series [121].

Proposition 2.1 [120]. Let f(x, y) ∈ L2([−1, 1]2) and the function

f(x, y)
(
1− x2

)−1/4 (
1− y2

)−1/4

is integrable on [−1, 1]2. Moreover, let

|f(x, y)− f(u, v)| ≤ G(y)|x− u|+H(x)|y − v|,

where G(y), H(x) are bounded functions on [−1, 1]2. Then for all (x, y) ∈
(−1, 1)2 the following equality is satisfied

lim
n,m→∞

(
n∑
j=0

m∑
i=0

1

2

√
(2j + 1)(2i+ 1)C∗

ijPi(x)Pj(y)−

−(1− x2)−1/4(1− y2)−1/4Snm(arccosx, arccos y, F )

)
= 0. (2.40)
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At that, the convergence in (2.40) is uniform on the rectangle

[−1 + ε, 1− ε]× [−1 + δ, 1− δ] for any ε, δ > 0,

Snm(θ, φ, F ) is a partial sum of the double trigonometric Fourier series of the
auxiliary function

F (θ, φ) =
√

|sinθ|
√

|sinφ|f(cosθ, cosφ), θ, φ ∈ [0, π],

and the Fourier coefficient C∗
ij is defined by (2.39).

Proposition 2.1 implies that the following equality

lim
n,m→∞

(
n∑
j=0

m∑
i=0

1

2

√
(2j + 1)(2i+ 1)C∗

ijPi(x)Pj(y)− f(x, y)

)
= 0 (2.41)

is fulfilled for all (x, y) ∈ (−1, 1)2, and convergence in (2.41) is uniform on the
rectangle

[−1 + ε, 1− ε]× [−1 + δ, 1− δ] for any ε, δ > 0

if the corresponding conditions of convergence of the double trigonometric
Fourier series of the auxiliary function

g(x, y) = f(x, y)
(
1− x2

)1/4 (
1− y2

)1/4
(2.42)

are satisfied.

Note also that Proposition 2.1 does not imply any conclusions on the be-
havior of the double Fourier–Legendre series on the boundary of the square
[−1, 1]2.

For each δ > 0 let us call the exact upper edge of difference |f(t′)− f(t′′)|
in the set of all points t′, t′′ which belong to the domain D as the module of
continuity of the function f(t) (t = (t1, . . . , tk)) in the k-dimentional domain
D (k ≥ 1) if the distance between t′, t′′ satisfies the condition ρ (t′, t′′) < δ.

We will say that the function of k (k ≥ 1) variables f(t) (t = (t1, . . . , tk))
belongs to the Hölder class with the parameter α ∈ (0, 1] (f(t) ∈ Cα(D)) in the
domain D if the module of continuity of the function f(t) (t = (t1, . . . , tk)) in
the domain D has orders o(δα) (α ∈ (0, 1)) and O(δ) (α = 1).

In 1967, Zhizhiashvili L.V. proved that the rectangular sums of multiple
trigonometric Fourier series of the function of k variables in the hypercube
[t, T ]k converge uniformly to this function in the hypercube [t, T ]k if the function
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belongs to Cα([t, T ]k), α > 0 (definition of the Hölder class with any parameter
α > 0 can be found in the well known mathematical analysis tutorials [122]).

More precisely, the following statement is correct.

Proposition 2.2 [122]. If the function f(x1, . . . , xn) is periodic with period
2π with respect to each variable and belongs in Rn to the Hölder class Cα(Rn)
for any α > 0, then the rectangular partial sums of multiple trigonometric
Fourier series of the function f(x1, . . . , xn) converge to this function uniformly
in Rn.

Let us back to the proof of Theorem 2.2 and consider the following Lemma.

Lemma 2.1. Let the function f(x, y) satisfies to the following condition

|f(x, y)− f(x1, y1)| ≤ C1|x− x1|+ C2|y − y1|,

where C1, C2 < ∞ and (x, y), (x1, y1) ∈ [−1, 1]2. Then the following inequality
is fulfilled

|g(x, y)− g(x1, y1)| ≤ Kρ1/4, (2.43)

where g(x, y) in defined by (2.42),

ρ =
√
(x− x1)2 + (y − y1)2,

(x, y) and (x1, y1) ∈ [−1, 1]2, K <∞.

Proof. First, we assume that x ̸= x1, y ̸= y1. In this case we have

|g(x, y)− g(x1, y1)| =

=
∣∣∣(1− x2

)1/4 (
1− y2

)1/4
(f(x, y)− f(x1, y1))+

+f(x1, y1)
((

1− x2
)1/4 (

1− y2
)1/4 − (1− x21

)1/4 (
1− y21

)1/4)∣∣∣ ≤
≤ C1 |x− x1|+ C2 |y − y1|+

+C3

∣∣∣(1− x2
)1/4 (

1− y2
)1/4 − (1− x21

)1/4 (
1− y21

)1/4∣∣∣ , (2.44)

where C3 <∞.

Moreover,∣∣∣(1− x2
)1/4 (

1− y2
)1/4 − (1− x21

)1/4 (
1− y21

)1/4∣∣∣ =
=
∣∣∣(1− x2

)1/4 ((
1− y2

)1/4 − (1− y21
)1/4)

+
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+
(
1− y21

)1/4 ((
1− x2

)1/4 − (1− x21
)1/4)∣∣∣ ≤

≤
∣∣∣(1− y2

)1/4 − (1− y21
)1/4∣∣∣+ ∣∣∣(1− x2

)1/4 − (1− x21
)1/4∣∣∣ , (2.45)∣∣∣(1− x2

)1/4 − (1− x21
)1/4∣∣∣ =

=
∣∣∣((1− x)1/4 − (1− x1)

1/4
)
(1 + x)1/4+

+(1− x1)
1/4
(
(1 + x)1/4 − (1 + x1)

1/4
)∣∣∣ ≤

≤ K1

(∣∣∣(1− x)1/4 − (1− x1)
1/4
∣∣∣+ ∣∣∣(1 + x)1/4 − (1 + x1)

1/4
∣∣∣) , (2.46)

where K1 <∞.

It is not difficult to see that∣∣∣(1± x)1/4 − (1± x1)
1/4
∣∣∣ =

=
|(1± x)− (1± x1)|(

(1± x)1/2 + (1± x1)1/2
) (

(1± x)1/4 + (1± x1)1/4
) =

= |x1 − x|1/4 |x1 − x|1/2

(1± x)1/2 + (1± x1)1/2
· |x1 − x|1/4

(1± x)1/4 + (1± x1)1/4
≤

≤ |x1 − x|1/4. (2.47)

The last inequality follows from the obvious inequalities

|x1 − x|1/2

(1± x)1/2 + (1± x1)1/2
≤ 1,

|x1 − x|1/4

(1± x)1/4 + (1± x1)1/4
≤ 1.

From (2.44)–(2.47) we obtain

|g(x, y)− g(x1, y1)| ≤

≤ C1|x− x1|+ C2|y − y1|+ C4

(
|x1 − x|1/4 + |y1 − y|1/4

)
≤

≤ C5ρ+ C6ρ
1/4 ≤ Kρ1/4,

where C5, C6, K <∞.
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The cases x = x1, y ̸= y1 and x ̸= x1, y = y1 can be considered analo-
gously to the case x ̸= x1, y ̸= y1. At that, the consideration begins from the
inequalities

|g(x, y)− g(x1, y1)| ≤ K2

∣∣∣(1− y2
)1/4

f(x, y)−
(
1− y21

)1/4
f(x1, y1)

∣∣∣
(x = x1, y ̸= y1) and

|g(x, y)− g(x1, y1)| ≤ K2

∣∣∣(1− x2
)1/4

f(x, y)−
(
1− x21

)1/4
f(x1, y1)

∣∣∣
(x ̸= x1, y = y1), where K2 <∞. Lemma 2.1 is proved.

Lemma 2.1 and Proposition 2.2 imply that rectangular sums of double
trigonometric Fourier series of the function g(x, y) converge uniformly to the
function g(x, y) in the square [−1, 1]2. This means that the equality (2.41)
holds.

Consider the auxiliary function

K ′(t1, t2) =


ψ2(t1)ψ1(t2), t1 ≥ t2

ψ1(t1)ψ2(t2), t1 ≤ t2

, t1, t2 ∈ [t, T ] (2.48)

and prove that

|K ′(t1, t2)−K ′(t∗1, t
∗
2)| ≤ L (|t1 − t∗1|+ |t2 − t∗2|) , (2.49)

where L <∞ and (t1, t2), (t
∗
1, t

∗
2) ∈ [t, T ]2.

By the Lagrange formula for the functions ψ1(t
∗
1), ψ2(t

∗
1) at the interval

[min {t1, t∗1} ,max {t1, t∗1}]

and for the functions ψ1(t
∗
2), ψ2(t

∗
2) at the interval

[min {t2, t∗2} ,max {t2, t∗2}]

we obtain

|K ′(t1, t2)−K ′(t∗1, t
∗
2)| ≤

≤

∣∣∣∣∣∣∣

ψ2(t1)ψ1(t2), t1 ≥ t2

ψ1(t1)ψ2(t2), t1 ≤ t2

−


ψ2(t1)ψ1(t2), t

∗
1 ≥ t∗2

ψ1(t1)ψ2(t2), t∗1 ≤ t∗2

∣∣∣∣∣∣∣+
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+L1 |t1 − t∗1|+ L2 |t2 − t∗2| , L1, L2 <∞. (2.50)

We have 
ψ2(t1)ψ1(t2), t1 ≥ t2

ψ1(t1)ψ2(t2), t1 ≤ t2

−


ψ2(t1)ψ1(t2), t∗1 ≥ t∗2

ψ1(t1)ψ2(t2), t∗1 ≤ t∗2

=

=



0, t1 ≥ t2, t
∗
1 ≥ t∗2 or t1 ≤ t2, t

∗
1 ≤ t∗2

ψ2(t1)ψ1(t2)− ψ1(t1)ψ2(t2), t1 ≥ t2, t
∗
1 ≤ t∗2

ψ1(t1)ψ2(t2)− ψ2(t1)ψ1(t2), t1 ≤ t2, t
∗
1 ≥ t∗2

. (2.51)

By Lagrange formula for the functions ψ1(t2), ψ2(t2) at the interval

[min{t1, t2},max{t1, t2}]

we obtain the estimate∣∣∣∣∣∣∣

ψ2(t1)ψ1(t2), t1 ≥ t2

ψ1(t1)ψ2(t2), t1 ≤ t2

−


ψ2(t1)ψ1(t2), t∗1 ≥ t∗2

ψ1(t1)ψ2(t2), t∗1 ≤ t∗2

∣∣∣∣∣∣∣ ≤

≤ L3|t2 − t1|


0, t1 ≥ t2, t

∗
1 ≥ t∗2 or t1 ≤ t2, t

∗
1 ≤ t∗2

1, t1 ≤ t2, t
∗
1 ≥ t∗2 or t1 ≥ t2, t

∗
1 ≤ t∗2

, (2.52)

where L3 <∞.

Let us show that if t1 ≤ t2, t
∗
1 ≥ t∗2 or t1 ≥ t2, t

∗
1 ≤ t∗2, then the following

inequality is satisfied

|t2 − t1| ≤ |t∗1 − t1|+ |t∗2 − t2|. (2.53)

First, consider the case t1 ≥ t2, t
∗
1 ≤ t∗2. For this case

t2 + (t∗1 − t∗2) ≤ t2 ≤ t1.

Then
(t∗1 − t1)− (t∗2 − t2) ≤ t2 − t1 ≤ 0

and (2.53) is satisfied.
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For the case t1 ≤ t2, t
∗
1 ≥ t∗2 we obtain

t1 + (t∗2 − t∗1) ≤ t1 ≤ t2.

Then

(t1 − t∗1)− (t2 − t∗2) ≤ t1 − t2 ≤ 0

and also (2.53) is satisfied.

From (2.52) and (2.53) we have∣∣∣∣∣∣∣

ψ2(t1)ψ1(t2), t1 ≥ t2

ψ1(t1)ψ2(t2), t1 ≤ t2

−


ψ2(t1)ψ1(t2), t∗1 ≥ t∗2

ψ1(t1)ψ2(t2), t∗1 ≤ t∗2

∣∣∣∣∣∣∣ ≤

≤ L3 (|t∗1 − t1|+ |t∗2 − t2|)


0, t1 ≥ t2, t

∗
1 ≥ t∗2 or t1 ≤ t2, t

∗
1 ≤ t∗2

1, t1 ≤ t2, t
∗
1 ≥ t∗2 or t1 ≥ t2, t

∗
1 ≤ t∗2

≤

≤ L3 (|t∗1 − t1|+ |t∗2 − t2|)


1, t1 ≥ t2, t

∗
1 ≥ t∗2 or t1 ≤ t2, t

∗
1 ≤ t∗2

1, t1 ≤ t2, t
∗
1 ≥ t∗2 or t1 ≥ t2, t

∗
1 ≤ t∗2

=

= L3 (|t∗1 − t1|+ |t∗2 − t2|) . (2.54)

From (2.50), (2.54) we obtain (2.49). Let

t1 =
T − t

2
x+

T + t

2
, t2 =

T − t

2
y +

T + t

2
,

where x, y ∈ [−1, 1]. Then

K ′(t1, t2) ≡ K ′′(x, y) =


ψ2 (h(x))ψ1 (h(y)) , x ≥ y

ψ1 (h(x))ψ2 (h(y)) , x ≤ y

,

where x, y ∈ [−1, 1] and

h(x) =
T − t

2
x+

T + t

2
. (2.55)
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The inequality (2.49) can be rewritten in the form

|K ′′(x, y)−K ′′(x∗, y∗)| ≤ L∗ (|x− x∗|+ |y − y∗|) , (2.56)

where L∗ <∞ and (x, y), (x∗, y∗) ∈ [−1, 1]2.

Thus, the function K ′′(x, y) satisfies the conditions of Lemma 2.1. Hence,
for the function

K ′′(x, y)
(
1− x2

)1/4 (
1− y2

)1/4
the inequality (2.43) is correct.

Due to the continuous differentiability of the functions ψ1 (h(x)) and
ψ2 (h(x)) at the interval [−1, 1] we have K ′′(x, y) ∈ L2([−1, 1]2). In addition

∫
[−1,1]2

K ′′(x, y)dxdy

(1− x2)1/4(1− y2)1/4
≤ C

 1∫
−1

1

(1− x2)1/4

x∫
−1

1

(1− y2)1/4
dydx+

+

1∫
−1

1

(1− x2)1/4

1∫
x

1

(1− y2)1/4
dydx

 <∞, C <∞.

Thus, the conditions of Proposition 2.1 are fulfilled for the functionK ′′(x, y).
Note that the mentioned properties of the function K ′′(x, y), x, y ∈ [−1, 1] also
correct for the function K ′(t1, t2), t1, t2 ∈ [t, T ].

Remark 2.1. On the basis of (2.49) it can be argued that the function
K ′(t1, t2) belongs to the Hölder class with parameter 1 in [t, T ]2. Hence by Propo-
sition 2.2 this function can be expanded into the uniformly convergent double
trigonometric Fourier series in the square [t, T ]2, which summarized by Pring-
sheim method. However, the expansions of iterated stochastic integrals obtained
by using the system of Legendre polynomials are essentially simpler than their
analogues obtained by using the trigonometric system of functions (see Chapter
5 for details).

Let us expand the function K ′(t1, t2) into a multiple (double) Fourier–
Legendre series or trigonometric Fourier series in the square [t, T ]2. This series
is summable by the method of rectangular sums (Pringsheim method), i.e.

K ′(t1, t2) = lim
n1,n2→∞

n1∑
j1=0

n2∑
j2=0

T∫
t

T∫
t

K ′(t1, t2)ϕj1(t1)ϕj2(t2)dt1dt2 · ϕj1(t1)ϕj2(t2) =
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= lim
n1,n2→∞

n1∑
j1=0

n2∑
j2=0

 T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2+

+

T∫
t

ψ1(t2)ϕj2(t2)

T∫
t2

ψ2(t1)ϕj1(t1)dt1

 dt2ϕj1(t1)ϕj2(t2) =

= lim
n1,n2→∞

n1∑
j1=0

n2∑
j2=0

(Cj2j1 + Cj1j2)ϕj1(t1)ϕj2(t2), (2.57)

where (t1, t2) ∈ (t, T )2. At that, the convergence of the series (2.57) is uniform
on the rectangle

[t+ε, T −ε]× [t+δ, T −δ] for any ε, δ > 0 (in particular, we can choose ε = δ).

In addition, the series (2.57) converges to K ′(t1, t2) at any inner point of
the square [t, T ]2.

Note that Proposition 2.1 does not answer the question of convergence of
the series (2.57) on the boundary of the square [t, T ]2.

In obtaining (2.57) we replaced the order of integration in the second iter-
ated integral.

Let us substitute t1 = t2 in (2.57). After that, let us rewrite the limit on
the right-hand side of (2.57) as two limits. Let us replace j1 with j2, j2 with j1,
n1 with n2, and n2 with n1 in the second limit. Thus, we get

lim
n1,n2→∞

n1∑
j1=0

n2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t1) =
1

2
ψ1(t1)ψ2(t1), t1 ∈ (t, T ). (2.58)

According to the above reasoning, the convergence in (2.58) is uniform on
the interval [t+ε, T−ε] for any ε > 0. Additionally, (2.58) holds at each interior
point of the interval [t, T ].

Let us fix ε > 0 and integrate the equality (2.58) at the interval [t+ε, T−ε].
Due to the uniform convergence of the series (2.58) we can swap the series and
the integral

lim
n1,n2→∞

n1∑
j1=0

n2∑
j2=0

Cj2j1

T−ε∫
t+ε

ϕj1(t1)ϕj2(t1)dt1 =
1

2

T−ε∫
t+ε

ψ1(t1)ψ2(t1)dt1. (2.59)
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Lemma 2.2. Under the conditions of Theorem 2.2 the following limit

lim
n→∞

n∑
j1=0

Cj1j1

exists and is finite, where Cj1j1 is defined by (2.36) if j1 = j2, i.e.

Cj1j1 =

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2.

Lemma 2.2 has already been proved in Sect. 2.1.1 under stronger conditions.
Further, in this section, another proof of Lemma 2.2 is given. This will allow
us to obtain useful estimates that will be used later in Chapter 2.

Applying the equality (2.59) for n1 = n2 = n and Lemma 2.2, we get

1

2

T−ε∫
t+ε

ψ1(t1)ψ2(t1)dt1 = lim
n→∞

n∑
j1,j2=0

Cj2j1

T−ε∫
t+ε

ϕj1(t1)ϕj2(t1)dt1 =

= lim
n→∞

n∑
j1,j2=0

Cj2j1

 T∫
t

ϕj1(t1)ϕj2(t1)dt1 −
t+ε∫
t

ϕj1(t1)ϕj2(t1)dt1−

−
T∫

T−ε

ϕj1(t1)ϕj2(t1)dt1

 =

= lim
n→∞

n∑
j1,j2=0

Cj2j1

(
1{j1=j2} −

(
ϕj1(θ)ϕj2(θ) + ϕj1(λ)ϕj2(λ)

)
ε

)
=

= lim
n→∞

n∑
j1=0

Cj1j1 − ε lim
n→∞

n∑
j1,j2=0

Cj2j1

(
ϕj1(θ)ϕj2(θ) + ϕj1(λ)ϕj2(λ)

)
, (2.60)

where θ ∈ [t, t+ ε], λ ∈ [T − ε, T ]. In obtaining (2.60) we used the theorem on
the mean value for the Riemann integral and orthonormality of the functions
ϕj(x) for j = 0, 1, 2 . . .

Applying (2.60), we obtain

ε lim
n→∞

n∑
j1,j2=0

Cj2j1

(
ϕj1(θ)ϕj2(θ) + ϕj1(λ)ϕj2(λ)

)
=
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= lim
n→∞

n∑
j1=0

Cj1j1 − lim
n→∞

n∑
j1,j2=0

Cj2j1

T−ε∫
t+ε

ϕj1(t1)ϕj2(t1)dt1,

where the limits

lim
n→∞

n∑
j1=0

Cj1j1, lim
n→∞

n∑
j1,j2=0

Cj2j1

T−ε∫
t+ε

ϕj1(t1)ϕj2(t1)dt1

exist and are finite (see Lemma 2.2 and the equality (2.59)). This means that
the limit

ε lim
n→∞

n∑
j1,j2=0

Cj2j1

(
ϕj1(θ)ϕj2(θ) + ϕj1(λ)ϕj2(λ)

)
also exists and is finite.

Suppose that the following relations∣∣∣∣∣
n∑

j1,j2=0

Cj2j1ϕj2(T )ϕj1(T )

∣∣∣∣∣ ≤ K <∞,

∣∣∣∣∣
n∑

j1,j2=0

Cj2j1ϕj2(t)ϕj1(t)

∣∣∣∣∣ ≤ K <∞

(2.61)
are satisfied for n ∈ N (the relations (2.61) will be proved further in this sec-
tion); constant K does not depend on n.

Note that ∣∣∣∣∣ε lim
n→∞

n∑
j1,j2=0

Cj2j1

(
ϕj1(θ)ϕj2(θ) + ϕj1(λ)ϕj2(λ)

)∣∣∣∣∣ =
= lim

n→∞
ε

∣∣∣∣∣
n∑

j1,j2=0

Cj2j1ϕj1(θ)ϕj2(θ) +
n∑

j1,j2=0

Cj2j1ϕj1(λ)ϕj2(λ)

∣∣∣∣∣ . (2.62)

Using (2.58) (n1 = n2 = n) and (2.61), we obtain

ε lim
n→∞

∣∣∣∣∣
n∑

j1,j2=0

Cj2j1ϕj1(θ)ϕj2(θ) +
n∑

j1,j2=0

Cj2j1ϕj1(λ)ϕj2(λ)

∣∣∣∣∣ ≤
≤ ε lim

n→∞

(∣∣∣∣∣
n∑

j1,j2=0

Cj2j1ϕj1(θ)ϕj2(θ)

∣∣∣∣∣+
∣∣∣∣∣

n∑
j1,j2=0

Cj2j1ϕj1(λ)ϕj2(λ)

∣∣∣∣∣
)

≤ 2εK1 → 0

(2.63)
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if ε→ +0, where θ ∈ [t, t+ ε], λ ∈ [T − ε, T ], constant K1 is independent on n.

Performing the passage to the limit lim
ε→+0

in the equality (2.60) and taking

into account (2.62), (2.63), we get

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =
∞∑
j1=0

Cj1j1. (2.64)

Thus, to complete the proof of Theorem 2.2, it is necessary to prove (2.61).
To prove (2.61), as well as for further consideration, we need some well known
properties of the Legendre polynomials [115], [121].

The complete orthonormal system of Legendre polynomials in the space
L2([t, T ]) looks as follows

ϕj(x) =

√
2j + 1

T − t
Pj

((
x− T + t

2

)
2

T − t

)
, j = 0, 1, 2, . . . , (2.65)

where Pj(x) is the Legendre polynomial.

It is known that the Legendre polynomial Pj(x) is represented as

Pj(x) =
1

2jj!

dj

dxj
(
x2 − 1

)j
.

At the boundary points of the orthogonality interval the Legendre polyno-
mials satisfy the following relations

Pj(1) = 1, Pj(−1) = (−1)j,

Pj+1(1)− Pj(1) = 0, Pj+1(−1) + Pj(−1) = 0,

where j = 0, 1, 2, . . .

Relation of the Legendre polynomial Pj(x) with derivatives of the Legendre
polynomials Pj+1(x) and Pj−1(x) is expressed by the following equality

Pj(x) =
1

2j + 1

(
P

′

j+1(x)− P
′

j−1(x)
)
, j = 1, 2, . . . (2.66)

The recurrent relation has the form

xPj(x) =
(j + 1)Pj+1(x) + jPj−1(x)

2j + 1
, j = 1, 2, . . .
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Orthogonality of the Legendre polynomial Pj(x) to any polynomial Qk(x)
of lesser degree k we write in the following form

1∫
−1

Qk(x)Pj(x)dx = 0, k = 0, 1, 2, . . . , j − 1.

From the property

1∫
−1

Pk(x)Pj(x)dx =


0 if k ̸= j

2/(2j + 1) if k = j

it follows that the orthonormal on the interval [−1, 1] Legendre polynomials
determined by the relation

P ∗
j (x) =

√
2j + 1

2
Pj(x), j = 0, 1, 2, . . .

Remind that there is the following estimate [115]

|Pj(y)| <
K√

j + 1(1− y2)1/4
, y ∈ (−1, 1), j = 1, 2, . . . , (2.67)

where constant K does not depend on y and j.

Moreover,

|Pj(x)| ≤ 1, x ∈ [−1, 1], j = 0, 1, . . . (2.68)

The Christoffel–Darboux formula has the form

n∑
j=0

(2j + 1)Pj(x)Pj(y) = (n+ 1)
Pn(x)Pn+1(y)− Pn+1(x)Pn(y)

y − x
. (2.69)

Let us prove (2.61) (see [28])). From (2.69) for x = ±1 we obtain

n∑
j=0

(2j + 1)Pj(y) = (n+ 1)
Pn+1(y)− Pn(y)

y − 1
, (2.70)
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n∑
j=0

(2j + 1)(−1)jPj(y) = (n+ 1)(−1)n
Pn+1(y) + Pn(y)

y + 1
. (2.71)

From the other hand (see (2.66))

n∑
j=0

(2j + 1)Pj(y) = 1 +
n∑
j=1

(2j + 1)Pj(y) =

= 1 +
n∑
j=1

(P
′

j+1(y)− P
′

j−1(y)) = 1 +

( n∑
j=1

(Pj+1(y)− Pj−1(y))

)′
=

= 1 + (Pn+1(x) + Pn(x)− x− 1)′ = (Pn(x) + Pn+1(x))
′ (2.72)

and
n∑
j=0

(2j + 1)(−1)jPj(y) = 1 +
n∑
j=1

(−1)j(2j + 1)Pj(y) =

= 1 +
n∑
j=1

(−1)j(P
′

j+1(y)− P
′

j−1(y)) = 1 +

( n∑
j=1

(−1)j(Pj+1(y)− Pj−1(y))

)′
=

= 1+((−1)n(Pn+1(x)−Pn(x))−x+1)′ = (−1)n(Pn+1(x)−Pn(x))
′. (2.73)

Applying (2.70)–(2.73), we get

(n+ 1)
Pn+1(y)− Pn(y)

y − 1
= (Pn(x) + Pn+1(x))

′, (2.74)

(n+ 1)
Pn+1(y) + Pn(y)

y + 1
= (Pn+1(x)− Pn(x))

′. (2.75)

Let us prove the boundedness of the first sum in (2.61). We have

n∑
j1,j2=0

Cj2j1ϕj2(T )ϕj1(T ) =

=
1

4

n∑
j2=0

n∑
j1=0

(2j2 + 1)(2j1 + 1)

1∫
−1

ψ2(h(y))Pj2(y)

y∫
−1

ψ1(h(y1))Pj1(y1)dy1dy =
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=
1

4

1∫
−1

ψ2(h(y))
n∑

j2=0

(2j2 + 1)Pj2(y)

y∫
−1

ψ1(h(y1))
n∑

j1=0

(2j1 + 1)Pj1(y1)dy1dy =

=
1

4

1∫
−1

ψ2(h(y))

 y∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1))

 d(Pn+1(y) + Pn(y)) =

=
1

4

1∫
−1

ψ1(h(y))

 y∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1))

 d(Pn+1(y) + Pn(y))+

+
1

4

1∫
−1

∆(h(y))

 y∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1))

 d(Pn+1(y) + Pn(y)) =

=
1

4
I1 +

1

4
I2,

where

∆(h(y)) = ψ2(h(y))− ψ1(h(y)), h(y) =
T − t

2
y +

T + t

2
. (2.76)

Further,

I1 =
1

2

( 1∫
−1

ψ1(h(y))d(Pn+1(y) + Pn(y))

)2

=

=
1

2

(
2ψ1(T )−

1∫
−1

(Pn+1(y) + Pn(y))ψ
′
1(h(y))

T − t

2
dy

)2

< C1 <∞,

where ψ′
1 is a derivative of the function ψ1 with respect to the variable y,

constant C1 does not depend on n.

By the Lagrange formula we obtain

∆(h(y)) = ψ2

(
1

2
(T − t)(y − 1) + T

)
− ψ1

(
1

2
(T − t)(y − 1) + T

)
=

= ψ2(T )− ψ1(T ) + (y − 1)

(
ψ′
2(ξy)− ψ′

1(θy)

)
1

2
(T − t) =

= C1 + αy(y − 1), (2.77)
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where |αy| <∞ and C1 = ψ2(T )− ψ1(T ).

Let us substitute (2.77) into the integral I2

I2 = I3 + I4,

where

I3 =

1∫
−1

αy(y − 1)

 y∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1))

 d(Pn+1(y) + Pn(y)),

I4 = C1

1∫
−1

 y∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1))

 d(Pn+1(y) + Pn(y)).

Integrating by parts and using (2.74), we obtain

I3 =

1∫
−1

αy(y − 1)(n+ 1)(Pn+1(y)− Pn(y))

y − 1

(
ψ1(h(y))(Pn+1(y) + Pn(y))−

−
y∫

−1

(Pn+1(y1) + Pn(y1))ψ
′
1(h(y1))

1

2
(T − t)dy1

)
dy.

Applying the etimate (2.67) and taking into account the boundedness of αy
and ψ′

1(h(y1)), we have that |I3| <∞.

Using the integration order replacement in I4, we get

I4 = C1

1∫
−1

ψ1(h(y1))

 1∫
y1

d(Pn+1(y) + Pn(y))

 d(Pn+1(y1) + Pn(y1)) =

= C1

1∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1))

1∫
−1

d(Pn+1(y) + Pn(y))−

−C1

1∫
−1

ψ1(h(y1))

 y1∫
−1

d(Pn+1(y) + Pn(y))

 d(Pn+1(y1) + Pn(y1)) =

= I5 − I6.
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Consider I5

I5 = 2C1

1∫
−1

ψ1(h(y1))d(Pn+1(y1) + Pn(y1)) =

= 2C1

2ψ1(T )−
1∫

−1

(Pn+1(y1) + Pn(y1))ψ
′
1(h(y1))

1

2
(T − t)dy1

 .

Applying the estimate (2.68) and using the boundedness of ψ′
1(h(y1)), we

obtain that |I5| <∞.

Since (see (2.77))

ψ1(h(y)) = ψ1

(
1

2
(T − t)(y − 1) + T

)
=

= ψ1(T ) + (y − 1)ψ′
1(θy)

1

2
(T − t) = C2 + βy(y − 1),

where |βy| <∞ and C2 = ψ1(T ), then

I6 = C3

1∫
−1

 y1∫
−1

d(Pn+1(y) + Pn(y))

 d(Pn+1(y1) + Pn(y1))+

+C1

1∫
−1

βy1(y1 − 1)

 y1∫
−1

d(Pn+1(y) + Pn(y))

 d(Pn+1(y1) + Pn(y1)) =

=
C3

2

 1∫
−1

d(Pn+1(y) + Pn(y))

2

+

+C1

1∫
−1

βy1(y1 − 1)(n+ 1)(Pn+1(y1)− Pn(y1))

y1 − 1

 y1∫
−1

d(Pn+1(y) + Pn(y))

 dy1 =

= 2C3 + C1

1∫
−1

βy1(n+ 1)(Pn+1(y1)− Pn(y1))(Pn+1(y1) + Pn(y1))dy1.



286D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Using the estimate (2.67) and taking into account the bounedness of βy1,
we obtain that |I6| < ∞. Thus, the boundedness of the first sum in (2.61) is
proved.

Let us prove the boundedness of the second sum in (2.61). We have

n∑
j1,j2=0

Cj2j1ϕj2(t)ϕj1(t) =

=
1

4

n∑
j2=0

n∑
j1=0

(2j2 + 1)(2j1 + 1)(−1)j1+j2

1∫
−1

ψ2(h(y))Pj2(y)

y∫
−1

ψ1(h(y1))Pj1(y1)×

×dy1dy =

=
1

4

1∫
−1

ψ2(h(y))
n∑

j2=0

(2j2 + 1)Pj2(y)(−1)j2

y∫
−1

ψ1(h(y1))×

×
n∑

j1=0

(2j1 + 1)Pj1(y1)(−1)j1dy1dy =

=
(−1)2n

4

1∫
−1

ψ2(h(y))

 y∫
−1

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

×

×d(Pn+1(y)− Pn(y)) =

=
1

4

1∫
−1

ψ1(h(y))

 y∫
−1

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

 d(Pn+1(y)− Pn(y))+

+
1

4

1∫
−1

∆(h(y))

 y∫
−1

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

 d(Pn+1(y)− Pn(y)) =

=
1

4
J1 +

1

4
J2,

where ∆(h(y)), h(y) are defined by (2.76).

Further,

J1 =
1

2

 1∫
−1

ψ1(h(y))d(Pn+1(y)− Pn(y))

2

=
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=
1

2

2(−1)nψ1(t)−
1∫

−1

(Pn+1(y)− Pn(y))ψ
′
1(h(y))

T − t

2
dy

2

< K1 <∞,

(2.78)
where ψ′

1 is a derivative of the function ψ1 with respect to the variable y,
constant K1 is independent of n.

By the Lagrange formula we obtain

∆(h(y)) = ψ2

(
1

2
(T − t)(y + 1) + t

)
− ψ1

(
1

2
(T − t)(y + 1) + t

)
=

= ψ2(t)− ψ1(t) + (y + 1)

(
ψ′
2(µy)− ψ′

1(ρy)

)
1

2
(T − t) =

= K2 + γy(y + 1), (2.79)

where |γy| <∞ and K2 = ψ2(t)− ψ1(t).

Consider J2

J2 =

1∫
−1

∆(h(y))d(Pn+1(y)− Pn(y))

1∫
−1

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))−

−
1∫

−1

∆(h(y))

 1∫
y

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

 d(Pn+1(y)− Pn(y)) =

= J3J4 − J5.

The integral J4 was considered earlier (see J1 and (2.78)), i.e. it has already
been shown that |J4| <∞. Analogously, we have that |J3| <∞.

Let us substitute (2.79) into the integral J5

J5 = J6 + J7,

where

J6 =

1∫
−1

γy(y + 1)

 1∫
y

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

 d(Pn+1(y)− Pn(y)),
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J7 = K2

1∫
−1

 1∫
y

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

 d(Pn+1(y)− Pn(y)).

Integrating by parts and using (2.75), we get

J6 =

1∫
−1

γy(y + 1)(n+ 1)(Pn+1(y) + Pn(y))

y + 1

(
−ψ1(h(y))(Pn+1(y)− Pn(y))−

−
1∫

y

(Pn+1(y1)− Pn(y1))ψ
′
1(h(y1))

1

2
(T − t)dy1

)
dy.

Applying the etimate (2.67) and taking into account the boundedness of γy
and ψ′

1(h(y1)), we have that |J6| <∞.

Using the integration order replacement in J7, we obtain

J7 = K2

1∫
−1

ψ1(h(y1))

 y1∫
−1

d(Pn+1(y)− Pn(y))

 d(Pn+1(y1)− Pn(y1)) =

= K2

1∫
−1

ψ1(h(y1))d(Pn+1(y1)− Pn(y1))

1∫
−1

d(Pn+1(y)− Pn(y))−K2J8 =

= K2J42(−1)n −K2J8,

where

J8 =

1∫
−1

ψ1(h(y1))

 1∫
y1

d(Pn+1(y)− Pn(y))

 d(Pn+1(y1)− Pn(y1)).

Since (see (2.79))

ψ1(h(y)) = ψ1

(
1

2
(T − t)(y + 1) + t

)
=

= ψ1(t) + (y + 1)ψ′
1(ρy)

1

2
(T − t) = K3 + εy(y + 1), (2.80)
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where |εy| <∞ and K3 = ψ1(t), then

J8 = K3

1∫
−1

 1∫
y1

d(Pn+1(y)− Pn(y))

 d(Pn+1(y1)− Pn(y1))+

+

1∫
−1

εy(y + 1)

 1∫
y1

d(Pn+1(y)− Pn(y))

 d(Pn+1(y1)− Pn(y1)) =

=
K3

2

 1∫
−1

d(Pn+1(y)− Pn(y))

2

+

+

1∫
−1

εy1(y1 + 1)(n+ 1)(Pn+1(y1) + Pn(y1))

y1 + 1
(Pn(y1)− Pn+1(y1))dy =

= 2K3 +

1∫
−1

εy1(n+ 1)(Pn+1(y1) + Pn(y1))(Pn(y1)− Pn+1(y1))dy. (2.81)

When obtaining the equality (2.81), we used (2.75). Applying the estimate
(2.67) and taking into account the bounedness of εy1, we obtain that |J8| <∞.
Thus, the boundedness of the second sum in (2.61) is proved. The relations
(2.61) are proved. Theorem 2.2 is proved.

Let us consider the proof of Lemma 2.2 under the conditions of Theorem 2.2.
We will prove that

n∑
j1=0

Cj1j1

is the Cauchy sequence for the cases of Legendre polynomials and trigonometric
functions.

Consider the case of Legendre polynomials. Below in this section we write
lim

n,m→∞
instead of lim

n,m→∞
n>m

. Fix n > m (n,m ∈ N). We have

n∑
j1=m+1

Cj1j1 =
n∑

j1=m+1

T∫
t

ψ2(s)ϕj1(s)

s∫
t

ψ1(τ)ϕj1(τ)dτds =
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=
T − t

4

n∑
j1=m+1

(2j1 + 1)

1∫
−1

ψ2(h(x))Pj1(x)

x∫
−1

ψ1(h(y))Pj1(y)dydx =

=
T − t

4

n∑
j1=m+1

1∫
−1

ψ1(h(x))ψ2(h(x)) (Pj1+1(x)Pj1(x)− Pj1(x)Pj1−1(x)) dx−

−(T − t)2

8

n∑
j1=m+1

1∫
−1

ψ2(h(x))Pj1(x)

x∫
−1

(Pj1+1(y)− Pj1−1(y))ψ
′
1(h(y))dydx =

=
T − t

4

1∫
−1

ψ1(h(x))ψ2(h(x))
n∑

j1=m+1

(Pj1+1(x)Pj1(x)− Pj1(x)Pj1−1(x)) dx−

−(T − t)2

8

n∑
j1=m+1

1∫
−1

(Pj1+1(y)− Pj1−1(y))ψ
′
1(h(y))

1∫
y

Pj1(x)ψ2(h(x))dxdy =

=
T − t

4

1∫
−1

ψ1(h(x))ψ2(h(x)) (Pn+1(x)Pn(x)− Pm+1(x)Pm(x)) dx+

+
(T − t)2

8

n∑
j1=m+1

1

2j1 + 1

1∫
−1

(Pj1+1(y)− Pj1−1(y))ψ
′
1(h(y))×

×

(
(Pj1+1(y)− Pj1−1(y))ψ2(h(y))+

+
T − t

2

1∫
y

(Pj1+1(x)− Pj1−1(x))ψ
′
2(h(x))dx

)
dy, (2.82)

where ψ′
1, ψ

′
2 are derivatives of the functions ψ1, ψ2 with respect to the variable

h(y) (see (2.55)).

Applying the estimate (2.67) and taking into account the boundedness of
the functions ψ1(τ), ψ2(τ) and their derivatives, we finally obtain∣∣∣∣∣

n∑
j1=m+1

Cj1j1

∣∣∣∣∣ ≤ C1

(
1

n
+

1

m

) 1∫
−1

dx

(1− x2)1/2
+
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+C2

n∑
j1=m+1

1

j21

 1∫
−1

dy

(1− y2)1/2
+

1∫
−1

1

(1− y2)1/4

1∫
y

dx

(1− x2)1/4
dy

 ≤

≤ C3

(
1

n
+

1

m
+

n∑
j1=m+1

1

j21

)
→ 0 (2.83)

if n,m→ ∞ (n > m), where constants C1, C2, C3 do not depend on n and m.

Now consider the trigonometric case. Fix n > m (n,m ∈ N). Denote

Sn,m
def
=

n∑
j1=m+1

Cj1j1 =
n∑

j1=m+1

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2.

By analogy with (2.82) we obtain

S2n,2m =
2n∑

j1=2m+1

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =

=
2

T − t

n∑
j1=m+1

 T∫
t

ψ2(t2)sin
2πj1(t2 − t)

T − t

t2∫
t

ψ1(t1)sin
2πj1(t1 − t)

T − t
dt1dt2+

+

T∫
t

ψ2(t2)cos
2πj1(t2 − t)

T − t

t2∫
t

ψ1(t1)cos
2πj1(t1 − t)

T − t
dt1dt2

 =

=
T − t

2π2

n∑
j1=m+1

1

j21

ψ1(t)

ψ2(t)− ψ2(T ) +

T∫
t

ψ′
2(t2)cos

2πj1(t2 − t)

T − t
dt2

−

−
T∫
t

ψ′
1(t1)cos

2πj1(t1 − t)

T − t

(
ψ2(T )− ψ2(t1)cos

2πj1(t1 − t)

T − t
−

−
T∫

t1

ψ′
2(t2)cos

2πj1(t2 − t)

T − t
dt2

)
dt1+

+

T∫
t

ψ′
1(t1)sin

2πj1(t1 − t)

T − t

(
ψ2(t1)sin

2πj1(t1 − t)

T − t
+
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+

T∫
t1

ψ′
2(t2)sin

2πj1(t2 − t)

T − t
dt2

)
dt1

 , (2.84)

where ψ′
1(τ), ψ

′
2(τ) are derivatives of the functions ψ1(τ), ψ2(τ) with respect to

the variable τ .

From (2.84) we get

|S2n,2m| ≤ C
n∑

j1=m+1

1

j21
→ 0 (2.85)

if n,m→ ∞ (n > m), where constant C does not depend on n and m.

Further,
S2n−1,2m = S2n,2m−

− 2

T − t

T∫
t

ψ2(t2)cos
2πn(t2 − t)

T − t

t2∫
t

ψ1(t1)cos
2πn(t1 − t)

T − t
dt1dt2, (2.86)

S2n,2m−1 = S2n,2m+

+
2

T − t

T∫
t

ψ2(t2)cos
2πm(t2 − t)

T − t

t2∫
t

ψ1(t1)cos
2πm(t1 − t)

T − t
dt1dt2, (2.87)

S2n−1,2m−1 = S2n,2m−1−

− 2

T − t

T∫
t

ψ2(t2)cos
2πn(t2 − t)

T − t

t2∫
t

ψ1(t1)cos
2πn(t1 − t)

T − t
dt1dt2 =

= S2n,2m +
2

T − t

T∫
t

ψ2(t2)cos
2πm(t2 − t)

T − t

t2∫
t

ψ1(t1)cos
2πm(t1 − t)

T − t
dt1dt2−

− 2

T − t

T∫
t

ψ2(t2)cos
2πn(t2 − t)

T − t

t2∫
t

ψ1(t1)cos
2πn(t1 − t)

T − t
dt1dt2. (2.88)

Integrating by parts in (2.86)–(2.88), we obtain

|S2n−1,2m| ≤ |S2n,2m|+
C1

n
, (2.89)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series293

|S2n,2m−1| ≤ |S2n,2m|+
C1

m
, (2.90)

|S2n−1,2m−1| ≤ |S2n,2m|+ C1

(
1

m
+

1

n

)
, (2.91)

where constant C1 does not depend on n and m.

The relations (2.85), (2.89)–(2.91) imply that

lim
n,m→∞

|S2n,2m| = lim
n,m→∞

|S2n−1,2m| = lim
n,m→∞

|S2n,2m−1| = lim
n,m→∞

|S2n−1,2m−1| = 0.

(2.92)

From (2.92) we get

lim
n,m→∞

|Sn,m| = 0. (2.93)

The relation (2.93) completes the proof.

2.1.3 Approach Based on Generalized Double Multiple and Iterated
Fourier Series

This section is devoted to the proof of Theorem 2.1 using a slightly different
method than the method proposed in Sect. 2.1.1. We will consider two different
parts of the expansion of iterated Stratonovich stochastic integrals of second
multiplicity. The mean-square convergence of the first part will be proved on the
base of generalized multiple Fourier series converging in the mean-square sense
in the space L2([t, T ]

2). The mean-square convergence of the second part will
be proved on the base of generalized iterated (double) Fourier series converging
pointwise.

Proof. Let us consider Lemma 1.1, definition of the multiple stochastic
integral (1.16) together with the formula (1.19) when the function Φ(t1, . . . , tk)
is continuous in the open domain Dk and bounded at its boundary as well as
Lemma 1.3 for the case k = 2 (see Sect. 1.1.3).

In accordance to the standard relation between Stratonovich and Itô sto-
chastic integrals (see (2.8)) we have w. p. 1

J∗[ψ(2)]T,t = J [ψ(2)]T,t +
1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1. (2.94)
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Let us consider the function K∗(t1, t2) defined by (2.11)

K∗(t1, t2) = K(t1, t2) +
1

2
1{t1=t2}ψ1(t1)ψ2(t2), (2.95)

where

K(t1, t2) = 1{t1<t2}ψ1(t1)ψ2(t2), t1, t2 ∈ [t, T ]. (2.96)

Lemma 2.3. Under the conditions of Theorem 2.2 the following relation

J [K∗]
(2)
T,t = J∗[ψ(2)]T,t (2.97)

is valid w. p. 1, where J [K∗]
(2)
T,t is defined by the equality (1.16).

Proof. Substituting (2.95) into (1.16) (the case k = 2) and using Lemma
1.1 together with (1.19) (the case k = 2) it is easy to see that w. p. 1

J [K∗]
(2)
T,t = J [ψ(2)]T,t +

1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1 =

= J∗[ψ(2)]T,t. (2.98)

Let us consider the following generalized double Fourier sum

p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2),

where Cj2j1 is the Fourier coefficient defined as follows

Cj2j1 =

∫
[t,T ]2

K∗(t1, t2)ϕj1(t1)ϕj2(t2)dt1dt2. (2.99)

Further, subsitute the relation

K∗(t1, t2) =

p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2) +K∗(t1, t2)−

−
p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2)
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into J [K∗]
(2)
T,t. At that we suppose that p1, p2 <∞.

Then using Lemma 1.3 (the case k = 2), we obtain

J∗[ψ(2)]T,t =

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

+ J [Rp1p2]
(2)
T,t w. p. 1, (2.100)

where the stochastic integral J [Rp1p2]
(2)
T,t is defined in accordance with (1.16) and

Rp1p2(t1, t2) = K∗(t1, t2)−
p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2), (2.101)

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s ,

J [Rp1p2]
(2)
T,t =

T∫
t

t2∫
t

Rp1p2(t1, t2)df
(i1)
t1 df

(i2)
t2 +

T∫
t

t1∫
t

Rp1p2(t1, t2)df
(i2)
t2 df

(i1)
t1 +

+1{i1=i2}

T∫
t

Rp1p2(t1, t1)dt1.

Using standard moment properties of stochastic integrals [100] (see (1.26),
(1.27)), we get

M

{(
J [Rp1p2]

(2)
T,t

)2}
=

= M


 T∫

t

t2∫
t

Rp1p2(t1, t2)df
(i1)
t1 df

(i2)
t2 +

T∫
t

t1∫
t

Rp1p2(t1, t2)df
(i2)
t2 df

(i1)
t1

2
+

+1{i1=i2}

 T∫
t

Rp1p2(t1, t1)dt1

2

≤
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≤ 2

 T∫
t

t2∫
t

(Rp1p2(t1, t2))
2 dt1dt2 +

T∫
t

t1∫
t

(Rp1p2(t1, t2))
2 dt2dt1

+

+1{i1=i2}

 T∫
t

Rp1p2(t1, t1)dt1

2

=

= 2

∫
[t,T ]2

(Rp1p2(t1, t2))
2 dt1dt2 + 1{i1=i2}

 T∫
t

Rp1p2(t1, t1)dt1

2

. (2.102)

We have ∫
[t,T ]2

(Rp1p2(t1, t2))
2 dt1dt2 =

=

∫
[t,T ]2

(
K∗(t1, t2)−

p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2)

)2

dt1dt2 =

=

∫
[t,T ]2

(
K(t1, t2)−

p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2)

)2

dt1dt2. (2.103)

The function K(t1, t2) is piecewise continuous in the square [t, T ]2. At
this situation it is well known that the generalized multiple Fourier series of
the function K(t1, t2) ∈ L2([t, T ]

2) is converging to this function in the square
[t, T ]2 in the mean-square sense, i.e.

lim
p1,p2→∞

∥∥∥∥∥K(t1, t2)−
p1∑
j1=0

p2∑
j2=0

Cj2j1

2∏
l=1

ϕjl(tl)

∥∥∥∥∥
L2([t,T ]2)

= 0,

where notations are the same as in (1.7).

So, we obtain

lim
p1,p2→∞

∫
[t,T ]2

(Rp1p2(t1, t2))
2 dt1dt2 = 0. (2.104)
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Note that
T∫
t

Rp1p2(t1, t1)dt1 =

=

T∫
t

(
1

2
ψ1(t1)ψ2(t1)−

p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t1)

)
dt1 =

=
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 −
p1∑
j1=0

p2∑
j2=0

Cj2j1

T∫
t

ϕj1(t1)ϕj2(t1)dt1 =

=
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 −
p1∑
j1=0

p2∑
j2=0

Cj2j11{j1=j2} =

=
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 −
min{p1,p2}∑

j1=0

Cj1j1. (2.105)

From (2.105) and Lemma 2.2 we get

lim
p1→∞

lim
p2→∞

T∫
t

Rp1p2(t1, t1)dt1 =

=
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 − lim
p1→∞

p1∑
j1=0

Cj1j1 =

=
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 −
∞∑
j1=0

Cj1j1 =

= lim
p1,p2→∞

T∫
t

Rp1p2(t1, t1)dt1. (2.106)

If we prove the following relation

lim
p1→∞

lim
p2→∞

T∫
t

Rp1p2(t1, t1)dt1 = 0, (2.107)
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then from (2.106) we obtain

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =
∞∑
j1=0

Cj1j1, (2.108)

lim
p1,p2→∞

T∫
t

Rp1p2(t1, t1)dt1 = 0. (2.109)

From (2.102), (2.104), and (2.109) we get

lim
p1,p2→∞

M

{(
J [Rp1p2]

(2)
T,t

)2}
= 0

and Theorem 2.1 will be proved (see (2.100)).

The proof of the equality (2.107) can be carried out in the same way as
in the proof of Theorem 2.1 or, under weaker conditions, as in the proof of
Theorem 2.2.

2.1.4 Approach Based on Arbitrary Complete Orthonormal System
of Functions in the Space L2([t, T ]) and ψ1(τ), ψ2(τ) ∈ L2([t, T ])

Let us prove the equality (2.10) under weaker restrictions. Suppose that
{ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in the
space L2([t, T ]) and ψ1(τ) ≡ ψ2(τ) or

ψ1(τ) = ψ2(τ)

τ∫
t

g(θ)dθ, (2.110)

where τ ∈ [t, T ] and ψ1(τ), ψ2(τ) ∈ L2([t, T ]), g(τ) ∈ L1([t, T ]).

Thus, we will prove the equality

∞∑
j=0

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2 =
1

2

T∫
t

ψ1(τ)ψ2(τ)dτ (2.111)

under the above conditions.
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Using Fubini’s Theorem, Lebesgue’s Dominated Convergence Theorem and
Parseval’s equality, we have (see (2.110))

∞∑
j=0

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2 =

=
∞∑
j=0

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ2(t1)ϕj(t1)

t1∫
t

g(τ)dτdt1dt2 = (2.112)

=
∞∑
j=0

T∫
t

g(τ)

T∫
τ

ψ2(t1)ϕj(t1)

T∫
t1

ψ2(t2)ϕj(t2)dt2dt1dτ =

=
1

2

∞∑
j=0

T∫
t

g(τ)

 T∫
τ

ψ2(t1)ϕj(t1)dt1

2

dτ = (2.113)

=
1

2

T∫
t

g(τ)
∞∑
j=0

 T∫
t

1{τ<t1}ψ2(t1)ϕj(t1)dt1

2

dτ = (2.114)

=
1

2

T∫
t

g(τ)

T∫
t

1{τ<t1}ψ
2
2(t1)dt1dτ =

1

2

T∫
t

g(τ)

T∫
τ

ψ2
2(t1)dt1dτ =

=
1

2

T∫
t

ψ2
2(t1)

t1∫
t

g(τ)dτdt1 = (2.115)

=
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1, (2.116)

where the transition from (2.113) to (2.114) is based on Lebesgue’s Dominated
Convergence Theorem. The integrable majorant exists due to Parseval’s equal-
ity

|g(τ)|
q∑
j=0

 T∫
τ

ψ2(t1)ϕj(t1)dt1

2

≤ |g(τ)|
∞∑
j=0

 T∫
t

1{τ<t1}ψ2(t1)ϕj(t1)dt1

2

=
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= |g(τ)|
T∫
t

(
1{τ<t1}

)2
ψ2
2(t1)dt1 ≤ |g(τ)| ∥ψ2∥2L2([t,T ])

= C |g(τ)| ,

where constant C does not depend on p.

From the other hand, using Fubini’s Theorem and the generalized Parseval
equality as well as the transition from (2.112) to (2.115), we get

∞∑
j=0

T∫
t

ψ1(t2)ϕj(t2)

t2∫
t

ψ2(t1)ϕj(t1)dt1dt2 =

=
∞∑
j=0

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

g(τ)dτ

t2∫
t

ψ2(t1)ϕj(t1)dt1dt2 =

=
∞∑
j=0

T∫
t

ψ2(t1)ϕj(t1)

T∫
t1

ψ2(t2)ϕj(t2)

t2∫
t

g(τ)dτdt2dt1 =

=
∞∑
j=0

T∫
t

ψ2(t1)ϕj(t1)dt1

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

g(τ)dτdt2−

−
∞∑
j=0

T∫
t

ψ2(t1)ϕj(t1)

t1∫
t

ψ2(t2)ϕj(t2)

t2∫
t

g(τ)dτdt2dt1 =

=

T∫
t

ψ2(t1) · ψ2(t1)

t1∫
t

g(τ)dτdt1 −
1

2

T∫
t

ψ2
2(t1)

t1∫
t

g(τ)dτdt1 =

=
1

2

T∫
t

ψ2
2(t1)

t1∫
t

g(τ)dτdt1 =
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1. (2.117)

In addition, for the case ψ1(τ) ≡ ψ2(τ), using the Parseval equality, we
obtain

∞∑
j=0

T∫
t

ψ1(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2 =
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=
1

2

∞∑
j=0

 T∫
t

ψ1(t1)ϕj(t1)dt1

2

=
1

2

T∫
t

ψ2
1(t1)dt1 =

1

2

T∫
t

ψ1(t1)ψ1(t2)dt1.

(2.118)

The equality (2.111) is proved for ψ1(τ) ≡ ψ2(τ) or when the equality
(2.110) is satisfied.

Further, let us suppose that ψ2(τ) = (τ − t)l, g(τ) = k(τ − t)k−1, where
l = 0, 1, 2, . . . and k = 1, 2, . . . Note that this case is important for applications
(see Sect. 4.7 and 4.11).

From (2.110) we obtain

ψ1(τ) = ψ2(τ)

τ∫
t

g(θ)dθ = k(τ − t)l
τ∫
t

(θ − t)k−1dθ = (τ − t)l+k.

Taking into account (2.116)–(2.118), we get

∞∑
j=0

T∫
t

(t2 − t)lϕj(t2)

t2∫
t

(t1 − t)l+kϕj(t1)dt1dt2 =

=
∞∑
j=0

T∫
t

(t2 − t)l+kϕj(t2)

t2∫
t

(t1 − t)lϕj(t1)dt1dt2 =

=
1

2

T∫
t

(τ − t)2l+kdτ, (2.119)

where k, l = 0, 1, 2, . . .

Let us rewrite the equality (2.119) in the following form

∞∑
j=0

T∫
t

(t2 − t)lϕj(t2)

t2∫
t

(t1 − t)mϕj(t1)dt1dt2 =
1

2

T∫
t

(τ − t)l(τ − t)mdτ, (2.120)

where l,m = 0, 1, 2, . . .

The equality similar to (2.120) was obtained in [117], [118] using other
arguments. These arguments are based on trace class operators and the equality
of matrix and integral traces for such operators (see Sect. 2.27 for details).
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In addition, the formula similar to (2.120) was used in [117], [118] to gen-
eralize the equality (2.111) to the case of an arbitrary complete orthonormal
system of functions in the space L2([t, T ]) and ψ1(τ), ψ2(τ) ∈ L2([t, T ]). This
means that Theorems 2.1, 2.2 can be generalized to the case of continuous
functions ψ1(τ), ψ2(τ) (this condition is related to the definition (2.3) of the
Stratonovich stochastic integral (see Sect. 2.1.1 for details)) and an arbitrary
complete orthonormal system of functions in the space L2([t, T ]).

Consider the mentioned approach [117], [118] in our interpretation (after
this, we will consider an approach that is slightly different from the approach
in [117], [118]). Since the equality (2.120) is valid for monomials with respect
to τ − t (τ ∈ [t, T ]), it will obviously also be valid for Legendre polynomials
that form a complete orthonormal system of functions in the space L2([t, T ])
and finite linear combinations of Legendre polynomials.

Let ψ1(τ), ψ2(τ) ∈ L2([t, T ]) and ψ
(p)
1 (τ), ψ

(q)
2 (τ) be approximations of the

functions ψ1(τ), ψ2(τ), respectively, which are partial sums of the corresponding
Fourier–Legendre series. Then we have (see (2.120))

∞∑
j=0

T∫
t

ψ
(q)
2 (t2)ϕj(t2)

t2∫
t

ψ
(p)
1 (t1)ϕj(t1)dt1dt2 =

1

2

T∫
t

ψ
(p)
1 (τ)ψ

(q)
2 (τ)dτ, (2.121)

where p, q ∈ N, the series converges absolutly and its sum does not depend on
a basis system {ϕj(x)}∞j=0 (we mean permutation of the terms of the series on
the left-hand side of (2.121) (any permutation of basis functions ϕj(x) forms a
basis in L2([t, T ]) [127])).

Using Fubini’s Theorem, we rewrite (2.121) in the form

∞∑
j=0

 T∫
t

ψ
(q)
2 (t2)ϕj(t2)

t2∫
t

ψ
(p)
1 (t1)ϕj(t1)dt1dt2+

+

T∫
t

ψ
(p)
1 (t2)ϕj(t2)

T∫
t2

ψ
(q)
2 (t1)ϕj(t1)dt1dt2

 =

T∫
t

ψ
(p)
1 (τ)ψ

(q)
2 (τ)dτ. (2.122)

Let us fix q in (2.122). The right-hand side of (2.122) for a fixed q defines
(as a scalar product in L2([t, T ])) a linear bounded (and therefore continuous)

functional in L2([t, T ]), which is given by the function ψ
(q)
2 . The integral oper-

ator (which corresponds to the matrix trace on the left-hand side of (2.122)) is
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a trace class operator (see [118]). The matrix trace of the mentioned operator
(on the left-hand side of (2.122)) is also a linear bounded (and therefore con-
tinuous) functional (in the space of trace class operators [127], [128]) which can
be extended to the space L2([t, T ]) by continuity [147].

Let us implement the passage to the limit lim
p→∞

in (2.122)

∞∑
j=0

 T∫
t

ψ
(q)
2 (t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2+

+

T∫
t

ψ1(t2)ϕj(t2)

T∫
t2

ψ
(q)
2 (t1)ϕj(t1)dt1dt2

 =

T∫
t

ψ1(τ)ψ
(q)
2 (τ)dτ, (2.123)

where q ∈ N. Recall that ψ
(q)
2 (τ) is a partial sum of the Fourier–Legendre series

of any function ψ2(τ) ∈ L2([t, T ]), i.e. the equality (2.123) holds on a dense
subset in L2([t, T ]). The right-hand side of (2.123) defines (as a scalar product in
L2([t, T ])) a linear bounded (and therefore continuous) functional in L2([t, T ]),
which is given by the function ψ1. On the left-hand side of (2.123) (by virtue of
the equality (2.123)) there is a linear continuous functional on a dense subset
in L2([t, T ]). This functional can be uniquely extended to a linear continuous
functional in L2([t, T ]) (see [116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.123)

∞∑
j=0

 T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2+

+

T∫
t

ψ1(t2)ϕj(t2)

T∫
t2

ψ2(t1)ϕj(t1)dt1dt2

 =

T∫
t

ψ1(τ)ψ2(τ)dτ. (2.124)

Applying Fubini’s Theorem to the left-hand side of (2.124), we obtain

∞∑
j=0

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2 =
1

2

T∫
t

ψ1(τ)ψ2(τ)dτ, (2.125)

where {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in
the space L2([t, T ]) and ψ1(τ), ψ2(τ) ∈ L2([t, T ]).
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However, the equality (2.125) can be obtained somewhat more simply. Now
let us consider an approach that is slightly different form the approach in [117],
[118].

Consider the equality (2.121) and fix q in it. The right-hand side of (2.121)

for a fixed q defines (as a scalar product of ψ
(p)
1 and 1

2ψ
(q)
2 in L2([t, T ])) a linear

bounded (and therefore continuous) functional in L2([t, T ]), which is given by

the function 1
2ψ

(q)
2 .

On the left-hand side of (2.121) (by virtue of the equality (2.121)) there is a

linear continuous functional on a dense subset in L2([t, T ]) (recall that ψ
(p)
1 (τ) is

a partial sum of the Fourier–Legendre series of any function ψ1(τ) ∈ L2([t, T ])).
This functional can be uniquely extended to a linear continuous functional in
L2([t, T ]) (see [116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
p→∞

in the equality (2.121)

∞∑
j=0

T∫
t

ψ
(q)
2 (t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2 =
1

2

T∫
t

ψ1(τ)ψ
(q)
2 (τ)dτ, (2.126)

where q ∈ N.

Recall that ψ
(q)
2 (τ) is a partial sum of the Fourier–Legendre series of any

function ψ2(τ) ∈ L2([t, T ]), i.e. the equality (2.126) holds on a dense subset

in L2([t, T ]). The right-hand side of (2.126) defines (as a scalar product of ψ
(q)
2

and 1
2ψ1 in L2([t, T ])) a linear bounded (and therefore continuous) functional in

L2([t, T ]), which is given by the function 1
2ψ1. On the left-hand side of (2.126)

(by virtue of the equality (2.126)) there is a linear continuous functional on a
dense subset in L2([t, T ]). This functional can be uniquely extended to a linear
continuous functional in L2([t, T ]) (see [116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.126)

∞∑
j=0

T∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2 =
1

2

T∫
t

ψ1(τ)ψ2(τ)dτ,

where {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in
the space L2([t, T ]) and ψ1(τ), ψ2(τ) ∈ L2([t, T ]). As a result, we obtained the
equality (2.125).

Thus, we have the following theorem.
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Theorem 2.3. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonor-
mal system of functions in the space L2([t, T ]). Moreover, ψ1(τ), ψ2(τ) are con-
tinuous functions on [t, T ]. Then, for the iterated Stratonovich stochastic integral

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following expansion

J∗[ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

(2.127)

that converges in the mean-square sence is valid, where the notations are the
same as in Theorems 2.1, 2.2.

The condition of continuity of the functions ψ1(τ), ψ2(τ) is related to the
definition (2.3) of the Stratonovich stochastic integral that we use.

Theorem 2.3 can be generalized to the case ψ1(τ), ψ2(τ) ∈ L2([t, T ]) if
instead of the definition (2.3) we use another definition of the Stratonovich
stochastic integral (see (2.960) and Theorem 2.44 in Sect. 2.18 for details).

2.1.5 Approach Based on Arbitrary Complete Orthonormal System
of Functions in the Space L2([t, T ]) and Symmetrized Kernel
K ′(t1, t2)

Let us list some useful facts that we will need further in this section.

Theorem A ([128], Theorem 8.1). Let K : L2([t, T ]) → L2([t, T ]) be an
integral operator defined by

(Kf) (τ) =
T∫
t

K(τ, s)f(s)ds,

where K(τ, s) is a continuous function on [t, T ]× [t, T ]. If, in addition, K is a
trace class operator then

trK =

T∫
t

K(s, s)ds, (2.128)

where trace trK is defined as a series of singular values sj(K) of K.
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Theorem B ([128], P. 71). Let

(Kf) (τ) =
T∫
t

K(τ, s)f(s)ds,

the kernel K(τ, s) is continuous on [t, T ]× [t, T ] and satisfies the condition

|K(τ, s2)−K(τ, s1)| ≤ C |s2 − s1|α , (2.129)

where 0 < α ≤ 1. If, in addition, K is a Hermitian operator and α > 1/2, then

∞∑
j=0

sj(K) <∞

i.e., K is a trace class operator.

Suppose that A : H → H is a linear bounded operator. Recall [127] that
A has a finite matrix trace if for any orthonormal basis {ϕj(x)}∞j=0 of the space
H the series

∞∑
j=0

⟨Aϕj, ϕj⟩H (2.130)

converges, where ⟨·, ·⟩H is a scalar probuct in H.

Note that the series (2.130) converges absolutely since its sum does not
depend on the permutation of the terms of the series (2.130) (any permutation
of basis functions ϕj(x) forms a basis in H) [127].

Theorem C ([128], Theorem 5.6). Let K : H → H be a trace class operator.
Then

trA =
∞∑
j=0

⟨Aϕj, ϕj⟩H (2.131)

for any orthonormal basis {ϕj(x)}∞j=0 of H.

Consider an integral operator K′ : L2([t, T ]) → L2([t, T ]) defined by the
equality

(K′f) (τ) =

T∫
t

K ′(τ, s)f(s)ds,
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where the continuous kernel K ′(τ, s) has the form (2.48), i.e.

K ′(t1, t2) =


ψ2(t1)ψ1(t2), t1 ≥ t2

ψ1(t1)ψ2(t2), t1 ≤ t2

(t1, t2 ∈ [t, T ])

and ψ1(τ), ψ2(τ) are continuously differentiable functions on [t, T ].

Recall that (see (2.49))

|K ′(t2, s2)−K ′(t1, s1)| ≤ L (|t2 − t1|+ |s2 − s1|) , (2.132)

where L <∞ and (t1, s1), (t2, s2) ∈ [t, T ]2.

Let us substitute t1 = t2 = τ into (2.132)

|K ′(τ, s2)−K ′(τ, s1)| ≤ L|s2 − s1|. (2.133)

Thus, the condition (2.129) is fulfilled (α = 1). Further, using Fubini’s
Theorem, we have

⟨K′x, y⟩L2([t,T ])
=

T∫
t

ψ2(t2)y(t2)

t2∫
t

ψ1(t1)x(t1)dt1dt2+

+

T∫
t

ψ1(t2)y(t2)

T∫
t2

ψ2(t1)x(t1)dt1dt2 =

T∫
t

ψ1(t1)x(t1)

T∫
t1

ψ2(t2)y(t2)dt2dt1+

+

T∫
t

ψ2(t1)x(t1)

t2∫
t

ψ1(t2)y(t2)dt2dt1 = ⟨K′y, x⟩L2([t,T ])
. (2.134)

The conditions of Theorem B are fulfilled. Then, K′ is a trace class operator.
Since the kernel K ′(t1, t2) is continuous, then by Theorems A and C (see (2.128)
and (2.131)) we obtain

∞∑
j1=0

⟨K′ϕj1, ϕj1⟩L2([t,T ])
=

T∫
t

K ′(s, s)ds =

T∫
t

ψ1(s)ψ2(s)ds. (2.135)

Combining (2.134), (2.135) and applying Fubini’s Theorem, we get

∞∑
j1=0

 T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2+
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+

T∫
t

ψ1(t2)ϕj1(t2)

T∫
t2

ψ2(t1)ϕj1(t1)dt1dt2

 =

=
∞∑
j1=0

 T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2+

+

T∫
t

ψ2(t1)ϕj1(t1)

t2∫
t

ψ1(t2)ϕj1(t2)dt2dt1

 =

= 2
∞∑
j1=0

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =

T∫
t

ψ1(s)ψ2(s)ds. (2.136)

From (2.136) we obtain

∞∑
j1=0

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =
1

2

T∫
t

ψ1(s)ψ2(s)ds, (2.137)

where {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in
the space L2([t, T ]) and ψ1(τ), ψ2(τ) are continuously differentiable functions
on [t, T ].

To further generalize of the equality (2.137) to the case when ψ1(τ), ψ2(τ) ∈
L2([t, T ]) it is necessary to set ψ2(τ) = (τ − t)l, ψ1(τ) = (τ − t)m (l,m =
0, 1, 2, . . .) and apply the reasoning of the previous section after the formula
(2.120).

2.2 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 3 Based on Theorem 1.1

This section is devoted to the development of the method of expansion and
mean-square approximation of iterated Itô stochastic integrals based on gen-
eralized multiple Fourier series converging in the mean (Theorem 1.1). We
adapt this method for the iterated Stratonovich stochastic integrals of multi-
plicity 3. The main results of this section have been derived with using triple
Fourier–Legendre series as well as triple trigonometric Fourier series for differ-
ent cases of series summation and different cases of weight functions of iterated
Stratonovich stochastic integrals.
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2.2.1 The Case p1, p2, p3 → ∞ and Constant Weight Functions (The
Case of Legendre Polynomials)

Theorem 2.4 [6]-[17], [35]. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal
system of Legendre polynomials in the space L2([t, T ]). Then, for the iterated
Stratonovich stochastic integral of third multiplicity

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)

the following expansion

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 = l.i.m.

p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.138)
that converges in the mean-square sense is valid, where

Cj3j2j1 =

T∫
t

ϕj3(s)

s∫
t

ϕj2(s1)

s1∫
t

ϕj1(s2)ds2ds1ds

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. If we prove w. p. 1 the following equalities

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

=
1

4
(T − t)3/2

(
ζ
(i3)
0 +

1√
3
ζ
(i3)
1

)
, (2.139)

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
1

4
(T − t)3/2

(
ζ
(i1)
0 − 1√

3
ζ
(i1)
1

)
, (2.140)

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

= 0, (2.141)

then in accordance with the formulas (2.139)–(2.141), Theorem 1.1 (see (1.47)),
standard relations between iterated Itô and Stratonovich stochastic integrals as
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well as in accordance with the formulas (they also follow from Theorem 1.1)

1

2

T∫
t

τ∫
t

dsdf (i3)τ =
1

4
(T − t)3/2

(
ζ
(i3)
0 +

1√
3
ζ
(i3)
1

)
w. p. 1,

1

2

T∫
t

τ∫
t

df (i1)s dτ =
1

4
(T − t)3/2

(
ζ
(i1)
0 − 1√

3
ζ
(i1)
1

)
w. p. 1

we will have

T∫
t

t3∫
t

t2∫
t

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 = l.i.m.

p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

−

−1{i1=i2}
1

2

T∫
t

τ∫
t

dsdf (i3)τ − 1{i2=i3}
1

2

T∫
t

τ∫
t

df (i1)s dτ w. p. 1.

It means that the expansion (2.138) will be proved.

Let us at first prove that

∞∑
j1=0

C0j1j1 =
1

4
(T − t)3/2, (2.142)

∞∑
j1=0

C1j1j1 =
1

4
√
3
(T − t)3/2. (2.143)

We have

C000 =
(T − t)3/2

6
,

C0j1j1 =

T∫
t

ϕ0(s)

s∫
t

ϕj1(s1)

s1∫
t

ϕj1(s2)ds2ds1ds =

=
1

2

T∫
t

ϕ0(s)

 s∫
t

ϕj1(s1)ds1

2

ds, j1 ≥ 1, (2.144)

where ϕj(s) looks as follows

ϕj(s) =

√
2j + 1

T − t
Pj

((
s− T + t

2

)
2

T − t

)
, j ≥ 0, (2.145)
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where Pj(x) is the Legendre polynomial.

Let us substitute (2.145) into (2.144) and calculate C0j1j1 (j1 ≥ 1)

C0j1j1 =
2j1 + 1

2(T − t)3/2

T∫
t

 z(s)∫
−1

Pj1(y)
T − t

2
dy


2

ds =

=
(2j1 + 1)

√
T − t

8

T∫
t

 z(s)∫
−1

1

2j1 + 1

(
P

′

j1+1(y)− P
′

j1−1(y)
)
dy


2

ds =

=

√
T − t

8(2j1 + 1)

T∫
t

(Pj1+1(z(s))− Pj1−1(z(s)))
2 ds, (2.146)

where here and further

z(s) =

(
s− T + t

2

)
2

T − t
.

In (2.146) we used the following well known properties of the Legendre
polynomials

Pj(y) =
1

2j + 1

(
P

′

j+1(y)− P
′

j−1(y)
)
, Pj(−1) = (−1)j, j ≥ 1.

Also, we denote
dPj
dy

(y)
def
= P

′

j(y).

From (2.146) using the property of orthogonality of the Legendre polyno-
mials, we get the following relation

C0j1j1 =
(T − t)3/2

16(2j1 + 1)

1∫
−1

(
P 2
j1+1(y) + P 2

j1−1(y)
)
dy =

=
(T − t)3/2

8(2j1 + 1)

(
1

2j1 + 3
+

1

2j1 − 1

)
,

where we used the property

1∫
−1

P 2
j (y)dy =

2

2j + 1
, j ≥ 0.
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Then
∞∑
j1=0

C0j1j1 =
(T − t)3/2

6
+

+
(T − t)3/2

8

( ∞∑
j1=1

1

(2j1 + 1)(2j1 + 3)
+

∞∑
j1=1

1

4j21 − 1

)
=

=
(T − t)3/2

6
+

(T − t)3/2

8

( ∞∑
j1=1

1

4j21 − 1
− 1

3
+

∞∑
j1=1

1

4j21 − 1

)
=

=
(T − t)3/2

6
+

(T − t)3/2

8

(
1

2
− 1

3
+

1

2

)
=

(T − t)3/2

4
.

The relation (2.142) is proved.

Let us check the correctness of (2.143). Let us represent C1j1j1 in the form

C1j1j1 =
1

2

T∫
t

ϕ1(s)

 s∫
t

ϕj1(s1)ds1

2

ds =

=
(T − t)3/2(2j1 + 1)

√
3

16

1∫
−1

P1(y)

 y∫
−1

Pj1(y1)dy1

2

dy, j1 ≥ 1.

Since the functions  y∫
−1

Pj1(y1)dy1

2

, j1 ≥ 1

are even, then the functions

P1(y)

 y∫
−1

Pj1(y1)dy1

2

dy, j1 ≥ 1

are uneven. It means that C1j1j1 = 0 (j1 ≥ 1). From the other side

C100 =

√
3(T − t)3/2

16

1∫
−1

y(y + 1)2dy =
(T − t)3/2

4
√
3

.
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Then
∞∑
j1=0

C1j1j1 = C100 +
∞∑
j1=1

C1j1j1 =
(T − t)3/2

4
√
3

.

The relation (2.143) is proved.

Let us prove the equality (2.139). Using (2.143), we get

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

=

p1∑
j1=0

C0j1j1ζ
(i3)
0 +

(T − t)3/2

4
√
3

ζ
(i3)
1 +

p1∑
j1=0

p3∑
j3=2

Cj3j1j1ζ
(i3)
j3

=

=

p1∑
j1=0

C0j1j1ζ
(i3)
0 +

(T − t)3/2

4
√
3

ζ
(i3)
1 +

p1∑
j1=0

2j1+2∑
j3=2,j3−even

Cj3j1j1ζ
(i3)
j3
. (2.147)

Since

Cj3j1j1 =
(T − t)3/2(2j1 + 1)

√
2j3 + 1

16

1∫
−1

Pj3(y)

 y∫
−1

Pj1(y1)dy1

2

dy

and degree of the polynomial  y∫
−1

Pj1(y1)dy1

2

equals to 2j1+2, then Cj3j1j1 = 0 for j3 > 2j1+2. It explains that we put 2j1+2
instead of p3 on the right-hand side of the formula (2.147).

Moreover, the function  y∫
−1

Pj1(y1)dy1

2

is even. It means that the function

Pj3(y)

 y∫
−1

Pj1(y1)dy1

2

is uneven for uneven j3. It means that Cj3j1j1 = 0 for uneven j3. That is why
we summarize using even j3 on the right-hand side of the formula (2.147).
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Then we have

p1∑
j1=0

2j1+2∑
j3=2,j3−even

Cj3j1j1ζ
(i3)
j3

=

2p1+2∑
j3=2,j3−even

p1∑
j1=(j3−2)/2

Cj3j1j1ζ
(i3)
j3

=

=

2p1+2∑
j3=2,j3−even

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3
. (2.148)

We replaced (j3−2)/2 by zero on the right-hand side of the formula (2.148),
since Cj3j1j1 = 0 for 0 ≤ j1 < (j3 − 2)/2.

Let us substitute (2.148) into (2.147)

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

=

p1∑
j1=0

C0j1j1ζ
(i3)
0 +

(T − t)3/2

4
√
3

ζ
(i3)
1 +

+

2p1+2∑
j3=2,j3−even

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3
. (2.149)

It is easy to see that the right-hand side of the formula (2.149) does not
depend on p3.

If we prove that

lim
p1→∞

M


(

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

− 1

4
(T − t)3/2

(
ζ
(i3)
0 +

1√
3
ζ
(i3)
1

))2
 = 0,

(2.150)
then the relaion (2.139) will be proved.

Using (2.149) and (2.142), we can rewrite the left-hand side of (2.150) in
the following form

lim
p1→∞

M


((

p1∑
j1=0

C0j1j1 −
(T − t)3/2

4

)
ζ
(i3)
0 +

2p1+2∑
j3=2,j3−even

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

)2
 =

= lim
p1→∞

(
p1∑
j1=0

C0j1j1 −
(T − t)3/2

4

)2

+ lim
p1→∞

2p1+2∑
j3=2,j3−even

(
p1∑
j1=0

Cj3j1j1

)2

=

= lim
p1→∞

2p1+2∑
j3=2,j3−even

(
p1∑
j1=0

Cj3j1j1

)2

. (2.151)
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If we prove that

lim
p1→∞

2p1+2∑
j3=2,j3−even

(
p1∑
j1=0

Cj3j1j1

)2

= 0, (2.152)

then the relation (2.139) will be proved.

We have
2p1+2∑

j3=2,j3−even

(
p1∑
j1=0

Cj3j1j1

)2

=

=
1

4

2p1+2∑
j3=2,j3−even

 T∫
t

ϕj3(s)

p1∑
j1=0

 s∫
t

ϕj1(s1)ds1

2

ds


2

=

=
1

4

2p1+2∑
j3=2,j3−even

 T∫
t

ϕj3(s)

(s− t)−
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)ds1

2
 ds


2

=

=
1

4

2p1+2∑
j3=2,j3−even

 T∫
t

ϕj3(s)
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)ds1

2

ds


2

≤

≤ 1

4

2p1+2∑
j3=2,j3−even

 T∫
t

|ϕj3(s)|
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)ds1

2

ds


2

. (2.153)

Obtaining (2.153), we used the Parseval equality

∞∑
j1=0

 s∫
t

ϕj1(s1)ds1

2

=

T∫
t

(
1{s1<s}

)2
ds1 = s− t (2.154)

and the orthogonality property of the Legendre polynomials

T∫
t

ϕj3(s)(s− t)ds = 0, j3 ≥ 2. (2.155)



316D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Then we have for j1 ∈ N s∫
t

ϕj1(s1)ds1

2

=
(T − t)(2j1 + 1)

4

 z(s)∫
−1

Pj1(y)dy


2

=

=
T − t

4(2j1 + 1)

 z(s)∫
−1

(
P

′

j1+1(y)− P
′

j1−1(y)
)
dy


2

=

=
T − t

4(2j1 + 1)
(Pj1+1 (z(s))− Pj1−1 (z(s)))

2 ≤

≤ T − t

2(2j1 + 1)

(
P 2
j1+1 (z(s)) + P 2

j1−1 (z(s))
)
. (2.156)

Remind that for the Legendre polynomials the following estimate is correct

|Pj(y)| <
K√

j + 1(1− y2)1/4
, y ∈ (−1, 1), j ∈ N, (2.157)

where constant K does not depend on y and j.

The estimate (2.157) can be rewritten for the function ϕj(s) in the following
form

|ϕj(s)| <

√
2j + 1

j + 1

K√
T − t

1

(1− z2(s))1/4
<

<
K1√
T − t

1

(1− z2(s))1/4
, (2.158)

where K1 = K
√
2, s ∈ (t, T ).

Let us estimate the right-hand side of (2.156) using the estimate (2.157) s∫
t

ϕj1(s1)ds1

2

<
T − t

2(2j1 + 1)

(
K2

j1 + 2
+
K2

j1

)
1

(1− (z(s))2)1/2
<

<
(T − t)K2

2j21

1

(1− (z(s))2)1/2
, (2.159)

where s ∈ (t, T ), j1 ∈ N.
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Substituting the estimate (2.159) into the relation (2.153) and using in
(2.153) the estimate (2.158) for |ϕj3(s)|, we obtain

2p1+2∑
j3=2,j3−even

(
p1∑
j1=0

Cj3j1j1

)2

<

<
(T − t)K4K2

1

16

2p1+2∑
j3=2,j3−even

 T∫
t

ds(
1− (z(s))2

)3/4 ∞∑
j1=p1+1

1

j21


2

=

=
(T − t)3K4K2

1(p1 + 1)

64

 1∫
−1

dy

(1− y2)3/4

2( ∞∑
j1=p1+1

1

j21

)2

. (2.160)

Since
1∫

−1

dy

(1− y2)3/4
<∞ (2.161)

and
∞∑

j1=p1+1

1

j21
≤

∞∫
p1

dx

x2
=

1

p1
, (2.162)

then from (2.160) we find

2p1+2∑
j3=2,j3−even

(
p1∑
j1=0

Cj3j1j1

)2

<
C(T − t)3(p1 + 1)

p21
→ 0 if p1 → ∞, (2.163)

where constant C does not depend on p1 and T − t. The relation (2.163) implies
(2.152), and the relation (2.152) implies the correctness of the formula (2.139).

Let us prove the equaity (2.140). Let us at first prove that

∞∑
j3=0

Cj3j30 =
1

4
(T − t)3/2, (2.164)

∞∑
j3=0

Cj3j31 = − 1

4
√
3
(T − t)3/2. (2.165)

We have ∞∑
j3=0

Cj3j30 = C000 +
∞∑
j3=1

Cj3j30,
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C000 =
(T − t)3/2

6
,

Cj3j30 =
(T − t)3/2

16(2j3 + 1)

1∫
−1

(
P 2
j3+1(y) + P 2

j3−1(y)
)
dy =

=
(T − t)3/2

8(2j3 + 1)

(
1

2j3 + 3
+

1

2j3 − 1

)
, j3 ≥ 1.

Then
∞∑
j3=0

Cj3j30 =
(T − t)3/2

6
+

+
(T − t)3/2

8

( ∞∑
j3=1

1

(2j3 + 1)(2j3 + 3)
+

∞∑
j3=1

1

4j23 − 1

)
=

=
(T − t)3/2

6
+

(T − t)3/2

8

( ∞∑
j3=1

1

4j23 − 1
− 1

3
+

∞∑
j3=1

1

4j23 − 1

)
=

=
(T − t)3/2

6
+

(T − t)3/2

8

(
1

2
− 1

3
+

1

2

)
=

(T − t)3/2

4
.

The relation (2.164) is proved. Let us check the equality (2.165). We have

Cj3j3j1 =

T∫
t

ϕj3(s)

s∫
t

ϕj3(s1)

s1∫
t

ϕj1(s2)ds2ds1ds =

=

T∫
t

ϕj1(s2)ds2

T∫
s2

ϕj3(s1)ds1

T∫
s1

ϕj3(s)ds =

=
1

2

T∫
t

ϕj1(s2)

 T∫
s2

ϕj3(s1)ds1

2

ds2 =

=
(T − t)3/2(2j3 + 1)

√
2j1 + 1

16

1∫
−1

Pj1(y)

 1∫
y

Pj3(y1)dy1

2

dy, j3 ≥ 1.

(2.166)
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Since the functions  1∫
y

Pj3(y1)dy1

2

, j3 ≥ 1

are even, then the functions

P1(y)

 1∫
y

Pj3(y1)dy1

2

dy, j3 ≥ 1

are uneven. It means that Cj3j31 = 0 (j3 ≥ 1).

Moreover,

C001 =

√
3(T − t)3/2

16

1∫
−1

y(1− y)2dy = −(T − t)3/2

4
√
3

.

Then ∞∑
j3=0

Cj3j31 = C001 +
∞∑
j3=1

Cj3j31 = −(T − t)3/2

4
√
3

.

The relation (2.165) is proved. Using the obtained results, we get

p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=

p3∑
j3=0

Cj3j30ζ
(i1)
0 − (T − t)3/2

4
√
3

ζ
(i1)
1 +

p3∑
j3=0

p1∑
j1=2

Cj3j3j1ζ
(i1)
j1

=

=

p3∑
j3=0

Cj3j30ζ
(i1)
0 − (T − t)3/2

4
√
3

ζ
(i1)
1 +

p3∑
j3=0

2j3+2∑
j1=2,j1−even

Cj3j3j1ζ
(i1)
j1
. (2.167)

Since

Cj3j3j1 =
(T − t)3/2(2j3 + 1)

√
2j1 + 1

16

1∫
−1

Pj1(y)

 1∫
y

Pj3(y1)dy1

2

dy, j3 ≥ 1,

and degree of the polynomial  1∫
y

Pj3(y1)dy1

2
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equals to 2j3+2, then Cj3j3j1 = 0 for j1 > 2j3+2. It explains that we put 2j3+2
instead of p1 on the right-hand side of the formula (2.167).

Moreover, the function  1∫
y

Pj3(y1)dy1

2

is even. It means that the function

Pj1(y)

 1∫
y

Pj3(y1)dy1

2

is uneven for uneven j1. It means that Cj3j3j1 = 0 for uneven j1. It explains the
summation with respect to even j1 on the right-hand side of (2.167).

Then we have
p3∑
j3=0

2j3+2∑
j1=2,j1−even

Cj3j3j1ζ
(i1)
j1

=

2p3+2∑
j1=2,j1−even

p3∑
j3=(j1−2)/2

Cj3j3j1ζ
(i1)
j1

=

=

2p3+2∑
j1=2,j1−even

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1
. (2.168)

We replaced (j1 − 2)/2 by zero on the right-hand side of (2.168), since
Cj3j3j1 = 0 for 0 ≤ j3 < (j1 − 2)/2.

Let us substitute (2.168) into (2.167)
p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=

p3∑
j3=0

Cj3j30ζ
(i1)
0 − (T − t)3/2

4
√
3

ζ
(i1)
1 +

+

2p3+2∑
j1=2,j1−even

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1
. (2.169)

It is easy to see that the right-hand side of the formula (2.169) does not
depend on p1.

If we prove that

lim
p3→∞

M


(

p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

− 1

4
(T − t)3/2

(
ζ
(i1)
0 − 1√

3
ζ
(i1)
1

))2
 = 0,

(2.170)
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then (2.140) will be proved.

Using (2.169) and (2.164), (2.165), we can rewrite the left-hand side of the
formula (2.170) in the following form

lim
p3→∞

M


((

p3∑
j3=0

Cj3j30 −
(T − t)3/2

4

)
ζ
(i1)
0 +

2p3+2∑
j1=2,j1−even

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

)2
 =

= lim
p3→∞

(
p1∑
j3=0

Cj3j30 −
(T − t)3/2

4

)2

+ lim
p3→∞

2p3+2∑
j1=2,j1−even

(
p3∑
j3=0

Cj3j3j1

)2

=

= lim
p3→∞

2p3+2∑
j1=2,j1−even

(
p3∑
j3=0

Cj3j3j1

)2

.

If we prove that

lim
p3→∞

2p3+2∑
j1=2,j1−even

(
p3∑
j3=0

Cj3j3j1

)2

= 0, (2.171)

then the relation (2.140) will be proved.

From (2.166) we obtain

2p3+2∑
j1=2,j1−even

(
p3∑
j3=0

Cj3j3j1

)2

=

=
1

4

2p3+2∑
j1=2,j1−even

 T∫
t

ϕj1(s2)

p3∑
j3=0

 T∫
s2

ϕj3(s1)ds1

2

ds2


2

=

=
1

4

2p3+2∑
j1=2,j1−even

 T∫
t

ϕj1(s2)

(T − s2)−
∞∑

j3=p3+1

 T∫
s2

ϕj3(s1)ds1

2
 ds2


2

=

=
1

4

2p3+2∑
j1=2,j1−even

 T∫
t

ϕj1(s2)
∞∑

j3=p3+1

 T∫
s2

ϕj3(s1)ds1

2

ds2


2

≤

≤ 1

4

2p3+2∑
j1=2,j1−even

 T∫
t

|ϕj1(s2)|
∞∑

j3=p3+1

 T∫
s2

ϕj3(s1)ds1

2

ds2


2

. (2.172)
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In order to get (2.172) we used the Parseval equality

∞∑
j1=0

 T∫
s

ϕj1(s1)ds1

2

=

T∫
t

(
1{s<s1}

)2
ds1 = T − s (2.173)

and the orthogonality property of the Legendre polynomials

T∫
t

ϕj3(s)(T − s)ds = 0, j3 ≥ 2. (2.174)

Then we have for j3 ∈ N T∫
s2

ϕj3(s1)ds1

2

=
(T − t)

4(2j3 + 1)
(Pj3+1 (z(s2))− Pj3−1 (z(s2)))

2 ≤

≤ T − t

2(2j3 + 1)

(
P 2
j3+1 (z(s2)) + P 2

j3−1 (z(s2))
)
<

<
T − t

2(2j3 + 1)

(
K2

j3 + 2
+
K2

j3

)
1

(1− (z(s2))2)1/2
<

<
(T − t)K2

2j23

1

(1− (z(s2))2)1/2
, s2 ∈ (t, T ). (2.175)

In order to get (2.175) we used the estimate (2.157).

Substituting the estimate (2.175) into the relation (2.172) and using in
(2.172) the estimate (2.158) for |ϕj1(s2)|, we obtain

2p3+2∑
j1=2,j1−even

(
p3∑
j3=0

Cj3j3j1

)2

<

<
(T − t)K4K2

1

16

2p3+2∑
j1=2,j1−even

 T∫
t

ds2
(1− z2(s2))3/4

∞∑
j3=p3+1

1

j23

2

=

=
(T − t)3K4K2

1(p3 + 1)

64

 1∫
−1

dy

(1− y2)3/4

2( ∞∑
j3=p3+1

1

j23

)2

. (2.176)
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Using (2.161) and (2.162) in (2.176), we get

2p3+2∑
j1=2,j1−even

(
p3∑
j3=0

Cj3j3j1

)2

<
C(T − t)3(p3 + 1)

p23
→ 0 with p3 → ∞, (2.177)

where constant C does not depend on p3 and T − t.

The relation (2.177) implies (2.171), and the relation (2.171) implies the
correctness of the formula (2.140). The relation (2.140) is proved.

Let us prove the equality (2.141). Since ψ1(τ), ψ2(τ), ψ3(τ) ≡ 1, then the
following relation for the Fourier coefficients is correct

Cj1j1j3 + Cj1j3j1 + Cj3j1j1 =
1

2
C2
j1
Cj3,

where Cj = 0 for j ≥ 1 and C0 =
√
T − t. Then w. p. 1

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

= l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

(
1

2
C2
j1
Cj3 − Cj1j1j3 − Cj3j1j1

)
ζ
(i2)
j3
.

(2.178)

Therefore, considering (2.139) and (2.140), we can write w. p. 1

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

=
1

2
C3

0ζ
(i2)
0 −

− l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j1j3ζ
(i2)
j3

− l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i2)
j3

=

=
1

2
(T − t)3/2ζ

(i2)
0 − 1

4
(T − t)3/2

(
ζ
(i2)
0 − 1√

3
ζ
(i2)
1

)
−

−1

4
(T − t)3/2

(
ζ
(i2)
0 +

1√
3
ζ
(i2)
1

)
= 0. (2.179)

The relation (2.141) is proved. Theorem 2.4 is proved.

It is easy to see that the formula (2.138) can be proved for the case i1 =
i2 = i3 using the Itô formula

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i1)
t2 df

(i1)
t3 =

1

6

 T∫
t

df (i1)s

3

=
1

6

(
C0ζ

(i1)
0

)3
= C000ζ

(i1)
0 ζ

(i1)
0 ζ

(i1)
0 ,

where the equality is fulfilled w. p. 1.
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2.2.2 The Case p1, p2, p3 → ∞, Binomial Weight Functions, and Ad-
ditional Restrictive Conditions (The Case of Legendre Poly-
nomials)

Let us consider the following generalization of Theorem 2.4.

Theorem 2.5 [6]-[17], [35]. Suppose that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials in the space L2([t, T ]). Then, for
the iterated Stratonovich stochastic integral of third multiplicity

I
∗(i1i2i3)
l1l2l3T,t

=

∗∫
t

T

(t− t3)
l3

∗∫
t

t3

(t− t2)
l2

∗∫
t

t2

(t− t1)
l1df

(i1)
t1 df

(i2)
t2 df

(i3)
t3

the following expansion

I
∗(i1i2i3)
l1l2l3T,t

= l.i.m.
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.180)

that converges in the mean-square sense is valid for each of the following cases

1. i1 ̸= i2, i2 ̸= i3, i1 ̸= i3 and l1, l2, l3 = 0, 1, 2, . . .
2. i1 = i2 ̸= i3 and l1 = l2 ̸= l3 and l1, l2, l3 = 0, 1, 2, . . .
3. i1 ̸= i2 = i3 and l1 ̸= l2 = l3 and l1, l2, l3 = 0, 1, 2, . . .
4. i1, i2, i3 = 1, . . . ,m; l1 = l2 = l3 = l and l = 0, 1, 2, . . . ,

where i1, i2, i3 = 1, . . . ,m,

Cj3j2j1 =

T∫
t

(t− s)l3ϕj3(s)

s∫
t

(t− s1)
l2ϕj2(s1)

s1∫
t

(t− s2)
l1ϕj1(s2)ds2ds1ds,

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. Case 1 directly follows from (1.47). Let us consider Case 2, i.e.
i1 = i2 ̸= i3, l1 = l2 = l ̸= l3, and l1, l3 = 0, 1, 2, . . . So, we prove the following
expansion

I
∗(i1i1i3)
l1l1l3T,t

= l.i.m.
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i1)
j2
ζ
(i3)
j3

(i1, i2, i3 = 1, . . . ,m),

(2.181)
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where l1, l3 = 0, 1, 2, . . . (l1 = l) and

Cj3j2j1 =

T∫
t

ϕj3(s)(t− s)l3

s∫
t

(t− s1)
lϕj2(s1)

s1∫
t

(t− s2)
lϕj1(s2)ds2ds1ds. (2.182)

If we prove w. p. 1 the formula

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

=
1

2

T∫
t

(t− s)l3

s∫
t

(t− s1)
2lds1df

(i3)
s , (2.183)

where coefficients Cj3j1j1 are defined by (2.182), then using Theorem 1.1 and
standard relations between iterated Itô and Stratonovich stochastic integrals,
we obtain the expansion (2.181).

Using Theorem 1.1, we obtain

1

2

T∫
t

(t− s)l3

s∫
t

(t− s1)
2lds1df

(i3)
s =

1

2

2l+l3+1∑
j3=0

C̃j3ζ
(i3)
j3

w. p. 1,

where

C̃j3 =

T∫
t

ϕj3(s)(t− s)l3

s∫
t

(t− s1)
2lds1ds.

Then
p3∑
j3=0

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

− 1

2

2l+l3+1∑
j3=0

C̃j3ζ
(i3)
j3

=

=

2l+l3+1∑
j3=0

(
p1∑
j1=0

Cj3j1j1 −
1

2
C̃j3

)
ζ
(i3)
j3

+

p3∑
j3=2l+l3+2

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3
.

Therefore,

lim
p1,p3→∞

M


 p3∑
j3=0

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

− 1

2

T∫
t

(t− s)l3

s∫
t

(t− s1)
2lds1df

(i3)
s

2
 =

= lim
p1→∞

2l+l3+1∑
j3=0

(
p1∑
j1=0

Cj3j1j1 −
1

2
C̃j3

)2

+
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+ lim
p1,p3→∞

M


 p3∑
j3=2l+l3+2

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

2
 . (2.184)

Let us prove that

lim
p1→∞

(
p1∑
j1=0

Cj3j1j1 −
1

2
C̃j3

)2

= 0. (2.185)

We have (
p1∑
j1=0

Cj3j1j1 −
1

2
C̃j3

)2

=

=

1

2

p1∑
j1=0

T∫
t

ϕj3(s)(t− s)l3

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds−

−1

2

T∫
t

ϕj3(s)(t− s)l3

s∫
t

(t− s1)
2lds1ds

2

=

=
1

4

 T∫
t

ϕj3(s)(t− s)l3

 p1∑
j1=0

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

−

−
s∫
t

(t− s1)
2lds1

 ds

2

=

=
1

4

 T∫
t

ϕj3(s)(t− s)l3

 s∫
t

(t− s1)
2lds1 −

∞∑
j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

−

−
s∫
t

(t− s1)
2lds1

 ds

2

=

=
1

4

 T∫
t

ϕj3(s)(t− s)l3
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds


2

. (2.186)
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In order to get (2.186) we used the Parseval equality

∞∑
j1=0

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

=

T∫
t

K2(s, s1)ds1, (2.187)

where
K(s, s1) = (t− s1)

l 1{s1<s}, s, s1 ∈ [t, T ].

Taking into account the nondecreasing of the functional sequence

un(s) =
n∑

j1=0

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

,

continuity of its members and continuity of the limit function

u(s) =

s∫
t

(t− s1)
2lds1

at the interval [t, T ] in accordance with the Dini Theorem we have uniform
convergence of the functional sequences un(s) to the limit function u(s) at the
interval [t, T ].

From (2.186) using the inequality of Cauchy–Bunyakovsky, we obtain(
p1∑
j1=0

Cj3j1j1 −
1

2
C̃j3

)2

≤

≤ 1

4

T∫
t

ϕ2j3(s)(t− s)2l3ds

T∫
t

 ∞∑
j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2


2

ds ≤

≤ 1

4
ε2(T − t)2l3

T∫
t

ϕ2j3(s)ds(T − t) =
1

4
(T − t)2l3+1ε2 (2.188)

when p1 > N(ε), where N(ε) ∈ N exists for any ε > 0. The relation (2.188)
implies (2.185).

Further,

p1∑
j1=0

p3∑
j3=2l+l3+2

Cj3j1j1ζ
(i3)
j3

=

p1∑
j1=0

2(j1+l+1)+l3∑
j3=2l+l3+2

Cj3j1j1ζ
(i3)
j3
. (2.189)
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We put 2(j1+l+1)+l3 instead of p3, since Cj3j1j1 = 0 for j3 > 2(j1+l+1)+l3.
This conclusion follows from the relation

Cj3j1j1 =
1

2

T∫
t

ϕj3(s)(t− s)l3

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds =

=
1

2

T∫
t

ϕj3(s)Q2(j1+l+1)+l3(s)ds,

where Q2(j1+l+1)+l3(s) is a polynomial of degree 2(j1 + l + 1) + l3.

It is easy to see that

p1∑
j1=0

2(j1+l+1)+l3∑
j3=2l+l3+2

Cj3j1j1ζ
(i3)
j3

=

2(p1+l+1)+l3∑
j3=2l+l3+2

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3
. (2.190)

Note that we included some zero coefficients Cj3j1j1 into the sum
p1∑
j1=0

. From

(2.189) and (2.190) we have

M


 p1∑
j1=0

p3∑
j3=2l+l3+2

Cj3j1j1ζ
(i3)
j3

2
 =

= M


2(p1+l+1)+l3∑

j3=2l+l3+2

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

2
 =

2(p1+l+1)+l3∑
j3=2l+l3+2

(
p1∑
j1=0

Cj3j1j1

)2

=

=

2(p1+l+1)+l3∑
j3=2l+l3+2

1

2

p1∑
j1=0

T∫
t

ϕj3(s)(t− s)l3

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds


2

=

=
1

4

2(p1+l+1)+l3∑
j3=2l+l3+2

 T∫
t

ϕj3(s)(t− s)l3
p1∑
j1=0

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds


2

=

=
1

4

2(p1+l+1)+l3∑
j3=2l+l3+2

 T∫
t

ϕj3(s)(t− s)l3

 s∫
t

(t− s1)
2lds1−
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−
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2
 ds


2

=

=
1

4

2(p1+l+1)+l3∑
j3=2l+l3+2

 T∫
t

ϕj3(s)(t− s)l3
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds


2

.

(2.191)

In order to get (2.191) we used the Parseval equality (2.187) and the fol-
lowing relation

T∫
t

ϕj3(s)Q2l+1+l3(s)ds = 0, j3 > 2l + 1 + l3,

where Q2l+1+l3(s) is a polynomial of degree 2l + 1 + l3.

Further, we have  s∫
t

ϕj1(s1)(t− s1)
lds1

2

=

=
(T − t)2l+1(2j1 + 1)

22l+2

 z(s)∫
−1

Pj1(y)(1 + y)ldy


2

=

=
(T − t)2l+1

22l+2(2j1 + 1)
×

×

(1 + z(s))lRj1(s)− l

z(s)∫
−1

(Pj1+1(y)− Pj1−1(y)) (1 + y)l−1 dy


2

≤

≤ (T − t)2l+12

22l+2(2j1 + 1)
×

×

(2(s− t)

T − t

)2l

R2
j1
(s) + l2

 z(s)∫
−1

(Pj1+1(y)− Pj1−1(y)) (1 + y)l−1 dy


2
 ≤

≤ (T − t)2l+1

22l+1(2j1 + 1)
×
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×

22l+1Zj1(s) + l2
z(s)∫
−1

(1 + y)2l−2dy

z(s)∫
−1

(Pj1+1(y)− Pj1−1(y))
2 dy

 ≤

≤ (T − t)2l+1

22l+1(2j1 + 1)
×

×

22l+1Zj1(s) +
2l2

2l − 1

(
2(s− t)

T − t

)2l−1
z(s)∫
−1

(
P 2
j1+1(y) + P 2

j1−1(y)
)
dy

 ≤

≤ (T − t)2l+1

2(2j1 + 1)

2Zj1(s) +
l2

2l − 1

z(s)∫
−1

(
P 2
j1+1(y) + P 2

j1−1(y)
)
dy

 , (2.192)

where j1 ∈ N,
Rj1(s) = Pj1+1(z(s))− Pj1−1(z(s)),

Zj1(s) = P 2
j1+1(z(s)) + P 2

j1−1(z(s)).

Let us estimate the right-hand side of (2.192) using (2.157) (j1 ∈ N) s∫
t

ϕj1(s1)(t− s1)
lds1

2

<

<
(T − t)2l+1

2(2j1 + 1)

(
K2

j1 + 2
+
K2

j1

) 2

(1− (z(s))2)1/2
+

l2

2l − 1

z(s)∫
−1

dy

(1− y2)1/2

 <

<
(T − t)2l+1K2

2j21

(
2

(1− (z(s))2)1/2
+

l2π

2l − 1

)
, s ∈ (t, T ). (2.193)

From (2.191) and (2.193) we obtain

M


 p1∑
j1=0

p3∑
j3=2l+l3+2

Cj3j1j1ζ
(i3)
j3

2
 ≤

≤ 1

4

2(p1+l+1)+l3∑
j3=2l+l3+2

 T∫
t

|ϕj3(s)|(t− s)l3
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds


2

≤
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≤ 1

4
(T − t)2l3

2(p1+l+1)+l3∑
j3=2l+l3+2

 T∫
t

|ϕj3(s)|
∞∑

j1=p1+1

 s∫
t

ϕj1(s1)(t− s1)
lds1

2

ds


2

<

<
(T − t)4l+2l3+1K4K2

1

16

2(p1+l+1)+l3∑
j3=2l+l3+2


 T∫

t

2ds(
1− (z(s))2

)3/4+

+
l2π

2l − 1

T∫
t

ds(
1− (z(s))2

)1/4
 ∞∑

j1=p1+1

1

j21


2

≤

≤ (T − t)4l+2l3+3K4K2
1

64

2p1 + 1

p21

 1∫
−1

2dy

(1− y2)3/4
+

l2π

2l − 1

1∫
−1

dy

(1− y2)1/4

2

≤

≤ C(T − t)4l+2l3+3 2p1 + 1

p21
→ 0 when p1 → ∞, (2.194)

where constant C does not depend on p1 and T − t.

The relations (2.184), (2.185), and (2.194) imply (2.183), and the relation
(2.183) implies the correctness of the formula (2.181).

Let us consider Case 3, i.e. i2 = i3 ̸= i1, l2 = l3 = l ̸= l1, and l1, l3 =
0, 1, 2, . . . So, we prove the following expansion

I
∗(i1i3i3)
l1l3l3T,t

= l.i.m.
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i3)
j2
ζ
(i3)
j3

(i1, i2, i3 = 1, . . . ,m),

(2.195)

where l1, l3 = 0, 1, 2, . . . (l3 = l) and

Cj3j2j1 =

T∫
t

ϕj3(s)(t− s)l
s∫
t

(t− s1)
lϕj2(s1)

s1∫
t

(t− s2)
l1ϕj1(s2)ds2ds1ds. (2.196)

If we prove w. p. 1 the formula

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
1

2

T∫
t

(t− s)2l
s∫
t

(t− s1)
l1df (i1)s1

ds, (2.197)
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where the coefficients Cj3j3j1 are defined by (2.196), then using Theorem 1.1 and
standard relations between iterated Itô and Stratonovich stochastic integrals,
we obtain the expansion (2.195).

Using Theorem 1.1 and the Itô formula, we have

1

2

T∫
t

(t− s)2l
s∫
t

(t− s1)
l1df (i1)s1

ds =
1

2

T∫
t

(t− s1)
l1

T∫
s1

(t− s)2ldsdf (i1)s1
=

=
1

2

2l+l1+1∑
j1=0

C̃j1ζ
(i1)
j1

w. p. 1,

where

C̃j1 =

T∫
t

ϕj1(s1)(t− s1)
l1

T∫
s1

(t− s)2ldsds1.

Then
p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

− 1

2

2l+l1+1∑
j1=0

C̃j1ζ
(i1)
j1

=

=

2l+l1+1∑
j1=0

(
p3∑
j3=0

Cj3j3j1 −
1

2
C̃j1

)
ζ
(i1)
j1

+

p1∑
j1=2l+l1+2

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1
.

Therefore,

lim
p1,p3→∞

M


 p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

− 1

2

T∫
t

(t− s)2l
s∫
t

(t− s1)
l1df (i1)s1

ds

2
 =

= lim
p3→∞

2l+l1+1∑
j1=0

(
p3∑
j3=0

Cj3j3j1 −
1

2
C̃j1

)2

+

+ lim
p1,p3→∞

M


 p1∑
j1=2l+l1+2

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

2
 . (2.198)

Let us prove that

lim
p3→∞

(
p3∑
j3=0

Cj3j3j1 −
1

2
C̃j1

)2

= 0. (2.199)
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We have (
p3∑
j3=0

Cj3j3j1 −
1

2
C̃j1

)2

=

=

 p3∑
j3=0

T∫
t

ϕj1(s2)(t− s2)
l1ds2

T∫
s2

ϕj3(s1)(t− s1)
lds1

T∫
s1

ϕj3(s)(t− s)lds−

− 1

2

T∫
t

ϕj1(s1)(t− s1)
l1

T∫
s1

(t− s)2ldsds1

2

=

=

1

2

p3∑
j3=0

T∫
t

ϕj1(s2)(t− s2)
l1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2−

−1

2

T∫
t

ϕj1(s1)(t− s1)
l1

T∫
s1

(t− s)2ldsds1

2

=

=
1

4

 T∫
t

ϕj1(s1)(t− s1)
l1

 p3∑
j3=0

 T∫
s1

ϕj3(s)(t− s)lds

2

−

−
T∫

s1

(t− s)2lds

 ds1

2

=

=
1

4

 T∫
t

ϕj1(s1)(t− s1)
l1

 T∫
s1

(t− s)2lds−
∞∑

j3=p3+1

 T∫
s1

ϕj3(s)(t− s)lds

2

−

−
T∫

s1

(t− s)2lds

 ds1

2

=

=
1

4

 T∫
t

ϕj1(s1)(t− s1)
l1

∞∑
j3=p3+1

 T∫
s1

ϕj3(s)(t− s)lds

2

ds1


2

. (2.200)
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In order to get (2.200) we used the Parseval equality

∞∑
j3=0

 T∫
s1

ϕj3(s)(t− s)lds

2

=

T∫
t

K2(s, s1)ds, (2.201)

where
K(s, s1) = (t− s)l 1{s1<s}, s, s1 ∈ [t, T ].

Taking into account the nondecreasing of the functional sequence

un(s1) =
n∑

j3=0

 T∫
s1

ϕj3(s)(t− s)lds

2

,

continuity of its members and continuity of the limit function

u(s1) =

T∫
s1

(t− s)2lds

at the interval [t, T ] in accordance with the Dini Theorem we have uniform
convergence of the functional sequence un(s1) to the limit function u(s1) at the
interval [t, T ].

From (2.200) using the inequality of Cauchy–Bunyakovsky, we obtain(
p3∑
j3=0

Cj3j3j1 −
1

2
C̃j1

)2

≤

≤ 1

4

T∫
t

ϕ2j1(s1)(t− s1)
2l1ds1

T∫
t

 ∞∑
j3=p3+1

 T∫
s1

ϕj3(s)(t− s)lds

2


2

ds1 ≤

≤ 1

4
ε2(T − t)2l1

T∫
t

ϕ2j1(s1)ds1(T − t) =
1

4
(T − t)2l1+1ε2 (2.202)

when p3 > N(ε), where N(ε) ∈ N exists for any ε > 0. The relation (2.199)
follows from (2.202).

We have

p3∑
j3=0

p1∑
j1=2l+l1+2

Cj3j3j1ζ
(i1)
j1

=

p3∑
j3=0

2(j3+l+1)+l1∑
j1=2l+l1+2

Cj3j3j1ζ
(i1)
j1
. (2.203)
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We put 2(j3 + l + 1) + l1 instead of p1, since Cj3j3j1 = 0 when j1 > 2(j3 +
l + 1) + l1. This conclusion follows from the relation

Cj3j3j1 =
1

2

T∫
t

ϕj1(s2)(t− s2)
l1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2 =

=
1

2

T∫
t

ϕj1(s2)Q2(j3+l+1)+l1(s2)ds2,

where Q2(j3+l+1)+l1(s) is a polynomial of degree 2(j3 + l + 1) + l1.

It is easy to see that

p3∑
j3=0

2(j3+l+1)+l1∑
j1=2l+l1+2

Cj3j3j1ζ
(i1)
j1

=

2(p3+l+1)+l1∑
j1=2l+l1+2

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1
. (2.204)

Note that we included some zero coefficients Cj3j3j1 into the sum
p3∑
j3=0

.

From (2.203) and (2.204) we have

M


 p3∑
j3=0

p1∑
j1=2l+l1+2

Cj3j3j1ζ
(i1)
j1

2
 =

= M


2(p3+l+1)+l1∑

j1=2l+l1+2

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

2
 =

2(p3+l+1)+l1∑
j1=2l+l1+2

(
p3∑
j3=0

Cj3j3j1

)2

=

=

2(p3+l+1)+l1∑
j1=2l+l1+2

1

2

p3∑
j3=0

T∫
t

ϕj1(s2)(t− s2)
l1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2


2

=

=
1

4

2(p3+l+1)+l1∑
j1=2l+l1+2

 T∫
t

ϕj1(s2)(t− s2)
l1

p3∑
j3=0

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2


2

=

=
1

4

2(p3+l+1)+l1∑
j1=2l+l1+2

 T∫
t

ϕj1(s2)(t− s2)
l1

 T∫
s2

(t− s1)
2lds1−
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−
∞∑

j3=p3+1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2
 ds2


2

=

=
1

4

2(p3+l+1)+l1∑
j1=2l+l1+2

 T∫
t

ϕj1(s2)(t− s2)
l1

∞∑
j3=p3+1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2


2

.

(2.205)

In order to get (2.205) we used the Parseval equality (2.201) and the fol-
lowing relation

T∫
t

ϕj1(s)Q2l+1+l1(s)ds = 0, j1 > 2l + 1 + l1,

where Q2l+1+l1(s) is a polynomial of degree 2l + 1 + l1.

Further, we have  T∫
s2

ϕj3(s1)(t− s1)
lds1

2

=

=
(T − t)2l+1(2j3 + 1)

22l+2

 1∫
z(s2)

Pj3(y)(1 + y)ldy


2

=

=
(T − t)2l+1

22l+2(2j3 + 1)
×

×

(1 + z(s2))
lQj3(s2)− l

1∫
z(s2)

(Pj3+1(y)− Pj3−1(y)) (1 + y)l−1 dy


2

≤

≤ (T − t)2l+12

22l+2(2j3 + 1)
×

×

(2(s2 − t)

T − t

)2l

Q2
j3
(s2) + l2

 1∫
z(s2)

(Pj3+1(y)− Pj3−1(y)) (1 + y)l−1 dy


2
 ≤

≤ (T − t)2l+1

22l+1(2j3 + 1)
×
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×

22l+1Hj3(s2) + l2
1∫

z(s2)

(1 + y)2l−2dy

1∫
z(s2)

(Pj3+1(y)− Pj3−1(y))
2 dy

 ≤

≤ (T − t)2l+1

22l+1(2j3 + 1)
×

×

22l+1Hj3(s2) +
22ll2

2l − 1

(
1−

(
s2 − t

T − t

)2l−1
) 1∫
z(s2)

(
P 2
j3+1(y) + P 2

j3−1(y)
)
dy

≤

≤ (T − t)2l+1

2(2j3 + 1)

2Hj3(s2)+
l2

2l − 1

1∫
z(s2)

(
P 2
j3+1(y) + P 2

j3−1(y)
)
dy

 , (2.206)

where j3 ∈ N,
Qj3(s2) = Pj3−1(z(s2))− Pj3+1(z(s2)),

Hj3(s2) = P 2
j3−1(z(s2)) + P 2

j3+1(z(s2)).

Let us estimate the right-hand side of (2.206) using (2.157) (j3 ∈ N) T∫
s2

ϕj3(s1)(t− s1)
lds1

2

<

<
(T − t)2l+1

2(2j3 + 1)

(
K2

j3 + 2
+
K2

j3

) 2

(1− (z(s2))2)
1/2

+
l2

2l − 1

1∫
z(s2)

dy

(1− y2)1/2

 <

<
(T − t)2l+1K2

2j23

(
2

(1− (z(s2))2)
1/2

+
l2π

2l − 1

)
, s2 ∈ (t, T ). (2.207)

From (2.205) and (2.207) we obtain

M


 p3∑
j3=0

p1∑
j1=2l+l1+2

Cj3j3j1ζ
(i1)
j1

2
 ≤

≤ 1

4

2(p3+l+1)+l1∑
j1=2l+l1+2

 T∫
t

|ϕj1(s2)|(t− s2)
l1

∞∑
j3=p3+1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2


2

≤
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≤ 1

4
(T − t)2l1

2(p3+l+1)+l1∑
j1=2l+l1+2

 T∫
t

|ϕj1(s2)|
∞∑

j3=p3+1

 T∫
s2

ϕj3(s1)(t− s1)
lds1

2

ds2


2

<

<
(T − t)4l+2l1+1K4K2

1

16

2(p3+l+1)+l1∑
j1=2l+l1+2

 T∫
t

2ds2

(1− (z(s2))2)
3/4

+

+
l2π

2l − 1

T∫
t

ds2

(1− (z(s2))2)
1/4

 ∞∑
j3=p3+1

1

j23

2

≤

≤ (T − t)4l+2l1+3K4K2
1

64

2p3 + 1

p23

 1∫
−1

2dy

(1− y2)3/4
+

l2π

2l − 1

1∫
−1

dy

(1− y2)1/4

2

≤

≤ C(T − t)4l+2l1+3 2p3 + 1

p23
→ 0 when p3 → ∞, (2.208)

where constant C does not depend on p3 and T − t.

The relations (2.198), (2.199), and (2.208) imply (2.197), and the relation
(2.197) implies the correctness of the expansion (2.195).

Let us consider Case 4, i.e. l1 = l2 = l3 = l = 0, 1, 2, . . . and i1, i2, i3 =
1, . . . ,m. So, we will prove the following expansion for iterated Stratonovich
stochastic integral of third multiplicity

I
∗(i1i2i3)
lllT,t

= l.i.m.
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(i1, i2, i3 = 1, . . . ,m),

(2.209)
where the series converges in the mean-square sense, l = 0, 1, 2, . . . , and

Cj3j2j1 =

T∫
t

ϕj3(s)(t− s)l
s∫
t

(t− s1)
lϕj2(s1)

s1∫
t

(t− s2)
lϕj1(s2)ds2ds1ds. (2.210)

If we prove w. p. 1 the following formula

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

= 0, (2.211)
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where the coefficients Cj3j2j1 are defined by (2.210), then using the formulas
(2.183), (2.197) when l1 = l3 = l, Theorem 1.1, and standard relations be-
tween iterated Itô and Stratonovich stochastic integrals, we obtain the expan-
sion (2.209).

Since ψ1(s), ψ2(s), ψ3(s) ≡ (t − s)l, then the following equality for the
Fourier coefficients takes place

Cj1j1j3 + Cj1j3j1 + Cj3j1j1 =
1

2
C2
j1
Cj3,

where the coefficients Cj3j2j1 are defined by (2.210) and

Cj1 =

T∫
t

ϕj1(s)(t− s)lds.

Then w. p. 1

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

=

= l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

(
1

2
C2
j1
Cj3 − Cj1j1j3 − Cj3j1j1

)
ζ
(i2)
j3
. (2.212)

Taking into account (2.183) and (2.197) when l3 = l1 = l as well as the Itô
formula, we have w. p. 1

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

=
1

2

l∑
j1=0

C2
j1

l∑
j3=0

Cj3ζ
(i2)
j3

−

− l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j1j3ζ
(i2)
j3

− l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i2)
j3

=

=
1

2

l∑
j1=0

C2
j1

T∫
t

(t− s)ldf (i2)s − 1

2

T∫
t

(t− s)l
s∫
t

(t− s1)
2lds1df

(i2)
s −

−1

2

T∫
t

(t− s)2l
s∫
t

(t− s1)
ldf (i2)s1

ds =

=
1

2

l∑
j1=0

C2
j1

T∫
t

(t− s)ldf (i2)s +
1

2(2l + 1)

T∫
t

(t− s)3l+1df (i2)s −
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−1

2

T∫
t

(t− s1)
l

T∫
s1

(t− s)2ldsdf (i2)s1
=

=
1

2

l∑
j1=0

C2
j1

T∫
t

(t− s)ldf (i2)s +
1

2(2l + 1)

T∫
t

(t− s)3l+1df (i2)s −

− 1

2(2l + 1)

(T − t)2l+1

T∫
t

(t− s)ldf (i2)s +

T∫
t

(t− s)3l+1df (i2)s

 =

=
1

2

l∑
j1=0

C2
j1

T∫
t

(t− s)ldf (i2)s − (T − t)2l+1

2(2l + 1)

T∫
t

(t− s)ldf (i2)s =

=
1

2

 l∑
j1=0

C2
j1
−

T∫
t

(t− s)2lds

 T∫
t

(t− s)ldf (i2)s = 0.

Here the Parseval equality looks as follows

∞∑
j1=0

C2
j1
=

l∑
j1=0

C2
j1
=

T∫
t

(t− s)2lds =
(T − t)2l+1

2l + 1

and
T∫
t

(t− s)ldf (i2)s =
l∑

j3=0

Cj3ζ
(i2)
j3

w. p. 1.

The expansion (2.209) is proved. Theorem 2.5 is proved.

It is easy to see that using the Itô formula if i1 = i2 = i3 we obtain (see
(1.61))

∗∫
t

T

(t− s)l
∗∫
t

s

(t− s1)
l

∗∫
t

s1

(t− s2)
ldf (i1)s2

df (i1)s1
df (i1)s =

=
1

6

 T∫
t

(t− s)ldf (i1)s

3

=
1

6

(
l∑

j1=0

Cj1ζ
(i1)
j1

)3

=

=
l∑

j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i1)
j2
ζ
(i1)
j3

w. p. 1. (2.213)
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2.2.3 The Case p1, p2, p3 → ∞ and Constant Weight Functions (The
Case of Trigonometric Functions)

In this section, we will prove the following theorem.

Theorem 2.6 [6]-[17], [35]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of trigonometric functions in the space L2([t, T ]). Then, for the
iterated Stratonovich stochastic integral of third multiplicity

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)

the following expansion

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 = l.i.m.

p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.214)

that converges in the mean-square sense is valid, where

Cj3j2j1 =

T∫
t

ϕj3(s)

s∫
t

ϕj2(s1)

s1∫
t

ϕj1(s2)ds2ds1ds

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. If we prove w. p. 1 the following formulas

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

=
1

2

T∫
t

τ∫
t

dsdf (i3)τ , (2.215)

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
1

2

T∫
t

τ∫
t

df (i1)s dτ, (2.216)

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

= 0, (2.217)
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then from the equalities (2.215)–(2.217), Theorem 1.1, and standard relations
between iterated Itô and Stratonovich stochastic integrals we will obtain the
expansion (2.214).

We have

Sp1,p3
def
=

p3∑
j3=0

p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

=
(T − t)3/2

6
ζ
(i3)
0 +

+

p1∑
j1=1

C0,2j1,2j1ζ
(i3)
0 +

p1∑
j1=1

C0,2j1−1,2j1−1ζ
(i3)
0 +

p1∑
j3=1

C2j3,0,0ζ
(i3)
2j3

+

+

p3∑
j3=1

p1∑
j1=1

C2j3,2j1,2j1ζ
(i3)
2j3

+

p3∑
j3=1

p1∑
j1=1

C2j3,2j1−1,2j1−1ζ
(i3)
2j3

+

p3∑
j3=1

C2j3−1,0,0ζ
(i3)
2j3−1+

+

p3∑
j3=1

p1∑
j1=1

C2j3−1,2j1,2j1ζ
(i3)
2j3−1 +

p3∑
j3=1

p1∑
j1=1

C2j3−1,2j1−1,2j1−1ζ
(i3)
2j3−1, (2.218)

where the summation is stopped, when 2j1, 2j1 − 1 > p1 or 2j3, 2j3 − 1 > p3
and

C0,2l,2l =
(T − t)3/2

8π2l2
, C0,2l−1,2l−1 =

3(T − t)3/2

8π2l2
, C2l,0,0 =

√
2(T − t)3/2

4π2l2
,

(2.219)

C2r−1,2l,2l = 0, C2l−1,0,0 = −
√
2(T − t)3/2

4πl
, C2r−1,2l−1,2l−1 = 0, (2.220)

C2r,2l,2l =


−
√
2(T − t)3/2/(16π2l2), r = 2l

0, r ̸= 2l

, (2.221)

C2r,2l−1,2l−1 =



√
2(T − t)3/2/(16π2l2), r = 2l

−
√
2(T − t)3/2/(4π2l2), r = l

0, r ̸= l, r ̸= 2l

. (2.222)

Let us show that

l.i.m.
p1,p3→∞

S2p1,2p3 = l.i.m.
p1,p3→∞

S2p1,2p3−1 = l.i.m.
p1,p3→∞

S2p1−1,2p3−1 = l.i.m.
p1,p3→∞

S2p1−1,2p3.

(2.223)
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We have

S2p1,2p3 = S2p1,2p3−1 +

2p1∑
j1=0

C2p3,j1,j1ζ
(i3)
2p3
. (2.224)

Using the relations (2.219), (2.221), and (2.222), we obtain

2p1∑
j1=0

C2p3,j1,j1 = C2p3,0,0 +

2p1∑
j1=1

C2p3,j1,j1 =

= C2p3,0,0 +

p1∑
j1=1

(
C2p3,2j1−1,2j1−1 + C2p3,2j1,2j1

)
=

=

√
2(T − t)3/2

4π2p23

(
1− 1{p1≥p3}

)
. (2.225)

From (2.224), (2.225) we obtain

l.i.m.
p1,p3→∞

S2p1,2p3 = l.i.m.
p1,p3→∞

S2p1,2p3−1. (2.226)

Further, we get (see (2.219)–(2.221))

S2p1,2p3−1 = S2p1−1,2p3−1 +

2p3−1∑
j3=0

Cj3,2p1,2p1ζ
(i3)
j3
, (2.227)

2p3−1∑
j3=0

Cj3,2p1,2p1ζ
(i3)
j3

= C0,2p1,2p1ζ
(i3)
0 +

2p3∑
j3=1

Cj3,2p1,2p1ζ
(i3)
j3

− C2p3,2p1,2p1ζ
(i3)
2p3

=

= C0,2p1,2p1ζ
(i3)
0 +

p3∑
j3=1

(
C2j3−1,2p1,2p1ζ

(i3)
2j3−1 + C2j3,2p1,2p1ζ

(i3)
2j3

)
− C2p3,2p1,2p1ζ

(i3)
2p3

=

=
(T − t)3/2

8π2p21
ζ
(i3)
0 +

√
2(T − t)3/2

16π2p21

(
1{p3=2p1} − 1{p3≥2p1}

)
ζ
(i3)
4p1
. (2.228)

From (2.227), (2.228) we obtain

l.i.m.
p1,p3→∞

S2p1,2p3−1 = l.i.m.
p1,p3→∞

S2p1−1,2p3−1. (2.229)

Further, we have

S2p1,2p3 = S2p1−1,2p3 +

2p3∑
j3=0

Cj3,2p1,2p1ζ
(i3)
j3
, (2.230)
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2p3∑
j3=0

Cj3,2p1,2p1ζ
(i3)
j3

= C0,2p1,2p1ζ
(i3)
0 +

2p3∑
j3=1

Cj3,2p1,2p1ζ
(i3)
j3

=

= C0,2p1,2p1ζ
(i3)
0 +

p3∑
j3=1

(
C2j3−1,2p1,2p1ζ

(i3)
2j3−1 + C2j3,2p1,2p1ζ

(i3)
2j3

)
. (2.231)

From (2.231), (2.219)–(2.221) we obtain

2p3∑
j3=0

Cj3,2p1,2p1ζ
(i3)
j3

=
(T − t)3/2

8π2p21
ζ
(i3)
0 −

√
2(T − t)3/2

16π2p21
1{p3≥2p1}ζ

(i3)
4p1
. (2.232)

The relations (2.230), (2.232) mean that

l.i.m.
p1,p3→∞

S2p1,2p3 = l.i.m.
p1,p3→∞

S2p1−1,2p3. (2.233)

The equalities (2.226), (2.229), and (2.233) imply (2.223). This means that
instead of (2.215) it is enough to prove the following equality

l.i.m.
p1,p3→∞

2p1∑
j1=0

2p3∑
j3=0

Cj3j1j1ζ
(i3)
j3

=
1

2

T∫
t

τ∫
t

dsdf (i3)τ w. p. 1. (2.234)

We have

S2p1,2p3 =

2p3∑
j3=0

2p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

=
(T − t)3/2

6
ζ
(i3)
0 +

+

p1∑
j1=1

C0,2j1,2j1ζ
(i3)
0 +

p1∑
j1=1

C0,2j1−1,2j1−1ζ
(i3)
0 +

p1∑
j3=1

C2j3,0,0ζ
(i3)
2j3

+

+

p3∑
j3=1

p1∑
j1=1

C2j3,2j1,2j1ζ
(i3)
2j3

+

p3∑
j3=1

p1∑
j1=1

C2j3,2j1−1,2j1−1ζ
(i3)
2j3

+

p3∑
j3=1

C2j3−1,0,0ζ
(i3)
2j3−1+

+

p3∑
j3=1

p1∑
j1=1

C2j3−1,2j1,2j1ζ
(i3)
2j3−1 +

p3∑
j3=1

p1∑
j1=1

C2j3−1,2j1−1,2j1−1ζ
(i3)
2j3−1. (2.235)

After substituting (2.219)–(2.222) into (2.235), we obtain

2p3∑
j3=0

2p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

= (T − t)3/2

(
1

6
ζ
(i3)
0 +

1

2π2

p1∑
j1=1

1

j21
ζ
(i3)
0 −
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−
√
2

4π

p3∑
j3=1

1

j3
ζ
(i3)
2j3−1 −

√
2

4π2

min{p1,p3}∑
j3=1

1

j23
ζ
(i3)
2j3

+

√
2

4π2

p3∑
j3=1

1

j23
ζ
(i3)
2j3

 . (2.236)

From (2.236) we have w. p. 1

l.i.m.
p1,p3→∞

2p3∑
j3=0

2p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

= (T − t)3/2

(
1

6
ζ
(i3)
0 +

1

2π2

∞∑
j1=1

1

j21
ζ
(i3)
0 −

−l.i.m.
p3→∞

√
2

4π

p3∑
j3=1

1

j3
ζ
(i3)
2j3−1

)
. (2.237)

Using Theorem 1.1 and the system of trigonometric functions, we get w. p. 1

1

2

T∫
t

s∫
t

dτdf (i3)s =
1

2

T∫
t

(s− t)df (i3)s =

=
(T − t)3/2

4
l.i.m.
p3→∞

(
ζ
(i3)
0 −

√
2

π

p3∑
j3=1

1

j3
ζ
(i3)
2j3−1

)
. (2.238)

From (2.237) and (2.238) it follows that

l.i.m.
p1,p3→∞

2p3∑
j3=0

2p1∑
j1=0

Cj3j1j1ζ
(i3)
j3

=

= (T − t)3/2

(
1

6
ζ
(i3)
0 +

1

12
ζ
(i3)
0 − l.i.m.

p3→∞

√
2

4π

p3∑
j3=1

1

j3
ζ
(i3)
2j3−1

)
=

= (T − t)3/2

(
1

4
ζ
(i3)
0 − l.i.m.

p3→∞

√
2

4π

p3∑
j3=1

1

j3
ζ
(i3)
2j3−1

)
=

=
1

2

T∫
t

s∫
t

dτdf (i3)s ,

where the equality is fulfilled w. p. 1.

So, the relations (2.234) and (2.215) are proved for the case of trigonometric
system of functions.



346D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Let us prove the relation (2.216). We have

S ′
p1,p3

def
=

p1∑
j1=0

p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
(T − t)3/2

6
ζ
(i1)
0 +

+

p3∑
j3=1

C2j3,2j3,0ζ
(i1)
0 +

p3∑
j3=1

C2j3−1,2j3−1,0ζ
(i1)
0 +

p1∑
j1=1

p3∑
j3=1

C2j3,2j3,2j1−1ζ
(i1)
2j1−1+

+

p1∑
j1=1

p3∑
j3=1

C2j3−1,2j3−1,2j1−1ζ
(i1)
2j1−1 +

p1∑
j1=1

C0,0,2j1−1ζ
(i1)
2j1−1 +

p1∑
j1=1

p3∑
j3=1

C2j3,2j3,2j1ζ
(i1)
2j1

+

+

p1∑
j1=1

p3∑
j3=1

C2j3−1,2j3−1,2j1ζ
(i1)
2j1

+

p1∑
j1=1

C0,0,2j1ζ
(i1)
2j1
, (2.239)

where the summation is stopped, when 2j3, 2j3 − 1 > p3 or 2j1, 2j1 − 1 > p1
and

C2l,2l,0 =
(T − t)3/2

8π2l2
, C2l−1,2l−1,0 =

3(T − t)3/2

8π2l2
, C0,0,2r =

√
2(T − t)3/2

4π2r2
,

(2.240)

C2l−1,2l−1,2r−1 = 0, C0,0,2r−1 =

√
2(T − t)3/2

4πr
, C2l,2l,2r−1 = 0, (2.241)

C2l,2l,2r =


−
√
2(T − t)3/2/(16π2l2), r = 2l

0, r ̸= 2l

, (2.242)

C2l−1,2l−1,2r =



√
2(T − t)3/2/(16π2l2), r = 2l

−
√
2(T − t)3/2/(4π2l2), r = l

0, r ̸= l, r ̸= 2l

. (2.243)

Let us show that

l.i.m.
p1,p3→∞

S ′
2p1,2p3

= l.i.m.
p1,p3→∞

S ′
2p1,2p3−1 = l.i.m.

p1,p3→∞
S ′
2p1−1,2p3−1 = l.i.m.

p1,p3→∞
S ′
2p1−1,2p3

.

(2.244)

We have

S ′
2p1,2p3

= S ′
2p1−1,2p3

+

2p3∑
j3=0

Cj3,j3,2p1ζ
(i1)
2p1
. (2.245)
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Using the relations (2.240), (2.242), and (2.243), we obtain

2p3∑
j1=0

Cj3,j3,2p1 = C0,0,2p1 +

2p3∑
j3=1

Cj3,j3,2p1 =

= C0,0,2p1 +

p3∑
j3=1

(
C2j3−1,2j3−1,2p1 + C2j3,2j3,2p1

)
=

=

√
2(T − t)3/2

4π2p21

(
1− 1{p3≥p1}

)
. (2.246)

From (2.245), (2.246) we obtain

l.i.m.
p1,p3→∞

S ′
2p1,2p3

= l.i.m.
p1,p3→∞

S ′
2p1−1,2p3

. (2.247)

Further, we get (see (2.240)–(2.242))

S ′
2p1−1,2p3

= S ′
2p1−1,2p3−1 +

2p1−1∑
j1=0

C2p3,2p3,j1ζ
(i1)
j1
, (2.248)

2p1−1∑
j1=0

C2p3,2p3,j1ζ
(i1)
j1

= C2p3,2p3,0ζ
(i1)
0 +

2p1∑
j1=1

C2p3,2p3,j1ζ
(i1)
j1

− C2p3,2p3,2p1ζ
(i1)
2p1

=

= C2p3,2p3,0ζ
(i1)
0 +

p1∑
j1=1

(
C2p3,2p3,2j1−1ζ

(i1)
2j1−1 + C2p3,2p3,2j1ζ

(i1)
2j1

)
− C2p3,2p3,2p1ζ

(i1)
2p1

=

=
(T − t)3/2

8π2p23
ζ
(i1)
0 +

√
2(T − t)3/2

16π2p23

(
1{p1=2p3} − 1{p1≥2p3}

)
ζ
(i1)
4p3
. (2.249)

From (2.248), (2.249) we obtain

l.i.m.
p1,p3→∞

S ′
2p1−1,2p3

= l.i.m.
p1,p3→∞

S ′
2p1−1,2p3−1. (2.250)

Further, we have

S ′
2p1,2p3

= S ′
2p1,2p3−1 +

2p1∑
j1=0

C2p3,2p3,j1ζ
(i1)
j1
, (2.251)

2p1∑
j1=0

C2p3,2p3,j1ζ
(i1)
j1

= C2p3,2p3,0ζ
(i1)
0 +

2p1∑
j1=1

C2p3,2p3,j1ζ
(i1)
j1

=
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= C2p3,2p3,0ζ
(i1)
0 +

p1∑
j1=1

(
C2p3,2p3,2j1−1ζ

(i1)
2j1−1 + C2p3,2p3,2j1ζ

(i1)
2j1

)
. (2.252)

From (2.252), (2.240)–(2.242) we obtain

2p1∑
j1=0

C2p3,2p3,j1ζ
(i1)
j1

=
(T − t)3/2

8π2p23
ζ
(i1)
0 −

√
2(T − t)3/2

16π2p23
1{p1≥2p3}ζ

(i1)
4p3
. (2.253)

The relations (2.251), (2.253) mean that

l.i.m.
p1,p3→∞

S ′
2p1,2p3

= l.i.m.
p1,p3→∞

S ′
2p1,2p3−1. (2.254)

The equalities (2.247), (2.250), and (2.254) imply (2.244). This means that
instead of (2.216) it is enough to prove the following equality

l.i.m.
p1,p3→∞

2p1∑
j1=0

2p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
1

2

T∫
t

τ∫
t

df (i1)s dτ w. p. 1. (2.255)

We have

S ′
2p1,2p3

=

2p1∑
j1=0

2p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
(T − t)3/2

6
ζ
(i1)
0 +

+

p3∑
j3=1

C2j3,2j3,0ζ
(i1)
0 +

p3∑
j3=1

C2j3−1,2j3−1,0ζ
(i1)
0 +

p1∑
j1=1

p3∑
j3=1

C2j3,2j3,2j1−1ζ
(i1)
2j1−1+

+

p1∑
j1=1

p3∑
j3=1

C2j3−1,2j3−1,2j1−1ζ
(i1)
2j1−1 +

p1∑
j1=1

C0,0,2j1−1ζ
(i1)
2j1−1 +

p1∑
j1=1

p3∑
j3=1

C2j3,2j3,2j1ζ
(i1)
2j1

+

+

p1∑
j1=1

p3∑
j3=1

C2j3−1,2j3−1,2j1ζ
(i1)
2j1

+

p1∑
j1=1

C0,0,2j1ζ
(i1)
2j1
. (2.256)

After substituting (2.240)–(2.243) into (2.256), we obtain

2p1∑
j1=0

2p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

= (T − t)3/2

(
1

6
ζ
(i1)
0 +

1

2π2

p3∑
j3=1

1

j23
ζ
(i1)
0 +
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+

√
2

4π

p1∑
j1=1

1

j1
ζ
(i1)
2j1−1 −

√
2

4π2

min{p1,p3}∑
j1=1

1

j21
ζ
(i1)
2j1

+

√
2

4π2

p1∑
j1=1

1

j21
ζ
(i1)
2j1

 . (2.257)

From (2.257) we have w. p. 1

l.i.m.
p1,p3→∞

2p1∑
j1=0

2p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

= (T − t)3/2

(
1

6
ζ
(i3)
0 +

1

2π2

∞∑
j3=1

1

j23
ζ
(i1)
0 +

+l.i.m.
p1→∞

√
2

4π

p1∑
j1=1

1

j1
ζ
(i1)
2j1−1

)
. (2.258)

Using the Itô formula and Theorem 1.1 for the case of trigonometric system
of functions, we obtain w. p. 1

1

2

T∫
t

τ∫
t

df (i1)s dτ =
1

2

(T − t)

T∫
t

df (i1)s +

T∫
t

(t− s)df (i1)s

 =

=
1

4
(T − t)3/2

(
ζ
(i1)
0 + l.i.m.

p1→∞

√
2

π

p1∑
j1=1

1

j1
ζ
(i1)
2j1−1

)
. (2.259)

From (2.258) and (2.259) it follows that

l.i.m.
p1,p3→∞

2p1∑
j1=0

2p3∑
j3=0

Cj3j3j1ζ
(i1)
j1

=

= (T − t)3/2

(
1

6
ζ
(i1)
0 +

1

12
ζ
(i1)
0 + l.i.m.

p1→∞

√
2

4π

p1∑
j1=1

1

j1
ζ
(i1)
2j1−1

)
=

= (T − t)3/2

(
1

4
ζ
(i1)
0 + l.i.m.

p1→∞

√
2

4π

p1∑
j1=1

1

j1
ζ
(i1)
2j1−1

)
=

=
1

2

T∫
t

τ∫
t

df (i1)s dτ,

where the equality is fulfilled w. p. 1.
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So, the relations (2.255) and (2.216) are proved for the case of trigonometric
system of functions.

Let us prove the equality (2.217). Since ψ1(τ), ψ2(τ), ψ3(τ) ≡ 1, then the
following relation for the Fourier coefficients is correct

Cj1j1j3 + Cj1j3j1 + Cj3j1j1 =
1

2
C2
j1
Cj3.

Then w. p. 1

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

=

= l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

(
1

2
C2
j1
Cj3 − Cj1j1j3 − Cj3j1j1

)
ζ
(i2)
j3
. (2.260)

Taking into account (2.215) and (2.216), we can write w. p. 1

l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j3j1ζ
(i2)
j3

=

=
1

2
C3

0ζ
(i2)
0 − l.i.m.

p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj1j1j3ζ
(i2)
j3

−

− l.i.m.
p1,p3→∞

p1∑
j1=0

p3∑
j3=0

Cj3j1j1ζ
(i2)
j3

=

=
1

2
(T − t)3/2ζ

(i2)
0 − 1

4
(T − t)3/2

(
ζ
(i2)
0 + l.i.m.

p1→∞

√
2

π

p1∑
j1=1

1

j1
ζ
(i2)
2j1−1

)
−

−1

4
(T − t)3/2

(
ζ
(i2)
0 − l.i.m.

p1→∞

√
2

π

p1∑
j1=1

1

j1
ζ
(i2)
2j1−1

)
= 0.

From Theorem 1.1 and (2.215)–(2.217) we obtain the expansion (2.214).
Theorem 2.6 is proved.

2.2.4 The Case p1 = p2 = p3 → ∞, Smooth Weight Functions, and Ad-
ditional Restrictive Conditions (The Cases of Legendre Poly-
nomials and Trigonometric Functions)

Let us consider the following modification of Theorem 2.5.
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Theorem 2.7 [10]-[17], [35]. Assume that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]) and ψ1(s), ψ2(s), ψ3(s) are continuously differentiable functions
at the interval [t, T ]. Then, for the iterated Stratonovich stochastic integral of
third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)

the following expansion

J∗[ψ(3)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.261)

that converges in the mean-square sense is valid for each of the following cases

1. i1 ̸= i2, i2 ̸= i3, i1 ̸= i3,
2. i1 = i2 ̸= i3 and ψ1(s) ≡ ψ2(s),
3. i1 ̸= i2 = i3 and ψ2(s) ≡ ψ3(s),
4. i1, i2, i3 = 1, . . . ,m and ψ1(s) ≡ ψ2(s) ≡ ψ3(s),

where

Cj3j2j1 =

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ2(s1)ϕj2(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. Let us consider at first the polynomial case. Case 1 directly follows
from Theorem 1.1. Further, consider Case 2. We will prove the following rela-
tion

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj3j1j1ζ
(i3)
j3

=
1

2

T∫
t

ψ3(s)

s∫
t

ψ2(s1)ds1df
(i3)
s w. p. 1,

where

Cj3j1j1 =

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ(s1)ϕj1(s1)

s1∫
t

ψ(s2)ϕj1(s2)ds2ds1ds.
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Using Theorem 1.1, we can write w. p. 1

1

2

T∫
t

ψ3(s)

s∫
t

ψ2(s1)ds1df
(i3)
s =

1

2
l.i.m.
p3→∞

p3∑
j3=0

C̃j3ζ
(i3)
j3
,

where

C̃j3 =

T∫
t

ϕj3(s)ψ3(s)

s∫
t

ψ2(s1)ds1ds.

We have

M


(

p∑
j3=0

(
p∑

j1=0

Cj3j1j1 −
1

2
C̃j3

)
ζ
(i3)
j3

)2
 =

p∑
j3=0

(
p∑

j1=0

Cj3j1j1 −
1

2
C̃j3

)2

=

=

p∑
j3=0

1

2

p∑
j1=0

T∫
t

ϕj3(s)ψ3(s)

 s∫
t

ϕj1(s1)ψ(s1)ds1

2

ds−

−1

2

T∫
t

ϕj3(s)ψ3(s)

s∫
t

ψ2(s1)ds1ds

2

=

=
1

4

p∑
j3=0

 T∫
t

ϕj3(s)ψ3(s)

 p∑
j1=0

 s∫
t

ϕj1(s1)ψ(s1)ds1

2

−
s∫
t

ψ2(s1)ds1

 ds


2

=

=
1

4

p∑
j3=0

 T∫
t

ϕj3(s)ψ3(s)
∞∑

j1=p+1

 s∫
t

ϕj1(s1)ψ(s1)ds1

2

ds


2

. (2.262)

In order to get (2.262) we used the Parseval equality

∞∑
j1=0

 s∫
t

ϕj1(s1)ψ(s1)ds1

2

=

T∫
t

K2(s, s1)ds1 =

s∫
t

ψ2(s1)ds1,

where

K(s, s1) = ψ(s1)1{s1<s}, s, s1 ∈ [t, T ].
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We have for j1 ∈ N  s∫
t

ψ(s1)ϕj1(s1)ds1

2

=

=
(T − t)(2j1 + 1)

4

 z(s)∫
−1

Pj1(y)ψ

(
T − t

2
y +

T + t

2

)
dy


2

=

=
T − t

4(2j1 + 1)

(
(Pj1+1(z(s))− Pj1−1(z(s)))ψ(s)−

−T − t

2

z(s)∫
−1

((Pj1+1(y)− Pj1−1(y))ψ
′
(
T − t

2
y +

T + t

2

)
dy

)2

, (2.263)

where

z(s) =

(
s− T + t

2

)
2

T − t
,

and ψ′ is a derivative of the function ψ(s) with respect to the variable

T − t

2
y +

T + t

2
.

Further consideration is similar to the proof of Case 2 from Theorem 2.5.
Finally, from (2.262) and (2.263) we obtain

M


(

p∑
j3=0

(
p∑

j1=0

Cj3j1j1 −
1

2
C̃j3

)
ζ
(i3)
j3

)2
 <

< K
p

p2

 1∫
−1

dy

(1− y2)3/4
+

1∫
−1

dy

(1− y2)1/4

2

≤

≤ K1

p
→ 0 if p→ ∞,

where constants K,K1 do not depend on p. Case 2 is proved.

Let us consider Case 3. In this case we will prove the following relation

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
1

2

T∫
t

ψ2(s)

s∫
t

ψ1(s1)df
(i1)
s1
ds w. p. 1,



354D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

where

Cj3j3j1 =

T∫
t

ψ(s)ϕj3(s)

s∫
t

ψ(s1)ϕj3(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds.

Using the Itô formula, we obtain w. p. 1

1

2

T∫
t

ψ2(s)

s∫
t

ψ1(s1)df
(i1)
s1
ds =

1

2

T∫
t

ψ1(s1)

T∫
s1

ψ2(s)dsdf (i1)s1
. (2.264)

Moreover, using Theorem 1.1, we have w. p. 1

1

2

T∫
t

ψ1(s1)

T∫
s1

ψ2(s)dsdf (i1)s1
=

1

2
l.i.m.
p1→∞

p1∑
j1=0

C∗
j1
ζ
(i1)
j1
, (2.265)

where

C∗
j1
=

T∫
t

ϕj1(s1)ψ1(s1)

T∫
s1

ψ2(s)dsds1.

Further,

Cj3j3j1 =

T∫
t

ψ(s)ϕj3(s)

s∫
t

ψ(s1)ϕj3(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds =

=

T∫
t

ψ1(s2)ϕj1(s2)

T∫
s2

ψ(s1)ϕj3(s1)

T∫
s1

ψ(s)ϕj3(s)dsds1ds2 =

=
1

2

T∫
t

ψ1(s2)ϕj1(s2)

 T∫
s2

ψ(s1)ϕj3(s1)ds1

2

ds2. (2.266)

From (2.264)–(2.266) we obtain

M


(

p∑
j1=0

(
p∑

j3=0

Cj3j3j1 −
1

2
C∗
j1

)
ζ
(i1)
j1

)2
 =

p∑
j1=0

(
p∑

j3=0

Cj3j3j1 −
1

2
C∗
j1

)2

=
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=
1

4

p∑
j1=0

 T∫
t

ϕj1(s1)ψ1(s1)

 p∑
j3=0

 T∫
s1

ϕj3(s)ψ(s)ds1

2

−

−
T∫

s1

ψ2(s)ds

 ds1

2

=

=
1

4

p∑
j1=0

 T∫
t

ϕj1(s1)ψ1(s1)
∞∑

j3=p+1

 T∫
s1

ϕj3(s)ψ(s)ds

2

ds1


2

. (2.267)

In order to get (2.267) we used the Parseval equality

∞∑
j3=0

 T∫
s1

ϕj3(s)ψ(s)ds

2

=

T∫
t

K2(s, s1)ds =

T∫
s1

ψ2(s)ds,

where

K(s, s1) = ψ(s)1{s>s1}, s, s1 ∈ [t, T ].

Further consideration is similar to the proof of Case 3 from Theorem 2.5.
Finally, from (2.267) we get

M


(

p∑
j1=0

(
p∑

j3=0

Cj3j3j1 −
1

2
C∗
j1

)
ζ
(i1)
j1

)2
 <

< K
p

p2

 1∫
−1

dy

(1− y2)3/4
+

1∫
−1

dy

(1− y2)1/4

2

≤

≤ K1

p
→ 0 if p→ ∞,

where constants K,K1 do not depend on p. Case 3 is proved.

Let us consider Case 4. We will prove w. p. 1 the following relation

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3

= 0 (ψ1(s), ψ2(s), ψ3(s) ≡ ψ(s)).
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In Case 4 we obtain w. p. 1

l.i.m.
p→∞

p∑
j1,j3=0

Cj1j3j1ζ
(i2)
j3

=

= l.i.m.
p→∞

p∑
j1,j3=0

(
1

2
C2
j1
Cj3 − Cj1j1j3 − Cj3j1j1

)
ζ
(i2)
j3

=

= l.i.m.
p→∞

1

2

p∑
j1=0

C2
j1

p∑
j3=0

Cj3ζ
(i2)
j3

− l.i.m.
p→∞

p∑
j1,j3=0

Cj1j1j3ζ
(i2)
j3

−

−l.i.m.
p→∞

p∑
j1,j3=0

Cj3j1j1ζ
(i2)
j3

=

=
1

2

∞∑
j1=0

C2
j1

T∫
t

ψ(s)df (i2)s − 1

2

T∫
t

ψ2(s)

s∫
t

ψ(s1)df
(i2)
s1
ds−

−1

2

T∫
t

ψ(s)

s∫
t

ψ2(s1)ds1df
(i2)
s =

1

2

T∫
t

ψ2(s)ds

T∫
t

ψ(s)df (i2)s −

−1

2

T∫
t

ψ(s1)

T∫
s1

ψ2(s)dsdf (i2)s1
− 1

2

T∫
t

ψ(s1)

s1∫
t

ψ2(s)dsdf (i2)s1
=

=
1

2

T∫
t

ψ2(s)ds

T∫
t

ψ(s)df (i2)s − 1

2

T∫
t

ψ(s1)

T∫
t

ψ2(s)dsdf (i2)s1
= 0,

where we used the Parseval equality

∞∑
j1=0

C2
j =

∞∑
j=0

 T∫
t

ψ(s)ϕj(s)ds

2

=

T∫
t

ψ2(s)ds.

Case 4 and Theorem 2.7 are proved for the case of Legendre polynomials.
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Let us consider the trigonometric case. The complete orthonormal system
of trigonometric functions in the space L2([t, T ]) has the following form

ϕj(θ) =
1√
T − t



1, j = 0

√
2sin (2πr(θ − t)/(T − t)) , j = 2r − 1

√
2cos (2πr(θ − t)/(T − t)) , j = 2r

,

where r = 1, 2, . . .

Integrating by parts, we have

s∫
t

ϕ2r−1(θ)ψ(θ)dθ =

√
2√

T − t

s∫
t

ψ(θ) sin
2πr(θ − t)

T − t
dθ =

=

√
T − t

2

1

πr

(
−ψ(s) cos2πr(s− t)

T − t
+ ψ(t)+

+

s∫
t

ψ′(θ) cos
2πr(θ − t)

T − t
dθ

)
,

s∫
t

ϕ2r(θ)ψ(θ)dθ =

√
2√

T − t

s∫
t

ψ(θ) cos
2πr(θ − t)

T − t
dθ =

=

√
T − t

2

1

πr

(
ψ(s) sin

2πr(s− t)

T − t
−

−
s∫
t

ψ′(θ) sin
2πr(θ − t)

T − t
dθ

)
,

where r = 1, 2, . . . and ψ′(θ) is a derivative of the function ψ(θ) with respect to
the variable θ.

Then ∣∣∣∣∣∣
s∫
t

ϕ2r−1(θ)ψ(θ)dθ

∣∣∣∣∣∣ ≤ C

r
=

2C

2r
<

2C

2r − 1
, (2.268)
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s∫
t

ϕ2r(θ)ψ(θ)dθ

∣∣∣∣∣∣ ≤ C

r
=

2C

2r
, (2.269)

where constant C does not depend on r (r = 1, 2, . . .).

From (2.268), (2.269) we get∣∣∣∣∣∣
s∫
t

ϕj1(θ)ψ(θ)dθ

∣∣∣∣∣∣ ≤ K

j1
, (2.270)

where constant K is independent of j1 (j1 = 1, 2, . . .).

Analogously, we obtain ∣∣∣∣∣∣
T∫
s

ϕj1(θ)ψ(θ)dθ

∣∣∣∣∣∣ ≤ K

j1
, (2.271)

where constant K does not depend on j1 (j1 = 1, 2, . . .).

Using (2.262), (2.267), (2.270), and (2.271), we get

M


(

p∑
j3=0

(
p∑

j1=0

Cj3j1j1 −
1

2
C̃j3

)
ζ
(i3)
j3

)2
 ≤ K1

p
→ 0 if p→ ∞,

M


(

p∑
j1=0

(
p∑

j3=0

Cj3j3j1 −
1

2
C∗
j1

)
ζ
(i1)
j1

)2
 ≤ K1

p
→ 0 if p→ ∞,

where constant K1 is independent of p.

The consideration of Case 4 is similar to the case of Legendre polynomials.
Theorem 2.7 is proved.

In the next section, an analogue of Theorem 2.7 will be proved without the
restrictions 1–4 (see the formulation of Theorem 2.7).

2.2.5 The Case p1 = p2 = p3 → ∞, Smooth Weight Functions, and
without Additional Restrictive Conditions (The Cases of Leg-
endre Polynomials and Trigonometric Functions)

Theorem 2.8 [10]-[17], [22], [33]. Suppose that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials or trigonometric functions in the
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space L2([t, T ]). At the same time ψ2(s) is a continuously differentiable non-
random function on [t, T ] and ψ1(s), ψ3(s) are twice continuously differentiable
nonrandom functions on [t, T ]. Then, for the iterated Stratonovich stochastic
integral of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)

the following expansion

J∗[ψ(3)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.272)

that converges in the mean-square sense is valid, where

Cj3j2j1 =

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ2(s1)ϕj2(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.

Proof. Let us consider the case of Legendre polynomials. From (1.47) for
the case p1 = p2 = p3 = p and standard relations between Itô and Stratonovich
stochastic integrals we conclude that Theorem 2.8 will be proved if w. p. 1

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj3j1j1ζ
(i3)
j3

=
1

2

T∫
t

ψ3(s)

s∫
t

ψ2(s1)ψ1(s1)ds1df
(i3)
s , (2.273)

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj3j3j1ζ
(i1)
j1

=
1

2

T∫
t

ψ3(s)ψ2(s)

s∫
t

ψ1(s1)df
(i1)
s1
ds, (2.274)

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3

= 0. (2.275)
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Let us prove (2.273). Using Theorem 1.1 for k = 1 (also see (1.45)), we can
write w. p. 1

1

2

T∫
t

ψ3(s)

s∫
t

ψ2(s1)ψ1(s1)ds1df
(i3)
s =

1

2
l.i.m.
p→∞

p∑
j3=0

C̃j3ζ
(i3)
j3
,

where

C̃j3 =

T∫
t

ϕj3(s)ψ3(s)

s∫
t

ψ2(s1)ψ1(s1)ds1ds.

We have

Ep
def
= M


(

p∑
j1=0

p∑
j3=0

Cj3j1j1ζ
(i3)
j3

− 1

2

p∑
j3=0

C̃j3ζ
(i3)
j3

)2
 =

= M


(

p∑
j3=0

(
p∑

j1=0

Cj3j1j1 −
1

2
C̃j3

)
ζ
(i3)
j3

)2
 =

=

p∑
j3=0

(
p∑

j1=0

Cj3j1j1 −
1

2
C̃j3

)2

=

=

p∑
j3=0

 p∑
j1=0

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ2(s1)ϕj1(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds−

−1

2

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ1(s1)ψ2(s1)ds1ds

2

=

=

p∑
j3=0

 T∫
t

ψ3(s)ϕj3(s)

s∫
t

(
p∑

j1=0

ψ2(s1)ϕj1(s1)×

×
s1∫
t

ψ1(s2)ϕj1(s2)ds2 −
1

2
ψ1(s1)ψ2(s1)

 ds1ds

2

. (2.276)

Let us substitute t1 = t2 = s1 into (2.12). Then for all s1 ∈ (t, T )

∞∑
j1=0

ψ2(s1)ϕj1(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2 =
1

2
ψ1(s1)ψ2(s1). (2.277)
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From (2.276) and (2.277) it follows that

Ep =

p∑
j3=0

 T∫
t

ψ3(s)ϕj3(s)

s∫
t

∞∑
j1=p+1

ψ2(s1)ϕj1(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds

2

.

(2.278)

Applying (2.278) and (2.24), we obtain

Ep < C1

p∑
j3=0

 T∫
t

|ϕj3(s)|
1

p

 z(s)∫
−1

dy

(1− y2)1/2
+

z(s)∫
−1

dy

(1− y2)1/4

 ds


2

≤

≤ C2

p2

p∑
j3=0

 T∫
t

|ϕj3(s)|ds

2

≤ C2(T − t)

p2

p∑
j3=0

T∫
t

ϕ2j3(s)ds =
C3p

p2
→ 0

if p→ ∞, where constants C1, C2, C3 do not depend on p. The equality (2.273)
is proved.

Let us prove (2.274). Using the Itô formula, we have

1

2

T∫
t

ψ3(s)ψ2(s)

s∫
t

ψ1(s1)df
(i1)
s1
ds =

1

2

T∫
t

ψ1(s1)

T∫
s1

ψ3(s)ψ2(s)dsdf
(i1)
s1

w. p. 1.

Moreover, using Theorem 1.1 for k = 1 (also see (1.45)), we obtain w. p. 1

1

2

T∫
t

ψ1(s)

T∫
s

ψ3(s1)ψ2(s1)ds1df
(i1)
s =

1

2
l.i.m.
p→∞

p∑
j1=0

C∗
j1
ζ
(i1)
j1
,

where

C∗
j1
=

T∫
t

ψ1(s)ϕj1(s)

T∫
s

ψ3(s1)ψ2(s1)ds1ds. (2.279)

We have

E ′
p
def
= M


(

p∑
j1=0

p∑
j3=0

Cj3j3j1ζ
(i1)
j1

− 1

2

p∑
j1=0

C∗
j1
ζ
(i1)
j1

)2
 =

= M


(

p∑
j1=0

(
p∑

j3=0

Cj3j3j1 −
1

2
C∗
j1

)
ζ
(i1)
j1

)2
 =
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=

p∑
j1=0

(
p∑

j3=0

Cj3j3j1 −
1

2
C∗
j1

)2

, (2.280)

Cj3j3j1 =

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ2(s1)ϕj3(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds =

=

T∫
t

ψ1(s2)ϕj1(s2)

T∫
s2

ψ2(s1)ϕj3(s1)

T∫
s1

ψ3(s)ϕj3(s)dsds1ds2. (2.281)

From (2.279)–(2.281) we obtain

E ′
p =

p∑
j1=0

 T∫
t

ψ1(s2)ϕj1(s2)

T∫
s2

(
p∑

j3=0

ψ2(s1)ϕj3(s1)×

×
T∫

s1

ψ3(s)ϕj3(s)ds−
1

2
ψ3(s1)ψ2(s1)

 ds1ds2

2

. (2.282)

We will prove the following equality for all s1 ∈ (t, T )

∞∑
j3=0

ψ2(s1)ϕj3(s1)

T∫
s1

ψ3(s)ϕj3(s)ds =
1

2
ψ2(s1)ψ3(s1). (2.283)

Let us denote

K∗
1(t1, t2) = K1(t1, t2) +

1

2
1{t1=t2}ψ2(t1)ψ3(t1), (2.284)

where

K1(t1, t2) = ψ2(t1)ψ3(t2)1{t1<t2}, t1, t2 ∈ [t, T ].

Let us expand the function K∗
1(t1, t2) using the variable t2, when t1 is fixed,

into the Fourier–Legendre series at the interval (t, T )

K∗
1(t1, t2) =

∞∑
j3=0

ψ2(t1)

T∫
t1

ψ3(t2)ϕj3(t2)dt2 · ϕj3(t2) (t2 ̸= t, T ). (2.285)
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The equality (2.285) is fulfilled in each point of the interval (t, T ) with
respect to the variable t2, when t1 ∈ [t, T ] is fixed, due to piecewise smoothness
of the function K∗

1(t1, t2) with respect to the variable t2 ∈ [t, T ] (t1 is fixed).

Obtaining (2.285), we also used the fact that the right-hand side of (2.285)
converges when t1 = t2 (point of a finite discontinuity of the function K1(t1, t2))
to the value

1

2
(K1(t1, t1 − 0) +K1(t1, t1 + 0)) =

1

2
ψ2(t1)ψ3(t1) = K∗

1(t1, t1).

Let us substitute t1 = t2 into (2.285). Then we have (2.283). From (2.282)
and (2.283) we get

E ′
p =

p∑
j1=0

 T∫
t

ψ1(s2)ϕj1(s2)

T∫
s2

∞∑
j3=p+1

ψ2(s1)ϕj3(s1)

T∫
s1

ψ3(s)ϕj3(s)dsds1ds2

2

.

(2.286)

Analogously with (2.24) we obtain for the twice continuously differentiable
function ψ3(s) the following estimate∣∣∣∣∣

∞∑
j3=p+1

ϕj3(s1)

T∫
s1

ψ3(s)ϕj3(s)ds

∣∣∣∣∣ <
<
C

p

(
1

(1− (z(s1))2)1/2
+

1

(1− (z(s1))2)1/4

)
, (2.287)

where s1 ∈ (t, T ), z(s1) is defined by (2.20), and constant C does not depend
on p.

Further consideration is analogously to the proof of (2.273). The relation
(2.274) is proved.

Let us prove (2.275). We have

E ′′
p

def
= M


(

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3

)2
 =

p∑
j3=0

(
p∑

j1=0

Cj1j3j1

)2

, (2.288)

Cj1j3j1 =

T∫
t

ψ3(s)ϕj1(s)

s∫
t

ψ2(s1)ϕj3(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1ds =
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=

T∫
t

ψ2(s1)ϕj3(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2

T∫
s1

ψ3(s)ϕj1(s)dsds1. (2.289)

After substituting (2.289) into (2.288), we obtain

E ′′
p =

p∑
j3=0

 T∫
t

ψ2(s1)ϕj3(s1)

p∑
j1=0

s1∫
t

ψ1(θ)ϕj1(θ)dθ

T∫
s1

ψ3(s)ϕj1(s)dsds1

2

.

(2.290)

The generalized Parseval equality gives

∞∑
j1=0

s1∫
t

ψ1(θ)ϕj1(θ)dθ

T∫
s1

ψ3(s)ϕj1(s)ds =

=
∞∑
j1=0

T∫
t

1{θ<s1}ψ1(θ)ϕj1(θ)dθ

T∫
t

1{s>s1}ψ3(s)ϕj1(s)ds =

=

T∫
t

1{τ<s1}ψ1(τ)1{τ>s1}ψ3(τ)dτ = 0. (2.291)

Using (2.290) and (2.291), we get

E ′′
p =

p∑
j3=0

 T∫
t

ψ2(s1)ϕj3(s1)
∞∑

j1=p+1

s1∫
t

ψ1(θ)ϕj1(θ)dθ

T∫
s1

ψ3(s)ϕj1(s)dsds1

2

.

(2.292)

Let us write the following relation

x∫
t

ψ1(s)ϕj1(s)ds =

√
T − t

√
2j1 + 1

2

z(x)∫
−1

Pj1(y)ψ1(u(y))dy =

=

√
T − t

2
√
2j1 + 1

(
(Pj1+1(z(x))− Pj1−1(z(x)))ψ1(x)−

−T − t

2

z(x)∫
−1

((Pj1+1(y)− Pj1−1(y))ψ1
′(u(y))dy

)
, (2.293)
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where x ∈ (t, T ), j1 ≥ p + 1, z(x) and u(y) are defined by (2.20), ψ1
′ is a

derivative of the function ψ1(s) with respect to the variable u(y).

Note that in (2.293) we used the following well known property of the
Legendre polynomials [121]

Pj+1(−1) = −Pj(−1), j = 0, 1, 2, . . .

and (2.21).

From (2.157) and (2.293) we obtain∣∣∣∣∣∣
x∫
t

ψ1(s)ϕj1(s)ds

∣∣∣∣∣∣ < C

j1

(
1

(1− (z(x))2)1/4
+ C1

)
, (2.294)

where j1 ∈ N, x ∈ (t, T ), constants C,C1 do not depend on j1.

Similarly to (2.294) and due to

Pj(1) = 1, j = 0, 1, 2, . . .

we obtain an analogue of (2.294) for the integral, which is similar to the integral
on the left-hand side of (2.294), but with integration limits x and T .

From the formula (2.294) and its analogue for the integral with integration
limits x and T we obtain∣∣∣∣∣∣

x∫
t

ψ1(s)ϕj1(s)ds

T∫
x

ψ3(s)ϕj1(s)ds

∣∣∣∣∣∣ < K

j21

(
1

(1− (z(x))2)1/2
+K1

)
, (2.295)

where j1 ∈ N, x ∈ (t, T ), and constants K,K1 do not depend on j1.

Let us estimate the right-hand side of (2.292) using (2.295)

E ′′
p ≤

≤ L

p∑
j3=0

 T∫
t

|ϕj3(s1)|
∞∑

j1=p+1

∣∣∣∣∣∣
s1∫
t

ψ1(θ)ϕj1(θ)dθ

T∫
s1

ψ3(s)ϕj1(s)ds

∣∣∣∣∣∣ ds1
2

<

< L1

p∑
j3=0

 T∫
t

|ϕj3(s1)|
∞∑

j1=p+1

1

j21

(
1

(1− (z(s1))2)1/2
+K1

)
ds1

2

<

<
L2

p2

p∑
j3=0

 T∫
t

ds1
(1− (z(s1))2)3/4

+K1

T∫
t

ds1
(1− (z(s1))2)1/4

2

=
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=
L2(T − t)2

4p2

p∑
j3=0

 1∫
−1

dy

(1− y2)3/4
+K1

1∫
−1

dy

(1− y2)1/4

2

≤

≤ L3p

p2
=
L3

p
→ 0 (2.296)

if p→ ∞, where constants L,L1, L2, L3 do not depend on p and we used (2.25),
(2.158) in (2.296). The relation (2.275) is proved. Theorem 2.8 is proved for
the case of Legendre polynomials.

Let us consider the trigonometric case. Analogously to (2.34) we obtain∣∣∣∣∣∣
T∫

s2

∞∑
j3=p+1

ψ2(s1)ϕj3(s1)

T∫
s1

ψ3(s)ϕj3(s)dsds1

∣∣∣∣∣∣ ≤ K1

p
, (2.297)

where s2 ∈ (t, T ) and constant K1 does not depend on p.

Using (2.34) for T = s and (2.278), we obtain

Ep ≤ K

p∑
j3=0

 T∫
t

∣∣∣∣∣∣
s∫
t

∞∑
j1=p+1

ψ2(s1)ϕj1(s1)

s1∫
t

ψ1(s2)ϕj1(s2)ds2ds1

∣∣∣∣∣∣ ds
2

≤

≤ K

p∑
j3=0

(
(T − t)

K1

p

)2

≤ K2

p2

p∑
j3=0

(T − t)2 ≤ L

p
→ 0 (2.298)

if p→ ∞, where constants K,K1, K2, L do not depend on p.

Analogously, using (2.297) and (2.286), we obtain that E ′
p → 0 if p → ∞.

It is not difficult to see that in our case we have (see (2.270), (2.271))∣∣∣∣∣∣
x∫
t

ψ1(s)ϕj1(s)ds

T∫
x

ψ3(s)ϕj1(s)ds

∣∣∣∣∣∣ < C1

j21
, (2.299)

where j1 ∈ N, constant C1 does not depend on j1.

Using (2.292) and (2.299), we obtain

E ′′
p ≤
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≤ L

p∑
j3=0

 T∫
t

|ϕj3(s1)|
∞∑

j1=p+1

∣∣∣∣∣∣
s1∫
t

ψ1(θ)ϕj1(θ)dθ

T∫
s1

ψ3(s)ϕj1(s)ds

∣∣∣∣∣∣ ds1
2

≤

≤ L1

p∑
j3=0

(
(T − t)

∞∑
j1=p+1

1

j21

)2

≤ L1

p2

p∑
j3=0

(T − t)2 ≤

≤ L2

p
→ 0 (2.300)

if p→ ∞, where constants L,L1, L2 do not depend on p.

Theorem 2.8 is proved for the trigonometric case. Theorem 2.8 is proved.

2.3 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 4 Based on Theorem 1.1. The

Case p1 = . . . = p4 → ∞, ψ1(τ ), . . . , ψ4(τ ) ≡ 1 (Cases of

Legendre Polynomials and Trigonometric Functions)

In this section, we will develop the approach to expansion of iterated Strato-
novich stochatic integrals based on Theorem 1.1 for the stochastic integrals of
multiplicity 4.

Theorem 2.9 [8]-[17], [22], [33]. Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). Then, for the iterated Stratonovich stochastic integral of fourth
multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 (i1, i2, i3, i4 = 0, 1, . . . ,m)

the following expansion

J∗[ψ(4)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

(2.301)

that converges in the mean-square sense is valid, where

Cj4j3j2j1 =

T∫
t

ϕj4(s4)

s4∫
t

ϕj3(s3)

s3∫
t

ϕj2(s2)

s2∫
t

ϕj1(s1)ds1ds2ds3ds4
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and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. The relation (1.48) (in the case when p1 = . . . = p4 = p → ∞)
implies that

l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

= J [ψ(4)]T,t+

+1{i1=i2 ̸=0}A
(i3i4)
1 + 1{i1=i3 ̸=0}A

(i2i4)
2 + 1{i1=i4 ̸=0}A

(i2i3)
3 + 1{i2=i3 ̸=0}A

(i1i4)
4 +

+1{i2=i4 ̸=0}A
(i1i3)
5 + 1{i3=i4 ̸=0}A

(i1i2)
6 − 1{i1=i2 ̸=0}1{i3=i4 ̸=0}B1−

−1{i1=i3 ̸=0}1{i2=i4 ̸=0}B2 − 1{i1=i4 ̸=0}1{i2=i3 ̸=0}B3, (2.302)

where J [ψ(4)]T,t has the form (2.7) for ψ1(s), . . . , ψ4(s) ≡ 1 and i1, . . . , i4 =
0, 1, . . . ,m,

A
(i3i4)
1 = l.i.m.

p→∞

p∑
j4,j3,j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4
,

A
(i2i4)
2 = l.i.m.

p→∞

p∑
j4,j3,j2=0

Cj4j3j2j3ζ
(i2)
j2
ζ
(i4)
j4
,

A
(i2i3)
3 = l.i.m.

p→∞

p∑
j4,j3,j2=0

Cj4j3j2j4ζ
(i2)
j2
ζ
(i3)
j3
,

A
(i1i4)
4 = l.i.m.

p→∞

p∑
j4,j3,j1=0

Cj4j3j3j1ζ
(i1)
j1
ζ
(i4)
j4
,

A
(i1i3)
5 = l.i.m.

p→∞

p∑
j4,j3,j1=0

Cj4j3j4j1ζ
(i1)
j1
ζ
(i3)
j3
,

A
(i1i2)
6 = l.i.m.

p→∞

p∑
j3,j2,j1=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
,
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B1 = lim
p→∞

p∑
j1,j4=0

Cj4j4j1j1, B2 = lim
p→∞

p∑
j4,j3=0

Cj3j4j3j4,

B3 = lim
p→∞

p∑
j4,j3=0

Cj4j3j3j4.

Using the integration order replacement in Riemann integrals, Theorem 1.1
for k = 2 (see (1.46)) and (2.10), Parseval’s equality and the integration order
replacement technique for Itô stochastic integrals (see Chapter 3) [1]-[17], [77],
[123], [124] or Itô’s formula, we obtain

A
(i3i4)
1 =

= l.i.m.
p→∞

p∑
j4,j3,j1=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj3(s1)

 s1∫
t

ϕj1(s2)ds2

2

ds1dsζ
(i3)
j3
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j3=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj3(s1)

p∑
j1=0

 s1∫
t

ϕj1(s2)ds2

2

ds1dsζ
(i3)
j3
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j3=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj3(s1)

(s1 − t)−
∞∑

j1=p+1

 s1∫
t

ϕj1(s2)ds2

2
 ds1ds×

×ζ(i3)j3
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j3=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj3(s1)(s1 − t)ds1dsζ
(i3)
j3
ζ
(i4)
j4

−∆
(i3i4)
1 =

=
1

2

T∫
t

s∫
t

(s1 − t)dw(i3)
s1
dw(i4)

s +

+
1

2
1{i3=i4 ̸=0} lim

p→∞

p∑
j3=0

T∫
t

ϕj3(s)

s∫
t

ϕj3(s1)(s1 − t)ds1ds−∆
(i3i4)
1 =

=
1

2

T∫
t

s∫
t

s1∫
t

ds2dw
(i3)
s1
dw(i4)

s +
1

4
1{i3=i4 ̸=0}

T∫
t

(s1−t)ds1−∆
(i3i4)
1 w. p. 1, (2.303)
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where

∆
(i3i4)
1 = l.i.m.

p→∞

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4
,

apj4j3 =
1

2

T∫
t

ϕj4(s)

s∫
t

ϕj3(s1)
∞∑

j1=p+1

 s1∫
t

ϕj1(s2)ds2

2

ds1ds. (2.304)

Let us consider A
(i2i4)
2

A
(i2i4)
2 =

= l.i.m.
p→∞

p∑
j4,j3,j2=0

T∫
t

ϕj4(s)

s∫
t

ϕj2(s2)

s2∫
t

ϕj3(s3)ds3

s∫
s2

ϕj3(s1)ds1ds2dsζ
(i2)
j2
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j3,j2=0

1

2

T∫
t

ϕj4(s)

 s∫
t

ϕj3(s3)ds3

2 s∫
t

ϕj2(s2)ds2ds−

−1

2

T∫
t

ϕj4(s)

s∫
t

ϕj2(s2)

 s2∫
t

ϕj3(s3)ds3

2

ds2ds−

−1

2

T∫
t

ϕj4(s)

s∫
t

ϕj2(s2)

 s∫
s2

ϕj3(s1)ds1

2

ds2ds

 ζ
(i2)
j2
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j2=0

1

2

T∫
t

ϕj4(s)(s− t)

s∫
t

ϕj2(s2)ds2ds−

−1

2

T∫
t

ϕj4(s)

s∫
t

ϕj2(s2)(s2 − t)ds2ds−

−1

2

T∫
t

ϕj4(s)

s∫
t

ϕj2(s2)(s− t+ t− s2)ds2ds

 ζ
(i2)
j2
ζ
(i4)
j4

−

−∆
(i2i4)
2 +∆

(i2i4)
1 +∆

(i2i4)
3 = −∆

(i2i4)
2 +∆

(i2i4)
1 +∆

(i2i4)
3 w. p. 1, (2.305)
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where

∆
(i2i4)
2 = l.i.m.

p→∞

p∑
j4,j2=0

bpj4j2ζ
(i2)
j2
ζ
(i4)
j4
,

∆
(i2i4)
3 = l.i.m.

p→∞

p∑
j4,j2=0

cpj4j2ζ
(i2)
j2
ζ
(i4)
j4
,

bpj4j2 =
1

2

T∫
t

ϕj4(s)
∞∑

j3=p+1

 s∫
t

ϕj3(s1)ds1

2 s∫
t

ϕj2(s1)ds1ds, (2.306)

cpj4j2 =
1

2

T∫
t

ϕj4(s)

s∫
t

ϕj2(s3)
∞∑

j3=p+1

 s∫
s3

ϕj3(s1)ds1

2

ds3ds. (2.307)

Let us consider A
(i1i3)
5

A
(i1i3)
5 =

= l.i.m.
p→∞

p∑
j4,j3,j1=0

T∫
t

ϕj1(s3)

T∫
s3

ϕj4(s2)

T∫
s2

ϕj3(s1)

T∫
s1

ϕj4(s)dsds1ds2ds3ζ
(i1)
j1
ζ
(i3)
j3

=

= l.i.m.
p→∞

p∑
j4,j3,j1=0

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s1)

T∫
s1

ϕj4(s)ds

s1∫
s3

ϕj4(s2)ds2ds1ds3ζ
(i1)
j1
ζ
(i3)
j3

=

= l.i.m.
p→∞

p∑
j4,j3,j1=0

1

2

T∫
t

ϕj1(s3)

 T∫
s3

ϕj4(s)ds

2 T∫
s3

ϕj3(s1)ds1ds3−

−1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s1)

 s1∫
s3

ϕj4(s2)ds2

2

ds1ds3−

−1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s1)

 T∫
s1

ϕj4(s)ds

2

ds1ds3

 ζ
(i1)
j1
ζ
(i3)
j3

=

= l.i.m.
p→∞

p∑
j3,j1=0

1

2

T∫
t

ϕj1(s3)(T − s3)

T∫
s3

ϕj3(s1)ds1ds3−
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−1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s1)(s1 − s3)ds1ds3−

−1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s1)(T − s1)ds1ds3

 ζ
(i1)
j1
ζ
(i3)
j3

−

−∆
(i1i3)
4 +∆

(i1i3)
5 +∆

(i1i3)
6 = −∆

(i1i3)
4 +∆

(i1i3)
5 +∆

(i1i3)
6 w. p. 1, (2.308)

where

∆
(i1i3)
4 = l.i.m.

p→∞

p∑
j3,j1=0

dpj3j1ζ
(i1)
j1
ζ
(i3)
j3
,

∆
(i1i3)
5 = l.i.m.

p→∞

p∑
j3,j1=0

epj3j1ζ
(i1)
j1
ζ
(i3)
j3
,

∆
(i1i3)
6 = l.i.m.

p→∞

p∑
j3,j1=0

f pj3j1ζ
(i1)
j1
ζ
(i3)
j3
,

dpj3j1 =
1

2

T∫
t

ϕj1(s3)
∞∑

j4=p+1

 T∫
s3

ϕj4(s)ds

2 T∫
s3

ϕj3(s)dsds3, (2.309)

epj3j1 =
1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s)
∞∑

j4=p+1

 s∫
s3

ϕj4(s1)ds1

2

dsds3, (2.310)

f pj3j1 =
1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s2)
∞∑

j4=p+1

 T∫
s2

ϕj4(s1)ds1

2

ds2ds3 =

=
1

2

T∫
t

ϕj3(s2)
∞∑

j4=p+1

 T∫
s2

ϕj4(s1)ds1

2 s2∫
t

ϕj1(s3)ds3ds2. (2.311)

Moreover,

A
(i2i3)
3 + A

(i2i3)
5 =

= l.i.m.
p→∞

p∑
j4,j3,j2=0

(Cj4j3j2j4 + Cj4j3j4j2) ζ
(i2)
j2
ζ
(i3)
j3

=
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= l.i.m.
p→∞

p∑
j4,j3,j2=0

T∫
t

ϕj4(s)

s∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)

s1∫
t

ϕj4(s3)ds3ds2ds1dsζ
(i2)
j2
ζ
(i3)
j3

=

= l.i.m.
p→∞

p∑
j4,j3,j2=0

T∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)

s1∫
t

ϕj4(s3)ds3ds2

T∫
s1

ϕj4(s)dsds1ζ
(i2)
j2
ζ
(i3)
j3

=

= l.i.m.
p→∞

p∑
j4,j3,j2=0

 T∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)

T∫
t

ϕj4(s3)ds3

T∫
s1

ϕj4(s)dsds2ds1−

−
T∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)

 T∫
s1

ϕj4(s)ds

2

ds2ds1

 ζ
(i2)
j2
ζ
(i3)
j3

=

= l.i.m.
p→∞

p∑
j3,j2=0

T∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)

(T − s1)−
p∑

j4=0

 T∫
s1

ϕj4(s3)ds3

2
 ds2ds1×

×ζ(i2)j2
ζ
(i3)
j3

= 2∆
(i2i3)
6 w. p. 1. (2.312)

Then

A
(i2i3)
3 = 2∆

(i2i3)
6 − A

(i2i3)
5 = ∆

(i2i3)
4 −∆

(i2i3)
5 +∆

(i2i3)
6 w. p. 1. (2.313)

Let us consider A
(i1i4)
4

A
(i1i4)
4 =

= l.i.m.
p→∞

p∑
j4,j3,j1=0

T∫
t

ϕj4(s)

s∫
t

ϕj1(s3)

s∫
s3

ϕj3(s2)

s∫
s2

ϕj3(s1)ds1ds2ds3dsζ
(i1)
j1
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j1=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj1(s3)

p∑
j3=0

 s∫
s3

ϕj3(s2)ds2

2

ds3dsζ
(i1)
j1
ζ
(i4)
j4

=

= l.i.m.
p→∞

p∑
j4,j1=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj1(s3)(s− s3)ds3dsζ
(i1)
j1
ζ
(i4)
j4

−∆
(i1i4)
3 =
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=
1

2

T∫
t

s∫
t

(s− s3)dw
(i1)
s3
dw(i4)

s +

+
1

2
1{i1=i4 ̸=0} lim

p→∞

p∑
j4=0

T∫
t

ϕj4(s)

s∫
t

ϕj4(s3)(s− s3)ds3ds−∆
(i1i4)
3 =

=
1

2

T∫
t

s2∫
t

s1∫
t

dw(i1)
s ds1dw

(i4)
s2

+

+
1

2
1{i1=i4 ̸=0}

 ∞∑
j4=0

T∫
t

(s− t)ϕj4(s)

s∫
t

ϕj4(s3)ds3ds−

−
∞∑
j4=0

T∫
t

ϕj4(s)

s∫
t

(s3 − t)ϕj4(s3)ds3ds

−∆
(i1i4)
3 =

=
1

2

T∫
t

s2∫
t

s1∫
t

dw(i1)
s ds1dw

(i4)
s2

−∆
(i1i4)
3 w. p. 1. (2.314)

Let us consider A
(i1i2)
6

A
(i1i2)
6 =

= l.i.m.
p→∞

p∑
j3,j2,j1=0

T∫
t

ϕj1(s3)

T∫
s3

ϕj2(s2)

T∫
s2

ϕj3(s1)

T∫
s1

ϕj3(s)dsds1ds2ds3ζ
(i1)
j1
ζ
(i2)
j2

=

= l.i.m.
p→∞

p∑
j1,j2=0

1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj2(s2)

p∑
j3=0

 T∫
s2

ϕj3(s)ds

2

ds2ds3ζ
(i1)
j1
ζ
(i2)
j2

=

= l.i.m.
p→∞

p∑
j1,j2=0

1

2

T∫
t

ϕj1(s3)

T∫
s3

ϕj2(s2)(T − s2)ds2ds3ζ
(i1)
j1
ζ
(i2)
j2

−∆
(i1i2)
6 =

= l.i.m.
p→∞

p∑
j1,j2=0

1

2

T∫
t

ϕj2(s2)(T − s2)

s2∫
t

ϕj1(s3)ds3ds2ζ
(i1)
j1
ζ
(i2)
j2

−∆
(i1i2)
6 =
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=
1

2

T∫
t

(T − s2)

s2∫
t

dw(i1)
s3
dw(i2)

s2
+

+
1

2
1{i1=i2 ̸=0}

∞∑
j2=0

T∫
t

ϕj2(s2)(T − s2)

s2∫
t

ϕj2(s3)ds3ds2 −∆
(i1i2)
6 =

=
1

2

T∫
t

s1∫
t

s2∫
t

dw(i1)
s dw(i2)

s2
ds1 +

1

4
1{i1=i2 ̸=0}

T∫
t

(T − s2)ds2 −∆
(i1i2)
6 w. p. 1.

(2.315)

Let us consider B1, B2, B3

B1 = lim
p→∞

p∑
j1,j4=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)

 s1∫
t

ϕj1(s2)ds2

2

ds1ds =

= lim
p→∞

p∑
j4=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)(s1 − t)ds1ds− lim
p→∞

p∑
j4=0

apj4j4 =

=
1

4

T∫
t

(s1 − t)ds1 − lim
p→∞

p∑
j4=0

apj4j4, (2.316)

B2 = lim
p→∞

p∑
j4,j3=0

T∫
t

ϕj3(s)

s∫
t

ϕj3(s2)

s2∫
t

ϕj4(s3)ds3

s∫
s2

ϕj4(s1)ds1ds2ds =

= lim
p→∞

p∑
j4,j3=0

1

2

T∫
t

ϕj3(s)

 s∫
t

ϕj4(s3)ds3

2 s∫
t

ϕj3(s2)ds2ds−

−1

2

T∫
t

ϕj3(s)

s∫
t

ϕj3(s2)

 s2∫
t

ϕj4(s3)ds3

2

ds2ds−

− 1

2

T∫
t

ϕj3(s)

s∫
t

ϕj3(s2)

 s∫
s2

ϕj4(s1)ds1

2

ds2ds

 =
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=
∞∑
j3=0

1

2

T∫
t

ϕj3(s)(s− t)

s∫
t

ϕj3(s2)ds2ds− lim
p→∞

p∑
j3=0

bpj3j3−

−
∞∑
j3=0

1

2

T∫
t

ϕj3(s)

s∫
t

(s2 − t)ϕj3(s2)ds2ds+ lim
p→∞

p∑
j3=0

apj3j3−

−
∞∑
j3=0

1

2

T∫
t

ϕj3(s)

s∫
t

ϕj3(s2)(s− t+ t− s2)ds2ds+ lim
p→∞

p∑
j3=0

cpj3j3 =

= lim
p→∞

p∑
j3=0

apj3j3 + lim
p→∞

p∑
j3=0

cpj3j3 − lim
p→∞

p∑
j3=0

bpj3j3. (2.317)

Moreover,

B2 +B3 = lim
p→∞

p∑
j4,j3=0

(Cj3j4j3j4 + Cj3j4j4j3) =

= lim
p→∞

p∑
j4,j3=0

T∫
t

ϕj3(s)

s∫
t

ϕj4(s1)

s1∫
t

ϕj4(s2)

s1∫
t

ϕj3(s3)ds3ds2ds1ds =

= lim
p→∞

p∑
j4,j3=0

T∫
t

ϕj4(s1)

s1∫
t

ϕj4(s2)

s1∫
t

ϕj3(s3)ds3ds2

T∫
s1

ϕj3(s)dsds1 =

= lim
p→∞

p∑
j4,j3=0

 T∫
t

ϕj4(s1)

s1∫
t

ϕj4(s3)

T∫
t

ϕj3(s2)ds2

T∫
s1

ϕj3(s)dsds3ds1−

−
T∫
t

ϕj4(s1)

s1∫
t

ϕj4(s3)

 T∫
s1

ϕj3(s)ds

2

ds3ds1

 =

=
∞∑
j4=0

T∫
t

ϕj4(s1)(T − s1)

s1∫
t

ϕj4(s3)ds3ds1−

−
∞∑
j4=0

T∫
t

ϕj4(s1)(T − s1)

s1∫
t

ϕj4(s3)ds3ds1 + 2 lim
p→∞

p∑
j4=0

f pj4j4 =
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= 2 lim
p→∞

p∑
j4=0

f pj4j4. (2.318)

Therefore,

B3 = 2 lim
p→∞

p∑
j3=0

f pj3j3 − lim
p→∞

p∑
j3=0

apj3j3 − lim
p→∞

p∑
j3=0

cpj3j3 + lim
p→∞

p∑
j3=0

bpj3j3. (2.319)

After substituting the relations (2.303)–(2.319) into (2.302), we obtain

l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

=

= J [ψ(4)]T,t +
1

2
1{i1=i2 ̸=0}

T∫
t

s∫
t

s1∫
t

ds2dw
(i3)
s1
dw(i4)

s +

+
1

2
1{i2=i3 ̸=0}

T∫
t

s2∫
t

s1∫
t

dw(i1)
s ds1dw

(i4)
s2

+
1

2
1{i3=i4 ̸=0}

T∫
t

s1∫
t

s2∫
t

dw(i1)
s dw(i2)

s2
ds1+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1 +R = J∗[ψ(4)]T,t +R w. p. 1, (2.320)

where

R = −1{i1=i2 ̸=0}∆
(i3i4)
1 + 1{i1=i3 ̸=0}

(
−∆

(i2i4)
2 +∆

(i2i4)
1 +∆

(i2i4)
3

)
+

+1{i1=i4 ̸=0}

(
∆

(i2i3)
4 −∆

(i2i3)
5 +∆

(i2i3)
6

)
− 1{i2=i3 ̸=0}∆

(i1i4)
3 +

+1{i2=i4 ̸=0}

(
−∆

(i1i3)
4 +∆

(i1i3)
5 +∆

(i1i3)
6

)
− 1{i3=i4 ̸=0}∆

(i1i2)
6 −

−1{i1=i3 ̸=0}1{i2=i4 ̸=0}

(
lim
p→∞

p∑
j3=0

apj3j3 + lim
p→∞

p∑
j3=0

cpj3j3 − lim
p→∞

p∑
j3=0

bpj3j3

)
−

−1{i1=i4 ̸=0}1{i2=i3 ̸=0}

(
2 lim
p→∞

p∑
j3=0

f pj3j3 − lim
p→∞

p∑
j3=0

apj3j3−

− lim
p→∞

p∑
j3=0

cpj3j3 + lim
p→∞

p∑
j3=0

bpj3j3

)
+
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+1{i1=i2 ̸=0}1{i3=i4 ̸=0} lim
p→∞

p∑
j3=0

apj3j3. (2.321)

From (2.320) and (2.321) it follows that Theorem 2.9 will be proved if

∆
(ij)
k = 0 w. p. 1, (2.322)

lim
p→∞

p∑
j3=0

apj3j3 = lim
p→∞

p∑
j3=0

bpj3j3 = lim
p→∞

p∑
j3=0

cpj3j3 = lim
p→∞

p∑
j3=0

f pj3j3 = 0, (2.323)

where k = 1, 2, . . . , 6, i, j = 0, 1, . . . ,m.

Consider the case of Legendre polynomials. Let us prove that ∆
(i3i4)
1 = 0

w. p. 1. We have

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 =

=

p∑
j′3=0

j′3−1∑
j3=0

(
2apj3j3a

p
j′3j

′
3
+
(
apj3j′3

)2
+ 2apj3j′3

apj′3j3
+
(
apj′3j3

)2)
+ 3

p∑
j′3=0

(
apj′3j′3

)2
=

=

(
p∑

j3=0

apj3j3

)2

+

p∑
j′3=0

j′3−1∑
j3=0

(
apj3j′3

+ apj′3j3

)2
+2

p∑
j′3=0

(
apj′3j′3

)2
(i3 = i4 ̸= 0), (2.324)

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 =

p∑
j3,j4=0

(
apj4j3

)2
(i3 ̸= i4, i3 ̸= 0, i4 ̸= 0),

(2.325)

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 =



(T − t)
p∑

j4=0

(
apj4,0

)2
if i3 = 0, i4 ̸= 0

(T − t)
p∑

j3=0

(
ap0,j3

)2
if i4 = 0, i3 ̸= 0

(T − t)2 (ap00)
2

if i3 = i4 = 0

.

(2.326)
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Let us consider the case i3 = i4 ̸= 0

apj4j3 =
(T − t)2

√
(2j4 + 1)(2j3 + 1)

32
×

×
1∫

−1

Pj4(y)

y∫
−1

Pj3(y1)
∞∑

j1=p+1

(2j1 + 1)

 y1∫
−1

Pj1(y2)dy2

2

dy1dy =

=
(T − t)2

√
(2j4 + 1)(2j3 + 1)

32
×

×
1∫

−1

Pj3(y1)
∞∑

j1=p+1

1

2j1 + 1
(Pj1+1(y1)− Pj1−1(y1))

2

1∫
y1

Pj4(y)dydy1 =

=
(T − t)2

√
2j3 + 1

32
√
2j4 + 1

×

×
1∫

−1

Pj3(y1) (Pj4−1(y1)− Pj4+1(y1))
∞∑

j1=p+1

1

2j1 + 1
(Pj1+1(y1)− Pj1−1(y1))

2 dy1

if j4 ̸= 0 and

apj4j3 =
(T − t)2

√
2j3 + 1

32
×

×
1∫

−1

Pj3(y1)(1− y1)
∞∑

j1=p+1

1

2j1 + 1
(Pj1+1(y1)− Pj1−1(y1))

2 dy1

if j4 = 0.

From (2.157) and the estimate |Pj(y)| ≤ 1, y ∈ [−1, 1] we obtain

|Pj(y)| =
√
|Pj(y)|·

√
|Pj(y)| ≤

C

j1/4(1− y2)1/8
, y ∈ (−1, 1), j ∈ N. (2.327)

Using (2.157) and (2.327), we get

∣∣apj4j3∣∣ ≤ C0

(j4)
3/4

∞∑
j1=p+1

1

j21

1∫
−1

dy

(1− y2)7/8
≤ C1

p (j4)
3/4

(j3 ̸= 0, j4 ≥ 2), (2.328)

∣∣ap0j3∣∣+ ∣∣ap1j3∣∣ ≤ C0

∞∑
j1=p+1

1

j21

1∫
−1

dy

(1− y2)3/4
≤ C1

p
(j3 ̸= 0), (2.329)
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∣∣apj40∣∣+ |ap00| ≤ C0

∞∑
j1=p+1

1

j21

1∫
−1

dy

(1− y2)1/2
≤ C1

p
(j4 ≥ 1), (2.330)

where constants C0, C1 do not depend on p.

Taking into account (2.324), (2.328)–(2.330), we have

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 =

(
ap00 +

p∑
j3=1

apj3j3

)2

+

p∑
j′3=1

(
ap0j′3

+ apj′30

)2
+

+

p∑
j′3=1

j′3−1∑
j3=1

(
apj3j′3

+ apj′3j3

)2
+ 2

 p∑
j′3=1

(
apj′3j′3

)2
+ (a00)

2

 ≤

≤ K0

(
1

p
+

1

p

p∑
j3=1

1

(j3)
3/4

)2

+
K1

p
+K2

p∑
j′3=1

j′3−1∑
j3=1

1

p2

(
1

(j′3)
3/4

+
1

(j3)
3/4

)2

≤

≤ K0

1

p
+

1

p

p∫
0

dx

x3/4

2

+
K1

p
+
K3

p

p∑
j3=1

1

(j3)
3/2

≤

≤ K0

(
1

p
+

4

p3/4

)2

+
K1

p
+
K3

p

1 +

p∫
1

dx

x3/2

 ≤

≤ K4

p
+
K3

p

(
3− 2

√
p

)
≤ K5

p
→ 0

if p→ ∞ (i3 = i4 ̸= 0).

The same result for the cases (2.325), (2.326) also follows from the estimates
(2.328)–(2.330). Therefore,

∆
(i3i4)
1 = 0 w. p. 1. (2.331)

It is not difficult to see that the formulas

∆
(i2i4)
2 = 0, ∆

(i1i3)
4 = 0, ∆

(i1i3)
6 = 0 w. p. 1 (2.332)

can be proved similarly with the proof of (2.331).

Moreover, from the estimates (2.328)–(2.330) we obtain

lim
p→∞

p∑
j3=0

apj3j3 = 0. (2.333)
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The relations

lim
p→∞

p∑
j3=0

bpj3j3 = 0 and lim
p→∞

p∑
j3=0

f pj3j3 = 0 (2.334)

can also be proved analogously with (2.333).

Let us consider ∆
(i2i4)
3

∆
(i2i4)
3 = ∆

(i2i4)
4 +∆

(i2i4)
6 −∆

(i2i4)
7 = −∆

(i2i4)
7 w. p. 1, (2.335)

where

∆
(i2i4)
7 = l.i.m.

p→∞

p∑
j2,j4=0

gpj4j2ζ
(i2)
j2
ζ
(i4)
j4
,

gpj4j2 =

T∫
t

ϕj4(s)

s∫
t

ϕj2(s1)
∞∑

j1=p+1

 T∫
s1

ϕj1(s2)ds2

T∫
s

ϕj1(s2)ds2

 ds1ds =

=
∞∑

j1=p+1

T∫
t

ϕj4(s)

T∫
s

ϕj1(s2)ds2

s∫
t

ϕj2(s1)

T∫
s1

ϕj1(s2)ds2ds1ds. (2.336)

The last step in (2.336) follows from the estimate

∣∣gpj4j2∣∣ ≤ K
∞∑

j1=p+1

1

j21

1∫
−1

1

(1− y2)1/2

y∫
−1

1

(1− x2)1/2
dxdy ≤ K1

p
.

Note that

gpj4j4 =
∞∑

j1=p+1

1

2

 T∫
t

ϕj4(s)

T∫
s

ϕj1(s2)ds2ds

2

, (2.337)

gpj4j2 + gpj2j4 =
∞∑

j1=p+1

T∫
t

ϕj4(s)

T∫
s

ϕj1(s2)ds2ds

T∫
t

ϕj2(s)

T∫
s

ϕj1(s2)ds2ds, (2.338)

and

gpj4j2 =
(T − t)2

√
(2j4 + 1)(2j2 + 1)

16
×
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×
∞∑

j1=p+1

1

2j1 + 1

1∫
−1

Pj4(y1) (Pj1−1(y1)− Pj1+1(y1))×

×
y1∫

−1

Pj2(y) (Pj1−1(y)− Pj1+1(y)) dydy1, j4, j2 ≤ p.

Due to orthogonality of the Legendre polynomials we obtain

gpj4j2 + gpj2j4 =
(T − t)2

√
(2j4 + 1)(2j2 + 1)

16
×

×
∞∑

j1=p+1

1

2j1 + 1

1∫
−1

Pj4(y1) (Pj1−1(y1)− Pj1+1(y1)) dy1×

×
1∫

−1

Pj2(y) (Pj1−1(y)− Pj1+1(y)) dy =

=
(T − t)2(2p+ 1)

16

1

2p+ 3

 1∫
−1

P 2
p (y1)dy1

2

·


1 if j2 = j4 = p

0 otherwise

=

=
(T − t)2

4(2p+ 3)(2p+ 1)
·


1 if j2 = j4 = p

0 otherwise

, (2.339)

gpj4j4 =
(T − t)2(2j4 + 1)

16
×

×
∞∑

j1=p+1

1

2j1 + 1
· 1
2

 1∫
−1

Pj4(y1) (Pj1−1(y1)− Pj1+1(y1)) dy1

2

=

=
(T − t)2(2p+ 1)

32

1

2p+ 3

 1∫
−1

P 2
p (y1)dy1

2

·


1 if j4 = p

0 otherwise

=

=
(T − t)2

8(2p+ 3)(2p+ 1)
·


1 if j4 = p

0 otherwise

. (2.340)
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From (2.324), (2.339), and (2.340) it follows that

M


(

p∑
j2,j4=0

gpj4j2ζ
(i2)
j2
ζ
(i4)
j4

)2
 =

=

(
p∑

j3=0

gpj3j3

)2

+

p∑
j′3=0

j′3−1∑
j3=0

(
gpj3j′3

+ gpj′3j3

)2
+ 2

p∑
j′3=0

(
gpj′3j′3

)2
=

=

(
(T − t)2

8(2p+ 3)(2p+ 1)

)2

+ 0 + 2

(
(T − t)2

8(2p+ 3)(2p+ 1)

)2

→ 0

if p→ ∞ (i2 = i4 ̸= 0).

Let us consider the case i2 ̸= i4, i2 ̸= 0, i4 ̸= 0 (see (2.325)). It is not
difficult to see that

gpj4j2 =

T∫
t

ϕj4(s)

s∫
t

ϕj2(s1)Fp(s, s1)ds1ds =

∫
[t,T ]2

Kp(s, s1)ϕj4(s)ϕj2(s1)ds1ds

is a coefficient of the double Fourier–Legendre series of the function

Kp(s, s1) = 1{s1<s}Fp(s, s1), (2.341)

where
∞∑

j1=p+1

T∫
s1

ϕj1(s2)ds2

T∫
s

ϕj1(s2)ds2
def
= Fp(s, s1).

The Parseval equality in this case looks as follows

lim
p1→∞

p1∑
j4,j2=0

(
gpj4j2

)2
=

∫
[t,T ]2

(Kp(s, s1))
2 ds1ds =

T∫
t

s∫
t

(Fp(s, s1))
2 ds1ds. (2.342)

From (2.157) we obtain∣∣∣∣∣∣
T∫

s1

ϕj1(θ)dθ

∣∣∣∣∣∣ = 1

2

√
2j1 + 1

√
T − t

∣∣∣∣∣∣∣
1∫

z(s1)

Pj1(y)dy

∣∣∣∣∣∣∣ =
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=

√
T − t

2
√
2j1 + 1

|Pj1−1(z(s1))− Pj1+1(z(s1))| ≤
K

j1

1

(1− z2(s1))
1/4
, (2.343)

where z(s1) is defined by (2.20), s1 ∈ (t, T ).

From (2.343) we have

(Fp(s, s1))
2 ≤ C2

p2
1

(1− z2(s))1/2
1

(1− z2(s1))
1/2
, s, s1 ∈ (t, T ). (2.344)

From (2.344) it follows that |Fp(s, s1)| ≤Mε/p in the domain

Dε = {(s, s1) : s ∈ [t+ ε, T − ε], s1 ∈ [t+ ε, s]} for some small ε > 0,

where constant Mε does not depend on s, s1. Then we have the uniform con-
vergence

p∑
j1=0

T∫
s

ϕj1(θ)dθ

T∫
s1

ϕj1(θ)dθ →
∞∑
j1=0

T∫
s

ϕj1(θ)dθ

T∫
s1

ϕj1(θ)dθ (2.345)

at the set Dε if p→ ∞.

Because of continuity of the function on the left-hand side of (2.345) we
obtain continuity of the limit function on the right-hand side of (2.345) at the
set Dε.

Using this fact and (2.344), we obtain

T∫
t

s∫
t

(Fp(s, s1))
2 ds1ds = lim

ε→+0

T−ε∫
t+ε

s∫
t+ε

(Fp(s, s1))
2 ds1ds ≤

≤ C2

p2
lim
ε→+0

T−ε∫
t+ε

s∫
t+ε

ds1

(1− z2(s1))
1/2

ds

(1− z2(s))1/2
=

=
C2

p2

T∫
t

s∫
t

ds1

(1− z2(s1))
1/2

ds

(1− z2(s))1/2
=

=
K

p2

1∫
−1

y∫
−1

dy1

(1− y21)
1/2

dy

(1− y2)1/2
≤ K1

p2
, (2.346)
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where constant K1 does not depend on p.

From (2.346) and (2.342) we get

0 ≤
p∑

j2,j4=0

(
gpj4j2

)2 ≤ lim
p1→∞

p1∑
j2,j4=0

(
gpj4j2

)2
=

∞∑
j2,j4=0

(
gpj4j2

)2 ≤ K1

p2
→ 0 (2.347)

if p→ ∞. The case i2 ̸= i4, i2 ̸= 0, i4 ̸= 0 is proved.

The same result for the cases
1) i2 = 0, i4 ̸= 0,
2) i4 = 0, i2 ̸= 0,
3) i2 = 0, i4 = 0

can also be obtained. Then ∆
(i2i4)
7 = 0 and ∆

(i2i4)
3 = 0 w. p. 1.

Let us consider ∆
(i1i3)
5

∆
(i1i3)
5 = ∆

(i1i3)
4 +∆

(i1i3)
6 −∆

(i1i3)
8 w. p. 1,

where

∆
(i1i3)
8 = l.i.m.

p→∞

p∑
j3,j1=0

hpj3j1ζ
(i1)
j1
ζ
(i3)
j3
,

hpj3j1 =

T∫
t

ϕj1(s3)

T∫
s3

ϕj3(s)Fp(s3, s)dsds3.

Analogously, we obtain that ∆
(i1i3)
8 = 0 w. p. 1. Here we consider the

function

Kp(s3, s) = 1{s3<s}Fp(s3, s)

and the relation

hpj3j1 =

∫
[t,T ]2

Kp(s3, s)ϕj1(s3)ϕj3(s)dsds3

for the case i1 ̸= i3, i1 ̸= 0, i3 ̸= 0.

For the case i1 = i3 ̸= 0 we use (see (2.337), (2.338))

hpj1j1 =
∞∑

j4=p+1

1

2

 T∫
t

ϕj1(s)

T∫
s

ϕj4(s1)ds1ds

2

,
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hpj3j1 + hpj1j3 =
∞∑

j4=p+1

T∫
t

ϕj1(s)

T∫
s

ϕj4(s2)ds2ds

T∫
t

ϕj3(s)

T∫
s

ϕj4(s2)ds2ds.

Let us prove that

lim
p→∞

p∑
j3=0

cpj3j3 = 0. (2.348)

We have
cpj3j3 = f pj3j3 + dpj3j3 − gpj3j3. (2.349)

Moreover,

lim
p→∞

p∑
j3=0

f pj3j3 = 0, lim
p→∞

p∑
j3=0

dpj3j3 = 0, (2.350)

where the first equality in (2.350) has been proved earlier. Analogously, we can
prove the second equality in (2.350).

From (2.340) we obtain

0 ≤ lim
p→∞

p∑
j3=0

gpj3j3 ≤ lim
p→∞

(T − t)2

8(2p+ 3)(2p+ 1)
= 0.

So, (2.348) is proved. The relations (2.322), (2.323) are proved for the
polynomial case. Theorem 2.9 is proved for the case of Legendre polynomials.

Let us consider the trigonometric case. According to (2.304), we have

apj4j3 =
1

2

T∫
t

ϕj3(s1)
∞∑

j1=p+1

 s1∫
t

ϕj1(s2)ds2

2 T∫
s1

ϕj4(s)dsds1. (2.351)

Moreover (see (2.270), (2.271)),∣∣∣∣∣∣
s1∫
t

ϕj(s2)ds2

∣∣∣∣∣∣ ≤ K

j
,

∣∣∣∣∣∣
T∫

s1

ϕj(s2)ds2

∣∣∣∣∣∣ ≤ K

j
, (2.352)

where constant K does not depend on j (j = 1, 2, . . .).

Note that
T∫

s1

ϕ0(s)ds =
T − s1√
T − t

.
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Using (2.351) and (2.352), we obtain

∣∣apj4j3∣∣ ≤ C1

j4

∞∑
j1=p+1

1

j21
≤ C1

pj4
(j4 ̸= 0),

∣∣ap0j3∣∣ ≤ C1

p
, (2.353)

where constant C1 does not depend on p.

Taking into account (2.324)–(2.326) and (2.353), we obtain that ∆
(i3i4)
1 = 0

w. p. 1. Analogously, we get ∆
(i2i4)
2 = 0, ∆

(i1i3)
4 = 0, ∆

(i1i3)
6 = 0 w. p. 1 and

lim
p→∞

p∑
j3=0

apj3j3 = 0, lim
p→∞

p∑
j3=0

bpj3j3 = 0, lim
p→∞

p∑
j3=0

f pj3j3 = 0.

Let us consider ∆
(i2i4)
3 for the case i2 = i4 ̸= 0. For the values g2mj4j2 + g2mj2j4

and g2m−1
j4j2

+ g2m−1
j2j4

(m ∈ N) we have (see (2.338))

g2mj4j2 + g2mj2j4 =

=
∞∑

j1=2m+1

T∫
t

ϕj4(s)

T∫
s

ϕj1(s2)ds2ds

T∫
t

ϕj2(s)

T∫
s

ϕj1(s2)ds2ds =

=
∞∑

r=m+1

 T∫
t

ϕj4(s)

T∫
s

ϕ2r−1(s2)ds2ds

T∫
t

ϕj2(s)

T∫
s

ϕ2r−1(s2)ds2ds+

+

T∫
t

ϕj4(s)

T∫
s

ϕ2r(s2)ds2ds

T∫
t

ϕj2(s)

T∫
s

ϕ2r(s2)ds2ds

 , (2.354)

g2m−1
j4j2

+ g2m−1
j2j4

=

=
∞∑

j1=2m

T∫
t

ϕj4(s)

T∫
s

ϕj1(s2)ds2ds

T∫
t

ϕj2(s)

T∫
s

ϕj1(s2)ds2ds =

= g2mj4j2 + g2mj2j4+

+

T∫
t

ϕj4(s)

T∫
s

ϕ2m(s2)ds2ds

T∫
t

ϕj2(s)

T∫
s

ϕ2m(s2)ds2ds, (2.355)
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where

T∫
t

ϕj4(s)

T∫
s

ϕ2r−1(s2)ds2ds =

√
2

T − t

T∫
t

ϕj4(s)

T∫
s

sin
2πr(s2 − t)

T − t
ds2ds =

=

√
2
√
T − t

2πr

T∫
t

ϕj4(s)

(
cos

2πr(s− t)

T − t
− 1

)
ds,

T∫
t

ϕj4(s)

T∫
s

ϕ2r(s2)ds2ds =

√
2

T − t

T∫
t

ϕj4(s)

T∫
s

cos
2πr(s2 − t)

T − t
ds2ds =

=

√
2
√
T − t

2πr

T∫
t

ϕj4(s)

(
−sin

2πr(s− t)

T − t

)
ds,

where 2r − 1, 2r ≥ p+ 1, and j2, j4 = 0, 1, . . . , p.

Due to orthogonality of the trigonometric functions we have

T∫
t

ϕj4(s)

T∫
s

ϕ2r−1(s2)ds2ds =

√
2(T − t)

2πr
·


−1 if j4 = 0

0 otherwise

, (2.356)

T∫
t

ϕj4(s)

T∫
s

ϕ2r(s2)ds2ds = 0, (2.357)

where 2r − 1, 2r ≥ p+ 1, and j4 = 0, 1, . . . , p.

From (2.354), (2.356), and (2.357) we obtain

g2mj4j2 + g2mj2j4 =

=
∞∑

j1=m+1

(T − t)2

2π2j21
·


1 if j2 = j4 = 0

0 otherwise

,
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g2mj4j4 =
1

2

(
g2mj4j2 + g2mj2j4

) ∣∣∣∣
j2=j4

=

=
∞∑

j1=m+1

(T − t)2

4π2j21
·


1 if j4 = 0

0 otherwise

.

Therefore (see (2.25)),
∣∣g2mj4j2 + g2mj2j4

∣∣ ≤ K1/(2m) if j2 = j4 = 0

g2mj4j2 + g2mj2j4 = 0 otherwise

, (2.358)


∣∣g2mj4j4∣∣ ≤ K1/(2m) if j4 = 0

g2mj4j4 = 0 otherwise

, (2.359)

where constant K1 does not depend on p = 2m.

For p = 2m− 1 from (2.355) and (2.357) we have

g2m−1
j4j2

+ g2m−1
j2j4

=

=
∞∑

j1=m+1

(T − t)2

2π2j21
·


1 or 0 if j2 = j4 = 0

0 otherwise

. (2.360)

The relation (2.360) implies that

g2m−1
j4j4

=
1

2

(
g2m−1
j4j2

+ g2m−1
j2j4

) ∣∣∣∣
j2=j4

=

=
∞∑

j1=m+1

(T − t)2

4π2j21
·


1 or 0 if j4 = 0

0 otherwise

. (2.361)
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Using (2.360) and (2.361), we obtain
∣∣g2m−1
j4j2

+ g2m−1
j2j4

∣∣ ≤ K2/(2m− 1) if j2 = j4 = 0

g2m−1
j4j2

+ g2m−1
j2j4

= 0 otherwise

, (2.362)


∣∣g2m−1
j4j4

∣∣ ≤ K2/(2m− 1) if j4 = 0

g2m−1
j4j4

= 0 otherwise

, (2.363)

where constant K2 does not depend on p = 2m− 1.

The relations (2.358), (2.359), (2.362), and (2.363) imply the following for-
mulas 

∣∣gpj4j2 + gpj2j4
∣∣ ≤ K3/p if j2 = j4 = 0

gpj4j2 + gpj2j4 = 0 otherwise

, (2.364)


∣∣gpj4j4∣∣ ≤ K3/p if j4 = 0

gpj4j4 = 0 otherwise

, (2.365)

where constant K3 does not depend on p (p ∈ N). Moreover, gpj4j4 ≥ 0 (see
(2.337)).

From (2.324), (2.364), and (2.365) it follows that ∆
(i2i4)
7 = 0 and ∆

(i2i4)
3 = 0

w. p. 1 for i2 = i4 ̸= 0. Analogously to the polynomial case, we obtain ∆
(i2i4)
7 = 0

and ∆
(i2i4)
3 = 0 w. p. 1 for i2 ̸= i4, i2 ̸= 0, i4 ̸= 0. The similar arguments prove

that ∆
(i1i3)
5 = 0 w. p. 1.

Taking into account (2.349), (2.364), (2.365) and the relations

lim
p→∞

p∑
j3=0

f pj3j3 = lim
p→∞

p∑
j3=0

dpj3j3 = 0,

which follow from the estimates

|f pjj| ≤
C1

pj
, |dpjj| ≤

C1

pj
(j ̸= 0), |f p00| ≤

C1

p
, |dp00| ≤

C1

p
, (2.366)
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we obtain

lim
p→∞

p∑
j3=0

cpj3j3 = − lim
p→∞

p∑
j3=0

gpj3j3,

0 ≤ lim
p→∞

p∑
j3=0

gpj3j3 ≤ lim
p→∞

K3

p
= 0.

Note that the estimates (2.366) can be obtained by analogy with (2.353);
constant C1 in (2.366) has the same meaning as constant C1 in (2.353).

Finally, we have

lim
p→∞

p∑
j3=0

cpj3j3 = 0.

The relations (2.322), (2.323) are proved for the trigonometric case. Theo-
rem 2.9 is proved for the trigonometric case. Theorem 2.9 is proved.

Remark 2.2. It should be noted that the proof of Theorem 2.9 can be some-
what simplified. More precisely, instead of (2.324)–(2.326), we can use only one
and rather simple estimate.

We have

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 =

= M


(

p∑
j3,j4=0

apj4j3

(
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4} + 1{i3=i4 ̸=0}1{j3=j4}

))2
 =

= M


(

p∑
j3,j4=0

apj4j3

(
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}

)
+ 1{i3=i4 ̸=0}

p∑
j4=0

apj4j4

)2
 =

= M


(

p∑
j3,j4=0

apj4j3

(
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}

))2
+

+1{i3=i4 ̸=0}

(
p∑

j4=0

apj4j4

)2

. (2.367)

The expression
p∑

j3,j4=0

apj4j3

(
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}

)
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can be interpreted as the multiple Wiener stochastic integral (1.258) (also see
(1.23)) of multiplicity 2 with nonrandom integrand function

p∑
j3,j4=0

apj4j3ϕj3(t3)ϕj4(t4).

From (1.25) we obtain

M

{(
J ′[Φ]

(k)
T,t

)2}
≤ Ck

∑
(t1,...,tk)

T∫
t

. . .

t2∫
t

Φ2(t1, . . . , tk)dt1 . . . dtk =

= Ck

∫
[t,T ]k

Φ2(t1, . . . , tk)dt1 . . . dtk, (2.368)

where J ′[Φ]
(k)
T,t is defined by (1.23) and Ck is a constant.

Then

M


(

p∑
j3,j4=0

apj4j3

(
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}

))2
 ≤

≤ C2

∫
[t,T ]2

(
p∑

j3,j4=0

apj4j3ϕj3(t3)ϕj4(t4)

)2

dt3dt4 = C2

p∑
j3,j4=0

(
apj4j3

)2
. (2.369)

From (2.367) and (2.369) we get

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 ≤ C2

p∑
j3,j4=0

(
apj4j3

)2
+ 1{i3=i4 ̸=0}

(
p∑

j4=0

apj4j4

)2

.

(2.370)

Obviously, the estimate (2.370) can be used in the proof of Theorem 2.9
instead of (2.324)–(2.326).

The estimate (2.370) can be refined. Using (1.88), we obtain

M


(

p∑
j3,j4=0

apj4j3

(
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4 ̸=0}1{j3=j4}

))2
 =
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=

p∑
j3,j4=0

(
apj4j3

)2
+ 1{i3=i4 ̸=0}

p∑
j3,j4=0

apj4j3a
p
j3j4

≤

≤
p∑

j3,j4=0

(
apj4j3

)2
+ 1{i3=i4 ̸=0}

1

2

p∑
j3,j4=0

((
apj4j3

)2
+
(
apj3j4

)2)
=

=
(
1 + 1{i3=i4 ̸=0}

) p∑
j3,j4=0

(
apj4j3

)2
. (2.371)

Combining (2.367) and (2.371), we have

M


(

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4

)2
 ≤

(
1 + 1{i3=i4 ̸=0}

) p∑
j3,j4=0

(
apj4j3

)2
+

+1{i3=i4 ̸=0}

(
p∑

j4=0

apj4j4

)2

. (2.372)

2.4 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity k (k ∈ N) Based on Generalized

Iterated Fourier Series Converging Pointwise

This section is devoted to the expansion of iterated Stratonovich stochastic in-
tegrals of arbitrary multiplicity k (k ∈ N) based on generalized iterated Fourier
series. The case of trigonometric Fourier series are considered in detail. The
obtained expansion provides a possibility to represent the iterated Stratonovich
stochastic integral in the form of iterated series of products of standard Gaus-
sian random variables. Convergence in the mean of degree q = 2n (n ∈ N) of
the expansion is proved. The case of iterated Fourier–Legendre series for k = 2
and q = 2 is also considered.

The idea of representing of iterated Stratonovich stochastic integrals in the
form of multiple stochastic integrals from specific discontinuous nonrandom
functions of several variables and following expansion of these functions using
generalized iterated Fourier series in order to get effective mean-square approx-
imations of the mentioned stochastic integrals was proposed and developed in
a lot of author’s publications [76] (1997), [77] (1998) (also see [5]-[17], [34]).
The results of this section convincingly testify that there is a doubtless relation
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between the multiplier factor 1/2, which is typical for Stratonovich stochastic
integral and included into the sum connecting Stratonovich and Itô stochas-
tic integrals, and the fact that in the point of finite discontinuity of piecewise
smooth function f(x) its trigonometric Fourier series and Fourier–Legendre se-
ries converge to the value (f(x+ 0) + f(x− 0))/2.

2.4.1 Theorem on Expansion of Iterated Stratonovich Stochastic In-
tegrals of Multiplicity k (k ∈ N)

Consider the following iterated Stratonovich and Itô stochastic integrals

J∗[ψ(k)]T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (2.373)

J [ψ(k)]T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (2.374)

where ψl(τ) (l = 1, . . . , k) are nonrandom functions on [t, T ], w
(i)
τ = f

(i)
τ for

i = 1, . . . ,m and w
(0)
τ = τ, i1, . . . , ik = 0, 1, . . . ,m.

Let us denote as {ϕj(x)}∞j=0 the complete orthonormal systems of Legendre
polynomials or trigonometric functions in the space L2([t, T ]).

In this section, we will pay attention on the well known facts about Fourier
series with respect to these two systems of functions [115] (also see Sect. 2.1.1).

Define the following function on the hypercube [t, T ]k

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

=
k∏
l=1

ψl(tl)
k−1∏
l=1

1{tl<tl+1}

(2.375)

for t1, . . . , tk ∈ [t, T ] (k ≥ 2) andK(t1) ≡ ψ1(t1) for t1 ∈ [t, T ], where 1A denotes
the indicator of the set A.

Let us formulate the following theorem.

Theorem 2.10 [76] (1997), [77] (1998) (also see [5]-[17], [34]). Suppose
that every function ψl(τ) (l = 1, . . . , k) is twice continuously differentiable at the
interval [t, T ] and {ϕj(x)}∞j=0 is a complete orthonormal system of trigonometric
functions in the space L2([t, T ]). Then, the iterated Stratonovich stochastic
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integral J∗[ψ(k)]T,t defined by (2.373) is expanded into the converging in the
mean of degree 2n (n ∈ N) iterated series

J∗[ψ(k)]T,t =
∞∑
j1=0

. . .
∞∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl
, (2.376)

where

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the
case when i ̸= 0) and

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (2.377)

is the Fourier coefficient.

Note that (2.376) means the following

lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

M


(
J∗[ψ(k)]T,t −

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

)2n
 = 0,

(2.378)
where lim means lim sup.

Proof. The proof of Theorem 2.10 is based on Lemmas 1.1, 1.3 (see
Sect. 1.1.3) and Theorems 2.11–2.13 (see below).

Define the function K∗(t1, . . . , tk) on the hypercube [t, T ]k as follows

K∗(t1, . . . , tk) =
k∏
l=1

ψl(tl)
k−1∏
l=1

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
=

=
k∏
l=1

ψl(tl)

k−1∏
l=1

1{tl<tl+1} +
k−1∑
r=1

1

2r

k−1∑
sr,...,s1=1
sr>...>s1

r∏
l=1

1{tsl=tsl+1}

k−1∏
l=1

l ̸=s1,...,sr

1{tl<tl+1}


(2.379)

for t1, . . . , tk ∈ [t, T ] (k ≥ 2) and K∗(t1) ≡ ψ1(t1) for t1 ∈ [t, T ], where 1A is the
indicator of the set A.
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Theorem 2.11 [76] (1997). Suppose that every function ψl(τ) (l = 1, . . . , k)
is continuously differentiable at the interval [t, T ] and {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). Then, the function K

∗(t1, . . . , tk) is represented in any internal
point of the hypercube [t, T ]k by the generalized iterated Fourier series

K∗(t1, . . . , tk) = lim
p1→∞

. . . lim
pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl), (2.380)

where (t1, . . . , tk) ∈ (t, T )k and Cjk...j1 is defined by (2.377). At that, the iterated
series (2.380) converges at the boundary of the hypercube [t, T ]k (not necessarily
to the function K∗(t1, . . . , tk)).

Proof. We will perform the proof using induction. Consider the case k = 2.
Let us expand the function K∗(t1, t2) using the variable t1, when t2 is fixed,
into the generalized Fourier series with respect to the system {ϕj(x)}∞j=0 at the
interval (t, T )

K∗(t1, t2) =
∞∑
j1=0

Cj1(t2)ϕj1(t1) (t1 ̸= t, T ), (2.381)

where

Cj1(t2) =

T∫
t

K∗(t1, t2)ϕj1(t1)dt1 = ψ2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1.

The equality (2.381) is satisfied pointwise at each point of the interval (t, T )
with respect to the variable t1, when t2 ∈ [t, T ] is fixed, due to a piecewise
smoothness of the function K∗(t1, t2) with respect to the variable t1 ∈ [t, T ] (t2
is fixed).

Note also that due to the well known properties of the Fourier–Legendre
series and trigonometric Fourier series, the series (2.381) converges when t1 =
t, T (not necessarily to the function K∗(t1, t2)).

Obtaining (2.381), we also used the fact that the right-hand side of (2.381)
converges when t1 = t2 (point of a finite discontinuity of the function K(t1, t2)
defined by (2.375)) to the value

1

2
(K(t2 − 0, t2) +K(t2 + 0, t2)) =

1

2
ψ1(t2)ψ2(t2) = K∗(t2, t2).

The function Cj1(t2) is continuously differentiable at the interval [t, T ]. Let
us expand it into the generalized Fourier series at the interval (t, T )
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Cj1(t2) =
∞∑
j2=0

Cj2j1ϕj2(t2) (t2 ̸= t, T ), (2.382)

where

Cj2j1 =

T∫
t

Cj1(t2)ϕj2(t2)dt2 =

T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2

and the equality (2.382) is satisfied pointwise at any point of the interval (t, T ).
Moreover, the right-hand side of (2.382) converges when t2 = t, T (not neces-
sarily to Cj1(t2)).

Let us substitute (2.382) into (2.381)

K∗(t1, t2) =
∞∑
j1=0

∞∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2), (t1, t2) ∈ (t, T )2. (2.383)

Note that the series on the right-hand side of (2.383) converges at the
boundary of the square [t, T ]2 (not necessarily to K∗(t1, t2)). Theorem 2.11
is proved for the case k = 2.

Note that proving Theorem 2.11 for the case k = 2 we obtained the following
equality (see (2.381))

ψ1(t1)

(
1{t1<t2} +

1

2
1{t1=t2}

)
=

∞∑
j1=0

t2∫
t

ψ1(t1)ϕj1(t1)dt1ϕj1(t1), (2.384)

which is satisfied pointwise at the interval (t, T ), besides the series on the right-
hand side of (2.384) converges when t1 = t, T.

Let us introduce the induction assumption

∞∑
j1=0

∞∑
j2=0

. . .
∞∑

jk−2=0

ψk−1(tk−1)×

×
tk−1∫
t

ψk−2(tk−2)ϕjk−2
(tk−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk−2

k−2∏
l=1

ϕjl(tl) =

=
k−1∏
l=1

ψl(tl)
k−2∏
l=1

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
. (2.385)
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Then ∞∑
j1=0

∞∑
j2=0

. . .
∞∑

jk−1=0

ψk(tk)×

×
tk∫
t

ψk−1(tk−1)ϕjk−1
(tk−1) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk−1

k−1∏
l=1

ϕjl(tl) =

=
∞∑
j1=0

∞∑
j2=0

. . .
∞∑

jk−2=0

ψk(tk)

(
1{tk−1<tk} +

1

2
1{tk−1=tk}

)
ψk−1(tk−1)×

×
tk−1∫
t

ψk−2(tk−2)ϕjk−2
(tk−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk−2

k−2∏
l=1

ϕjl(tl) =

= ψk(tk)

(
1{tk−1<tk} +

1

2
1{tk−1=tk}

) ∞∑
j1=0

∞∑
j2=0

. . .

∞∑
jk−2=0

ψk−1(tk−1)×

×
tk−1∫
t

ψk−2(tk−2)ϕjk−2
(tk−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk−2

k−2∏
l=1

ϕjl(tl) =

= ψk(tk)

(
1{tk−1<tk} +

1

2
1{tk−1=tk}

) k−1∏
l=1

ψl(tl)
k−2∏
l=1

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
=

=
k∏
l=1

ψl(tl)
k−1∏
l=1

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
. (2.386)

On the other hand, the left-hand side of (2.386) can be represented in the
following form

∞∑
j1=0

. . .
∞∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

by expanding the function

ψk(tk)

tk∫
t

ψk−1(tk−1)ϕjk−1
(tk−1) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk−1
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into the generalized Fourier series at the interval (t, T ) using the variable tk.
Theorem 2.11 is proved.

Let us introduce the following notations

J [ψ(k)]sl,...,s1T,t
def
=

l∏
p=1

1{isp=isp+1 ̸=0} ×

×
T∫
t

ψk(tk) . . .

tsl+3∫
t

ψsl+2(tsl+2)

tsl+2∫
t

ψsl(tsl+1)ψsl+1(tsl+1)×

×

tsl+1∫
t

ψsl−1(tsl−1) . . .

ts1+3∫
t

ψs1+2(ts1+2)

ts1+2∫
t

ψs1(ts1+1)ψs1+1(ts1+1)×

×

ts1+1∫
t

ψs1−1(ts1−1) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(is1−1)
ts1−1

dts1+1dw
(is1+2)
ts1+2

. . .

. . . dw
(isl−1)
tsl−1

dtsl+1dw
(isl+2)
tsl+2

. . . dw
(ik)
tk , (2.387)

where

Ak,l =
{
(sl, . . . , s1) : sl > sl−1 + 1, . . . , s2 > s1 + 1, sl, . . . , s1 = 1, . . . , k − 1

}
,

(2.388)
(sl, . . . , s1) ∈ Ak,l, l = 1, . . . , [k/2] , is = 0, 1, . . . ,m, s = 1, . . . , k,

[x] is an integer part of a real number x, and 1A is the indicator of the set A.

Let us formulate the statement on connection between iterated Stratonovich
and Itô stochastic integrals J∗[ψ(k)]T,t, J [ψ

(k)]T,t of fixed multiplicity k, k ∈ N
(see (2.373), (2.374)).

Theorem 2.12 [76] (1997). Suppose that every ψl(τ) (l = 1, . . . , k) is a
continuous function at the interval [t, T ]. Then, the following relation between
iterated Stratonovich and Itô stochastic integrals

J∗[ψ(k)]T,t = J [ψ(k)]T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t w. p. 1 (2.389)

is correct, where
∑
∅

is supposed to be equal to zero.
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Proof. Let us prove the equality (2.389) using induction. The case k = 1
is obvious. If k = 2, then from (2.389) we get

J∗[ψ(2)]T,t = J [ψ(2)]T,t +
1

2
J [ψ(2)]1T,t w. p. 1. (2.390)

Let us demonstrate that the equality (2.390) is correct w. p. 1. In order to
do it let us consider the function F (x, τ) = xψ2(τ) and the process F (ητ,t, τ),
where ητ,t = J [ψ(1)]τ,t, τ ∈ [t, T ]. Then

∂F

∂x
(x, τ) = ψ2(τ), dητ,t = ψ1(τ)dw

(i1)
τ . (2.391)

From (2.391) we obtain that the diffusion coefficient of the process ητ,t,
τ ∈ [t, T ] equals to 1{i1 ̸=0}ψ1(τ). Further, using the standard relations between
Stratonovich and Itô stochastic integrals (see (2.4), (2.5)), we obtain the relation
(2.390). Thus, the statement of Theorem 2.12 is proved for k = 1 and k = 2.

Assume that the statement of Theorem 2.12 is correct for some integer k
(k > 2). Let us prove its correctness when the value k is greater per unit. Using
the induction assumption, we have w. p. 1

J∗[ψ(k+1)]T,t =

=

∗∫
t

T

ψk+1(τ)

J [ψ(k)]τ,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1τ,t

 dw(ik+1)
τ =

=

∗∫
t

T

ψk+1(τ)J [ψ
(k)]τ,tdw

(ik+1)
τ +

+

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

∗∫
t

T

ψk+1(τ)J [ψ
(k)]sr,...,s1τ,t dw(ik+1)

τ . (2.392)

Using the standard relations between Stratonovich and Itô stochastic inte-
grals (see (2.4), (2.5)), similarly to (2.390), we get w. p. 1

∗∫
t

T

ψk+1(τ)J [ψ
(k)]τ,tdw

(ik+1)
τ = J [ψ(k+1)]T,t +

1

2
J [ψ(k+1)]kT,t, (2.393)
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∗∫
t

T

ψk+1(τ)J [ψ
(k)]sr,...,s1τ,t dw(ik+1)

τ =

=


J [ψ(k+1)]sr,...,s1T,t if sr = k − 1

J [ψ(k+1)]sr,...,s1T,t + J [ψ(k+1)]k,sr,...,s1T,t /2 if sr < k − 1

. (2.394)

After substituting (2.393) and (2.394) into (2.392) and regrouping of sum-
mands, we pass to the following relations, which are valid w. p. 1

J∗[ψ(k+1)]T,t = J [ψ(k+1)]T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak+1,r

J [ψ(k+1)]sr,...,s1T,t (2.395)

when k is even and

J∗[ψ(k′+1)]T,t = J [ψ(k′+1)]T,t +

[k′/2]+1∑
r=1

1

2r

∑
(sr,...,s1)∈Ak′+1,r

J [ψ(k′+1)]sr,...,s1T,t (2.396)

when k′ = k + 1 is uneven.

From (2.395) and (2.396) we have w. p. 1

J∗[ψ(k+1)]T,t = J [ψ(k+1)]T,t +

[(k+1)/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak+1,r

J [ψ(k+1)]sr,...,s1T,t . (2.397)

Theorem 2.12 is proved.

For example, from Theorem 2.12 for k = 1, 2, 3, 4 we obtain the following
well known equalities [84], which are fulfilled w. p. 1

∗∫
t

T

ψ1(t1)dw
(i1)
t1 =

T∫
t

ψ1(t1)dw
(i1)
t1 ,

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 +
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+
1

2
1{i1=i2 ̸=0}

T∫
t

ψ2(t2)ψ1(t2)dt2, (2.398)

∗∫
t

T

ψ3(t3) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i3)
t3 =

T∫
t

ψ3(t3) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(i3)
t3 +

+
1

2
1{i1=i2 ̸=0}

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2dw
(i3)
t3 +

+
1

2
1{i2=i3 ̸=0}

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)dw
(i1)
t1 dt3, (2.399)

∗∫
t

T

ψ4(t4) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i4)
t4 =

T∫
t

ψ4(t4) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(i4)
t4 +

+
1

2
1{i1=i2 ̸=0}

T∫
t

ψ4(t4)

t4∫
t

ψ3(t3)

t3∫
t

ψ1(t2)ψ2(t2)dt2dw
(i3)
t3 dw

(i4)
t4 +

+
1

2
1{i2=i3 ̸=0}

T∫
t

ψ4(t4)

t4∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)dw
(i1)
t1 dt3dw

(i4)
t4 +

+
1

2
1{i3=i4 ̸=0}

T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dt4+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4. (2.400)

Let us consider Lemma 1.1, definition of the multiple stochastic integral
(1.16) together with the formula (1.19) when the function Φ(t1, . . . , tk) is con-
tinuous in the open domain Dk and bounded at its boundary as well as Lemma
1.3 (see Sect. 1.1.3). Substituting (2.379) into (1.16) and using Lemma 1.1,
(1.19), and Theorem 2.12 it is easy to see that w. p. 1
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J∗[ψ(k)]T,t = J [ψ(k)]T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t = J [K∗]
(k)
T,t, (2.401)

where J [K∗]
(k)
T,t is defined by (1.16) and K∗(t1, . . . , tk) has the form (2.379).

Let us subsitute the relation

K∗(t1, . . . , tk) =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl) +K∗(t1, . . . , tk)−

−
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

into the right-hand side of (2.401) (here we suppose that p1, . . . , pk <∞). Then
using Lemma 1.3 (see Sect. 1.1.3), we obtain

J∗[ψ(k)]T,t =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

+ J [Rp1...pk]
(k)
T,t w. p. 1, (2.402)

where the stochastic integral J [Rp1...pk]
(k)
T,t is defined by (1.16) and

Rp1...pk(t1, . . . , tk) = K∗(t1, . . . , tk)−
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl), (2.403)

ζ
(il)
jl

=

T∫
t

ϕjl(s)dw
(il)
s .

According to Theorem 2.11, we have

lim
p1→∞

. . . lim
pk→∞

Rp1...pk(t1, . . . , tk) = 0 when (t1, . . . , tk) ∈ (t, T )k, (2.404)

where the left-hand side of (2.404) is bounded on the boundary of [t, T ]k.

Theorem 2.13. Under the conditions of Theorem 2.10 we have

lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

M

{∣∣∣J [Rp1...pk]
(k)
T,t

∣∣∣2n} = 0, n ∈ N.
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Proof. At first let us analize in detail the cases k = 2, 3, 4. Using (2.442)
(see below) and (1.19), we have w. p. 1

J [Rp1p2]
(2)
T,t = l.i.m.

N→∞

N−1∑
l2=0

N−1∑
l1=0

Rp1p2(τl1, τl2)∆w(i1)
τl1

∆w(i2)
τl2

=

= l.i.m.
N→∞

(
N−1∑
l2=0

l2−1∑
l1=0

+
N−1∑
l1=0

l1−1∑
l2=0

)
Rp1p2(τl1, τl2)∆w(i1)

τl1
∆w(i2)

τl2
+

+l.i.m.
N→∞

N−1∑
l1=0

Rp1p2(τl1, τl1)∆w(i1)
τl1

∆w(i2)
τl1

=

=

T∫
t

t2∫
t

Rp1p2(t1, t2)dw
(i1)
t1 dw

(i2)
t2 +

T∫
t

t1∫
t

Rp1p2(t1, t2)dw
(i2)
t2 dw

(i1)
t1 +

+1{i1=i2 ̸=0}

T∫
t

Rp1p2(t1, t1)dt1, (2.405)

where we used the same notations as in the formulas (1.16), (1.19) and Lemma
1.1 (see Sect. 1.1.3). Moreover,

Rp1p2(t1, t2) = K∗(t1, t2)−
p1∑
j1=0

p2∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2), p1, p2 <∞. (2.406)

Let us consider the following well known estimates for moments of stochastic
integrals [100]

M


∣∣∣∣∣∣
T∫
t

ξτdfτ

∣∣∣∣∣∣
2n
 ≤ (T − t)n−1 (n(2n− 1))n

T∫
t

M
{
|ξτ |2n

}
dτ, (2.407)

M


∣∣∣∣∣∣
T∫
t

ξτdτ

∣∣∣∣∣∣
2n
 ≤ (T − t)2n−1

T∫
t

M
{
|ξτ |2n

}
dτ, (2.408)

where the process ξτ such that (ξτ)
n ∈ M2([t, T ]) and fτ is a scalar standard

Wiener process, n = 1, 2, . . . (definition of the class M2([t, T ]) see in Sect. 1.1.2).
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Using (2.407) and (2.408), we obtain

M

{∣∣∣J [Rp1p2]
(2)
T,t

∣∣∣2n} ≤ Cn

 T∫
t

t2∫
t

(Rp1p2(t1, t2))
2n dt1dt2+

+

T∫
t

t1∫
t

(Rp1p2(t1, t2))
2n dt2dt1 + 1{i1=i2 ̸=0}

T∫
t

(Rp1p2(t1, t1))
2n dt1

 , (2.409)

where constant Cn <∞ depends on n and T − t (n = 1, 2, . . .).

Further, we have

T∫
t

t2∫
t

(Rp1p2(t1, t2))
2n dt1dt2 +

T∫
t

t1∫
t

(Rp1p2(t1, t2))
2n dt2dt1 =

=

T∫
t

t2∫
t

(Rp1p2(t1, t2))
2n dt1dt2 +

T∫
t

T∫
t2

(Rp1p2(t1, t2))
2n dt1dt2 =

=

∫
[t,T ]2

(Rp1p2(t1, t2))
2n dt1dt2. (2.410)

Combining (2.409) and (2.410), we obtain

M

{∣∣∣J [Rp1p2]
(2)
T,t

∣∣∣2n} ≤

≤ Cn

 ∫
[t,T ]2

(Rp1p2(t1, t2))
2n dt1dt2 + 1{i1=i2 ̸=0}

T∫
t

(Rp1p2(t1, t1))
2n dt1

 , (2.411)

where constant Cn <∞ depends on n and T − t (n = 1, 2, . . .).

Since the integrals on the right-hand side of (2.411) exist as Riemann inte-
grals, then they are equal to the corresponding Lebesgue integrals. Moreover,

lim
p1→∞

lim
p2→∞

(Rp1p2(t1, t2))
2n = 0 when (t1, t2) ∈ (t, T )2, (2.412)

where n ∈ N and the left-hand side is bounded on the boundary of [t, T ]2.



406D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

According to (2.406), we have

Rp1p2(t1, t2) =

(
K∗(t1, t2)−

p1∑
j1=0

Cj1(t2)ϕj1(t1)

)
+

+

(
p1∑
j1=0

(
Cj1(t2)−

p2∑
j2=0

Cj2j1ϕj2(t2)

)
ϕj1(t1)

)
. (2.413)

Then, applying two times (we mean here an iterated passage to the limit
lim
p1→∞

lim
p2→∞

) the Lebesgue’s Dominated Convergence Theorem and taking into

account (2.381), (2.382), and (2.413), we obtain

lim
p1→∞

lim
p2→∞

∫
[t,T ]2

(Rp1p2(t1, t2))
2n dt1dt2 = 0, (2.414)

lim
p1→∞

lim
p2→∞

T∫
t

(Rp1p2(t1, t1))
2n dt1 = 0. (2.415)

We will discuss the choice of integrable majorants when applying Lebesgue’s
Dominated Convergence Theorem when we consider the case of arbitrary k ∈ N
later in this section.

From (2.411), (2.414), and (2.415) we get

lim
p1→∞

lim
p2→∞

M

{∣∣∣J [Rp1p2]
(2)
T,t

∣∣∣2n} = 0, n ∈ N.

Recall that (2.415) for 2n = 1 has also been proved in Sect. 2.1.1, 2.1.2.

Let us consider the case k = 3. Using (2.443) (see below) and (1.19), we
have w. p. 1

J [Rp1p2p3]
(3)
T,t = l.i.m.

N→∞

N−1∑
l3=0

N−1∑
l2=0

N−1∑
l1=0

Rp1p2p3(τl1, τl2, τl3)∆w(i1)
τl1

∆w(i2)
τl2

∆w(i3)
τl3

=

= l.i.m.
N→∞

N−1∑
l3=0

l3−1∑
l2=0

l2−1∑
l1=0

(
Rp1p2p3(τl1, τl2, τl3)∆w(i1)

τl1
∆w(i2)

τl2
∆w(i3)

τl3
+

+Rp1p2p3(τl1, τl3, τl2)∆w(i1)
τl1

∆w(i2)
τl3

∆w(i3)
τl2

+Rp1p2p3(τl2, τl1, τl3)∆w(i1)
τl2

∆w(i2)
τl1

∆w(i3)
τl3

+
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+Rp1p2p3(τl2, τl3, τl1)∆w(i1)
τl2

∆w(i2)
τl3

∆w(i3)
τl1

+Rp1p2p3(τl3, τl2, τl1)∆w(i1)
τl3

∆w(i2)
τl2

∆w(i3)
τl1

+

+Rp1p2p3(τl3, τl1, τl2)∆w(i1)
τl3

∆w(i2)
τl1

∆w(i3)
τl2

)
+

+l.i.m.
N→∞

N−1∑
l3=0

l3−1∑
l2=0

(
Rp1p2p3(τl2, τl2, τl3)∆w(i1)

τl2
∆w(i2)

τl2
∆w(i3)

τl3
+

+Rp1p2p3(τl2, τl3, τl2)∆w(i1)
τl2

∆w(i2)
τl3

∆w(i3)
τl2

+

+Rp1p2p3(τl3, τl2, τl2)∆w(i1)
τl3

∆w(i2)
τl2

∆w(i3)
τl2

)
+

+l.i.m.
N→∞

N−1∑
l3=0

l3−1∑
l1=0

(
Rp1p2p3(τl1, τl3, τl3)∆w(i1)

τl1
∆w(i2)

τl3
∆w(i3)

τl3
+

+Rp1p2p3(τl3, τl1, τl3)∆w(i1)
τl3

∆w(i2)
τl1

∆w(i3)
τl3

+

+Rp1p2p3(τl3, τl3, τl1)∆w(i1)
τl3

∆w(i2)
τl3

∆w(i3)
τl1

)
+

+l.i.m.
N→∞

N−1∑
l3=0

Rp1p2p3(τl3, τl3, τl3)∆w(i1)
τl3

∆w(i2)
τl3

∆w(i3)
τl3

=

=

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t1, t2, t3)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t1, t3, t2)dw
(i1)
t1 dw

(i3)
t2 dw

(i2)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t2, t1, t3)dw
(i2)
t1 dw

(i1)
t2 dw

(i3)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t2, t3, t1)dw
(i3)
t1 dw

(i1)
t2 dw

(i2)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t3, t2, t1)dw
(i3)
t1 dw

(i2)
t2 dw

(i1)
t3 +
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+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t3, t1, t2)dw
(i2)
t1 dw

(i3)
t2 dw

(i1)
t3 +

+1{i1=i2 ̸=0}

T∫
t

t3∫
t

Rp1p2p3(t2, t2, t3)dt2dw
(i3)
t3 +

+1{i1=i3 ̸=0}

T∫
t

t3∫
t

Rp1p2p3(t2, t3, t2)dt2dw
(i2)
t3 +

+1{i2=i3 ̸=0}

T∫
t

t3∫
t

Rp1p2p3(t3, t2, t2)dt2dw
(i1)
t3 +

+1{i2=i3 ̸=0}

T∫
t

t3∫
t

Rp1p2p3(t1, t3, t3)dw
(i1)
t1 dt3+

+1{i1=i3 ̸=0}

T∫
t

t3∫
t

Rp1p2p3(t3, t1, t3)dw
(i2)
t1 dt3+

+1{i1=i2 ̸=0}

T∫
t

t3∫
t

Rp1p2p3(t3, t3, t1)dw
(i3)
t1 dt3, (2.416)

where we used the same notations as in the formulas (1.16), (1.19) and Lemma
1.1 (see Sect. 1.1.3). Using (2.407) and (2.408), we obtain from (2.416)

M

{∣∣∣J [Rp1p2p3]
(3)
T,t

∣∣∣2n} ≤

≤ Cn

( T∫
t

t3∫
t

t2∫
t

(
(Rp1p2p3(t1, t2, t3))

2n + (Rp1p2p3(t1, t3, t2))
2n+

+(Rp1p2p3(t2, t1, t3))
2n + (Rp1p2p3(t2, t3, t1))

2n + (Rp1p2p3(t3, t2, t1))
2n+

+(Rp1p2p3(t3, t1, t2))
2n

)
dt1dt2dt3+
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+

T∫
t

t3∫
t

(
1{i1=i2 ̸=0}

(
(Rp1p2p3(t2, t2, t3))

2n + (Rp1p2p3(t3, t3, t2))
2n

)
+

+1{i1=i3 ̸=0}

(
(Rp1p2p3(t2, t3, t2))

2n + (Rp1p2p3(t3, t2, t3))
2n

)
+

+1{i2=i3 ̸=0}

(
(Rp1p2p3(t3, t2, t2))

2n + (Rp1p2p3(t2, t3, t3))
2n

)
dt2dt3

)
, Cn <∞.

(2.417)

Due to (2.403) and Theorem 2.11 the function Rp1p2p3(t1, t2, t3) is continuous
in the open domains of integration of iterated integrals on the right-hand side
of (2.417) and it is bounded at the boundaries of these domains. Moreover,
everywhere in (t, T )3 the following formula takes place

lim
p1→∞

lim
p2→∞

lim
p3→∞

Rp1p2p3(t1, t2, t3) = 0. (2.418)

Further, we have

T∫
t

t3∫
t

t2∫
t

(
(Rp1p2p3(t1, t2, t3))

2n + (Rp1p2p3(t1, t3, t2))
2n + (Rp1p2p3(t2, t1, t3))

2n+

+(Rp1p2p3(t2, t3, t1))
2n + (Rp1p2p3(t3, t2, t1))

2n + (Rp1p2p3(t3, t1, t2))
2n

)
dt1dt2dt3 =

=

∫
[t,T ]3

(Rp1p2p3(t1, t2, t3))
2n dt1dt2dt3, (2.419)

T∫
t

t3∫
t

(
(Rp1p2p3(t2, t2, t3))

2n + (Rp1p2p3(t3, t3, t2))
2n

)
dt2dt3 =

=

T∫
t

t3∫
t

(Rp1p2p3(t2, t2, t3))
2n dt2dt3 +

T∫
t

T∫
t3

(Rp1p2p3(t2, t2, t3))
2n dt2dt3 =

=

∫
[t,T ]2

(Rp1p2p3(t2, t2, t3))
2n dt2dt3, (2.420)
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T∫
t

t3∫
t

(
(Rp1p2p3(t2, t3, t2))

2n + (Rp1p2p3(t3, t2, t3))
2n

)
dt2dt3 =

=

T∫
t

t3∫
t

(Rp1p2p3(t2, t3, t2))
2n dt2dt3 +

T∫
t

T∫
t3

(Rp1p2p3(t2, t3, t2))
2n dt2dt3 =

=

∫
[t,T ]2

(Rp1p2p3(t2, t3, t2))
2n dt2dt3, (2.421)

T∫
t

t3∫
t

(
(Rp1p2p3(t3, t2, t2))

2n + (Rp1p2p3(t2, t3, t3))
2n

)
dt2dt3 =

=

T∫
t

t3∫
t

(Rp1p2p3(t3, t2, t2))
2n dt2dt3 +

T∫
t

T∫
t3

(Rp1p2p3(t3, t2, t2))
2n dt2dt3 =

=

∫
[t,T ]2

(Rp1p2p3(t3, t2, t2))
2n dt2dt3. (2.422)

Combining (2.417) and (2.419)–(2.422), we obtain

M

{∣∣∣J [Rp1p2p3]
(3)
T,t

∣∣∣2n} ≤ Cn

 ∫
[t,T ]3

(Rp1p2p3(t1, t2, t3))
2n dt1dt2dt3+

+1{i1=i2 ̸=0}

∫
[t,T ]2

(Rp1p2p3(t2, t2, t3))
2n dt2dt3+

+1{i1=i3 ̸=0}

∫
[t,T ]2

(Rp1p2p3(t2, t3, t2))
2n dt2dt3+

+1{i2=i3 ̸=0}

∫
[t,T ]2

(Rp1p2p3(t3, t2, t2))
2n dt2dt3

 . (2.423)
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Since the integrals on the right-hand side of (2.423) exist as Riemann inte-
grals, then they are equal to the corresponding Lebesgue integrals. Moreover,

lim
p1→∞

lim
p2→∞

lim
p3→∞

Rp1p2p3(t1, t2, t3) = 0 when (t1, t2, t3) ∈ (t, T )3,

where the left-hand side is bounded on the boundary of [t, T ]3.

According to the proof of Theorem 2.11 and (2.403) for k = 3, we have

Rp1p2p3(t1, t2, t3) =

(
K∗(t1, t2, t3)−

p1∑
j1=0

Cj1(t2, t3)ϕj1(t1)

)
+

+

(
p1∑
j1=0

(
Cj1(t2, t3)−

p2∑
j2=0

Cj2j1(t3)ϕj2(t2)

)
ϕj1(t1)

)
+

+

(
p1∑
j1=0

p2∑
j2=0

(
Cj2j1(t3)−

p3∑
j3=0

Cj3j2j1ϕj3(t3)

)
ϕj2(t2)ϕj1(t1)

)
, (2.424)

where

Cj1(t2, t3) =

T∫
t

K∗(t1, t2, t3)ϕj1(t1)dt1,

Cj2j1(t3) =

∫
[t,T ]2

K∗(t1, t2, t3)ϕj1(t1)ϕj2(t2)dt1dt2.

Then, applying three times (we mean here an iterated passage to the limit
lim
p1→∞

lim
p2→∞

lim
p3→∞

) the Lebesgue’s Dominated Convergence Theorem, we obtain

lim
p1→∞

lim
p2→∞

lim
p3→∞

∫
[t,T ]3

(Rp1p2p3(t1, t2, t3))
2n dt1dt2dt3 = 0, (2.425)

lim
p1→∞

lim
p2→∞

lim
p3→∞

∫
[t,T ]2

(Rp1p2p3(t2, t2, t3))
2n dt2dt3 = 0, (2.426)

lim
p1→∞

lim
p2→∞

lim
p3→∞

∫
[t,T ]2

(Rp1p2p3(t2, t3, t2))
2n dt2dt3 = 0, (2.427)
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lim
p1→∞

lim
p2→∞

lim
p3→∞

∫
[t,T ]2

(Rp1p2p3(t3, t2, t2))
2n dt2dt3 = 0. (2.428)

From (2.423) and (2.425)–(2.428) we get

lim
p1→∞

lim
p2→∞

lim
p3→∞

M

{∣∣∣J [Rp1p2p3]
(3)
T,t

∣∣∣2n} = 0, n ∈ N.

Let us consider the case k = 4. Using (2.444) (see below) and (1.19), we
have w. p. 1

J [Rp1p2p3p4]
(4)
T,t =

= l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l3=0

N−1∑
l2=0

N−1∑
l1=0

Rp1p2p3p4(τl1, τl2, τl3, τl4)∆w(i1)
τl1

∆w(i2)
τl2

∆w(i3)
τl3

∆w(i4)
τl4

=

= l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l3=0

l3−1∑
l2=0

l2−1∑
l1=0

∑
(l1,l2,l3,l4)

(
Rp1p2p3p4(τl1, τl2, τl3, τl4)×

×∆w(i1)
τl1

∆w(i2)
τl2

∆w(i3)
τl3

∆w(i4)
τl4

)
+

+l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l3=0

l3−1∑
l2=0

∑
(l2,l2,l3,l4)

(
Rp1p2p3p4(τl2, τl2, τl3, τl4)∆w(i1)

τl2
∆w(i2)

τl2
∆w(i3)

τl3
∆w(i4)

τl4

)
+

+l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l3=0

l3−1∑
l1=0

∑
(l1,l3,l3,l4)

(
Rp1p2p3p4(τl1, τl3, τl3, τl4)∆w(i1)

τl1
∆w(i2)

τl3
∆w(i3)

τl3
∆w(i4)

τl4

)
+

+l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l2=0

l2−1∑
l1=0

∑
(l1,l2,l4,l4)

(
Rp1p2p3p4(τl1, τl2, τl4, τl4)∆w(i1)

τl1
∆w(i2)

τl2
∆w(i3)

τl4
∆w(i4)

τl4

)
+

+l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l3=0

∑
(l3,l3,l3,l4)

(
Rp1p2p3p4(τl3, τl3, τl3, τl4)∆w(i1)

τl3
∆w(i2)

τl3
∆w(i3)

τl3
∆w(i4)

τl4

)
+

+l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l2=0

∑
(l2,l2,l4,l4)

(
Rp1p2p3p4(τl2, τl2, τl4, τl4)∆w(i1)

τl2
∆w(i2)

τl2
∆w(i3)

τl4
∆w(i4)

τl4

)
+
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+l.i.m.
N→∞

N−1∑
l4=0

l4−1∑
l1=0

∑
(l1,l4,l4,l4)

(
Rp1p2p3p4(τl1, τl4, τl4, τl4)∆w(i1)

τl1
∆w(i2)

τl4
∆w(i3)

τl4
∆w(i4)

τl4

)
+

+l.i.m.
N→∞

N−1∑
l4=0

Rp1p2p3p4(τl4, τl4, τl4, τl4)∆w(i1)
τl4

∆w(i2)
τl4

∆w(i3)
τl4

∆w(i4)
τl4

=

=

T∫
t

t4∫
t

t3∫
t

t2∫
t

∑
(t1,t2,t3,t4)

(
Rp1p2p3p4(t1, t2, t3, t4)dw

(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

)
+

+1{i1=i2 ̸=0}

T∫
t

t4∫
t

t3∫
t

∑
(t1,t3,t4)

(
Rp1p2p3p4(t1, t1, t3, t4)dt1dw

(i3)
t3 dw

(i4)
t4

)
+

+1{i1=i3 ̸=0}

T∫
t

t4∫
t

t2∫
t

∑
(t1,t2,t4)

(
Rp1p2p3p4(t1, t2, t1, t4)dt1dw

(i2)
t2 dw

(i4)
t4

)
+

+1{i1=i4 ̸=0}

T∫
t

t3∫
t

t2∫
t

∑
(t1,t2,t3)

(
Rp1p2p3p4(t1, t2, t3, t1)dt1dw

(i2)
t2 dw

(i3)
t3

)
+

+1{i2=i3 ̸=0}

T∫
t

t4∫
t

t2∫
t

∑
(t1,t2,t4)

(
Rp1p2p3p4(t1, t2, t2, t4)dw

(i1)
t1 dt2dw

(i4)
t4

)
+

+1{i2=i4 ̸=0}

T∫
t

t3∫
t

t2∫
t

∑
(t1,t2,t3)

(
Rp1p2p3p4(t1, t2, t3, t2)dw

(i1)
t1 dt2dw

(i3)
t3

)
+

+1{i3=i4 ̸=0}

T∫
t

t3∫
t

t2∫
t

∑
(t1,t2,t3)

(
Rp1p2p3p4(t1, t2, t3, t3)dw

(i1)
t1 dw

(i2)
t2 dt3

)
+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

 T∫
t

t4∫
t

Rp1p2p3p4(t2, t2, t4, t4)dt2dt4+
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+

T∫
t

t4∫
t

Rp1p2p3p4(t4, t4, t2, t2)dt2dt4

+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}

 T∫
t

t4∫
t

Rp1p2p3p4(t2, t4, t2, t4)dt2dt4+

+

T∫
t

t4∫
t

Rp1p2p3p4(t4, t2, t4, t2)dt2dt4

+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0}

 T∫
t

t4∫
t

Rp1p2p3p4(t2, t4, t4, t2)dt2dt4+

+

T∫
t

t4∫
t

Rp1p2p3p4(t4, t2, t2, t4)dt2dt4

 , (2.429)

where the expression ∑
(a1,...,ak)

means the sum with respect to all possible permutations (a1, . . . , ak). Moreover,
we used in (2.429) the same notations as in the proof of Theorem 1.1 (see
Sect. 1.1.3). Note that an analogue of (2.429) will be obtained in Sect. 2.6 (also
see [10]-[17], [36]) with using the another approach.

By analogy with (2.423) we obtain

M

{∣∣∣J [Rp1p2p3p4]
(4)
T,t

∣∣∣2n} ≤

≤ Cn

 ∫
[t,T ]4

(Rp1p2p3p4(t1, t2, t3, t4))
2n dt1dt2dt3dt4+

+1{i1=i2 ̸=0}

∫
[t,T ]3

(Rp1p2p3p4(t2, t2, t3, t4))
2n dt2dt3dt4+

+1{i1=i3 ̸=0}

∫
[t,T ]3

(Rp1p2p3p4(t2, t3, t2, t4))
2n dt2dt3dt4+
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+1{i1=i4 ̸=0}

∫
[t,T ]3

(Rp1p2p3p4(t2, t3, t4, t2))
2n dt2dt3dt4+

+1{i2=i3 ̸=0}

∫
[t,T ]3

(Rp1p2p3p4(t3, t2, t2, t4))
2n dt2dt3dt4+

+1{i2=i4 ̸=0}

∫
[t,T ]3

(Rp1p2p3p4(t3, t2, t4, t2))
2n dt2dt3dt4+

+1{i3=i4 ̸=0}

∫
[t,T ]3

(Rp1p2p3p4(t3, t4, t2, t2))
2n dt2dt3dt4+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

∫
[t,T ]2

(Rp1p2p3p4(t2, t2, t4, t4))
2n dt2dt4+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}

∫
[t,T ]2

(Rp1p2p3p4(t2, t4, t2, t4))
2n dt2dt4+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0}

∫
[t,T ]2

(Rp1p2p3p4(t2, t4, t4, t2))
2n dt2dt4

 , Cn <∞.

(2.430)

Since the integrals on the right-hand side of (2.430) exist as Riemann inte-
grals, then they are equal to the corresponding Lebesgue integrals. Moreover,

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

Rp1p2p3p4(t1, t2, t3, t4) = 0 when (t1, t2, t3, t4) ∈ (t, T )4,

where the left-hand side is bounded on the boundary of [t, T ]4.

According to the proof of Theorem 2.11 and (2.403) for k = 4, we have

Rp1p2p3p4(t1, t2, t3, t4) =

=

(
K∗(t1, t2, t3, t4)−

p1∑
j1=0

Cj1(t2, t3, t4)ϕj1(t1)

)
+

+

(
p1∑
j1=0

(
Cj1(t2, t3, t4)−

p2∑
j2=0

Cj2j1(t3, t4)ϕj2(t2)

)
ϕj1(t1)

)
+
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+

(
p1∑
j1=0

p2∑
j2=0

(
Cj2j1(t3, t4)−

p3∑
j3=0

Cj3j2j1(t4)ϕj3(t3)

)
ϕj2(t2)ϕj1(t1)

)
+

+

(
p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

(
Cj3j2j1(t4)−

p4∑
j4=0

Cj4j3j2j1ϕj4(t4)

)
ϕj3(t3)ϕj2(t2)ϕj1(t1)

)
,

where

Cj1(t2, t3, t4) =

T∫
t

K∗(t1, t2, t3, t4)ϕj1(t1)dt1,

Cj2j1(t3, t4) =

∫
[t,T ]2

K∗(t1, t2, t3, t4)ϕj1(t1)ϕj2(t2)dt1dt2,

Cj3j2j1(t4) =

∫
[t,T ]3

K∗(t1, t2, t3, t4)ϕj1(t1)ϕj2(t2)ϕj3(t3)dt1dt2dt3.

Then, applying four times (we mean here an iterated passage to the limit
lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

) the Lebesgue’s Dominated Convergence Theorem, we ob-

tain

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]4

(Rp1p2p3p4(t1, t2, t3, t4))
2n dt1dt2dt3dt4 = 0, (2.431)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]3

(Rp1p2p3p4(t2, t2, t3, t4))
2n dt2dt3dt4 = 0, (2.432)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]3

(Rp1p2p3p4(t2, t3, t2, t4))
2n dt2dt3dt4 = 0, (2.433)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]3

(Rp1p2p3p4(t2, t3, t4, t2))
2n dt2dt3dt4 = 0, (2.434)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]3

(Rp1p2p3p4(t3, t2, t2, t4))
2n dt2dt3dt4 = 0, (2.435)
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lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]3

(Rp1p2p3p4(t3, t2, t4, t2))
2n dt2dt3dt4 = 0, (2.436)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]3

(Rp1p2p3p4(t3, t4, t2, t2))
2n dt2dt3dt4 = 0, (2.437)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]2

(Rp1p2p3p4(t2, t2, t4, t4))
2n dt2dt4 = 0, (2.438)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]2

(Rp1p2p3p4(t2, t4, t2, t4))
2n dt2dt4 = 0, (2.439)

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

∫
[t,T ]2

(Rp1p2p3p4(t2, t4, t4, t2))
2n dt2dt4 = 0. (2.440)

Combaining (2.430) with (2.431)–(2.440), we get

lim
p1→∞

lim
p2→∞

lim
p3→∞

lim
p4→∞

M

{∣∣∣J [Rp1p2p3p4]
(4)
T,t

∣∣∣2n} = 0, n ∈ N.

Theorem 2.13 is proved for k = 4.

Let us consider the case of arbitrary k, k ∈ N. Let us analyze the stochastic
integral defined by (1.16) and find its representation convenient for the following
consideration. In order to do it we introduce several notations. Suppose that

S
(k)
N (a) =

N−1∑
jk=0

. . .

j2−1∑
j1=0

∑
(j1,...,jk)

a(j1,...,jk),

Csr . . .Cs1S
(k)
N (a) =

=
N−1∑
jk=0

. . .

jsr+2−1∑
jsr+1=0

jsr+1−1∑
jsr−1=0

. . .

js1+2−1∑
js1+1=0

js1+1−1∑
js1−1=0

. . .

j2−1∑
j1=0

∑
r∏

l=1

Ijsl ,jsl+1
(j1,...,jk)

a r∏
l=1

Ijsl ,jsl+1
(j1,...,jk)

,
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where
r∏
l=1

Ijsl ,jsl+1
(j1, . . . , jk)

def
= Ijsr ,jsr+1

. . . Ijs1 ,js1+1
(j1, . . . , jk),

Cs0 . . .Cs1S
(k)
N (a) = S

(k)
N (a),

0∏
l=1

Ijsl ,jsl+1
(j1, . . . , jk) = (j1, . . . , jk),

Ijl,jl+1
(jq1, . . . , jq2, jl, jq3, . . . , jqk−2

, jl, jqk−1
, . . . , jqk)

def
=

def
= (jq1, . . . , jq2, jl+1, jq3, . . . , jqk−2

, jl+1, jqk−1
, . . . , jgk),

where l ̸= q1, . . . , q2, q3, . . . , qk−2, qk−1, . . . , qk, l ∈ N, a(jq1 ,...,jqk ) is a scalar value,
s1, . . . , sr = 1, . . . , k − 1, sr > . . . > s1, q1, . . . , qk = 1, . . . , k, the expression∑

(jq1 ,...,jqk )

means the sum with respect to all possible permutations (jq1, . . . , jqk).

Using induction it is possible to prove the following equality

N−1∑
jk=0

. . .

N−1∑
j1=0

a(j1,...,jk) =
k−1∑
r=0

k−1∑
sr,...,s1=1
sr>...>s1

Csr . . .Cs1S
(k)
N (a), (2.441)

where k = 2, 3, . . .

Hereinafter in this section, we will identify the following records

a(j1,...,jk) = a(j1...jk) = aj1...jk.

In particular, from (2.441) for k = 2, 3, 4 we get the following formulas

N−1∑
j2=0

N−1∑
j1=0

a(j1,j2) = S
(2)
N (a) + C1S

(2)
N (a) =

=
N−1∑
j2=0

j2−1∑
j1=0

∑
(j1,j2)

a(j1j2) +
N−1∑
j2=0

a(j2j2) =
N−1∑
j2=0

j2−1∑
j1=0

(aj1j2 + aj2j1)+

+
N−1∑
j2=0

aj2j2, (2.442)
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N−1∑
j3=0

N−1∑
j2=0

N−1∑
j1=0

a(j1,j2,j3) = S
(3)
N (a) + C1S

(3)
N (a) + C2S

(3)
N (a) + C2C1S

(3)
N (a) =

=
N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

∑
(j1,j2,j3)

a(j1j2j3) +
N−1∑
j3=0

j3−1∑
j2=0

∑
(j2,j2,j3)

a(j2j2j3)+

+
N−1∑
j3=0

j3−1∑
j1=0

∑
(j1,j3,j3)

a(j1j3j3) +
N−1∑
j3=0

a(j3j3j3) =

=
N−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

(aj1j2j3 + aj1j3j2 + aj2j1j3 + aj2j3j1 + aj3j2j1 + aj3j1j2)+

+
N−1∑
j3=0

j3−1∑
j2=0

(aj2j2j3 + aj2j3j2 + aj3j2j2) +
N−1∑
j3=0

j3−1∑
j1=0

(aj1j3j3 + aj3j1j3 + aj3j3j1)+

+
N−1∑
j3=0

aj3j3j3, (2.443)

N−1∑
j4=0

N−1∑
j3=0

N−1∑
j2=0

N−1∑
j1=0

a(j1,j2,j3,j4) = S
(4)
N (a) + C1S

(4)
N (a) + C2S

(4)
N (a)+

+C3S
(4)
N (a) + C2C1S

(4)
N (a) + C3C1S

(4)
N (a) + C3C2S

(4)
N (a) + C3C2C1S

(4)
N (a) =

=
N−1∑
j4=0

j4−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

∑
(j1,j2,j3,j4)

a(j1j2j3j4) +
N−1∑
j4=0

j4−1∑
j3=0

j3−1∑
j2=0

∑
(j2,j2,j3,j4)

a(j2j2j3j4)

+
N−1∑
j4=0

j4−1∑
j3=0

j3−1∑
j1=0

∑
(j1,j3,j3,j4)

a(j1j3j3j4) +
N−1∑
j4=0

j4−1∑
j2=0

j2−1∑
j1=0

∑
(j1,j2,j4,j4)

a(j1j2j4j4)+

+
N−1∑
j4=0

j4−1∑
j3=0

∑
(j3,j3,j3,j4)

a(j3j3j3j4) +
N−1∑
j4=0

j4−1∑
j2=0

∑
(j2,j2,j4,j4)

a(j2j2j4j4)+

+
N−1∑
j4=0

j4−1∑
j1=0

∑
(j1,j4,j4,j4)

a(j1j4j4j4) +
N−1∑
j4=0

aj4j4j4j4 =

=
N−1∑
j4=0

j4−1∑
j3=0

j3−1∑
j2=0

j2−1∑
j1=0

(aj1j2j3j4 + aj1j2j4j3 + aj1j3j2j4 + aj1j3j4j2+
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+aj1j4j3j2 + aj1j4j2j3 + aj2j1j3j4 + aj2j1j4j3 + aj2j4j1j3 + aj2j4j3j1 + aj2j3j1j4+

+aj2j3j4j1 + aj3j1j2j4 + aj3j1j4j2 + aj3j2j1j4 + aj3j2j4j1 + aj3j4j1j2 + aj3j4j2j1+

+aj4j1j2j3 + aj4j1j3j2 + aj4j2j1j3 + aj4j2j3j1 + aj4j3j1j2 + aj4j3j2j1)+

+
N−1∑
j4=0

j4−1∑
j3=0

j3−1∑
j2=0

(aj2j2j3j4 + aj2j2j4j3 + aj2j3j2j4+ aj2j4j2j3 + aj2j3j4j2 + aj2j4j3j2+

+aj3j2j2j4 + aj4j2j2j3 + aj3j2j4j2 +aj4j2j3j2 + aj4j3j2j2 + aj3j4j2j2)+

+
N−1∑
j4=0

j4−1∑
j3=0

j3−1∑
j1=0

(aj3j3j1j4 + aj3j3j4j1 + aj3j1j3j4+ aj3j4j3j1 + aj3j4j1j3 + aj3j1j4j3+

+aj1j3j3j4 + aj4j3j3j1 + aj4j3j1j3 +aj1j3j4j3 + aj1j4j3j3 + aj4j1j3j3)+

+
N−1∑
j4=0

j4−1∑
j2=0

j2−1∑
j1=0

(aj4j4j1j2 + aj4j4j2j1 + aj4j1j4j2+ aj4j2j4j1 + aj4j2j1j4 + aj4j1j2j4+

+aj1j4j4j2 + aj2j4j4j1 + aj2j4j1j4 + aj1j4j2j4 + aj1j2j4j4 + aj2j1j4j4)+

+
N−1∑
j4=0

j4−1∑
j3=0

(aj3j3j3j4 + aj3j3j4j3 + aj3j4j3j3 + aj4j3j3j3)+

+
N−1∑
j4=0

j4−1∑
j2=0

(aj2j2j4j4 + aj2j4j2j4 + aj2j4j4j2+ aj4j2j2j4 + aj4j2j4j2 + aj4j4j2j2)+

+
N−1∑
j4=0

j4−1∑
j1=0

(aj1j4j4j4 + aj4j1j4j4 + aj4j4j1j4 + aj4j4j4j1)+

+
N−1∑
j4=0

aj4j4j4j4. (2.444)

Perhaps, the formula (2.441) for any k (k ∈ N) was found by the author
for the first time [76] (1997).

Assume that

a(j1,...,jk) = Φ(τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl
,
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where Φ (t1, . . . , tk) is a nonrandom function of k variables. Then from (1.16)
and (2.441) we have

J [Φ]
(k)
T,t =

[k/2]∑
r=0

∑
(sr,...,s1)∈Ak,r

×

× l.i.m.
N→∞

N−1∑
jk=0

. . .

jsr+2−1∑
jsr+1=0

jsr+1−1∑
jsr−1=0

. . .

js1+2−1∑
js1+1=0

js1+1−1∑
js1−1=0

. . .

j2−1∑
j1=0

∑
r∏

l=1

Ijsl ,jsl+1
(j1,...,jk)

×

×

[
Φ

(
τj1, . . . , τjs1−1

, τjs1+1
, τjs1+1

, τjs1+2
, . . . , τjsr−1

, τjsr+1
, τjsr+1

, τjsr+2
, . . . , τjk

)
×

×∆w(i1)
τj1

. . .∆w
(is1−1)
τjs1−1

∆w
(is1)
τjs1+1

∆w
(is1+1)
τjs1+1

∆w
(is1+2)
τjs1+2

. . .

. . .∆w(isr−1)
τjsr−1

∆w(isr )
τjsr+1

∆w(isr+1)
τjsr+1

∆w(isr+2)
τjsr+2

. . .∆w(ik)
τjk

]
=

=

[k/2]∑
r=0

∑
(sr,...,s1)∈Ak,r

I[Φ]
(k)s1,...,sr
T,t w. p. 1, (2.445)

where

I[Φ]
(k)s1,...,sr
T,t =

T∫
t

. . .

tsr+3∫
t

tsr+2∫
t

tsr∫
t

. . .

ts1+3∫
t

ts1+2∫
t

ts1∫
t

. . .

t2∫
t

∑
r∏

l=1

Itsl ,tsl+1
(t1,...,tk)

×

×

[
Φ

(
t1, . . . , ts1−1, ts1+1, ts1+1, ts1+2, . . . , tsr−1, tsr+1, tsr+1, tsr+2, . . . , tk

)
×

×dw(i1)
t1 . . . dw

(is1−1)
ts1−1

dw
(is1)
ts1+1

dw
(is1+1)
ts1+1

dw
(is1+2)
ts1+2

. . .

. . . dw
(isr−1)
tsr−1

dw
(isr )
tsr+1

dw
(isr+1)
tsr+1

dw
(isr+2)
tsr+2

. . . dw
(ik)
tk

]
, (2.446)

where k ≥ 2, the set Ak,r is defined by the relation (2.388). We suppose that
the right-hand side of (2.446) exists as the Itô stochastic integral.
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Remark 2.3. The summands on the right-hand side of (2.446) should be
understood as follows: for each permutation from the set

r∏
l=1

Itsl ,tsl+1
(t1, . . . , tk) =

=

(
t1, . . . , ts1−1, ts1+1, ts1+1, ts1+2, . . . , tsr−1, tsr+1, tsr+1, tsr+2, . . . , tk

)
it is necessary to perform replacement on the right-hand side of (2.446) of all

pairs (their number is equal to r) of differentials dw
(i)
tp dw

(j)
tp with similar lower

indices by the values 1{i=j ̸=0}dtp.

Note that the term in (2.445) for r = 0 should be understood as follows

T∫
t

. . .

t2∫
t

∑
(t1,...,tk)

(
Φ (t1, . . . , tk) dw

(i1)
t1 . . . dw

(ik)
tk

)
,

where notations are the same as in (1.24).

Using (2.407), (2.408), (2.445), and (2.446), we get

M

{∣∣∣J [Φ](k)T,t

∣∣∣2n} ≤

≤ Cnk

[k/2]∑
r=0

∑
(sr,...,s1)∈Ak,r

M

{∣∣∣I[Φ](k)s1,...,srT,t

∣∣∣2n} , (2.447)

where

M

{∣∣∣I[Φ](k)s1,...,srT,t

∣∣∣2n} ≤

≤ Cs1...sr
nk

T∫
t

. . .

tsr+3∫
t

tsr+2∫
t

tsr∫
t

. . .

ts1+3∫
t

ts1+2∫
t

ts1∫
t

. . .

t2∫
t

∑
r∏

l=1

Itsl ,tsl+1
(t1,...,tk)

×

×Φ2n

(
t1, . . . , ts1−1, ts1+1, ts1+1, ts1+2, . . . , tsr−1, tsr+1, tsr+1, tsr+2, . . . , tk

)
×

×dt1 . . . dts1−1dts1+1dts1+2 . . . dtsr−1dtsr+1dtsr+2 . . . dtk, (2.448)
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where Cnk and Cs1...sr
nk are constants and permutations when summing are per-

formed in (2.448) only in the values

Φ2n

(
t1, . . . , ts1−1, ts1+1, ts1+1, ts1+2, . . . , tsr−1, tsr+1, tsr+1, tsr+2, . . . , tk

)
.

Consider (2.447) and (2.448) for Φ(t1, . . . , tk) ≡ Rp1...pk(t1, . . . , tk)

M

{∣∣∣J [Rp1...pk]
(k)
T,t

∣∣∣2n} ≤

≤ Cnk

[k/2]∑
r=0

∑
(sr,...,s1)∈Ak,r

M

{∣∣∣I[Rp1...pk]
(k)s1,...,sr
T,t

∣∣∣2n} , (2.449)

where

M

{∣∣∣I[Rp1...pk]
(k)s1,...,sr
T,t

∣∣∣2n} ≤

≤ Cs1...sr
nk

T∫
t

. . .

tsr+3∫
t

tsr+2∫
t

tsr∫
t

. . .

ts1+3∫
t

ts1+2∫
t

ts1∫
t

. . .

t2∫
t

∑
r∏

l=1

Itsl ,tsl+1
(t1,...,tk)

×

×R2n
p1...pk

(
t1, . . . , ts1−1, ts1+1, ts1+1, ts1+2, . . . , tsr−1, tsr+1, tsr+1, tsr+2, . . . , tk

)
×

×dt1 . . . dts1−1dts1+1dts1+2 . . . dtsr−1dtsr+1dtsr+2 . . . dtk, (2.450)

where Cnk and Cs1...sr
nk are constants and permutations when summing are per-

formed in (2.450) only in the values

R2n
p1...pk

(
t1, . . . , ts1−1, ts1+1, ts1+1, ts1+2, . . . , tsr−1, tsr+1, tsr+1, tsr+2, . . . , tk

)
.

From the other hand, we can consider the generalization of the formulas
(2.411), (2.423), (2.430) for the case of arbitrary k (k ∈ N). In order to do this,
let us consider the sum with respect to all possible partitions defined by (1.53)∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

ag1g2,...,g2r−1g2r,q1...qk−2r
.
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Now we can generalize the formulas (2.411), (2.423), (2.430) for the case of
arbitrary k (k ∈ N)

M

{∣∣∣J [Rp1...pk]
(k)
T,t

∣∣∣2n} ≤ Cnk

 ∫
[t,T ]k

(Rp1...pk(t1, . . . , tk))
2n dt1 . . . dtk+

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

1{ig1=ig2 ̸=0} . . .1{ig2r−1
=ig2r ̸=0}×

×
∫

[t,T ]k−r

(
Rp1...pk

(
t1, . . . , tk

)∣∣∣∣
tg1=tg2 ,...,tg2r−1

=tg2r

)2n

×

×
(
dt1 . . . dtk

)∣∣∣∣
(dtg1dtg2)↷dtg1 ,...,(dtg2r−1

dtg2r )↷dtg2r−1

 , (2.451)

where Cnk is a constant,(
t1, . . . , tk

)∣∣∣∣
tg1=tg2 ,...,tg2r−1

=tg2r

means the ordered set (t1, . . . , tk), where we put tg
1
= tg

2
, . . . , tg

2r−1
= tg

2r
.

Moreover, (
dt1 . . . dtk

)∣∣∣∣
(dtg1dtg2)↷dtg1 ,...,(dtg2r−1

dtg2r )↷dtg2r−1

means the product dt1 . . . dtk, where we replace all pairs dtg
1
dtg

2
, . . . , dtg

2r−1
dtg

2r

by dtg1, . . . , dtg2r−1
correspondingly.

Note that the estimate like (2.451), where all indicators 1{·} must be re-
placed with 1, can be obtained from the estimates (2.449), (2.450).

The comparison of (2.451) with the formula (1.54) (see Theorem 1.2) shows
their similar structure.

Let us consider the particular case of (2.451) for k = 4
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M

{∣∣∣J [Rp1p2p3p4]
(4)
T,t

∣∣∣2n} ≤ Cn4

 ∫
[t,T ]4

(Rp1p2p3p4(t1, t2, t3, t4))
2n dt1dt2dt3dt4+

+
∑

({g1,g2},{q1,q2})
{g1,g2,q1,q2}={1,2,3,4}

1{ig1=ig2 ̸=0}

∫
[t,T ]3

(
Rp1p2p3p4

(
t1, t2, t3, t4

)∣∣∣∣
tg1=tg2

)2n

×

×
(
dt1dt2dt3dt4

)∣∣∣∣∣
(dtg1dtg2)↷dtg1

+

+
∑

({{g1,g2},{g3,g4}})
{g1,g2,g3,g4}={1,2,3,4}

1{ig1=ig2 ̸=0}1{ig3=ig4 ̸=0}×

×
∫

[t,T ]2

(
Rp1p2p3p4

(
t1, t2, t3, t4

)∣∣∣∣
tg1=tg2 ,tg3=tg4

)2n

×

×
(
dt1dt2dt3dt4

)∣∣∣∣
(dtg1dtg2)↷dtg1 ,(dtg3dtg4)↷dtg3

 . (2.452)

It is not difficult to notice that (2.452) is consistent with (2.430).

According to (2.379) and (2.403), we have the following expression

Rp1...pk(t1, . . . , tk) =

=
k∏
l=1

ψl(tl)

k−1∏
l=1

1{tl<tl+1} +
k−1∑
r=1

1

2r

k−1∑
sr,...,s1=1
sr>...>s1

r∏
l=1

1{tsl=tsl+1}

k−1∏
l=1

l ̸=s1,...,sr

1{tl<tl+1}

−

−
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl). (2.453)
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Due to (2.453) the function Rp1...pk(t1, . . . , tk) is continuous in the open
domains of integration of integrals on the right-hand side of (2.450) and it is
bounded at the boundaries of these domains for p1, . . . , pk <∞.

Let us perform the iterated passage to the limit lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

under

the integral signs on the right-hand side of the estimate (2.451) (it was similarly
performed for the 2-dimensional, 3-dimentional, and 4-dimensional cases (see
above)). Then, taking into account (2.404), we obtain the required result.
More precisely, since the integrals on the right-hand side of (2.451) exist as
Riemann integrals, then they are equal to the corresponding Lebesgue integrals.
Moreover,

lim
p1→∞

. . . lim
pk→∞

Rp1...pk(t1, . . . , tk) = 0 when (t1, . . . , tk) ∈ (t, T )k,

where the left-hand side is bounded on the boundary of [t, T ]k.

According to the proof of Theorem 2.11 and (2.403), we have

Rp1...pk(t1, . . . , tk) =

=

(
K∗(t1, . . . , tk)−

p1∑
j1=0

Cj1(t2, . . . , tk)ϕj1(t1)

)
+

+

(
p1∑
j1=0

(
Cj1(t2, . . . , tk)−

p2∑
j2=0

Cj2j1(t3, . . . , tk)ϕj2(t2)

)
ϕj1(t1)

)
+

. . .

+

 p1∑
j1=0

. . .

pk−1∑
jk−1=0

(
Cjk−1...j1(tk)−

pk∑
jk=0

Cjk...j1ϕjk(tk)

)
ϕjk−1

(tk−1) . . . ϕj1(t1)

 ,

(2.454)

where

Cj1(t2, . . . , tk) =

T∫
t

K∗(t1, . . . , tk)ϕj1(t1)dt1,

Cj2j1(t3, . . . , tk) =

∫
[t,T ]2

K∗(t1, . . . , tk)ϕj1(t1)ϕj2(t2)dt1dt2,
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. . .

Cjk−1...j1(tk) =

∫
[t,T ]k−1

K∗(t1, . . . , tk)
k−1∏
l=1

ϕjl(tl)dt1 . . . dtk−1.

Then, applying k times (we mean here an iterated passage to the limit
lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

) the Lebesgue’s Dominated Convergence Theorem to the

integrals on the right-hand side of (2.451), we obtain

lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

M

{∣∣∣J [Rp1...pk]
(k)
T,t

∣∣∣2n} = 0, n ∈ N.

Let us discuss the choice of integrable majorants when applying Lebesgue’s
Dominated Convergence Theorem in (2.451).

It is well known that [125] ∣∣∣∣∣
N∑
k=1

sin kx

k

∣∣∣∣∣ ≤ C (2.455)

for all N and x, where constant C does not depend on N and x.

Moreover,
N∑
j=1

1

j2
≤

∞∑
j=1

1

j2
=
π2

6
. (2.456)

Applying double integration by parts (as in (2.28)), we estimate the partial
sums of one-dimensional trigonometric Fourier series

p1∑
j1=0

Cj1(t2, . . . , tk)ϕj1(t1),

p2∑
j2=0

Cj2j1(t3, . . . , tk)ϕj2(t2),

. . .
pk∑
jk=0

Cjk...j1ϕjk(tk)

in (2.454) using (2.456) and (see (2.455))
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N∑
k=1

1

k
sin

2πk(x− y)

T − t

∣∣∣∣∣ ≤ C,

∣∣∣∣∣
N∑
k=1

1

k
sin

2πk(x− t)

T − t

∣∣∣∣∣ ≤ C

(here N ∈ N and x, y ∈ R, constant C does not depend on N and x, y) as
follows ∣∣∣∣∣

p1∑
j1=0

Cj1(t2, . . . , tk)ϕj1(t1)

∣∣∣∣∣ ≤ C1,∣∣∣∣∣
p1∑
j1=0

Cj1(t2, . . . , tk)ϕj1(t1)

∣∣∣∣∣ ≤ C2,

. . .∣∣∣∣∣
pk∑
jk=0

Cjk...j1ϕjk(tk)

∣∣∣∣∣ ≤ Ck,

where constant C1 does not depend on p1, constant C2 does not depend on p2,
etc.

Moreover,

|K∗(t1, . . . , tk)| ≤ C̃1, |Cj1(t2, . . . , tk)| ≤ C̃2, . . .
∣∣Cjk−1...j1(tk)

∣∣ ≤ C̃k,

where constant C̃1 does not depend on p1, constant C̃2 does not depend on p2,
etc.

Further, the construction of integrable majorants when applying Lebesgue’s
Dominated Convergence Theorem in (2.451) is obvious.

For example, to pass to the limit lim
pk→∞

, the integrable majorant has the

form (it is constructed on the base of (2.454))(
Rp1...pk(t1, . . . , tk)

)2n

≤

≤

((
C̃1 + C1

)
+
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+

p1∑
j1=0

(
C̃2 + C2

)
|ϕj1(t1)|+ . . .

. . . +

p1∑
j1=0

. . .

pk−1∑
jk−1=0

(
C̃k + Ck

) ∣∣ϕjk−1
(tk−1) . . . ϕj1(t1)

∣∣)2n

≤

≤

((
C̃1 + C1

)
+

+

√
2

T − t
(p1 + 1)

(
C̃2 + C2

)
+ . . .

. . . +

(√
2

T − t

)k−1

(p1 + 1) . . . (pk−1 + 1)
(
C̃k + Ck

))2n

, (2.457)

where n ∈ N, the numbers p1, . . . , pk−1 are fixed and the right-hand side of
(2.457) is independent of pk.

Theorems 2.13 and 2.10 are proved.

It is easy to notice that if we expand the function K∗(t1, . . . , tk) into the
generalized Fourier series at the interval (t, T ) at first with respect to the vari-
able tk, after that with respect to the variable tk−1, etc., then we will have the
expansion

K∗(t1, . . . , tk) = lim
pk→∞

. . . lim
p1→∞

pk∑
jk=0

. . .

p1∑
j1=0

Cjk...j1

k∏
l=1

ϕjl(tl) (2.458)

instead of the expansion (2.380).

Let us prove the expansion (2.458). Similarly with (2.384) we have the
following equality

ψk(tk)

(
1{tk−1<tk} +

1

2
1{tk−1=tk}

)
=

∞∑
jk=0

T∫
tk−1

ψk(tk)ϕjk(tk)dtkϕjk(tk), (2.459)

which is satisfied pointwise at the interval (t, T ), besides the series on the right-
hand side of (2.459) converges when t1 = t, T.
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Let us introduce the induction assumption

∞∑
jk=0

. . .
∞∑
j3=0

ψ2(t2)

T∫
t2

ψ3(t3)ϕj3(t3) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dt3

k∏
l=3

ϕjl(tl) =

=
k∏
l=2

ψl(tl)
k−1∏
l=2

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
. (2.460)

Then

∞∑
jk=0

. . .

∞∑
j3=0

∞∑
j2=0

ψ1(t1)

T∫
t1

ψ2(t2)ϕj2(t2) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dt2

k∏
l=2

ϕjl(tl) =

=
∞∑
jk=0

. . .

∞∑
j3=0

ψ1(t1)

(
1{t1<t2} +

1

2
1{t1=t2}

)
ψ2(t2)×

×
T∫

t2

ψ3(t3)ϕj3(t3) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dt3

k∏
l=3

ϕjl(tl) =

= ψ1(t1)

(
1{t1<t2} +

1

2
1{t1=t2}

) ∞∑
jk=0

. . .

∞∑
j3=0

ψ2(t2)×

×
T∫

t2

ψ3(t3)ϕj3(t3) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dt3

k∏
l=3

ϕjl(tl) =

= ψ1(t1)

(
1{t1<t2} +

1

2
1{t1=t2}

) k∏
l=2

ψl(tl)
k−1∏
l=2

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
=

=
k∏
l=1

ψl(tl)
k−1∏
l=1

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
. (2.461)
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From the other hand, the left-hand side of (2.461) can be represented in the
following form

∞∑
jk=0

. . .
∞∑
j1=0

Cjk...j1

k∏
l=1

ϕjl(tl)

by expanding the function

ψ1(t1)

T∫
t1

ψ2(t2)ϕj2(t2) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dt2

into the generalized Fourier series at the interval (t, T ) using the variable t1.
Here we applied the following replacement of integration order

T∫
t

ψ1(t1)ϕj1(t1)

T∫
t1

ψ2(t2)ϕj2(t2) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dt2dt1 =

=

T∫
t

ψk(tk)ϕjk(tk) . . .

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 . . . dtk =

Cjk...j1.

The expansion (2.458) is proved. So, we can formulate the following theo-
rem.

Theorem 2.14 [10] (2013) (also see [11]-[17], [34]). Suppose that the con-
ditions of Theorem 2.10 are fulfilled. Then

J∗[ψ(k)]T,t =
∞∑
jk=0

. . .
∞∑
j1=0

Cjk...j1

k∏
l=1

ζ
(il)
jl
, (2.462)

where notations are the same as in Theorem 2.10.

Note that (2.462) means the following

lim
pk→∞

lim
pk−1→∞

. . . lim
p1→∞

M


(
J∗[ψ(k)]T,t −

pk∑
jk=0

. . .

p1∑
j1=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

)2n
 = 0,
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where n ∈ N.

Let us make a remark about how one can obtain an analogue of Theo-
rem 2.10 for the complete orthonormal system of Legendre polynomials in the
space L2([t, T ]) and n = 1 (the case of mean-square convergence), k = 2.

From (2.102) we have

M

{(
J [Rp1p2]

(2)
T,t

)2}
≤

≤ 2

∫
[t,T ]2

(Rp1p2(t1, t2))
2 dt1dt2 + 1{i1=i2 ̸=0}

 T∫
t

Rp1p2(t1, t1)dt1

2

. (2.463)

From Remark 1.6 and (1.73), (2.103) we obtain for the case of Legendre
polynomials

lim
p1→∞

lim
p2→∞

∫
[t,T ]2

(Rp1p2(t1, t2))
2 dt1dt2 = 0.

Further, we have (see (2.413))

Rp1p2(t1, t1) =

(
K∗(t1, t1)−

p1∑
j1=0

Cj1(t1)ϕj1(t1)

)
+

+

(
p1∑
j1=0

(
Cj1(t1)−

p2∑
j2=0

Cj2j1ϕj2(t1)

)
ϕj1(t1)

)
. (2.464)

Then, taking into account (2.412), (2.464) and applying two times (we mean
here an iterated passage to the limit lim

p1→∞
lim
p2→∞

) the Lebesgue’s Dominated

Convergence Theorem, we obtain

lim
p1→∞

lim
p2→∞

T∫
t

Rp1p2(t1, t1)dt1 = 0.

Let us discuss the choice of integrable majorants when applying Lebesgue’s
Dominated Convergence Theorem in our case.
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Using double integration by parts (as in (2.22)), we estimate the partial
sums of one-dimensional Fourier–Legendre series

p1∑
j1=0

Cj1(t1)ϕj1(t1),

p2∑
j2=0

Cj2j1ϕj2(t1)

in (2.464) using (2.23) and (2.456) as follows∣∣∣∣∣
p1∑
j1=0

Cj1(t1)ϕj1(t1)

∣∣∣∣∣ ≤ K1

(
1+

1

(1− (z(t1))2)
1/2

+
1

(1− (z(t1))2)
1/4

)
, (2.465)

∣∣∣∣∣
p2∑
j2=0

Cj2j1ϕj2(t1)

∣∣∣∣∣ ≤ K2

(
1 +

1

(1− (z(t1))2)
1/4

)
, (2.466)

where z(t1) is defined by (2.20), constant K1 does not depend on p1, and con-
stant K2 does not depend on p2.

Thus, integrable majorants in our case can be easily constracted using
(2.464), (2.465) and (2.466) (see the proof of Theorem 2.10 for details).

An analogue of Theorem 2.10 for the case of Legendre polynomials and
n = 1 (the case of mean-square convergence), k = 2 is obtained.

2.4.2 Further Remarks

In this section, we consider some approaches on the base of Theorems 2.10 and
1.1 for the case k = 2. Moreover, we explain the potential difficulties associated
with the use of generalized multiple Fourier series converging almost everywhere
(with respect to Lebesgue’s measure (here and further in this section)) on the
hypercube [t, T ]k in the proof of Theorem 2.10.

First, we show how iterated series can be replaced by multiple one in The-
orem 2.10 (the case k = 2 and n = 1) and in analogue of Theorem 2.10 for the
case of Legendre polynomials (the case k = 2 and n = 1).

We have

lim
p→∞

M


(
J∗[ψ(2)]T,t −

p∑
j1=0

p∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 =

= lim
p→∞

lim
q→∞

M


(
J∗[ψ(2)]T,t −

p∑
j1=0

p∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 ≤
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≤ lim
p→∞

lim
q→∞

2M


(
J∗[ψ(2)]T,t −

p∑
j1=0

q∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
+

+2M


(

p∑
j1=0

q∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

−
p∑

j1=0

p∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2

 =

= 2 lim
p→∞

lim
q→∞

M


(

p∑
j1=0

q∑
j2=p+1

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 =

= 2 lim
p→∞

lim
q→∞

p∑
j1=0

p∑
j′1=0

q∑
j2=p+1

q∑
j′2=p+1

Cj2j1Cj′2j′1M
{
ζ
(i1)
j1
ζ
(i1)
j′1

}
M
{
ζ
(i2)
j2
ζ
(i2)
j′2

}
=

= 2 lim
p→∞

lim
q→∞

p∑
j1=0

q∑
j2=p+1

C2
j2j1

=

= 2 lim
p→∞

lim
q→∞

(
p∑

j1=0

q∑
j2=0

C2
j2j1

−
p∑

j1=0

p∑
j2=0

C2
j2j1

)
= (2.467)

= 2

(
lim

p,q→∞

p∑
j1=0

q∑
j2=0

C2
j2j1

− lim
p→∞

p∑
j1=0

p∑
j2=0

C2
j2j1

)
= (2.468)

=

∫
[t,T ]2

K2(t1, t2)dt1dt2 −
∫

[t,T ]2

K2(t1, t2)dt1dt2 = 0, (2.469)

where the function K(t1, t2) is defined by (1.6) for k = 2.

Note that the transition from (2.467) to (2.468) is based on the theorem
on reducing of a limit to iterated one. Moreover, the transition from (2.468) to
(2.469) is based on the Parseval equality.

Thus, we obtain the following Theorem.

Theorem 2.15 [14]-[17], [34]. Assume that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). At the same time ψ2(τ) is a continuously differentiable non-
random function on [t, T ] and ψ1(τ) is twice continuously differentiable nonran-
dom function on [t, T ]. Then, for the iterated Stratonovich stochastic integral
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(2.373) of multiplicity 2

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 (i1, i2 = 0, 1, . . . ,m)

the following expansion

J∗[ψ(2)]T,t = l.i.m.
p→∞

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

that converges in the mean-square sense is valid, where

Cj2j1 =

T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 (2.470)

is the Fourier coefficient and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in

the case when i ̸= 0), w
(i)
τ = f

(i)
τ are independent standard Wiener processes

(i = 1, . . . ,m) and w
(0)
τ = τ.

Note that Theorem 2.15 is a modification (for the case p1 = p2 = p of series
summation) of Theorem 2.1.

Using Theorem 2.10, we get

0 ≤

∣∣∣∣∣ limp1→∞
lim
p2→∞

. . . lim
pk→∞

M

{
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

− J∗[ψ(k)]T,t

}∣∣∣∣∣ ≤
≤ lim

p1→∞
lim
p2→∞

. . . lim
pk→∞

∣∣∣∣∣M
{

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

− J∗[ψ(k)]T,t

}∣∣∣∣∣ ≤
≤ lim

p1→∞
lim
p2→∞

. . . lim
pk→∞

M

{∣∣∣∣∣J∗[ψ(k)]T,t −
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

∣∣∣∣∣
}

≤

≤ lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

M

(
J∗[ψ(k)]T,t −

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

)2

1/2= 0.

(2.471)
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From the other hand,

lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

(
p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1M

{
k∏
l=1

ζ
(il)
jl

}
−M

{
J∗[ψ(k)]T,t

})
=

= lim
p1→∞

lim
p2→∞

. . . lim
pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1M

{
k∏
l=1

ζ
(il)
jl

}
−M

{
J∗[ψ(k)]T,t

}
. (2.472)

Combining (2.471) and (2.472), we obtain

M
{
J∗[ψ(k)]T,t

}
= lim

p1→∞
lim
p2→∞

. . . lim
pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1M

{
k∏
l=1

ζ
(il)
jl

}
. (2.473)

Note that the relations (2.471)–(2.473) are also valid for the case of Legendre
polynomials and k = 2.

The formula (2.473) with k = 2 implies the following

M
{
J∗[ψ(2)]T,t

}
=

1

2
1{i1=i2 ̸=0}

T∫
t

ψ1(s)ψ2(s)ds =

= lim
p1→∞

lim
p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1M
{
ζ
(i1)
j1
ζ
(i2)
j2

}
, (2.474)

where 1A is the indicator of the set A.

Since

M
{
ζ
(i1)
j1
ζ
(i2)
j2

}
= 1{i1=i2 ̸=0}1{j1=j2},

then from (2.474) we obtain

M
{
J∗[ψ(2)]T,t

}
= lim

p1→∞
lim
p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j11{j1=j2}1{i1=i2 ̸=0} =

= 1{i1=i2 ̸=0} lim
p1→∞

lim
p2→∞

min{p1,p2}∑
j1=0

Cj1j1 = 1{i1=i2 ̸=0}

∞∑
j1=0

Cj1j1, (2.475)
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where Cj1j1 is defined by (2.470) for j1 = j2, i.e.

Cj1j1 =

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2.

From (2.474) and (2.475) we obtain the following relation

∞∑
j1=0

Cj1j1 =
1

2

T∫
t

ψ1(s)ψ2(s)ds. (2.476)

Combining (1.46) and (2.476), we have

J [ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2}

)
=

= l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}

∞∑
j1=0

Cj1j1 =

= l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

− 1

2
1{i1=i2 ̸=0}

T∫
t

ψ1(s)ψ2(s)ds. (2.477)

Since

J∗[ψ(2)]T,t = J [ψ(2)]T,t +
1

2
1{i1=i2 ̸=0}

T∫
t

ψ1(s)ψ2(s)ds w. p. 1, (2.478)

then from (2.477) we finally get the following expansion

J∗[ψ(2)]T,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2
.

Thus, we obtain the statement of Theorem 2.1.

We have

J∗[ψ(2)]p1,p2T,t
def
= J [ψ(2)]p1,p2T,t +

1

2
1{i1=i2 ̸=0}

T∫
t

ψ1(s)ψ2(s)ds =
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=

p1∑
j1=0

p2∑
j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2}

)
+

1

2
1{i1=i2 ̸=0}

T∫
t

ψ1(s)ψ2(s)ds =

=

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

+ 1{i1=i2 ̸=0}

1

2

T∫
t

ψ1(s)ψ2(s)ds−
min{p1,p2}∑

j1=0

Cj1j1

 ,

(2.479)

where

J [ψ(2)]p1,p2T,t =

p1∑
j1=0

p2∑
j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2}

)

is the approximation of iterated Itô stochastic integral (2.374) (k = 2) based
on Theorem 1.1 (see (1.46)).

Moreover, from (1.74), (1.75), (1.329) and (2.8) we obtain

M

{(
J∗[ψ(2)]T,t − J∗[ψ(2)]p1,p2T,t

)2n}
= M

{(
J [ψ(2)]T,t − J [ψ(2)]p1,p2T,t

)2n}
→ 0

(2.480)

if p1, p2 → ∞ (n ∈ N).

Further,

M


(
J∗[ψ(2)]T,t −

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2n
 =

= M

{(
J∗[ψ(2)]T,t − J∗[ψ(2)]p1,p2T,t +

+1{i1=i2 ̸=0}

1

2

T∫
t

ψ1(s)ψ2(s)ds−
min{p1,p2}∑

j1=0

Cj1j1

2n
 ≤

≤ Kn

M


(
J∗[ψ(2)]T,t − J∗[ψ(2)]p1,p2T,t

)2n
+

+ 1{i1=i2 ̸=0}

1

2

T∫
t

ψ1(s)ψ2(s)ds−
min{p1,p2}∑

j1=0

Cj1j1

2n
 , (2.481)
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where constant Kn <∞ depends on n.

Taking into account (2.480), (2.481) and also that the equality (2.476) is
true under the conditions of Theorem 2.3, we get

lim
p1,p2→∞

M


(
J∗[ψ(2)]T,t −

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2n
 = 0. (2.482)

Thus, we obtain the following theorem.

Theorem 2.16. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal sys-
tem of Legendre polynomials or trigonometric functions in the space L2([t, T ]).
Moreover, ψ1(τ), ψ2(τ) are continuous nonrandom functions on [t, T ]. Then, for
the iterated Stratonovich stochastic integral (2.373) of multiplicity 2

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 (i1, i2 = 0, 1, . . . ,m)

the following expansion

J∗[ψ(2)]T,t =
∞∑

j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

that converges in the mean of degree 2n, n ∈ N (see (2.482)) is valid, where the
Fourier coefficient Cj2j1 is defined by (2.470) and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the
case when i ̸= 0); another notations are the same as in Theorem 2.15.

Let us consider some other approaches close to the approaches outlined in
this section.

Now we turn to multiple trigonometric Fourier series converging almost
everywhere. Let us formulate the well known result from the theory of multiple
trigonometric Fourier series.

Proposition 2.3 [126]. Suppose that∫
[0,2π]k

|f(x1, . . . , xk)|
(
log+|f(x1, . . . , xk)|

)k
log+log+|f(x1, . . . , xk)|×
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×dx1 . . . dxk <∞. (2.483)

Then, for the square partial sums

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(xl)

of the multiple trigonometric Fourier series we have

lim
p→∞

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(xl) = f(x1, . . . , xk)

almost everywhere on [0, 2π]k, where {ϕj(x)}∞j=0 is a complete orthonormal sys-
tem of trigonometric functions in the space L2([0, 2π]), log

+x = logmax{1, x},

Cjk...j1 =

∫
[0,2π]k

f(x1, . . . , xk)
k∏
l=1

ϕjl(xl)dx1 . . . dxk

is the Fourier coefficient of the function f(x1, . . . , xk).

Note that Proposition 2.3 can be reformulated for [t, T ]k instead of [0, 2π]k.
If we tried to apply Proposition 2.3 in the proof of Theorem 2.10, then we would
encounter the following difficulties. The right-hand side of (2.451) contains mul-
tiple integrals over hypercubes of various dimensions, namely over hypercubes
[t, T ]k, [t, T ]k−1, etc. Obviously, the convergence almost everywhere on [t, T ]k

does not mean the convergence almost everywhere on [t, T ]k−1, [t, T ]k−2, etc.
This means that we could not apply the Lebesgue’s Dominated Convergence
Theorem in the proof of Theorem 2.13 and thus we could not complete the
proof of Theorem 2.10. Although multiple series are more convenient in terms
of approximation than iterated series as in Theorem 2.10.

Suppose that the conditions of Theorem 2.16 are fulfilled. In the proof of
Theorem 2.2 (see (2.58)) we deduced in particular that

lim
p→∞

p∑
j1=0

p∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t1) =
1

2
ψ1(t1)ψ2(t1) = K∗(t1, t1), (2.484)

where t1 ∈ (t, T ), Cj2j1 is defined by (2.470). This means that we can repeat the
proof of Theorem 2.10 for the case k = 2 and apply the Lebesgue’s Dominated
Convergence Theorem in the formula (2.451), since Proposition 2.3 and (2.484)
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imply the convergence almost everywhere on [t, T ]2 and [t, T ] (t1 = t2 ∈ [t, T ])
of the multiple trigonometric Fourier series

lim
p→∞

p∑
j1=0

p∑
j2=0

Cj2j1ϕj1(t1)ϕj2(t2), t1, t2 ∈ [t, T ]2 (2.485)

to the function K∗(t1, t2) (the question of finding an integrable majorant for
Lebesgue’s Dominated Convergence Theorem is omitted here). So, we could
obtain the particular case of Theorem 2.16.

Consider another possible way of the proof of Theorem 2.16, which is based
on the function (2.48) and Theorem 2.10. The case i1 ̸= i2 follows from (2.479)
and (2.480). Consider the case i1 = i2 ̸= 0. We have K∗(t1, t2) + K∗(t2, t1) =
K ′(t1, t2), where the functions K ′(t1, t2) and K∗(t1, t2) are defined by (2.48)
and (2.95) correspondingly. Note that the function K ′(t1, t2) is symmetric, i.e.
K ′(t1, t2) = K ′(t2, t1).

By analogy with (2.405) we get w. p. 1

J [K ′/2]
(2)
T,t =

1

2
l.i.m.
N→∞

N−1∑
l2=0

N−1∑
l1=0

K ′(τl1, τl2)∆f (i1)τl1
∆f (i1)τl2

=

=
1

2
l.i.m.
N→∞

(
N−1∑
l2=0

l2−1∑
l1=0

+
N−1∑
l1=0

l1−1∑
l2=0

)
K ′(τl1, τl2)∆f (i1)τl1

∆f (i1)τl2
+

+
1

2
l.i.m.
N→∞

N−1∑
l1=0

K ′(τl1, τl1)
(
∆f (i1)τl1

)2
=

=
1

2
l.i.m.
N→∞

N−1∑
l2=0

l2−1∑
l1=0

(K ′(τl1, τl2) +K ′(τl2, τl1))∆f (i1)τl1
∆f (i1)τl2

+

+
1

2
l.i.m.
N→∞

N−1∑
l1=0

K ′(τl1, τl1)
(
∆f (i1)τl1

)2
=

= l.i.m.
N→∞

N−1∑
l2=0

l2−1∑
l1=0

K ′(τl1, τl2)∆f (i1)τl1
∆f (i1)τl2

+
1

2
l.i.m.
N→∞

N−1∑
l1=0

K ′(τl1, τl1)
(
∆f (i1)τl1

)2
=

=

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)
t1 df

(i1)
t2 +

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =
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=

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i1)
t2

def
= J∗[ψ(2)]T,t, (2.486)

where we used the same notations as in (2.405).

Let us expand the function K ′(t1, t2)/2 into a multiple (double) Fourier–
Legendre series or trigonometric Fourier series in the square [t, T ]2 (see (2.57))

1

2
K ′(t1, t2) =

=
1

2
lim

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

T∫
t

T∫
t

K ′(t1, t2)ϕj1(t1)ϕj2(t2)dt1dt2 · ϕj1(t1)ϕj2(t2) =

=
1

2
lim

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

 T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2+

+

T∫
t

ψ1(t2)ϕj2(t2)

T∫
t2

ψ2(t1)ϕj1(t1)dt1

 dt2ϕj1(t1)ϕj2(t2) =

=
1

2
lim

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

(Cj2j1 + Cj1j2)ϕj1(t1)ϕj2(t2), (2.487)

where the series (2.487) converges toK ′(t1, t2)/2 at any inner point of the square
[t, T ]2 (see the proof of Theorem 2.2 for details).

In obtaining (2.487) we replaced the order of integration in the second
iterated integral.

Using (2.486), (2.487), and the scheme of the proof of Theorem 2.10 (k =
2), we can obtain the following relation (the question of finding an integrable
majorant for Lebesgue’s Dominated Convergence Theorem is omitted here)

lim
p1,p2→∞

M


(
J∗[ψ(2)]T,t −

1

2

p1∑
j1=0

p2∑
j2=0

(Cj2j1 + Cj1j2) ζ
(i1)
j1
ζ
(i1)
j2

)2n
 = 0. (2.488)

Let us rewrite the sum on the left-hand side of (2.488) as two sums. Let us
replace j1 with j2, j2 with j1, p1 with p2, and p2 with p1 in the second sum.
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Thus, we get the statement of Theorem 2.16

lim
p1,p2→∞

M


(
J∗[ψ(2)]T,t −

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i1)
j2

)2n
 = 0.

Let us consider another approach. The following fact is well known [122].

Proposition 2.4. Let
{
xn1,...,nk

}∞
n1,...,nk=1

be a multi-index sequence and let
there exists the limit

lim
n1,...,nk→∞

xn1,...,nk <∞.

Moreover, let there exists the limit

lim
nk→∞

xn1,...,nk = yn1,...,nk−1
<∞ for any n1, . . . , nk−1.

Then there exists the iterated limit

lim
n1,...,nk−1→∞

lim
nk→∞

xn1,...,nk

and moreover,

lim
n1,...,nk−1→∞

lim
nk→∞

xn1,...,nk = lim
n1,...,nk→∞

xn1,...,nk.

Denote

Cjs...j1(ts+1, . . . , tk) =

∫
[t,T ]s

K(t1, . . . , tk)
s∏
l=1

ϕjl(tl)dt1 . . . dts,

where s = 1, . . . , k − 1 and K(t1, . . . , tk) is defined by (1.6). For s = k we
suppose that Cjk...j1 is defined by (1.8).

Consider the following Fourier series

lim
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1(t3, . . . , tk)ϕj1(t1)ϕj2(t2), (2.489)

lim
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1(t4, . . . , tk)ϕj1(t1)ϕj2(t2)ϕj3(t3), (2.490)

. . .

lim
p1,...,pk−1→∞

p1∑
j1=0

. . .

pk−1∑
jk−1=0

Cjk−1...j1(tk)ϕj1(t1) . . . ϕjk−1
(tk−1), (2.491)
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lim
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1ϕj1(t1) . . . ϕjk(tk), (2.492)

where t1, . . . , tk ∈ [t, T ], {ϕj(x)}∞j=0 is a complete orthonormal system of Leg-
endre polynomials or trigonometric functions in the space L2([t, T ]).

The author does not know the answer to the question on the existence of
limits (2.489)–(2.492) even for the case p1 = . . . = pk and trigonometric Fourier
series. Obviously, at least for the case k = 2 and ψ1(τ), ψ2(τ) ≡ 1 the answere
to the above question is positive for the Fourier–Legendre series as well as for
the trigonometric Fourier series.

If we suppose that the limits (2.489)–(2.492) exist, then combining Propo-
sition 2.4 and the proof of Theorem 2.11, we obtain

K∗(t1, . . . , tk) =
∞∑
j1=0

Cj1(t2, . . . , tk)ϕj1(t1) =

=
∞∑
j1=0

∞∑
j2=0

Cj2j1(t3, . . . , tk)ϕj1(t1)ϕj2(t2) = (2.493)

= lim
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1(t3, . . . , tk)ϕj1(t1)ϕj2(t2) =

= lim
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

∞∑
j3=0

Cj3j2j1(t4, . . . , tk)ϕj1(t1)ϕj2(t2)ϕj3(t3) =

= lim
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1(t4, . . . , tk)ϕj1(t1)ϕj2(t2)ϕj3(t3) = (2.494)

=
∞∑
j1=0

∞∑
j2=0

∞∑
j3=0

Cj3j2j1(t4, . . . , tk)ϕj1(t1)ϕj2(t2)ϕj3(t3) = (2.495)

= lim
p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

∞∑
j4=0

Cj4...j1(t5, . . . , tk)ϕj1(t1)ϕj3(t4) = (2.496)

= . . . =
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= lim
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1ϕj1(t1) . . . ϕjk(tk). (2.497)

Note that the transition from (2.494) to (2.495) is based on (2.493) and
the proof of Theorem 2.11. The transition from (2.495) to (2.496) is based on
(2.494) and the proof of Theorem 2.11.

Using (2.497), we could get the version of Theorem 2.10 with multiple series
instead of iterated ones (see Hypothesis 2.3, Sect. 2.5).

2.4.3 Refinement of Theorems 2.10 and 2.14 for Iterated Stratono-
vich Stochastic Integrals of Multiplicities 2 and 3 (i1, i2, i3 =
1, . . . ,m). The Case of Mean-Square Convergence

In this section, it will be shown that the upper limits in Theorems 2.10 and
2.14 (the cases k = 2, k = 3 and n = 1) can be replaced by the usual limits.

Theorem 2.17 [34]. Suppose that every ψl(τ) (l = 1, 2, 3) is twice contin-
uously differentiable function at the interval [t, T ] and {ϕj(x)}∞j=0 is a com-
plete orthonormal system of trigonometric functions in the space L2([t, T ]).
Then, the iterated Stratonovich stochastic integrals J∗[ψ(2)]T,t and J∗[ψ(3)]T,t
(i1, i2, i3 = 1, . . . ,m) defined by (2.373) are expanded into the converging in the
mean-square sense iterated series

lim
p1→∞

lim
p2→∞

M


(
J∗[ψ(2)]T,t −

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 = 0, (2.498)

lim
p2→∞

lim
p1→∞

M


(
J∗[ψ(2)]T,t −

p2∑
j2=0

p1∑
j1=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 = 0, (2.499)

lim
p1→∞

lim
p2→∞

lim
p3→∞

M


(
J∗[ψ(3)]T,t −

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 = 0,

(2.500)

lim
p3→∞

lim
p2→∞

lim
p1→∞

M


(
J∗[ψ(3)]T,t −

p3∑
j3=0

p2∑
j2=0

p1∑
j1=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 = 0,

(2.501)
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where

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s (i = 1, . . . ,m, j = 0, 1, . . .)

are independent standard Gaussian random variables for various i or j and
Cj2j1, Cj3j2j1 are defined by (2.377) and (2.375).

Proof. We will prove the equalities (2.498) and (2.500) (the equalities
(2.499) and (2.501) can be proved similarly using the expansion (2.458) instead
of the expansion (2.380)).

From (2.405) we have w. p. 1

J∗[ψ(2)]T,t −
p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

= J [Rp1p2]
(2)
T,t =

=

T∫
t

t2∫
t

Rp1p2(t1, t2)df
(i1)
t1 df

(i2)
t2 +

T∫
t

t1∫
t

Rp1p2(t1, t2)df
(i2)
t2 df

(i1)
t1 +

+1{i1=i2}

T∫
t

Rp1p2(t1, t1)dt1, (2.502)

where we used the same notations as in (2.405).

Uning (2.502), we obtain

M

{(
J [Rp1p2]

(2)
T,t

)2}
=

T∫
t

t2∫
t

R2
p1p2

(t1, t2)dt1dt2 +

T∫
t

t1∫
t

R2
p1p2

(t1, t2)dt2dt1+

+1{i1=i2}

2

T∫
t

t2∫
t

Rp1p2(t1, t2)Rp1p2(t2, t1)dt1dt2 +

 T∫
t

Rp1p2(t1, t1)dt1

2
 =

=

T∫
t

t2∫
t

R2
p1p2

(t1, t2)dt1dt2 +

T∫
t

T∫
t2

R2
p1p2

(t1, t2)dt1dt2+

+1{i1=i2}

 T∫
t

t2∫
t

Rp1p2(t1, t2)Rp1p2(t2, t1)dt1dt2+
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+

T∫
t

T∫
t1

Rp1p2(t1, t2)Rp1p2(t2, t1)dt2dt1

+ 1{i1=i2}

 T∫
t

Rp1p2(t1, t1)dt1

2

=

=

∫
[t,T ]2

R2
p1p2

(t1, t2)dt1dt2+

+1{i1=i2}

 T∫
t

t2∫
t

Rp1p2(t1, t2)Rp1p2(t2, t1)dt1dt2+

+

T∫
t

T∫
t2

Rp1p2(t1, t2)Rp1p2(t2, t1)dt1dt2

+ 1{i1=i2}

 T∫
t

Rp1p2(t1, t1)dt1

2

=

=

∫
[t,T ]2

R2
p1p2

(t1, t2)dt1dt2+

+1{i1=i2}

 ∫
[t,T ]2

Rp1p2(t1, t2)Rp1p2(t2, t1)dt1dt2 +

 T∫
t

Rp1p2(t1, t1)dt1

2
 .

(2.503)

Since the integrals on the right-hand side of (2.503) exist as Riemann inte-
grals, then they are equal to the corresponding Lebesgue integrals. Moreover,

lim
p1→∞

lim
p2→∞

Rp1p2(t1, t2) = 0 when (t1, t2) ∈ (t, T )2,

where the left-hand side is bounded on the boundary of [t, T ]2 (see (2.404)).

Then, applying two times (we mean here an iterated passage to the limit
lim
p1→∞

lim
p2→∞

) the Lebesgue’s Dominated Convergence Theorem (see the choice of

integrable majorants in the proof of Theorem 2.10) and taking into account
(2.381), (2.382), and (2.413), we obtain

lim
p1→∞

lim
p2→∞

∫
[t,T ]2

R2
p1p2

(t1, t2)dt1dt2 = 0, (2.504)

lim
p1→∞

lim
p2→∞

∫
[t,T ]2

Rp1p2(t1, t2)Rp1p2(t2, t1)dt1dt2 = 0, (2.505)
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lim
p1→∞

lim
p2→∞

T∫
t

Rp1p2(t1, t1)dt1 = 0. (2.506)

The relations (2.503)–(2.506) imply the following equality

lim
p1→∞

lim
p2→∞

M

{(
J [Rp1p2]

(2)
T,t

)2}
= 0.

The formula (2.498) is proved.

Let us prove the relation (2.500). After replacement of the integration order
in the iterated Itô stochastic integrals from (2.416) (see Chapter 3) [1]-[17], [77],
[123], [124] we get w. p. 1

J∗[ψ(3)]T,t −
p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

= J [Rp1p2p3]
(3)
T,t =

=

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t1, t2, t3)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t1, t3, t2)df
(i1)
t1 df

(i3)
t2 df

(i2)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t2, t1, t3)df
(i2)
t1 df

(i1)
t2 df

(i3)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t2, t3, t1)df
(i3)
t1 df

(i1)
t2 df

(i2)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t3, t2, t1)df
(i3)
t1 df

(i2)
t2 df

(i1)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rp1p2p3(t3, t1, t2)df
(i2)
t1 df

(i3)
t2 df

(i1)
t3 +

+1{i1=i2}

T∫
t

 T∫
t

Rp1p2p3(t2, t2, t3)dt2

 df
(i3)
t3 +
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+1{i2=i3}

T∫
t

 T∫
t

Rp1p2p3(t1, t2, t2)dt2

 df
(i1)
t1 +

+1{i1=i3}

T∫
t

 T∫
t

Rp1p2p3(t3, t2, t3)dt3

 df
(i2)
t2 . (2.507)

Let us calculate the second moment of J [Rp1p2p3]
(3)
T,t using (2.507). We have

M

{(
J [Rp1p2p3]

(3)
T,t

)2}
=

=

T∫
t

t3∫
t

t2∫
t

 ∑
(t1,t2,t3)

R2
p1p2p3

(t1, t2, t3)

 dt1dt2dt3+ (2.508)

+2

1{i1=i2}

T∫
t

t3∫
t

t2∫
t

G(1)
p1p2p3

(t1, t2, t3)dt1dt2dt3+

+1{i1=i3}

T∫
t

t3∫
t

t2∫
t

G(2)
p1p2p3

(t1, t2, t3)dt1dt2dt3+

+1{i2=i3}

T∫
t

t3∫
t

t2∫
t

G(3)
p1p2p3

(t1, t2, t3)dt1dt2dt3+

+1{i1=i2=i3}

T∫
t

t3∫
t

t2∫
t

G(4)
p1p2p3

(t1, t2, t3)dt1dt2dt3

+

+

∫
[t,T ]3

(
1{i1=i2}Rp1p2p3(t1, t1, t3)Rp1p2p3(t2, t2, t3)+

+1{i2=i3}Rp1p2p3(t3, t1, t1)Rp1p2p3(t3, t2, t2)+

+1{i1=i3}Rp1p2p3(t1, t3, t1)Rp1p2p3(t2, t3, t2)+

+2 · 1{i1=i2=i3}

(
Rp1p2p3(t1, t1, t3)Rp1p2p3(t3, t2, t2)+

+Rp1p2p3(t1, t1, t3)Rp1p2p3(t2, t3, t2)+
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+Rp1p2p3(t3, t1, t1)Rp1p2p3(t2, t3, t2)

))
dt1dt2dt3, (2.509)

where permutation (t1, t2, t3) when summing in (2.508) are performed only in

the value R2
p1p2p3

(t1, t2, t3) and the functions G
(i)
p1p2p3(t1, t2, t3) (i = 1, . . . , 4) are

defined by the following relations

G(1)
p1p2p3

(t1, t2, t3) = Rp1p2p3(t1, t2, t3)Rp1p2p3(t2, t1, t3)+

+Rp1p2p3(t1, t3, t2)Rp1p2p3(t3, t1, t2)+

+Rp1p2p3(t2, t3, t1)Rp1p2p3(t3, t2, t1),

G(2)
p1p2p3

(t1, t2, t3) = Rp1p2p3(t1, t2, t3)Rp1p2p3(t3, t2, t1)+

+Rp1p2p3(t1, t3, t2)Rp1p2p3(t2, t3, t1)+

+Rp1p2p3(t2, t1, t3)Rp1p2p3(t3, t1, t2),

G(3)
p1p2p3

(t1, t2, t3) = Rp1p2p3(t1, t2, t3)Rp1p2p3(t1, t3, t2)+

+Rp1p2p3(t2, t1, t3)Rp1p2p3(t2, t3, t1)+

+Rp1p2p3(t3, t2, t1)Rp1p2p3(t3, t1, t2),

G(4)
p1p2p3

(t1, t2, t3) = Rp1p2p3(t1, t2, t3)Rp1p2p3(t2, t3, t1)+

+Rp1p2p3(t1, t2, t3)Rp1p2p3(t3, t1, t2)+

+Rp1p2p3(t1, t3, t2)Rp1p2p3(t2, t1, t3)+

+Rp1p2p3(t1, t3, t2)Rp1p2p3(t3, t2, t1)+

+Rp1p2p3(t2, t1, t3)Rp1p2p3(t3, t2, t1)+

+Rp1p2p3(t2, t3, t1)Rp1p2p3(t3, t1, t2).
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Further (see (1.38)),

T∫
t

t3∫
t

t2∫
t

 ∑
(t1,t2,t3)

R2
p1p2p3

(t1, t2, t3)

 dt1dt2dt3 =

=

∫
[t,T ]3

R2
p1p2p3

(t1, t2, t3)dt1dt2dt3. (2.510)

We will say that the function Φ(t1, t2, t3) is symmetric if

Φ(t1, t2, t3) = Φ(t1, t3, t2) = Φ(t2, t1, t3) = Φ(t2, t3, t1) =

= Φ(t3, t1, t2) = Φ(t3, t2, t1).

For the symmetric function Φ(t1, t2, t3), we have

T∫
t

t3∫
t

t2∫
t

 ∑
(t1,t2,t3)

Φ(t1, t2, t3)

 dt1dt2dt3 =

= 6

T∫
t

t3∫
t

t2∫
t

Φ(t1, t2, t3)dt1dt2dt3 =

=

∫
[t,T ]3

Φ(t1, t2, t3)dt1dt2dt3. (2.511)

The relation (2.511) implies that

T∫
t

t3∫
t

t2∫
t

Φ(t1, t2, t3)dt1dt2dt3 =
1

6

∫
[t,T ]3

Φ(t1, t2, t3)dt1dt2dt3. (2.512)

It is easy to check that the functions G
(i)
p1p2p3(t1, t2, t3) (i = 1, . . . , 4) are

symmetric. Using this property as well as (2.509), (2.510), and (2.512), we
obtain

M

{(
J [Rp1p2p3]

(3)
T,t

)2}
=

∫
[t,T ]3

R2
p1p2p3

(t1, t2, t3)dt1dt2dt3+
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+
1

3

∫
[t,T ]3

(
1{i1=i2}G

(1)
p1p2p3

(t1, t2, t3)dt1dt2dt3+

+1{i1=i3}G
(2)
p1p2p3

(t1, t2, t3)dt1dt2dt3+

+1{i2=i3}G
(3)
p1p2p3

(t1, t2, t3)dt1dt2dt3+

+1{i1=i2=i3}G
(4)
p1p2p3

(t1, t2, t3)dt1dt2dt3

)
dt1dt2dt3+

+

∫
[t,T ]3

(
1{i1=i2}Rp1p2p3(t1, t1, t3)Rp1p2p3(t2, t2, t3)+

+1{i2=i3}Rp1p2p3(t3, t1, t1)Rp1p2p3(t3, t2, t2)+

+1{i1=i3}Rp1p2p3(t1, t3, t1)Rp1p2p3(t2, t3, t2)+

+2 · 1{i1=i2=i3}

(
Rp1p2p3(t1, t1, t3)Rp1p2p3(t3, t2, t2)+

+Rp1p2p3(t1, t1, t3)Rp1p2p3(t2, t3, t2)+

+Rp1p2p3(t3, t1, t1)Rp1p2p3(t2, t3, t2)

))
dt1dt2dt3. (2.513)

Since the integrals on the right-hand side of (2.513) exist as Riemann inte-
grals, then they are equal to the corresponding Lebesgue integrals. Moreover,

lim
p1→∞

lim
p2→∞

lim
p3→∞

Rp1p2p3(t1, t2, t3) = 0 when (t1, t2, t3) ∈ (t, T )3,

where the left-hand side is bounded on the boundary of [t, T ]3 (see (2.404)).

Using (2.424) and applying three times (we mean here an iterated passage
to the limit lim

p1→∞
lim
p2→∞

lim
p3→∞

) the Lebesgue’s Dominated Convergence Theorem

(see the choice of integrable majorants in the proof of Theorem 2.10) in the
equality (2.513), we obtain

lim
p1→∞

lim
p2→∞

lim
p3→∞

M

{(
J [Rp1p2p3]

(3)
T,t

)2}
= 0.
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The relation (2.500) is proved. Theorem 2.17 is proved.

Developing the approach used in the proof of Theorem 2.17, we can in
principle prove the following formulas

lim
p1→∞

. . . lim
pk→∞

M


(
J∗[ψ(k)]T,t −

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

)2
 = 0,

lim
pk→∞

. . . lim
p1→∞

M


(
J∗[ψ(k)]T,t −

pk∑
jk=0

. . .

p1∑
j1=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

)2
 = 0,

which are correct under the conditions of Theorem 2.10 for i1, . . . , ik = 1, . . . ,m.

2.5 The Hypotheses on Expansion of Iterated Stratono-

vich Stochastic Integrals of Multiplicity k (k ∈ N)

Based on Theorem 1.1

In this section, on the base of the presented theorems (see Sect. 1.1.3, 2.1–2.4)
we formulate 3 hypotheses on expansions of iterated Stratonovich stochastic in-
tegrals of arbitrary multiplicity k (k ∈ N) based on generalized multiple Fourier
series converging in L2([t, T ]

k). The considered expansions contain only one op-
eration of the limit transition and substantially simpler than their analogues
for iterated Itô stochastic integrals (Theorem 1.1).

Taking into account (1.44) and Theorems 2.1–2.10, 2.14, and 2.17, let us for-
mulate the following hypotheses on expansions of iterated Stratonovich stochas-
tic integrals of multiplicity k (k ∈ N).

Hypothesis 2.1 [8]-[17], [39]. Assume that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). Then, for the iterated Stratonovich stochastic integral of mul-
tiplicity k

I
∗(i1...ik)
(λ1...λk)T,t

=

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(ik)
tk (2.514)

the following expansion

I
∗(i1...ik)
(λ1...λk)T,t

= l.i.m.
p→∞

p∑
j1,...jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.515)
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that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ, λl = 0 if il = 0 and

λl = 1 if il = 1, . . . ,m (l = 1, . . . , k).

Hypothesis 2.1 allows to approximate the iterated Stratonovich stochastic
integral I

∗(i1...ik)
(λ1...λk)T,t

by the sum

I
∗(i1...ik)p
(λ1...λk)T,t

=

p∑
j1,...jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl
, (2.516)

where

lim
p→∞

M


(
I
∗(i1...ik)
(λ1...λk)T,t

− I
∗(i1...ik)p
(λ1...λk)T,t

)2
 = 0.

The integrals (2.514) will be used in the Taylor–Stratonovich expansion
(see Chapter 4). It means that the approximations (2.516) may be very useful
for the construction of high-order strong numerical methods for Itô SDEs (see
Chapter 4 for details).

The expansion (2.515) contains only one operation of the limit transition
and by this reason is convenient for approximation of iterated Stratonovich
stochastic integrals.

Let us consider the more general hypothesis than Hypothesis 2.1.

Hypothesis 2.2 [14]-[17], [39]. Assume that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). Moreover, every ψl(τ) (l = 1, . . . , k) is an enough smooth non-
random function on [t, T ]. Then, for the iterated Stratonovich stochastic integral
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of multiplicity k

J∗[ψ(k)]T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following expansion

J∗[ψ(k)]T,t = l.i.m.
p→∞

p∑
j1,...jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.517)

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Hypothesis 2.2 allows to approximate the iterated Stratonovich stochastic
integral J∗[ψ(k)]T,t by the sum

J∗[ψ(k)]pT,t =

p∑
j1,...jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl
, (2.518)

where

lim
p→∞

M


(
J∗[ψ(k)]T,t − J∗[ψ(k)]pT,t

)2
 = 0.

Let us consider the more general hypothesis than Hypotheses 2.1 and 2.2.

Hypothesis 2.3 [14]-[17], [39]. Assume that {ϕj(x)}∞j=0 is a complete or-
thonormal system of Legendre polynomials or trigonometric functions in the
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space L2([t, T ]). Moreover, every ψl(τ) (l = 1, . . . , k) is an enough smooth non-
random function on [t, T ]. Then, for the iterated Stratonovich stochastic integral
of multiplicity k

J∗[ψ(k)]T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following expansion

J∗[ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.519)

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Let us consider the idea of the proof of Hypotheses 2.1–2.3.

According to (1.10), we have

l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
g=1

ζ
(ig)
jg

= J [ψ(k)]T,t+

+ l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1 l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

k∏
g=1

ϕjg(τlg)∆w(ig)
τlg

w. p. 1,

(2.520)

where notations are the same as in (1.10).

From (2.520) and Theorem 2.12 it follows that
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J∗[ψ(k)]T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
g=1

ζ
(ig)
jg

(2.521)

if
[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t =

= l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1 l.i.m.
N→∞

∑
(l1,...,lk)∈Gk

k∏
g=1

ϕjg(τlg)∆w(ig)
τlg

w. p. 1,

where notations are the same as in Theorems 1.1 and 2.12.

Note that from Theorem 1.1 for pairwise different i1, . . . , ik (i1, . . . , ik =
0, 1, . . . ,m) we obtain (2.521) (compare (1.44) and (2.521)).

In the case p1 = . . . = pk = p and ψl(s) ≡ 1 (l = 1, . . . , k) we obtain from
(2.521) the statement of Hypothesis 2.1 (see (2.515)).

If p1 = . . . = pk = p and every ψl(s) (l = 1, . . . , k) is an enough smooth
nonrandom function on [t, T ], then we obtain from (2.521) the statement of
Hypothesis 2.2 (see (2.517)).

In the case when every ψl(s) (l = 1, . . . , k) is an enough smooth nonrandom
function on [t, T ] we obtain from (2.521) the statement of Hypothesis 2.3 (see
(2.519)).

2.6 Expansions of Iterated Stratonovich Stochastic Inte-

grals of Multiplicities 3 and 4. Combained Approach

Based on Generalized Multiple and Iterated Fourier

series. Another Proof of Theorems 2.8 and 2.9

In this section, we develop the approach from Sect. 2.1.3 for iterated Stra-
tonovich stochastic integrals of multiplicities 3 and 4. We call this approach
the combined approach of generalized multiple and iterated Fourier series. We
consider two different parts of the expansion of iterated Stratonovich stochastic
integrals. The mean-square convergence of the first part is proved on the base of
generalized multiple Fourier series converging in the sense of norm in L2([t, T ]

k),
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k = 3, 4. The mean-square convergence of the second part is proved on the base
of (1.46), (2.10), Parseval’s equality, and generalized Fourier series converging
pointwise. At that, we do not use iterated Itô stochastic integrals as a tool of
the proof and directly consider iterated Stratonovich stochastic integrals.

2.6.1 Another Proof of Theorem 2.8

Let us consider (2.402) for k = 3, p1 = p2 = p3 = p, and i1, i2, i3 = 1, . . . ,m

J∗[ψ(3)]T,t =

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

+ J [Rppp]
(3)
T,t w. p. 1, (2.522)

where

J [Rppp]
(3)
T,t = l.i.m.

N→∞

N−1∑
l3=0

N−1∑
l2=0

N−1∑
l1=0

Rppp(τl1, τl2, τl3)∆f (i1)τl1
∆f (i2)τl2

∆f (i3)τl3
,

Rppp(t1, t2, t3)
def
= K∗(t1, t2, t3)−

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t1)ϕj2(t2)ϕj3(t3),

K∗(t1, t2, t3) =
3∏
l=1

ψl(tl)

(
1{t1<t2}1{t2<t3} +

1

2
1{t1=t2}1{t2<t3}+

+
1

2
1{t1<t2}1{t2=t3} +

1

4
1{t1=t2}1{t2=t3}

)
.

Using (2.416), we obtain w. p. 1

J [Rppp]
(3)
T,t = R

(1)ppp
T,t +R

(2)ppp
T,t ,

where

R
(1)ppp
T,t =

T∫
t

t3∫
t

t2∫
t

Rppp(t1, t2, t3)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rppp(t1, t3, t2)df
(i1)
t1 df

(i3)
t2 df

(i2)
t3 +
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+

T∫
t

t3∫
t

t2∫
t

Rppp(t2, t1, t3)df
(i2)
t1 df

(i1)
t2 df

(i3)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rppp(t2, t3, t1)df
(i3)
t1 df

(i1)
t2 df

(i2)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rppp(t3, t2, t1)df
(i3)
t1 df

(i2)
t2 df

(i1)
t3 +

+

T∫
t

t3∫
t

t2∫
t

Rppp(t3, t1, t2)df
(i2)
t1 df

(i3)
t2 df

(i1)
t3 ,

R
(2)ppp
T,t = 1{i1=i2 ̸=0}

T∫
t

t3∫
t

Rppp(t2, t2, t3)dt2df
(i3)
t3 +

+1{i1=i3 ̸=0}

T∫
t

t3∫
t

Rppp(t2, t3, t2)dt2df
(i2)
t3 +

+1{i2=i3 ̸=0}

T∫
t

t3∫
t

Rppp(t3, t2, t2)dt2df
(i1)
t3 +

+1{i2=i3 ̸=0}

T∫
t

t3∫
t

Rppp(t1, t3, t3)df
(i1)
t1 dt3+

+1{i1=i3 ̸=0}

T∫
t

t3∫
t

Rppp(t3, t1, t3)df
(i2)
t1 dt3+

+1{i1=i2 ̸=0}

T∫
t

t3∫
t

Rppp(t3, t3, t1)df
(i3)
t1 dt3.

We have

M

{(
J [Rppp]

(3)
T,t

)2}
≤ 2M

{(
R

(1)ppp
T,t

)2}
+ 2M

{(
R

(2)ppp
T,t

)2}
. (2.523)
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Now, using standard estimates for moments of stochastic integrals [100], we
obtain the following inequality

M

{(
R

(1)ppp
T,t

)2}
≤

≤ 6

T∫
t

t3∫
t

t2∫
t

(
(Rp1p2p3(t1, t2, t3))

2 + (Rp1p2p3(t1, t3, t2))
2+(Rp1p2p3(t2, t1, t3))

2+

+(Rp1p2p3(t2, t3, t1))
2 + (Rp1p2p3(t3, t2, t1))

2 + (Rp1p2p3(t3, t1, t2))
2

)
dt1dt2dt3 =

= 6

∫
[t,T ]3

(Rppp(t1, t2, t3))
2 dt1dt2dt3.

We have ∫
[t,T ]3

(Rppp(t1, t2, t3))
2 dt1dt2dt3 =

=

∫
[t,T ]3

(
K∗(t1, t2, t3)−

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t1)ϕj2(t2)ϕj3(t3)

)2

dt1dt2dt3 =

=

∫
[t,T ]3

(
K(t1, t2, t3)−

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t1)ϕj2(t2)ϕj3(t3)

)2

dt1dt2dt3,

where

K(t1, t2, t3) =


ψ1(t1)ψ2(t2)ψ3(t3), t1 < t2 < t3

0, otherwise

, t1, t2, t3 ∈ [t, T ].

So, we get

lim
p→∞

M

{(
R

(1)ppp
T,t

)2}
≤
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≤ 6 lim
p→∞

∫
[t,T ]3

(
K(t1, t2, t3)−

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t1)ϕj2(t2)ϕj3(t3)

)2

dt1dt2dt3 =

= 0, (2.524)

where K(t1, t2, t3) ∈ L2([t, T ]
3).

After replacement of the integration order in the iterated Itô stochastic
integrals from R

(2)ppp
T,t [1]-[17], [77], [123], [124] (see Chapter 3) we obtain w. p. 1

R
(2)ppp
T,t =

= 1{i1=i2 ̸=0}

 T∫
t

t3∫
t

Rppp(t2, t2, t3)dt2df
(i3)
t3 +

T∫
t

t3∫
t

Rppp(t3, t3, t1)df
(i3)
t1 dt3

+

+1{i2=i3 ̸=0}

 T∫
t

t3∫
t

Rppp(t3, t2, t2)dt2df
(i1)
t3 +

T∫
t

t3∫
t

Rppp(t1, t3, t3)df
(i1)
t1 dt3

+

+1{i1=i3 ̸=0}

 T∫
t

t3∫
t

Rppp(t2, t3, t2)dt2df
(i2)
t3 +

T∫
t

t3∫
t

Rppp(t3, t1, t3)df
(i2)
t1 dt3

 =

= 1{i1=i2 ̸=0}

 T∫
t

t1∫
t

Rppp(t2, t2, t1)dt2df
(i3)
t1 +

T∫
t

T∫
t1

Rppp(t2, t2, t1)dt2df
(i3)
t1

+

+1{i2=i3 ̸=0}

 T∫
t

t1∫
t

Rppp(t1, t2, t2)dt2df
(i1)
t1 +

T∫
t

T∫
t1

Rppp(t1, t2, t2)dt2df
(i1)
t1

+

+1{i1=i3 ̸=0}

 T∫
t

t1∫
t

Rppp(t2, t1, t2)dt2df
(i2)
t1 +

T∫
t

T∫
t1

Rppp(t2, t1, t2)dt2df
(i2)
t1

 =

= 1{i1=i2 ̸=0}

T∫
t

 T∫
t

Rppp(t2, t2, t3)dt2

 df
(i3)
t3 +

+1{i2=i3 ̸=0}

T∫
t

 T∫
t

Rppp(t1, t2, t2)dt2

 df
(i1)
t1 +
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+1{i1=i3 ̸=0}

T∫
t

 T∫
t

Rppp(t3, t2, t3)dt3

 df
(i2)
t2 =

= 1{i1=i2 ̸=0}

T∫
t

T∫
t

((
1

2
1{t2<t3} +

1

4
1{t2=t3}

)
ψ1(t2)ψ2(t2)ψ3(t3)−

−
p∑

j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t2)ϕj2(t2)ϕj3(t3)

)
dt2df

(i3)
t3 +

+1{i2=i3 ̸=0}

T∫
t

T∫
t

((
1

2
1{t1<t2} +

1

4
1{t1=t2}

)
ψ1(t1)ψ2(t2)ψ3(t2)−

−
p∑

j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t1)ϕj2(t2)ϕj3(t2)

)
dt2df

(i1)
t1 +

+1{i1=i3 ̸=0}

T∫
t

T∫
t

(
1

4
1{t2=t3}ψ1(t3)ψ2(t2)ψ3(t3)−

−
p∑

j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ϕj1(t3)ϕj2(t2)ϕj3(t3)

)
dt3df

(i2)
t2 =

= 1{i1=i2 ̸=0}

T∫
t

1

2
ψ3(t3)

t3∫
t

ψ1(t2)ψ2(t2)dt2−
p∑

j1=0

p∑
j3=0

Cj3j1j1ϕj3(t3)

 df
(i3)
t3 +

+1{i2=i3 ̸=0}

T∫
t

1

2
ψ1(t1)

T∫
t1

ψ2(t2)ψ3(t2)dt2−
p∑

j1=0

p∑
j3=0

Cj3j3j1ϕj1(t1)

 df
(i1)
t1 +

+1{i1=i3 ̸=0}

T∫
t

(−1)

p∑
j1=0

p∑
j2=0

Cj1j2j1ϕj2(t2)df
(i2)
t2 =

= 1{i1=i2 ̸=0}

1

2

T∫
t

ψ3(t3)

t3∫
t

ψ1(t2)ψ2(t2)dt2df
(i3)
t3 −

p∑
j1=0

p∑
j3=0

Cj3j1j1ζ
(i3)
j3

+

+1{i2=i3 ̸=0}

1

2

T∫
t

ψ1(t1)

T∫
t1

ψ2(t2)ψ3(t2)dt2df
(i1)
t1 −

p∑
j1=0

p∑
j3=0

Cj3j3j1ζ
(i1)
j1

−
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−1{i1=i3 ̸=0}

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3
.

From the proof of Theorem 2.8 we obtain

M

{(
R

(2)ppp
T,t

)2}
≤ 3

1{i1=i2 ̸=0}M


(
1

2

T∫
t

ψ3(t3)

t3∫
t

ψ1(t2)ψ2(t2)dt2df
(i3)
t3 −

−
p∑

j1=0

p∑
j3=0

Cj3j1j1ζ
(i3)
j3

)2
+ 1{i1=i3 ̸=0}M


(

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3

)2
+

+1{i2=i3 ̸=0}M


(
1

2

T∫
t

ψ1(t1)

T∫
t1

ψ2(t2)ψ3(t2)dt2df
(i1)
t1 −

−
p∑

j1=0

p∑
j3=0

Cj3j3j1ζ
(i1)
j1

)2

 → 0 (2.525)

if p→ ∞. From (2.522)–(2.525) we obtain the expansion (2.272). Theorem 2.8
is proved.

2.6.2 Another Proof of Theorem 2.9

Let us consider (2.402) for k = 4, p1 = . . . = p4 = p, and ψ1(s), . . . , ψ4(s) ≡ 1

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 =

=

p∑
j1=0

p∑
j2=0

p∑
j3=0

p∑
j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

+ J [Rpppp]
(4)
T,t w. p. 1, (2.526)

where

J [Rpppp]
(4)
T,t =

= l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l3=0

N−1∑
l2=0

N−1∑
l1=0

Rpppp(τl1, τl2, τl3, τl4)∆w(i1)
τl1

∆w(i2)
τl2

∆w(i3)
τl3

∆w(i4)
τl4
,
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Rpppp(t1, t2, t3, t4)
def
= K∗(t1, t2, t3, t4)−

−
p∑

j1=0

p∑
j2=0

p∑
j3=0

p∑
j4=0

Cj4j3j2j1ϕj1(t1)ϕj2(t2)ϕj3(t3)ϕj4(t4), (2.527)

K∗(t1, t2, t3, t4)
def
=

3∏
l=1

(
1{tl<tl+1} +

1

2
1{tl=tl+1}

)
=

= 1{t1<t2<t3<t4} +
1

2
1{t1=t2<t3<t4} +

1

2
1{t1<t2=t3<t4}+

+
1

4
1{t1=t2=t3<t4} +

1

2
1{t1<t2<t3=t4} +

1

4
1{t1=t2<t3=t4}+

+
1

4
1{t1<t2=t3=t4} +

1

8
1{t1=t2=t3=t4}.

We have

J [Rpppp]
(4)
T,t =

7∑
i=0

R
(i)pppp
T,t w. p. 1, (2.528)

where

R
(0)pppp
T,t = l.i.m.

N→∞

N−1∑
l4=0

l4−1∑
l3=0

l3−1∑
l2=0

l2−1∑
l1=0

∑
(l1,l2,l3,l4)

(
Rpppp(τl1, τl2, τl3, τl4)×

×∆w(i1)
τl1

∆w(i2)
τl2

∆w(i3)
τl3

∆w(i4)
τl4

)
,

where permutations (l1, l2, l3, l4) when summing are performed only in the ex-
pression, which is enclosed in parentheses,

R
(1)pppp
T,t = 1{i1=i2 ̸=0}l.i.m.

N→∞

N−1∑
l4,l3,l1=0

l1 ̸=l3,l1 ̸=l4,l3 ̸=l4

Rpppp(τl1, τl1, τl3, τl4)∆τl1∆w(i3)
τl3

∆w(i4)
τl4
,

R
(2)pppp
T,t = 1{i1=i3 ̸=0}l.i.m.

N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l2,l1 ̸=l4,l2 ̸=l4

Rpppp(τl1, τl2, τl1, τl4)∆τl1∆w(i2)
τl2

∆w(i4)
τl4
,
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R
(3)pppp
T,t = 1{i1=i4 ̸=0}l.i.m.

N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2,l1 ̸=l3,l2 ̸=l3

Rpppp(τl1, τl2, τl3, τl1)∆τl1∆w(i2)
τl2

∆w(i3)
τl3
,

R
(4)pppp
T,t = 1{i2=i3 ̸=0}l.i.m.

N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l2,l1 ̸=l4,l2 ̸=l4

Rpppp(τl1, τl2, τl2, τl4)∆w(i1)
τl1

∆τl2∆w(i4)
τl4
,

R
(5)pppp
T,t = 1{i2=i4 ̸=0}l.i.m.

N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2,l1 ̸=l3,l2 ̸=l3

Rpppp(τl1, τl2, τl3, τl2)∆w(i1)
τl1

∆τl2∆w(i3)
τl3
,

R
(6)pppp
T,t = 1{i3=i4 ̸=0}l.i.m.

N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2,l1 ̸=l3,l2 ̸=l3

Rpppp(τl1, τl2, τl3, τl3)∆w(i1)
τl1

∆w(i2)
τl2

∆τl3,

R
(7)pppp
T,t = 1{i1=i2 ̸=0}1{i3=i4 ̸=0} lim

N→∞

N−1∑
l4,l2=0
l2 ̸=l4

Rpppp(τl2, τl2, τl4, τl4)∆τl2∆τl4+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0} lim
N→∞

N−1∑
l4,l2=0
l2 ̸=l4

Rpppp(τl2, τl4, τl2, τl4)∆τl2∆τl4+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0} lim
N→∞

N−1∑
l4,l2=0
l2 ̸=l4

Rpppp(τl2, τl4, τl4, τl2)∆τl2∆τl4.

From (2.526) and (2.528) it follows that Theorem 2.9 will be proved if

lim
p→∞

M

{(
R

(i)pppp
T,t

)2}
= 0, i = 0, 1, . . . , 7.

We have (see (1.19), (1.24))

R
(0)pppp
T,t =

T∫
t

t4∫
t

t3∫
t

t2∫
t

∑
(t1,t2,t3,t4)

(
Rpppp(t1, t2, t3, t4)dw

(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

)
,

where permutations (t1, t2, t3, t4) when summing are performed only in the ex-
pression, which is enclosed in parentheses.
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From the other hand (see (1.24), (1.25))

R
(0)pppp
T,t =

∑
(t1,t2,t3,t4)

T∫
t

t4∫
t

t3∫
t

t2∫
t

Rpppp(t1, t2, t3, t4)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 ,

where permutations (t1, t2, t3, t4) when summing are performed only in the val-

ues dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 . At the same time the indices near upper limits of

integration in the iterated stochastic integrals are changed correspondently and
if tr swapped with tq in the permutation (t1, t2, t3, t4), then ir swapped with iq
in the permutation (i1, i2, i3, i4).

So, we obtain

M

{(
R

(0)pppp
T,t

)2}
≤ 24

∑
(t1,t2,t3,t4)

T∫
t

t4∫
t

t3∫
t

t2∫
t

(Rpppp(t1, t2, t3, t4))
2 dt1dt2dt3dt4 =

= 24

∫
[t,T ]4

(Rpppp(t1, t2, t3, t4)))
2 dt1dt2dt3dt4 → 0

if p→ ∞, K∗(t1, t2, t3, t4) ∈ L2([t, T ]
4) (see (2.527)).

Let us consider R
(1)pppp
T,t

R
(1)pppp
T,t = 1{i1=i2 ̸=0}l.i.m.

N→∞

N−1∑
l4,l3,l1=0

l1 ̸=l3,l1 ̸=l4,l3 ̸=l4

Rpppp(τl1, τl1, τl3, τl4)∆τl1∆w(i3)
τl3

∆w(i4)
τl4

=

= 1{i1=i2 ̸=0}l.i.m.
N→∞

N−1∑
l4,l3,l1=0

l3 ̸=l4

Rpppp(τl1, τl1, τl3, τl4)∆τl1∆w(i3)
τl3

∆w(i4)
τl4

=

= 1{i1=i2 ̸=0}l.i.m.
N→∞

N−1∑
l4,l3,l1=0

l3 ̸=l4

(
1

2
1{τl1<τl3<τl4}+

+
1

4
1{τl1=τl3<τl4} +

1

4
1{τl1<τl3=τl4} +

1

8
1{τl1=τl3=τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl1)ϕj3(τl3)ϕj4(τl4)

)
∆τl1∆w(i3)

τl3
∆w(i4)

τl4
=
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= 1{i1=i2 ̸=0}l.i.m.
N→∞

N−1∑
l4,l3,l1=0

l3 ̸=l4

(
1

2
1{τl1<τl3<τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl1)ϕj3(τl3)ϕj4(τl4)

)
∆τl1∆w(i3)

τl3
∆w(i4)

τl4
=

= 1{i1=i2 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l3=0

N−1∑
l1=0

(
1

2
1{τl1<τl3<τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl1)ϕj3(τl3)ϕj4(τl4)

)
∆τl1∆w(i3)

τl3
∆w(i4)

τl4
−

−1{i1=i2 ̸=0}1{i3=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l1=0

(
0−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl1)ϕj3(τl4)ϕj4(τl4)

)
∆τl1∆τl4 =

= 1{i1=i2 ̸=0}

1

2

T∫
t

t4∫
t

t3∫
t

dt1dw
(i3)
t3 dw

(i4)
t4 −

p∑
j4,j3,j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4

+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

p∑
j4,j1=0

Cj4j4j1j1 w. p. 1.

When proving Theorem 2.9 we have proved that

lim
p→∞

p∑
j4,j1=0

Cj4j4j1j1 =
1

4

T∫
t

t2∫
t

dt1dt2,

l.i.m.
p→∞

p∑
j4,j3,j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4

=
1

2

T∫
t

t4∫
t

t3∫
t

dt1dw
(i3)
t3 dw

(i4)
t4 +

+1{i3=i4 ̸=0}
1

4

T∫
t

t2∫
t

dt1dt2 w. p. 1.
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Then

lim
p→∞

M

{(
R

(1)pppp
T,t

)2}
= 0.

Let us consider R
(2)pppp
T,t

R
(2)pppp
T,t = 1{i1=i3 ̸=0}l.i.m.

N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l2,l1 ̸=l4,l2 ̸=l4

Gpppp(τl1, τl2, τl1, τl4)∆τl1∆w(i2)
τl2

∆w(i4)
τl4

=

= 1{i1=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2,l1=0

l2 ̸=l4

Gpppp(τl1, τl2, τl1, τl4)∆τl1∆w(i2)
τl2

∆w(i4)
τl4

=

= 1{i1=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2,l1=0

l2 ̸=l4

(
1

4
1{τl1=τl2<τl4}+

1

8
1{τl1=τl2=τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl1)ϕj4(τl4)

)
∆τl1∆w(i2)

τl2
∆w(i4)

τl4
=

= 1{i1=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

N−1∑
l1=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl1)ϕj2(τl2)ϕj3(τl1)ϕj4(τl4)∆τl1∆w(i2)
τl2

∆w(i4)
τl4

−

−1{i1=i3 ̸=0}1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l1=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl1)ϕj2(τl4)ϕj3(τl1)ϕj4(τl4)∆τl1∆τl4 =

= −1{i1=i3 ̸=0}

p∑
j4,j2,j1=0

Cj4j1j2j1ζ
(i2)
j2
ζ
(i4)
j4

+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}

p∑
j4,j1=0

Cj4j1j4j1 w. p. 1.

When proving Theorem 2.9 we have proved that

l.i.m.
p→∞

p∑
j4,j2,j1=0

Cj4j1j2j1ζ
(i2)
j2
ζ
(i4)
j4

= 0 w. p. 1,
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lim
p→∞

p∑
j4,j1=0

Cj4j1j4j1 = 0.

Then

lim
p→∞

M

{(
R

(2)pppp
T,t

)2}
= 0.

Let us consider R
(3)pppp
T,t

R
(3)pppp
T,t = 1{i1=i4 ̸=0}l.i.m.

N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2,l1 ̸=l3,l2 ̸=l3

Gpppp(τl1, τl2, τl3, τl1)∆τl1∆w(i2)
τl2

∆w(i3)
τl3

=

= 1{i1=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l2 ̸=l3

Gpppp(τl1, τl2, τl3, τl1)∆τl1∆w(i2)
τl2

∆w(i3)
τl3

=

= 1{i1=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l2 ̸=l3

(
1

8
1{τl1=τl2=τl3}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl3)ϕj4(τl1)

)
∆τl1∆w(i2)

τl2
∆w(i3)

τl3
=

= 1{i1=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3=0

N−1∑
l2=0

N−1∑
l1=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl1)ϕj2(τl2)ϕj3(τl3)ϕj4(τl1)∆τl1∆w(i2)
τl2

∆w(i3)
τl3

−

−1{i1=i4 ̸=0}1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l3=0

N−1∑
l1=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl1)ϕj2(τl3)ϕj3(τl3)ϕj4(τl1)∆τl1∆τl3 =

= −1{i1=i4 ̸=0}

p∑
j4,j3,j2=0

Cj4j3j2j4ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0}

p∑
j4,j2=0

Cj4j2j2j4 w. p. 1.
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When proving Theorem 2.9 we have proved that

l.i.m.
p→∞

p∑
j4,j3,j2=0

Cj4j3j2j4ζ
(i2)
j2
ζ
(i3)
j3

= 0 w. p. 1,

lim
p→∞

p∑
j4,j2=0

Cj4j2j2j4 = 0.

Then

lim
p→∞

M

{(
R

(3)pppp
T,t

)2}
= 0.

Let us consider R
(4)pppp
T,t

R
(4)pppp
T,t = 1{i2=i3 ̸=0}l.i.m.

N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l2,l1 ̸=l4,l2 ̸=l4

Gpppp(τl1, τl2, τl2, τl4)∆w(i1)
τl1

∆τl2∆w(i4)
τl4

=

= 1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l4

Gpppp(τl1, τl2, τl2, τl4)∆w(i1)
τl1

∆τl2∆w(i4)
τl4

=

= 1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l4

(
1

2
1{τl1<τl2<τl4}+

+
1

4
1{τl1=τl2<τl4} +

1

4
1{τl1<τl2=τl4} +

1

8
1{τl1=τl2=τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl2)ϕj4(τl4)

)
∆w(i1)

τl1
∆τl2∆w(i4)

τl4
=

= 1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2,l1=0

l1 ̸=l4

(
1

2
1{τl1<τl2<τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl2)ϕj4(τl4)

)
∆w(i1)

τl1
∆τl2∆w(i4)

τl4
=

= 1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

N−1∑
l1=0

(
1

2
1{τl1<τl2<τl4}−
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−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl2)ϕj4(τl4)

)
∆w(i1)

τl1
∆τl2∆w(i4)

τl4
−

−1{i2=i3 ̸=0}1{i1=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl4)ϕj2(τl2)ϕj3(τl2)ϕj4(τl4)∆τl2∆τl4 =

= 1{i2=i3 ̸=0}

1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i4)
t4 −

p∑
j4,j2,j1=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i4)
j4

+

+1{i2=i3 ̸=0}1{i1=i4 ̸=0}

p∑
j4,j2=0

Cj4j2j2j4 w. p. 1.

When proving Theorem 2.9 we have proved that

lim
p→∞

p∑
j4,j2=0

Cj4j2j2j4 = 0,

l.i.m.
p→∞

p∑
j4,j2,j1=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i4)
j4

=
1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i4)
t4 w. p. 1.

Then

lim
p→∞

M

{(
R

(4)pppp
T,t

)2}
= 0.

Let us consider R
(5)pppp
T,t

R
(5)pppp
T,t = 1{i2=i4 ̸=0}l.i.m.

N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2,l1 ̸=l3,l2 ̸=l3

Gpppp(τl1, τl2, τl3, τl2)∆w(i1)
τl1

∆τl2∆w(i3)
τl3

=

= 1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l3

Gpppp(τl1, τl2, τl3, τl2)∆w(i1)
τl1

∆τl2∆w(i3)
τl3

=

= 1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l3

(
1

4
1{τl1<τl2=τl3}+

1

8
1{τl1=τl2=τl3}−
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−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl3)ϕj4(τl2)

)
∆w(i1)

τl1
∆τl2∆w(i3)

τl3
=

= 1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l3

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl1)ϕj2(τl2)ϕj3(τl3)ϕj4(τl2)∆w(i1)
τl1

∆τl2∆w(i3)
τl3

=

= −1{i2=i4 ̸=0}

p∑
j4,j3,j1=0

Cj4j3j4j1ζ
(i1)
j1
ζ
(i3)
j3

−

−1{i2=i4 ̸=0}1{i1=i3 ̸=0}l.i.m.
N→∞

N−1∑
l3=0

N−1∑
l2=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl3)ϕj2(τl2)ϕj3(τl3)ϕj4(τl2)∆τl2∆τl3 =

= −1{i2=i4 ̸=0}

p∑
j4,j3,j1=0

Cj4j3j4j1ζ
(i1)
j1
ζ
(i3)
j3

+

+1{i2=i4 ̸=0}1{i1=i3 ̸=0}

p∑
j4,j1=0

Cj4j1j4j1 w. p. 1.

When proving Theorem 2.9 we have proved that

l.i.m.
p→∞

p∑
j4,j3,j1=0

Cj4j3j4j1ζ
(i1)
j1
ζ
(i3)
j3

= 0 w. p. 1,

lim
p→∞

p∑
j4,j1=0

Cj4j1j4j1 = 0.

Then

lim
p→∞

M

{(
R

(5)pppp
T,t

)2}
= 0.

Let us consider R
(6)pppp
T,t

R
(6)pppp
T,t = 1{i3=i4 ̸=0}l.i.m.

N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2,l1 ̸=l3,l2 ̸=l3

Gpppp(τl1, τl2, τl3, τl3)∆w(i1)
τl1

∆w(i2)
τl2

∆τl3 =
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= 1{i3=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2

Gpppp(τl1, τl2, τl3, τl3)∆w(i1)
τl1

∆w(i2)
τl2

∆τl3 =

= 1{i3=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2

(
1

2
1{τl1<τl2<τl3}+

+
1

4
1{τl1=τl2<τl3} +

1

4
1{τl1<τl2=τl3} +

1

8
1{τl1=τl2=τl3}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl3)ϕj4(τl3)

)
∆w(i1)

τl1
∆w(i2)

τl2
∆τl3 =

= 1{i3=i4 ̸=0}l.i.m.
N→∞

N−1∑
l3,l2,l1=0

l1 ̸=l2

(
1

2
1{τl1<τl2<τl3}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl1)ϕj2(τl2)ϕj3(τl3)ϕj4(τl3)

)
∆w(i1)

τl1
∆w(i2)

τl2
∆τl3 =

= 1{i3=i4 ̸=0}

1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 −

p∑
j4,j2,j1=0

Cj4j4j2j1ζ
(i1)
j1
ζ
(i2)
j2

−

−1{i3=i4 ̸=0}1{i1=i2 ̸=0}l.i.m.
N→∞

N−1∑
l3=0

N−1∑
l1=0

(−1)

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl1)ϕj2(τl1)ϕj3(τl3)ϕj4(τl3)∆τl1∆τl3 =

= 1{i3=i4 ̸=0}

1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 −

p∑
j4,j2,j1=0

Cj4j4j2j1ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

p∑
j4,j1=0

Cj4j4j1j1 =

= 1{i3=i4 ̸=0}

1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 +

1

4
1{i1=i2 ̸=0}

T∫
t

t3∫
t

dt1dt3−

−
p∑

j4,j2,j1=0

Cj4j4j2j1ζ
(i1)
j1
ζ
(i2)
j2

)
+
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+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

 p∑
j4,j1=0

Cj4j4j1j1 −
1

4

T∫
t

t3∫
t

dt1dt3

 w. p. 1.

When proving Theorem 2.9 we have proved that

lim
p→∞

p∑
j4,j1=0

Cj4j4j1j1 =
1

4

T∫
t

t3∫
t

dt1dt3,

l.i.m.
p→∞

p∑
j4,j2,j1=0

Cj4j4j2j1ζ
(i1)
j1
ζ
(i2)
j2

=
1

2

T∫
t

t3∫
t

t2∫
t

w
(i1)
t1 dw

(i2)
t2 dt3+

+1{i1=i2 ̸=0}
1

4

T∫
t

t3∫
t

dt1dt3 w. p. 1.

Then

lim
p→∞

M

{(
R

(6)pppp
T,t

)2}
= 0.

Finally, let us consider R
(7)pppp
T,t

R
(7)pppp
T,t = 1{i1=i2 ̸=0}1{i3=i4 ̸=0}l.i.m.

N→∞

N−1∑
l4,l2=0
l2 ̸=l4

Gpppp(τl2, τl2, τl4, τl4)∆τl2∆τl4+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2=0
l2 ̸=l4

Gpppp(τl2, τl4, τl2, τl4)∆τl2∆τl4+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4,l2=0
l2 ̸=l4

Gpppp(τl2, τl4, τl4, τl2)∆τl2∆τl4 =

= 1{i1=i2 ̸=0}1{i3=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

Gpppp(τl2, τl2, τl4, τl4)∆τl2∆τl4+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

Gpppp(τl2, τl4, τl2, τl4)∆τl2∆τl4+
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+1{i1=i4 ̸=0}1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

Gpppp(τl2, τl4, τl4, τl2)∆τl2∆τl4 =

= 1{i1=i2 ̸=0}1{i3=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

(
1

4
1{τl2<τl4} +

1

8
1{τl2=τl4}−

−
p∑

j4,j3,j2,j1=0

Cj4j3j2j1ϕj1(τl2)ϕj2(τl2)ϕj3(τl4)ϕj4(τl4)

)
∆τl2∆τl4+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

(
1

8
1{τl2=τl4} −

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl2)ϕj2(τl4)ϕj3(τl2)ϕj4(τl4)

)
∆τl2∆τl4+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0}l.i.m.
N→∞

N−1∑
l4=0

N−1∑
l2=0

(
1

8
1{τl2=τl4} −

p∑
j4,j3,j2,j1=0

Cj4j3j2j1×

×ϕj1(τl2)ϕj2(τl4)ϕj3(τl4)ϕj4(τl2)

)
∆τl2∆τl4 =

= 1{i1=i2 ̸=0}1{i3=i4 ̸=0}

1

4

T∫
t

t4∫
t

dt2dt4 −
p∑

j4,j1=0

Cj4j4j1j1

−

−1{i1=i3 ̸=0}1{i2=i4 ̸=0}

p∑
j4,j1=0

Cj4j1j4j1−

−1{i1=i4 ̸=0}1{i2=i3 ̸=0}

p∑
j4,j2=0

Cj4j2j2j4.

When proving Theorem 2.9 we have proved that

lim
p→∞

p∑
j4,j1=0

Cj4j4j1j1 =
1

4

T∫
t

t4∫
t

dt2dt4, (2.529)

lim
p→∞

p∑
j4,j1=0

Cj4j1j4j1 = 0, lim
p→∞

p∑
j4,j2=0

Cj4j2j2j4 = 0. (2.530)
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Then

lim
p→∞

R
(7)pppp
T,t = 0.

Theorem 2.9 is proved.

2.7 Modification of Theorems 2.1, 2.8, and 2.9 for the

Case of Integration Interval [t, s] (s ∈ (t, T ]) of Iterated

Stratonovich Stochastic Integrals of Multiplicities 2

to 4 and Wong–Zakai Type Theorems

2.7.1 Modification of Theorem 2.1 for the Case of Integration Inter-
val [t, s] (s ∈ (t, T ]) of Iterated Stratonovich Stochastic Integrals
of Multiplicity 2

Let us prove the following theorem.

Theorem 2.18. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonor-
mal system of functions in the space L2([t, T ]). Moreover, ψ1(τ), ψ2(τ) are con-
tinuous functions on [t, T ]. Then, for the iterated Stratonovich stochastic inte-
gral

J∗[ψ(2)]s,t =

∗∫
t

s

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following expansion

J∗[ψ(2)]s,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1(s)ζ
(i1)
j1
ζ
(i2)
j2

(2.531)

that converges in the mean-square sense is valid, where s ∈ (t, T ] (s is fixed),

Cj2j1(s) =

s∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2, (2.532)

and

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ
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are independent standard Gaussian random variables for various i or j.

The condition of continuity of the functions ψ1(τ), ψ2(τ) is related to the
definition (2.3) of the Stratonovich stochastic integral that we use.

Proof. The case s = T is considered in Theorems 2.1–2.3. Below we con-
sider the case s ∈ (t, T ). In accordance to the standard relations between Stra-
tonovich and Itô stochastic integrals (see (2.4) and (2.5)) we have w. p. 1

J∗[ψ(2)]s,t = J [ψ(2)]s,t +
1

2
1{i1=i2}

s∫
t

ψ1(t1)ψ2(t1)dt1, (2.533)

where ψ1(τ), ψ2(τ) are continuous functions on [t, T ], s ∈ (t, T ) (s is fixed), 1A
is the indicator of the set A.

From the other side according to (1.255), we obtain

J [ψ(2)]s,t = l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1(s)

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
=

= l.i.m.
p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1(s)ζ
(i1)
j1
ζ
(i2)
j2

−

−1{i1=i2} lim
p1,p2→∞

min{p1,p2}∑
j1=0

Cj1j1(s). (2.534)

From (2.533) and (2.534) it follows that Theorem 2.18 will be proved if

1

2

s∫
t

ψ1(t1)ψ2(t1)dt1 =
∞∑
j1=0

Cj1j1(s), (2.535)

where ψ1(τ), ψ2(τ) ∈ L2([t, T ]).

We have (see Sect. 2.1.4)

1

2

T∫
t

ψ̄1(τ)ψ̄2(τ)dτ =
∞∑
j=0

T∫
t

ψ̄2(t2)ϕj(t2)

t2∫
t

ψ̄1(t1)ϕj(t1)dt1dt2, (2.536)

where ψ̄1(τ), ψ̄2(τ) ∈ L2([t, T ]).

Suppose that

ψ̄1(τ) = ψ1(τ)1{τ<s}, ψ̄2(τ) = ψ2(τ)1{τ<s}, (2.537)
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where ψ1(τ), ψ2(τ) ∈ L2([t, T ]), s ∈ (t, T ) (s is fixed).

Combining (2.536) and (2.537), we get

1

2

T∫
t

ψ1(τ)ψ2(τ)1{τ<s}dτ =
∞∑
j=0

T∫
t

ψ2(t2)1{t2<s}ϕj(t2)

t2∫
t

ψ1(t1)1{t1<s}ϕj(t1)dt1dt2,

i.e.

1

2

s∫
t

ψ1(τ)ψ2(τ)dτ =
∞∑
j=0

s∫
t

ψ2(t2)ϕj(t2)

t2∫
t

ψ1(t1)ϕj(t1)dt1dt2.

The equality (2.535) is proved. Theorem 2.18 is proved.

Let us reformulate Theorem 2.18 in terms on the convergence of the solution
of system of ordinary differential equations (ODEs) to the solution of system
of Stratonovich SDEs (the so-called Wong–Zakai type theorem).

By analogy with (2.1477) for k = 2, i1, i2 = 1, . . . ,m, and s ∈ (t, T ] (s is
fixed) we obtain

s∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p1
t1 df

(i2)p2
t2 =

p1∑
j1=0

p2∑
j2=0

Cj2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
, (2.538)

where p1, p2 ∈ N and df
(i)p
τ is defined by (2.1474); another notations are the

same as in Theorem 2.18.

The iterated Riemann–Stiltjes integrals

Y
(i1i2)p1p2
s,t =

s∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p1
t1 df

(i2)p2
t2 ,

X
(i1)p1
s,t =

s∫
t

ψ1(t1)df
(i1)p1
t1

are the solution of the following system of ODEs
dY

(i1i2)p1p2
s,t = ψ2(s)X

(i1)p1
s,t df

(i2)p2
s , Y

(i1i2)p1p2
t,t = 0

dX
(i1)p1
s,t = ψ1(s)df

(i1)p1
s , X

(i1)p1
t,t = 0

.
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From the other hand, the iterated Stratonovich stochastic integrals

Y
(i1i2)
s,t =

∗∫
t

s

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 ,

X
(i1)
s,t =

∗∫
t

s

ψ1(t1)df
(i1)
t1

are the solution of the following system of Stratonovich SDEs
dY

(i1i2)
s,t = ψ2(s)X

(i1)
s,t ∗ df (i2)s , Y

(i1i2)
t,t = 0

dX
(i1)
s,t = ψ1(s) ∗ df (i1)s , X

(i1)
t,t = 0

,

where ∗ df (i)s , i = 1, . . . ,m is the Stratonovich differential.

Then from Theorem 2.18 and (1.254) we obtain the following theorem.

Theorem 2.19 [33]. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete or-
thonormal system of functions in the space L2([t, T ]). Moreover, ψ1(τ), ψ2(τ)
are continuous functions on [t, T ]. Then for any fixed s (s ∈ (t, T ])

l.i.m.
p1,p2→∞

Y
(i1i2)p1p2
s,t = Y

(i1i2)
s,t , l.i.m.

p1→∞
X

(i1)p1
s,t = X

(i1)
s,t .

2.7.2 Modification of Theorem 2.8 for the Case of Integration Inter-
val [t, s] (s ∈ (t, T ]) of Iterated Stratonovich Stochastic Integrals
of Multiplicity 3

Let us prove the following theorem.

Theorem 2.20 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). At the same time ψ2(τ) is a continuously differentiable nonrandom
function on [t, T ] and ψ1(τ), ψ3(τ) are twice continuously differentiable nonran-
dom functions on [t, T ]. Then, for the iterated Stratonovich stochastic integral
of third multiplicity

J∗[ψ(3)]s,t =

∗∫
t

s

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)
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the following expansion

J∗[ψ(3)]s,t = l.i.m.
p→∞

p∑
j1,j2,j3=0

Cj3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

that converges in the mean-square sense is valid, where s ∈ (t, T ] (s is fixed),

Cj3j2j1(s) =

s∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j.

Proof. The case s = T is considered in Theorem 2.8. Below we consider
the case s ∈ (t, T ). First, let us consider the case of Legendre polynomials.
From (1.256) for the case p1 = p2 = p3 = p and standard relations between Itô
and Stratonovich stochastic integrals we conclude that Theorem 2.20 will be
proved if w. p. 1

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj3j1j1(s)ζ
(i3)
j3

=
1

2

s∫
t

ψ3(τ)

τ∫
t

ψ2(s1)ψ1(s1)ds1df
(i3)
τ , (2.539)

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj3j3j1(s)ζ
(i1)
j1

=
1

2

s∫
t

ψ3(τ)ψ2(τ)

τ∫
t

ψ1(s1)df
(i1)
s1
dτ, (2.540)

l.i.m.
p→∞

p∑
j1=0

p∑
j3=0

Cj1j3j1(s)ζ
(i2)
j3

= 0. (2.541)

The proof of the formulas (2.539), (2.541) is absolutely similar to the proof
of the formulas (2.273), (2.275). It is only necessary to replace the interval of
integration [t, T ] by [t, s] in the proof of the formulas (2.273), (2.275) and use
Theorem 1.11 instead of Theorem 1.1. Also in the case (2.541) it is necessary
to use the estimate (1.211).

Let us prove (2.540). Using Theorem 1.11 for k = 2 (see (1.255) for i1 =
1, . . . ,m, i2 = 0), we obtain w. p. 1 (also see (2.699), (2.700))

1

2

s∫
t

ψ3(τ)ψ2(τ)

τ∫
t

ψ1(s1)df
(i1)
s1
dτ =

1

2
l.i.m.
p→∞

p∑
j1=0

C∗
j1
(s)ζ

(i1)
j1
,
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where

C∗
j1
(s) =

s∫
t

ψ3(τ)ψ2(τ)

τ∫
t

ψ1(s1)ϕj1(s1)ds1dτ =

=

s∫
t

ψ1(s1)ϕj1(s1)

s∫
s1

ψ3(τ)ψ2(τ)dτds1. (2.542)

We have

E ′
p(s)

def
= M


(

p∑
j1=0

p∑
j3=0

Cj3j3j1(s)ζ
(i1)
j1

− 1

2

p∑
j1=0

C∗
j1
(s)ζ

(i1)
j1

)2
 =

= M


(

p∑
j1=0

(
p∑

j3=0

Cj3j3j1(s)−
1

2
C∗
j1
(s)

)
ζ
(i1)
j1

)2
 =

=

p∑
j1=0

(
p∑

j3=0

Cj3j3j1(s)−
1

2
C∗
j1
(s)

)2

, (2.543)

Cj3j3j1(s) =

s∫
t

ψ3(θ)ϕj3(θ)

θ∫
t

ψ2(τ)ϕj3(τ)

τ∫
t

ψ1(s1)ϕj1(s1)ds1dτdθ =

=

s∫
t

ψ1(s1)ϕj1(s1)

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτds1. (2.544)

From (2.542)–(2.544) we obtain

E ′
p(s) =

p∑
j1=0

 s∫
t

ψ1(s1)ϕj1(s1)

 p∑
j3=0

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ−

−1

2

s∫
s1

ψ3(τ)ψ2(τ)dτ

 ds1

2

. (2.545)

Let us show that

∞∑
j3=0

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ =
1

2

s∫
s1

ψ3(τ)ψ2(τ)dτ. (2.546)
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Using (2.536) and Fubini’s Theorem, we have

1

2

T∫
t

ψ̄1(τ)ψ̄2(τ)dτ =
∞∑
j=0

T∫
t

ψ̄1(t1)ϕj(t1)

T∫
t1

ψ̄2(t2)ϕj(t2)dt2dt1, (2.547)

where ψ̄1(τ), ψ̄2(τ) ∈ L2([t, T ]).

Suppose that

ψ̄1(τ) = ψ2(τ)1{s1<τ<s}, ψ̄2(τ) = ψ3(τ)1{τ<s}. (2.548)

Using (2.547) and (2.548), we get (2.546). Combining (2.545) and (2.546),
we obtain

E ′
p(s) =

p∑
j1=0

 s∫
t

ψ1(s1)ϕj1(s1)
∞∑

j3=p+1

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτds1

2

≤

≤ K

p∑
j1=0

 s∫
t

|ϕj1(s1)|

∣∣∣∣∣∣
∞∑

j3=p+1

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ

∣∣∣∣∣∣ ds1
2

,

(2.549)

where constant K does not depend on p.

Let us estimate the value∣∣∣∣∣∣
∞∑

j3=p+1

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ

∣∣∣∣∣∣ .
Note that, by virtue of the additivity property of the integral, we obtain

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ =

=

s∫
t

ψ3(θ)ϕj3(θ)

θ∫
t

ψ2(τ)ϕj3(τ)dτdθ−

−
s1∫
t

ψ3(θ)ϕj3(θ)

θ∫
t

ψ2(τ)ϕj3(τ)dτdθ−
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−
s∫

s1

ψ3(θ)ϕj3(θ)dθ

s1∫
t

ψ2(τ)ϕj3(τ)dτ.

Further, we have∣∣∣∣∣∣
∞∑

j3=p+1

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ

∣∣∣∣∣∣ ≤

≤

∣∣∣∣∣∣
∞∑

j3=p+1

s∫
t

ψ3(θ)ϕj3(θ)

θ∫
t

ψ2(τ)ϕj3(τ)dτdθ

∣∣∣∣∣∣+
+

∣∣∣∣∣∣
∞∑

j3=p+1

s1∫
t

ψ3(θ)ϕj3(θ)

θ∫
t

ψ2(τ)ϕj3(τ)dτdθ

∣∣∣∣∣∣+
+

∞∑
j3=p+1

∣∣∣∣∣∣
s∫

s1

ψ3(θ)ϕj3(θ)dθ

s1∫
t

ψ2(τ)ϕj3(τ)dτ

∣∣∣∣∣∣ . (2.550)

Applying the estimate (2.648) (see Sect. 2.9), we can write∣∣∣∣∣
∞∑

j1=p+1

Cj1j1(s)

∣∣∣∣∣ ≤ C

p

(
1 +

1

(1− (z(s))2)1/4

)
, (2.551)

where s ∈ (t, T ), constant C does not depend on p, z(s) has the form (2.20),
and Cj1j1(s) is defined by (2.532) for the case j1 = j2.

Applying the estimates (1.211), (2.294), (2.551) to the right-hand side of
(2.550) gives∣∣∣∣∣∣

∞∑
j3=p+1

s∫
s1

ψ2(τ)ϕj3(τ)

s∫
τ

ψ3(θ)ϕj3(θ)dθdτ

∣∣∣∣∣∣ ≤ L

p

(
1 +

1

(1− (z(s1))2)
1/4

)
×

×

(
1 +

1

(1− (z(s))2)1/4
+

1

(1− (z(s1))2)
1/4

)
, (2.552)

where s, s1 ∈ (t, T ) and constant L is independent of p.
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Combining the estimates (2.158), (2.549), and (2.552), we finally obtain

E ′
p(s) ≤

L(s)p

p2
=
L(s)

p

if p → ∞, where constant L(s) (s is fixed, s ∈ (t, T )) does not depend on p.
The relation (2.540) is proved for the polynomial case. Theorem 2.20 is proved
for the case of Legendre polynomials.

For the trigonometric case, by analogy with the proof of Lemma 2.2
(Sect. 2.1.2), we obtain the following analog of (2.551)∣∣∣∣∣

∞∑
j1=p+1

Cj1j1(s)

∣∣∣∣∣ ≤ C

p
, (2.553)

where s ∈ [t, T ], constant C does not depend on p, and Cj1j1(s) is defined by
(2.532) for the case j1 = j2.

Note the following obvious estimates for the trigonometric case∣∣∣∣∣∣
s∫

s1

ψ3(θ)ϕj(θ)dθ

∣∣∣∣∣∣ ≤ C

j
,

∣∣∣∣∣∣
s1∫
t

ψ2(τ)ϕj(τ)dτ

∣∣∣∣∣∣ ≤ C

j
(j ̸= 0), (2.554)

where s, s1 ∈ [t, T ], constant C does not depend on p.

Applying (2.549), (2.550), (2.553), and (2.554), we obtain the assertion of
Theorem 2.20 for the trigonometric case. Theorem 2.20 is proved.

Let us reformulate Theorem 2.20 in terms on the convergence of the solution
of system of ODEs to the solution of system of Stratonovich SDEs (the so-called
Wong–Zakai type theorem).

By analogy with (2.1477) for the case k = 3, p1 = p2 = p3 = p, i1, i2, i3 =
1, . . . ,m, and s ∈ (t, T ] (s is fixed) we obtain

s∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p
t1 df

(i2)p
t2 df

(i3)p
t3 =

p∑
j1,j2,j3=0

Cj3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
,

(2.555)

where p ∈ N and df
(i)p
τ is defined by (2.1474); another notations are the same

as in Theorem 2.20.

The iterated Riemann–Stiltjes integrals

Z
(i1i2i3)p
s,t =

s∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p
t1 df

(i2)p
t2 df

(i3)p
t3 ,
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Y
(i1i2)p
s,t =

s∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p
t1 df

(i2)p
t2 ,

X
(i1)p
s,t =

s∫
t

ψ1(t1)df
(i1)p
t1

are the solution of the following system of ODEs

dZ
(i1i2i3)p
s,t = ψ3(s)Y

(i1i2)p
s,t df

(i3)p
s , Z

(i1i2i3)p
t,t = 0

dY
(i1i2)p
s,t = ψ2(s)X

(i1)p
s,t df

(i2)p
s , Y

(i1i2)p
t,t = 0

dX
(i1)p
s,t = ψ1(s)df

(i1)p
s , X

(i1)p
t,t = 0

.

From the other hand, the iterated Stratonovich stochastic integrals

Z
(i1i2i3)
s,t =

∗∫
t

s

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 ,

Y
(i1i2)
s,t =

∗∫
t

s

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 ,

X
(i1)
s,t =

∗∫
t

s

ψ1(t1)df
(i1)
t1

are the solution of the following system of Stratonovich SDEs

dZ
(i1i2i3)
s,t = ψ3(s)Y

(i1i2)
s,t ∗ df (i3)s , Z

(i1i2i3)
t,t = 0

dY
(i1i2)
s,t = ψ2(s)X

(i1)
s,t ∗ df (i2)s , Y

(i1i2)
t,t = 0

dX
(i1)
s,t = ψ1(s) ∗ df (i1)s , X

(i1)
t,t = 0

,

where ∗ df (i)s , i = 1, . . . ,m is the Stratonovich differential.
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Then from Theorems 2.19 and 2.20 we obtain the following theorem.

Theorem 2.21 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). At the same time ψ2(τ) is a continuously differentiable nonrandom
function on [t, T ] and ψ1(τ), ψ3(τ) are twice continuously differentiable nonran-
dom functions on [t, T ]. Then for any fixed s (s ∈ (t, T ])

l.i.m.
p→∞

Z
(i1i2i3)p
s,t = Z

(i1i2i3)
s,t , l.i.m.

p→∞
Y

(i1i2)p
s,t = Y

(i1i2)
s,t ,

l.i.m.
p→∞

X
(i1)p
s,t = X

(i1)
s,t .

2.7.3 Modification of Theorem 2.9 for the Case of Integration Inter-
val [t, s] (s ∈ (t, T ]) of Iterated Stratonovich Stochastic Integrals
of Multiplicity 4

Let us prove the following theorem.

Theorem 2.22 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). Then, for the iterated Stratonovich stochastic integral of fourth mul-
tiplicity

J∗[ψ(4)]s,t =

∗∫
t

s ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 (i1, i2, i3, i4 = 0, 1, . . . ,m)

the following expansion

J∗[ψ(4)]s,t = l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

that converges in the mean-square sense is valid, where s ∈ (t, T ] (s is fixed),

Cj4j3j2j1(s) =

s∫
t

ϕj4(s4)

s4∫
t

ϕj3(s3)

s3∫
t

ϕj2(s2)

s2∫
t

ϕj1(s1)ds1ds2ds3ds4

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ
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are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. The case s = T is considered in Theorem 2.9. Below we consider the
case s ∈ (t, T ). The relation (1.257) (in the case when p1 = . . . = p4 = p→ ∞)
implies that

l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

= J [ψ(4)]s,t+

+1{i1=i2 ̸=0}A
(i3i4)
1 (s)+1{i1=i3 ̸=0}A

(i2i4)
2 (s)+1{i1=i4 ̸=0}A

(i2i3)
3 (s)+1{i2=i3 ̸=0}A

(i1i4)
4 (s)+

+1{i2=i4 ̸=0}A
(i1i3)
5 (s) + 1{i3=i4 ̸=0}A

(i1i2)
6 (s)− 1{i1=i2 ̸=0}1{i3=i4 ̸=0}B1(s)−

−1{i1=i3 ̸=0}1{i2=i4 ̸=0}B2(s)− 1{i1=i4 ̸=0}1{i2=i3 ̸=0}B3(s), (2.556)

where J [ψ(4)]s,t has the form (1.238) for ψ1(τ), . . . , ψ4(τ) ≡ 1 and i1, . . . , i4 =
0, 1, . . . ,m,

A
(i3i4)
1 (s) = l.i.m.

p→∞

p∑
j4,j3,j1=0

Cj4j3j1j1(s)ζ
(i3)
j3
ζ
(i4)
j4
,

A
(i2i4)
2 (s) = l.i.m.

p→∞

p∑
j4,j3,j2=0

Cj4j3j2j3(s)ζ
(i2)
j2
ζ
(i4)
j4
,

A
(i2i3)
3 (s) = l.i.m.

p→∞

p∑
j4,j3,j2=0

Cj4j3j2j4(s)ζ
(i2)
j2
ζ
(i3)
j3
,

A
(i1i4)
4 (s) = l.i.m.

p→∞

p∑
j4,j3,j1=0

Cj4j3j3j1(s)ζ
(i1)
j1
ζ
(i4)
j4
,

A
(i1i3)
5 (s) = l.i.m.

p→∞

p∑
j4,j3,j1=0

Cj4j3j4j1(s)ζ
(i1)
j1
ζ
(i3)
j3
,

A
(i1i2)
6 (s) = l.i.m.

p→∞

p∑
j3,j2,j1=0

Cj3j3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
,

B1(s) = lim
p→∞

p∑
j1,j4=0

Cj4j4j1j1(s), B2(s) = lim
p→∞

p∑
j4,j3=0

Cj3j4j3j4(s),
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B3(s) = lim
p→∞

p∑
j4,j3=0

Cj4j3j3j4(s).

Using the integration order replacement in Riemann integrals, Theorem
1.11 for k = 2 (see (1.255)) and (2.535), Parseval’s equality and the integration
order replacement technique for Itô stochastic integrals (see Chapter 3) [1]-[17],
[77], [123], [124] or Itô’s formula, we obtain (see the derivation of the formula
(2.303))

A
(i3i4)
1 (s) =

1

2

s∫
t

τ∫
t

s1∫
t

ds2dw
(i3)
s1
dw(i4)

τ +

+
1

4
1{i3=i4 ̸=0}

s∫
t

(s1 − t)ds1 −∆
(i3i4)
1 (s) w. p. 1, (2.557)

where

∆
(i3i4)
1 (s) = l.i.m.

p→∞

p∑
j3,j4=0

apj4j3(s)ζ
(i3)
j3
ζ
(i4)
j4
,

apj4j3(s) =
1

2

s∫
t

ϕj4(τ)

τ∫
t

ϕj3(s1)
∞∑

j1=p+1

 s1∫
t

ϕj1(s2)ds2

2

ds1dτ. (2.558)

Let us consider A
(i2i4)
2 (s) (see the derivation of the formula (2.305))

A
(i2i4)
2 (s) = −∆

(i2i4)
2 (s) + ∆

(i2i4)
1 (s) + ∆

(i2i4)
3 (s) w. p. 1, (2.559)

where

∆
(i2i4)
2 (s) = l.i.m.

p→∞

p∑
j4,j2=0

bpj4j2(s)ζ
(i2)
j2
ζ
(i4)
j4
,

∆
(i2i4)
3 (s) = l.i.m.

p→∞

p∑
j4,j2=0

cpj4j2(s)ζ
(i2)
j2
ζ
(i4)
j4
,

bpj4j2(s) =
1

2

s∫
t

ϕj4(τ)
∞∑

j3=p+1

 τ∫
t

ϕj3(s1)ds1

2 τ∫
t

ϕj2(s1)ds1dτ,

cpj4j2(s) =
1

2

s∫
t

ϕj4(τ)

τ∫
t

ϕj2(s3)
∞∑

j3=p+1

 τ∫
s3

ϕj3(s1)ds1

2

ds3dτ.
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Further, we have w. p. 1 (see the derivation of the formula (2.308))

A
(i1i3)
5 (s) = −∆

(i1i3)
4 (s) + ∆

(i1i3)
5 (s) + ∆

(i1i3)
6 (s) w. p. 1, (2.560)

where

∆
(i1i3)
4 (s) = l.i.m.

p→∞

p∑
j3,j1=0

dpj3j1(s)ζ
(i1)
j1
ζ
(i3)
j3
,

∆
(i1i3)
5 (s) = l.i.m.

p→∞

p∑
j3,j1=0

epj3j1(s)ζ
(i1)
j1
ζ
(i3)
j3
,

∆
(i1i3)
6 (s) = l.i.m.

p→∞

p∑
j3,j1=0

f pj3j1(s)ζ
(i1)
j1
ζ
(i3)
j3
,

dpj3j1(s) =
1

2

s∫
t

ϕj1(s3)
∞∑

j4=p+1

 s∫
s3

ϕj4(τ)dτ

2 s∫
s3

ϕj3(τ)dτds3,

epj3j1(s) =
1

2

s∫
t

ϕj1(s3)

s∫
s3

ϕj3(τ)
∞∑

j4=p+1

 τ∫
s3

ϕj4(s1)ds1

2

dτds3,

f pj3j1(s) =
1

2

s∫
t

ϕj1(s3)

s∫
s3

ϕj3(s2)
∞∑

j4=p+1

 s∫
s2

ϕj4(s1)ds1

2

ds2ds3 =

=
1

2

s∫
t

ϕj3(s2)
∞∑

j4=p+1

 s∫
s2

ϕj4(s1)ds1

2 s2∫
t

ϕj1(s3)ds3ds2.

Let us consider A
(i1i4)
4 (s) (see the derivation of the formula (2.314))

A
(i1i4)
4 (s) =

1

2

s∫
t

s2∫
t

s1∫
t

dw(i1)
τ ds1dw

(i4)
s2

−∆
(i1i4)
3 (s) w. p. 1. (2.561)

Moreover (see the derivation of the formula (2.315)),

A
(i1i2)
6 (s) =

1

2

s∫
t

s1∫
t

s2∫
t

dw(i1)
τ dw(i2)

s2
ds1+
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+
1

4
1{i1=i2 ̸=0}

s∫
t

(s− s2)ds2 −∆
(i1i2)
6 (s) w. p. 1. (2.562)

Further, we have w. p. 1 (see the derivation of the formula (2.312))

A
(i2i3)
3 (s) + A

(i2i3)
5 (s) =

= l.i.m.
p→∞

p∑
j4,j3,j2=0

s∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)ds2

s1∫
t

ϕj4(s3)ds3

s∫
s1

ϕj4(τ)dτds1ζ
(i2)
j2
ζ
(i3)
j3
.

(2.563)

Using (2.563) and the generalized Parseval equality, we obtain w. p. 1

A
(i2i3)
3 (s) + A

(i2i3)
5 (s) =

= l.i.m.
p→∞

p∑
j3,j2=0

s∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)ds2

p∑
j4=0

s1∫
t

ϕj4(s3)ds3

s∫
s1

ϕj4(τ)dτds1ζ
(i2)
j2
ζ
(i3)
j3

=

= −l.i.m.
p→∞

p∑
j3,j2=0

s∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)ds2

∞∑
j4=p+1

s1∫
t

ϕj4(s3)ds3

s∫
s1

ϕj4(τ)dτds1×

×ζ(i2)j2
ζ
(i3)
j3

=

= ∆
(i2i3)
6 (s) + ∆

(i2i3)
2 (s)−∆

(i2i3)
9 (s), (2.564)

where

∆
(i2i3)
9 (s) = l.i.m.

p→∞

p∑
j3,j2=0

qpj2j3(s)ζ
(i3)
j2
ζ
(i3)
j3
,

qpj2j3(s) =
1

2

s∫
t

ϕj3(s1)

s1∫
t

ϕj2(s2)ds2ds1

∞∑
j4=p+1

 s∫
t

ϕj4(τ)dτ

2

.

From (2.560) and (2.564) we get

A
(i2i3)
3 (s) = ∆

(i2i3)
2 (s) + ∆

(i2i3)
4 (s)−∆

(i2i3)
5 (s)−∆

(i2i3)
9 (s) w. p. 1. (2.565)
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Let us consider B1(s), B2(s), B3(s). We have (see the derivation of the for-
mulas (2.316), (2.317))

B1(s) =
1

4

s∫
t

(s1 − t)ds1 − lim
p→∞

p∑
j4=0

apj4j4(s), (2.566)

B2(s) = lim
p→∞

p∑
j3=0

apj3j3(s) + lim
p→∞

p∑
j3=0

cpj3j3(s)− lim
p→∞

p∑
j3=0

bpj3j3(s). (2.567)

Moreover (see the derivation of the formula (2.318)),

B2(s) +B3(s) =

= lim
p→∞

p∑
j4=0

s∫
t

ϕj4(s1)

s1∫
t

ϕj4(s2)ds2

p∑
j3=0

s1∫
t

ϕj3(s3)ds3

s∫
s1

ϕj3(τ)dτds1. (2.568)

Using (2.568) and the generalized Parseval equality, we obtain

B2(s) +B3(s) =

= − lim
p→∞

p∑
j4=0

s∫
t

ϕj4(s1)

s1∫
t

ϕj4(s2)ds2

∞∑
j3=p+1

s1∫
t

ϕj3(s3)ds3

s∫
s1

ϕj3(τ)dτds1 =

= lim
p→∞

p∑
j4=0

f pj4j4(s) + lim
p→∞

p∑
j4=0

bpj4j4(s)− lim
p→∞

p∑
j4=0

qpj4j4(s). (2.569)

Combining (2.567) and (2.569), we have

B3(s) = 2 lim
p→∞

p∑
j4=0

bpj4j4(s) + lim
p→∞

p∑
j4=0

f pj4j4(s)− lim
p→∞

p∑
j4=0

cpj4j4(s)−

− lim
p→∞

p∑
j4=0

apj4j4(s)− lim
p→∞

p∑
j4=0

qpj4j4(s). (2.570)

After substituting the relations (2.557), (2.559)–(2.562), (2.565)–(2.567),
(2.570) into (2.556), we obtain

l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

=
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= J [ψ(4)]s,t +
1

2
1{i1=i2 ̸=0}

s∫
t

τ∫
t

s1∫
t

ds2dw
(i3)
s1
dw(i4)

τ +

+
1

2
1{i2=i3 ̸=0}

s∫
t

s2∫
t

s1∫
t

dw(i1)
τ ds1dw

(i4)
s2

+
1

2
1{i3=i4 ̸=0}

s∫
t

s1∫
t

s2∫
t

dw(i1)
τ dw(i2)

s2
ds1+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1 +R(s) = J∗[ψ(4)]s,t+

+R(s) w. p. 1, (2.571)

where

R(s) = −1{i1=i2 ̸=0}∆
(i3i4)
1 (s) + 1{i1=i3 ̸=0}

(
−∆

(i2i4)
2 (s) + ∆

(i2i4)
1 (s) + ∆

(i2i4)
3 (s)

)
+

+1{i1=i4 ̸=0}

(
∆

(i2i3)
2 (s) + ∆

(i2i3)
4 (s)−∆

(i2i3)
5 (s)−∆

(i2i3)
9 (s)

)
−1{i2=i3 ̸=0}∆

(i1i4)
3 (s)+

+1{i2=i4 ̸=0}

(
−∆

(i1i3)
4 (s) + ∆

(i1i3)
5 (s) + ∆

(i1i3)
6 (s)

)
− 1{i3=i4 ̸=0}∆

(i1i2)
6 (s)−

−1{i1=i3 ̸=0}1{i2=i4 ̸=0}

(
lim
p→∞

p∑
j3=0

apj3j3(s) + lim
p→∞

p∑
j3=0

cpj3j3(s)− lim
p→∞

p∑
j3=0

bpj3j3(s)

)
−

−1{i1=i4 ̸=0}1{i2=i3 ̸=0}

(
2 lim
p→∞

p∑
j4=0

bpj4j4(s) + lim
p→∞

p∑
j4=0

f pj4j4(s)− lim
p→∞

p∑
j4=0

cpj4j4(s)−

− lim
p→∞

p∑
j4=0

apj4j4(s)− lim
p→∞

p∑
j4=0

qpj4j4(s)

)
+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0} lim
p→∞

p∑
j3=0

apj3j3(s). (2.572)

Let us prove that

R(s) = 0 w. p. 1. (2.573)

Consider the case of Legendre polynomials. First, we prove that

∆
(i3i4)
1 (s) = 0 w. p. 1. (2.574)
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We have

apj4j3(s) =
(T − t)2

√
(2j4 + 1)(2j3 + 1)

32
×

×
z(s)∫
−1

Pj4(y)

y∫
−1

Pj3(y1)
∞∑

j1=p+1

(2j1 + 1)

 y1∫
−1

Pj1(y2)dy2

2

dy1dy =

=
(T − t)2

√
(2j4 + 1)(2j3 + 1)

32
×

×
z(s)∫
−1

Pj3(y1)
∞∑

j1=p+1

1

2j1 + 1
(Pj1+1(y1)− Pj1−1(y1))

2

z(s)∫
y1

Pj4(y)dydy1 =

=
(T − t)2

√
2j3 + 1

32
√
2j4 + 1

×

×
z(s)∫
−1

Pj3(y1) ((Pj4+1(z(s))− Pj4−1(z(s)))− (Pj4+1(y1)− Pj4−1(y1)))×

×
∞∑

j1=p+1

1

2j1 + 1
(Pj1+1(y1)− Pj1−1(y1))

2 dy1

if j4 ̸= 0 and

apj4j3(s) =
(T − t)2

√
2j3 + 1

32
×

×
z(s)∫
−1

Pj3(y1)(z(s)− y1)
∞∑

j1=p+1

1

2j1 + 1
(Pj1+1(y1)− Pj1−1(y1))

2 dy1

if j4 = 0, where z(s) is defined by (2.20).

We assume that s ∈ (t, T ) (z(s) ̸= ±1) since the case s = T has already
been considered in Theorem 2.9. Now the further proof of the equality (2.574)
is completely analogous to the proof of the equality (2.331).

It is not difficult to see that the formulas

∆
(i2i4)
2 (s) = 0, ∆

(i1i3)
4 (s) = 0, ∆

(i1i3)
6 (s) = 0, ∆

(i2i3)
9 (s) = 0 w. p. 1 (2.575)
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can be proved similarly with the proof of (2.574).

Moreover, the relations

lim
p→∞

p∑
j3=0

apj3j3(s) = 0, lim
p→∞

p∑
j3=0

bpj3j3(s) = 0, (2.576)

lim
p→∞

p∑
j3=0

f pj3j3(s) = 0, lim
p→∞

p∑
j3=0

qpj3j3(s) = 0 (2.577)

can also be proved analogously with (2.333), (2.334).

Let us consider ∆
(i2i4)
3 (s) and prove that

∆
(i2i4)
3 (s) = 0 w. p. 1. (2.578)

We have

∆
(i2i4)
3 (s) = ∆

(i2i4)
4 (s) + ∆

(i2i4)
6 (s)−∆

(i2i4)
7 (s) = −∆

(i2i4)
7 (s) (2.579)

w. p. 1, where

∆
(i2i4)
7 (s) = l.i.m.

p→∞

p∑
j2,j4=0

gpj4j2(s)ζ
(i2)
j2
ζ
(i4)
j4
,

gpj4j2(s) =

s∫
t

ϕj4(τ)

τ∫
t

ϕj2(s1)
∞∑

j1=p+1

 s∫
s1

ϕj1(s2)ds2

s∫
τ

ϕj1(s2)ds2

 ds1dτ.

Note that (see (2.337))

gpj4j4(s) =
∞∑

j1=p+1

1

2

 s∫
t

ϕj4(τ)

s∫
τ

ϕj1(s2)ds2dτ

2

. (2.580)

The proof of (2.578) for the case i2 = i4 ̸= 0 differs from the proof of the
equality

∆
(i2i4)
3 = 0 w. p. 1

for the case i2 = i4 ̸= 0 (see the proof of Theorem 2.9). In our case we will
use Parseval’s equality instead of the orthogonality property of the Legendre
polynomials.
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Using the Parseval equality, we obtain

p∑
j4=0

gpj4j4(s) =

p∑
j4=0

∞∑
j1=p+1

1

2

 s∫
t

ϕj4(τ)

s∫
τ

ϕj1(s2)ds2dτ

2

=

=

p∑
j4=0

∞∑
j1=p+1

1

2

 s∫
t

ϕj4(τ)

 s∫
t

ϕj1(s2)ds2 −
τ∫
t

ϕj1(s2)ds2

 dτ

2

≤

≤
p∑

j4=0

 s∫
t

ϕj4(τ)dτ

2
∞∑

j1=p+1

 s∫
t

ϕj1(s2)ds2

2

+

+

p∑
j4=0

∞∑
j1=p+1

 s∫
t

ϕj4(τ)

τ∫
t

ϕj1(s2)ds2dτ

2

=

=

p∑
j4=0

 T∫
t

1{τ<s}ϕj4(τ)dτ

2
∞∑

j1=p+1

 s∫
t

ϕj1(s2)ds2

2

+

+
∞∑

j1=p+1

p∑
j4=0

 T∫
t

1{τ<s}ϕj4(τ)

τ∫
t

ϕj1(s2)ds2dτ

2

≤

≤
∞∑
j4=0

 T∫
t

1{τ<s}ϕj4(τ)dτ

2
∞∑

j1=p+1

 s∫
t

ϕj1(s2)ds2

2

+

+
∞∑

j1=p+1

∞∑
j4=0

 T∫
t

1{τ<s}ϕj4(τ)

τ∫
t

ϕj1(s2)ds2dτ

2

=

=

T∫
t

(
1{τ<s}

)2
dτ

∞∑
j1=p+1

 s∫
t

ϕj1(s2)ds2

2

+

+
∞∑

j1=p+1

T∫
t

(
1{τ<s}

)2 τ∫
t

ϕj1(s2)ds2

2

dτ =

= (s− t)
∞∑

j1=p+1

 s∫
t

ϕj1(s2)ds2

2

+
∞∑

j1=p+1

s∫
t

 τ∫
t

ϕj1(s2)ds2

2

dτ. (2.581)



496D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

We assume that s ∈ (t, T ) (z(s) ̸= ±1) since the case s = T has already
been considered in Theorem 2.9. Then from (2.581) and (2.159) we obtain

0 ≤
p∑

j4=0

gpj4j4(s) ≤
C(s)

p
, (2.582)

where constant C(s) (s is fixed) is independent of p.

Combining (2.23) and (2.327) with (1.210), we obtain for j ∈ N∣∣∣∣∣∣
s∫

s1

ϕj(θ)dθ

∣∣∣∣∣∣ < K

j1/2+m/4

(
1

(1− z2(s))m/8
+

1

(1− z2(s1))m/8

)
, (2.583)

where s, s1 ∈ (t, T ), m = 1 or m = 2, z(s) is defined by (2.20), constant K does
not depend on j.

Using the Parseval equality, we get

lim
p1→∞

p1∑
j4,j2=0

(
gpj4j2(s)

)2
=

∫
[t,T ]2

(Kp(τ, s1, s))
2 ds1dτ =

s∫
t

τ∫
t

(Fp(τ, s1, s))
2 ds1dτ,

(2.584)
where

gpj4j2(s) =

T∫
t

1{τ<s}ϕj4(τ)

τ∫
t

ϕj2(s1)Fp(τ, s1, s)ds1dτ =

=

∫
[t,T ]2

Kp(τ, s1, s)ϕj4(τ)ϕj2(s1)ds1dτ

is a coefficient of the double Fourier–Legendre series of the function

Kp(τ, s1, s) = 1{τ<s}1{s1<τ<s}Fp(τ, s1, s),

where
∞∑

j1=p+1

s∫
s1

ϕj1(s2)ds2

s∫
τ

ϕj1(s2)ds2
def
= Fp(τ, s1, s). (2.585)

From (2.583) for m = 1 and m = 2 we have

|Fp(τ, s1, s)| <
∞∑

j1=p+1

K1

(j1)7/4

(
1

(1− z2(s))1/8
+

1

(1− z2(s1))1/8

)
×
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×

(
1

(1− z2(s))1/4
+

1

(1− z2(τ))1/4

)
≤

≤ K2

p3/4

(
1

(1− z2(s))1/8
+

1

(1− z2(s1))1/8

)(
1

(1− z2(s))1/4
+

1

(1− z2(τ))1/4

)
,

(2.586)

where s, s1, τ ∈ (t, T ), constant K2 is independent of p and we used the estimate
(2.743) in (2.586).

The relations (2.584) and (2.586) imply the estimate

p∑
j2,j4=0

(
gpj4j2(s)

)2 ≤ C1(s)

p3/2
(2.587)

for the case s ∈ (t, T ) or z(s) ∈ (−1, 1) (the case s = T has already been
considered in Theorem 2.9), where constant C1(s) (s is fixed) does not depend
on p.

Then from analogue of (2.372) for s ∈ (t, T ) (s is fixed), (2.582), and (2.587)
we have

M


(

p∑
j2,j4=0

gpj4j2(s)ζ
(i2)
j2
ζ
(i4)
j4

)2
 ≤

(
1 + 1{i2=i4 ̸=0}

) p∑
j2,j4=0

(
gpj4j2(s)

)2
+

+1{i2=i4 ̸=0}

(
p∑

j4=0

gpj4j4(s)

)2

≤ C2(s)

p3/2
→ 0

if p→ ∞, where constant C2(s) (s is fixed) does not depend on p. The equality
(2.578) is proved.

Let us consider ∆
(i1i3)
5 (s)

∆
(i1i3)
5 (s) = ∆

(i1i3)
4 (s) + ∆

(i1i3)
6 (s)−∆

(i1i3)
8 (s) w. p. 1,

where

∆
(i1i3)
8 (s) = l.i.m.

p→∞

p∑
j3,j1=0

hpj3j1(s)ζ
(i1)
j1
ζ
(i3)
j3
,

hpj3j1(s) =

s∫
t

ϕj1(s3)

s∫
s3

ϕj3(τ)Fp(s3, τ, s)dτds3,
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where Fp(s3, τ, s) is defined by (2.585).

Analogously to (2.578), we obtain that ∆
(i1i3)
8 (s) = 0 w. p. 1. In this case

we consider the function

Kp(s3, τ, s) = 1{s3<s}1{s3<τ<s}Fp(s3, τ, s)

and the relations (see (2.580))

hpj3j1(s) =

∫
[t,T ]2

Kp(s3, τ, s)ϕj1(s3)ϕj3(τ)dτds3,

hpj1j1(s) =
∞∑

j4=p+1

1

2

 s∫
t

ϕj1(τ)

s∫
τ

ϕj4(s1)ds1dτ

2

.

Let us prove that

lim
p→∞

p∑
j3=0

cpj3j3(s) = 0. (2.588)

We have
cpj3j3(s) = f pj3j3(s) + dpj3j3(s)− gpj3j3(s). (2.589)

Moreover,

lim
p→∞

p∑
j3=0

f pj3j3(s) = 0, lim
p→∞

p∑
j3=0

dpj3j3(s) = 0, (2.590)

where the first equality in (2.590) has been proved earlier. Analogously, we can
prove the second equality in (2.590).

From (2.582) we obtain

lim
p→∞

p∑
j3=0

gpj3j3(s) = 0.

So, (2.588) is proved. The relation (2.573) is proved for the polynomial
case. Theorem 2.22 is proved for the case of Legendre polynomials.

It is easy to see that the trigonometric case is considered by analogy with
the case of Legendre polynomials using the estimates (2.554). Theorem 2.22 is
proved.
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Let us reformulate Theorem 2.22 in terms on the convergence of the solution
of system of ODEs to the solution of system of Stratonovich SDEs.

By analogy with (2.1477) for the case k = 4, p1 = . . . = p4 = p, i1, . . . , i4 =
0, 1, . . . ,m, and s ∈ (t, T ] (s is fixed) we obtain

s∫
t

t4∫
t

t3∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4 =

p∑
j1,j2,j3,j4=0

Cj4j3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
,

where p ∈ N and dw
(i)p
τ is defined by (2.1476); another notations are the same

as in Theorem 2.22.

The iterated Riemann–Stiltjes integrals

V
(i1i2i3i4)p
s,t =

s∫
t

t4∫
t

t3∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4 , (2.591)

Z
(i1i2i3)p
s,t =

s∫
t

t3∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 , (2.592)

Y
(i1i2)p
s,t =

s∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 , (2.593)

X
(i1)p
s,t =

s∫
t

dw
(i1)p
t1 (2.594)

are the solution of the following system of ODEs



dV
(i1i2i3i4)p
s,t = Z

(i1i2i3)p
s,t dw

(i4)p
s , V

(i1i2i3i4)p
t,t = 0

dZ
(i1i2i3)p
s,t = Y

(i1i2)p
s,t dw

(i3)p
s , Z

(i1i2i3)p
t,t = 0

dY
(i1i2)p
s,t = X

(i1)p
s,t dw

(i2)p
s , Y

(i1i2)p
t,t = 0

dX
(i1)p
s,t = 1 · dw(i1)p

s , X
(i1)p
t,t = 0

.
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From the other hand, the iterated Stratonovich stochastic integrals

V
(i1i2i3i4)
s,t =

∗∫
t

s ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 , (2.595)

Z
(i1i2i3)
s,t =

∗∫
t

s ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 , (2.596)

Y
(i1i2)
s,t =

∗∫
t

s ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 , (2.597)

X
(i1)
s,t =

∗∫
t

s

dw
(i1)
t1 (2.598)

are the solution of the following system of Stratonovich SDEs

dV
(i1i2i3i4)
s,t = Z

(i1i2i3)
s,t ∗ dw(i4)

s , V
(i1i2i3i4)
t,t = 0

dZ
(i1i2i3)
s,t = Y

(i1i2)
s,t ∗ dw(i3)

s , Z
(i1i2i3)
t,t = 0

dY
(i1i2)
s,t = X

(i1)
s,t ∗ dw(i2)

s , Y
(i1i2)
t,t = 0

dX
(i1)
s,t = 1 ∗ dw(i1)

s , X
(i1)
t,t = 0

,

where ∗ dw(i)
s , i = 0, 1, . . . ,m is the Stratonovich differential, ∗ dw(0)

s = ds.

Then from Theorems 2.19, 2.21, and 2.22 we obtain the following theorem.

Theorem 2.23 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). Then for any fixed s (s ∈ (t, T ])

l.i.m.
p→∞

V
(i1i2i3i4)p
s,t = V

(i1i2i3i4)
s,t , l.i.m.

p→∞
Z

(i1i2i3)p
s,t = Z

(i1i2i3)
s,t ,

l.i.m.
p→∞

Y
(i1i2)p
s,t = Y

(i1i2)
s,t , l.i.m.

p→∞
X

(i1)p
s,t = X

(i1)
s,t .
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2.8 Rate of the Mean-Square Convergence of Expan-

sions of Iterated Stratonovich Stochastic Integrals

of Multiplicities 2 to 4 in Theorems 2.2, 2.8, and 2.9

2.8.1 Rate of the Mean-Square Convergence of Expansion of Iter-
ated Stratonovich Stochastic Integrals of Multiplicity 2

This section is devoted to the proof of the following theorem.

Theorem 2.24 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). Moreover, ψ1(τ), ψ2(τ) are continuously differentiable functions on
[t, T ]. Then, for the iterated Stratonovich stochastic integral

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following estimate

M


(
J∗[ψ(2)]T,t −

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 ≤ C

p
(2.599)

is valid, where constant C is independent of p,

Cj2j1 =

T∫
t

ψ2(s2)ϕj2(s2)

s2∫
t

ψ1(s1)ϕj1(s1)ds1ds2,

and

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j.

Proof. Applying (2.8), we obtain

M


(
J∗[ψ(2)]T,t −

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 =

= M


J [ψ(2)]T,t +

1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1 −
p∑

j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

2
 =



502D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

= M

{(
J [ψ(2)]T,t −

p∑
j1,j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
+

+
1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1 − 1{i1=i2}

p∑
j1=0

Cj1j1

)2}
=

= M


(
J [ψ(2)]T,t −

p∑
j1,j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

))2
+

+

1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1 − 1{i1=i2}

p∑
j1=0

Cj1j1

2

=

= M

{(
J [ψ(2)]T,t − J [ψ(2)]p,pT,t

)2
}
+

+1{i1=i2}

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 −
p∑

j1=0

Cj1j1

2

. (2.600)

From Remark 1.7 (see (1.225)) we have

M

{(
J [ψ(2)]T,t − J [ψ(2)]p,pT,t

)2
}

≤ C1

p
, (2.601)

where constant C1 is independent of p.

From Theorem 2.2 (see (2.37)) we get

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 −
p∑

j1=0

Cj1j1 =
∞∑

j1=p+1

Cj1j1. (2.602)

Let us consider the case of Legendre polynomials. The estimate (2.83)
implies that ∣∣∣∣∣

∞∑
j1=p+1

Cj1j1

∣∣∣∣∣ ≤ C2

(
1

p
+

∞∑
j1=p+1

1

j21

)
, (2.603)

where constant C2 does not depend on p.
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Using (2.25) and (2.603), we have

Sp
def
=

∣∣∣∣∣
∞∑

j1=p+1

Cj1j1

∣∣∣∣∣ ≤ C3

p
, (2.604)

where constant C3 is independent of p.

Applying the ideas that we used to obtain the relations (2.85), (2.89)–(2.91),
we can prove the following estimates for the trigonometric case

S2p =

∣∣∣∣∣
∞∑

j1=2p+1

Cj1j1

∣∣∣∣∣ ≤ K1

p
, (2.605)

S2p−1 =

∣∣∣∣∣
∞∑

j1=2p

Cj1j1

∣∣∣∣∣ ≤ S2p +
K2

p
, (2.606)

where constants K1, K2 do not depend on p.

Using (2.605) and (2.606), we get the estimate (2.604) for the trigonometric
case. Combining (2.600)–(2.602), (2.604), we obtain (2.599). Theorem 2.24 is
proved.

2.8.2 Rate of the Mean-Square Convergence of Expansion of Iter-
ated Stratonovich Stochastic Integrals of Multiplicity 3

In this section, we consider the following theorem.

Theorem 2.25 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). At the same time ψ2(τ) is a continuously differentiable nonrandom
function on [t, T ] and ψ1(τ), ψ3(τ) are twice continuously differentiable nonran-
dom functions on [t, T ]. Then, for the iterated Stratonovich stochastic integral
of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)

the following estimate

M


(
J∗[ψ(3)]T,t −

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 ≤ C

p
(2.607)
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is valid, where constant C is independent of p,

Cj3j2j1 =

T∫
t

ψ3(s3)ϕj3(s3)

s3∫
t

ψ2(s2)ϕj2(s2)

s2∫
t

ψ1(s1)ϕj1(s1)ds1ds2ds3,

and

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j.

Proof. We have (see (2.399))

M


(
J∗[ψ(3)]T,t −

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 =

= M


J [ψ(3)]T,t +

1

2
1{i1=i2}

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2df
(i3)
t3 +

+
1

2
1{i2=i3}

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 dt3 −

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

2
 =

= M

{(
J [ψ(3)]T,t − J [ψ(3)]p,p,pT,t +

+1{i1=i2}

1

2

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2df
(i3)
t3 −

p∑
j1,j3=0

Cj3j1j1ζ
(i3)
j3

+

+1{i2=i3}

1

2

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 dt3 −

p∑
j1,j3=0

Cj3j3j1ζ
(i1)
j1

−

−1{i1=i3}

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3

)2
 , (2.608)

where (see (1.47))

J [ψ(3)]p,p,pT,t =

p∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

−
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−1{i1=i2}1{j1=j2}ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
.

Using (2.608) and the elementary inequality

(a+ b+ c+ d)2 ≤ 4
(
a2 + b2 + c2 + d2

)
,

we obtain

M


(
J∗[ψ(3)]T,t −

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 ≤

≤ 4

(
M

{(
J [ψ(3)]s,t − J [ψ(3)]p,p,pT,t

)2}
+ 1{i1=i2}E

(1)
p + 1{i2=i3}E

(2)
p +

+1{i1=i3}E
(3)
p

)
, (2.609)

where

E(1)
p = M


1

2

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2df
(i3)
t3 −

p∑
j1,j3=0

Cj3j1j1ζ
(i3)
j3

2
 ,

E(2)
p = M


1

2

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 dt3 −

p∑
j1,j3=0

Cj3j3j1ζ
(i1)
j1

2
 ,

E(3)
p = M


(

p∑
j1=0

p∑
j3=0

Cj1j3j1ζ
(i2)
j3

)2
 .

From Remark 1.7 (see (1.225)) we have

M

{(
J [ψ(3)]T,t − J [ψ(3)]p,p,pT,t

)2
}

≤ C1

p
, (2.610)

where constant C1 is independent of p.

Moreover, from (2.296) and (2.300) we have the following estimate

E(3)
p ≤ C2

p
(2.611)
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for the polynomial and trigonometric cases, where constant C2 does not depend
on p.

Using Theorem 1.1 for k = 1 (also see (1.45)), we obtain w. p. 1

1

2

T∫
t

ψ3(s)

s∫
t

ψ2(s1)ψ1(s1)ds1df
(i3)
s =

1

2
l.i.m.
p→∞

p∑
j3=0

C̃j3ζ
(i3)
j3
,

where

C̃j3 =

T∫
t

ϕj3(s)ψ3(s)

s∫
t

ψ2(s1)ψ1(s1)ds1ds.

Applying the Itô formula, we have

T∫
t

ψ3(s)ψ2(s)

s∫
t

ψ1(s1)df
(i1)
s1
ds =

T∫
t

ψ1(s1)

T∫
s1

ψ3(s)ψ2(s)dsdf
(i1)
s1

w. p. 1.

Using Theorem 1.1 for k = 1 (also see (1.45)), we have w. p. 1

1

2

T∫
t

ψ1(s)

T∫
s

ψ3(s1)ψ2(s1)ds1df
(i1)
s =

1

2
l.i.m.
p→∞

p∑
j1=0

C∗
j1
ζ
(i1)
j1
,

where

C∗
j1
=

T∫
t

ψ1(s)ϕj1(s)

T∫
s

ψ3(s1)ψ2(s1)ds1ds.

Further, we get
E(1)
p ≤ 2G(1)

p + 2G(2)
p , (2.612)

E(2)
p ≤ 2H(1)

p + 2H(2)
p , (2.613)

where

G(1)
p = M

1

4

 T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2df
(i3)
t3 −

p∑
j3=0

C̃j3ζ
(i3)
j3

2
 ,

G(2)
p = M


(
1

2

p∑
j3=0

C̃j3ζ
(i3)
j3

−
p∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

)2
 ,
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H(1)
p = M

1

4

 T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 dt3 −

p∑
j1=0

C∗
j1
ζ
(i1)
j1

2
 ,

H(2)
p = M


(
1

2

p∑
j1=0

C∗
j1
ζ
(i1)
j1

−
p∑

j1,j3=0

Cj3j3j1ζ
(i1)
j1

)2
 .

From Remark 1.7 (see (1.225)) we have

G(1)
p ≤ C2

p
, H(1)

p ≤ C2

p
, (2.614)

where constant C2 is independent of p.

The estimates

G(2)
p ≤ C3

p
, H(2)

p ≤ C3

p
(2.615)

are proved in Sect. 2.2.5 (see the proof of Theorem 2.8) for the polynomial and
trigonometric cases; constant C3 does not depend on p.

Combining the estimates (2.609)–(2.615), we obtain the inequality (2.607).
Theorem 2.25 is proved.

2.8.3 Rate of the Mean-Square Convergence of Expansion of Iter-
ated Stratonovich Stochastic Integrals of Multiplicity 4

This section is devoted to the proof of the following theorem.

Theorem 2.26 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal sys-
tem of Legendre polynomials or trigonometric functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of fourth multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 (i1, i2, i3, i4 = 0, 1, . . . ,m)

the following estimate

M


(
J∗[ψ(4)]T,t −

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

)2
 ≤ C

p
(2.616)
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is valid, where constant C is independent of p,

Cj4j3j2j1 =

T∫
t

ϕj4(s4)

s4∫
t

ϕj3(s3)

s3∫
t

ϕj2(s2)

s2∫
t

ϕj1(s1)ds1ds2ds3ds4,

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. First, let us prove that Theorem 2.8 is valid for the case i1, i2, i3 =
0, 1, . . . ,m. The case i1, i2, i3 = 1, . . . ,m has been proved in Theorem 2.8. From
(1.47) and the standard relation (2.399) between Stratonovich and Itô stochastic
integrals of third multiplicity we have that Theorem 2.8 is valid for the following
cases

i1 = i2 = 0, i3 = 1, . . . ,m,

i1 = i3 = 0, i2 = 1, . . . ,m,

i2 = i3 = 0, i1 = 1, . . . ,m.

Thus, it remains to consider the following three cases

i1, i2 = 1, . . . ,m, i3 = 0, (2.617)

i2, i3 = 1, . . . ,m, i1 = 0, (2.618)

i1, i3 = 1, . . . ,m, i2 = 0. (2.619)

The relations (1.47) and (2.399) imply that for the case (2.617) we need to
prove the following equality

∞∑
j1=0

T∫
t

ψ3(t3)

t3∫
t

ϕj1(t2)ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3 =

=
1

2

T∫
t

ψ3(t3)

t3∫
t

ψ1(t1)ψ2(t1)dt1dt3. (2.620)
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Using the relation (2.10), we get

∞∑
j1=0

T∫
t

ψ3(t3)

t3∫
t

ϕj1(t2)ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3 =

=
∞∑
j1=0

T∫
t

ϕj1(t1)ψ1(t1)

T∫
t1

ϕj1(t2)ψ2(t2)

T∫
t2

ψ3(t3)dt3dt2dt1 =

=
∞∑
j1=0

T∫
t

ϕj1(t1)ψ1(t1)

T∫
t1

ϕj1(t2)ψ̃2(t2)dt2dt1 =

=
∞∑
j1=0

T∫
t

ϕj1(t2)ψ̃2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2 =

=
1

2

T∫
t

ψ1(t2)ψ̃2(t2)dt2, (2.621)

where

ψ̃2(t2) = ψ2(t2)

T∫
t2

ψ3(t3)dt3. (2.622)

From (2.621) and (2.622) we obtain

∞∑
j1=0

T∫
t

ψ3(t3)

t3∫
t

ϕj1(t2)ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3 =

=
1

2

T∫
t

ψ1(t2)ψ2(t2)

T∫
t2

ψ3(t3)dt3dt2 =

=
1

2

T∫
t

ψ3(t3)

t3∫
t

ψ1(t2)ψ2(t2)dt2dt3. (2.623)

The relation (2.620) is proved.
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From (1.47) and (2.399) it follows that for the case (2.618) we need to prove
the following equality

∞∑
j2=0

T∫
t

ϕj2(t3)ψ3(t3)

t3∫
t

ϕj2(t2)ψ2(t2)

t2∫
t

ψ1(t1)dt1dt2dt3 =

=
1

2

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)dt1dt3. (2.624)

Using the relation (2.10), we have

∞∑
j2=0

T∫
t

ϕj2(t3)ψ3(t3)

t3∫
t

ϕj2(t2)ψ2(t2)

t2∫
t

ψ1(t1)dt1dt2dt3 =

=
∞∑
j2=0

T∫
t

ϕj2(t3)ψ3(t3)

t3∫
t

ϕj2(t2)ψ̄2(t2)dt2dt3 =

=
1

2

T∫
t

ψ3(t3)ψ̄2(t3)dt3,

where

ψ̄2(t2) = ψ2(t2)

t2∫
t

ψ1(t1)dt1. (2.625)

The relation (2.624) is proved.

The relations (1.47) and (2.399) imply that for the case (2.619) we need to
prove the following equality

∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3 = 0. (2.626)

We have

∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3 =
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=
∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)

t3∫
t1

ψ2(t2)dt2dt1dt3 =

=
∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)

 T∫
t1

ψ2(t2)dt2 −
T∫

t3

ψ2(t2)dt2

 dt1dt3 =

=
∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)

T∫
t1

ψ2(t2)dt2dt1dt3−

−
∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)

T∫
t3

ψ2(t2)dt2dt1dt3 =

=
∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ̃1(t1)dt1dt3−

−
∞∑
j1=0

T∫
t

ϕj1(t3)ψ̃3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)dt1dt3 =

=
1

2

T∫
t

ψ3(t1)ψ̃1(t1)dt1 −
1

2

T∫
t

ψ̃3(t1)ψ1(t1)dt1 =

=
1

2

T∫
t

ψ3(t1)ψ1(t1)

T∫
t1

ψ2(t2)dt2dt1 −
1

2

T∫
t

ψ1(t1)ψ3(t1)

T∫
t1

ψ2(t2)dt2dt1 = 0,

where

ψ̃1(t1) = ψ1(t1)

T∫
t1

ψ2(t2)dt2, (2.627)

ψ̃3(t3) = ψ3(t3)

T∫
t3

ψ2(t2)dt2. (2.628)

The relation (2.626) is proved. Theorem 2.8 is proved for the case i1, i2, i3 =
0, 1, . . . ,m.
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Using (2.399) and (2.400), we obtain

M


(
J∗[ψ(4)]T,t −

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

)2
 =

= M


J [ψ(4)]T,t +

1

2
1{i1=i2 ̸=0}

T∫
t

s∫
t

s1∫
t

ds2dw
(i3)
s1
dw(i4)

s +

+
1

2
1{i2=i3 ̸=0}

T∫
t

s2∫
t

s1∫
t

dw(i1)
s ds1dw

(i4)
s2

+
1

2
1{i3=i4 ̸=0}

T∫
t

s1∫
t

s2∫
t

dw(i1)
s dw(i2)

s2
ds1+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1 −
p∑

j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

2
 =

= M


J [ψ(4)]T,t +

1

2
1{i1=i2 ̸=0}

∗∫
t

T ∗∫
t

s ∗∫
t

s1

ds2dw
(i3)
s1
dw(i4)

s −

−1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1 +
1

2
1{i2=i3 ̸=0}

∗∫
t

T ∗∫
t

s2 ∗∫
t

s1

dw(i1)
s ds1dw

(i4)
s2

+

+
1

2
1{i3=i4 ̸=0}

∗∫
t

T ∗∫
t

s1 ∗∫
t

s2

dw(i1)
s dw(i2)

s2
ds1 −

1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1 −
p∑

j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

2
 =

= M


J [ψ(4)]T,t +

1

2
1{i1=i2 ̸=0}

∗∫
t

T ∗∫
t

s ∗∫
t

s1

ds2dw
(i3)
s1
dw(i4)

s +

+
1

2
1{i2=i3 ̸=0}

∗∫
t

T ∗∫
t

s2 ∗∫
t

s1

dw(i1)
s ds1dw

(i4)
s2

+
1

2
1{i3=i4 ̸=0}

∗∫
t

T ∗∫
t

s1 ∗∫
t

s2

dw(i1)
s dw(i2)

s2
ds1−
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−1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

s1∫
t

ds2ds1 −
p∑

j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

2
 =

= M

{(
J [ψ(4)]T,t − J [ψ(4)]p,p,p,pT,t +

+
1

2
1{i1=i2 ̸=0}

 ∗∫
t

T ∗∫
t

s ∗∫
t

s1

ds2dw
(i3)
s1
dw(i4)

s − S
(i3i4)p
1

+

+
1

2
1{i2=i3 ̸=0}

 ∗∫
t

T ∗∫
t

s2 ∗∫
t

s1

dw(i1)
s ds1dw

(i4)
s2

− S
(i1i4)p
2

+

+
1

2
1{i3=i4 ̸=0}

 ∗∫
t

T ∗∫
t

s1 ∗∫
t

s2

dw(i1)
s dw(i2)

s2
ds1 − S

(i1i2)p
3

−

−1{i1=i2 ̸=0}1{i3=i4 ̸=0}

1

4

T∫
t

s1∫
t

ds2ds1−

−
p∑

j4=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)(s1 − t)ds1ds

−Rp

2
 , (2.629)

where S
(i3i4)p
1 , S

(i1i4)p
2 , S

(i1i2)p
3 are the approximations of the iterated Stratonovich

stochastic integrals

∗∫
t

T ∗∫
t

s ∗∫
t

s1

ds2dw
(i3)
s1
dw(i4)

s ,

∗∫
t

T ∗∫
t

s2 ∗∫
t

s1

dw(i1)
s ds1dw

(i4)
s2
,

∗∫
t

T ∗∫
t

s1 ∗∫
t

s2

dw(i1)
s dw(i2)

s2
ds1,

respectively (these approximations are obtained by the version of Theorem 2.8
for the case i1, i2, i3 = 0, 1, . . . ,m); J [ψ(4)]p,p,p,pT,t is the approximation of the
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iterated Itô stochastic integral J [ψ(4)]T,t obtained by Theorem 1.1 (see (1.48))

J [ψ(4)]p,p,p,pT,t =

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2 ̸=0}A
(i3i4)p
1 − 1{i1=i3 ̸=0}A

(i2i4)p
2 − 1{i1=i4 ̸=0}A

(i2i3)p
3 − 1{i2=i3 ̸=0}A

(i1i4)p
4 −

−1{i2=i4 ̸=0}A
(i1i3)p
5 − 1{i3=i4 ̸=0}A

(i1i2)p
6 + 1{i1=i2 ̸=0}1{i3=i4 ̸=0}B

p
1+

+1{i1=i3 ̸=0}1{i2=i4 ̸=0}B
p
2 + 1{i1=i4 ̸=0}1{i2=i3 ̸=0}B

p
3 ,

where

A
(i3i4)p
1 =

p∑
j4,j3,j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4
, A

(i2i4)p
2 =

p∑
j4,j3,j2=0

Cj4j3j2j3ζ
(i2)
j2
ζ
(i4)
j4
,

A
(i2i3)p
3 =

p∑
j4,j3,j2=0

Cj4j3j2j4ζ
(i2)
j2
ζ
(i3)
j3
, A

(i1i4)p
4 =

p∑
j4,j3,j1=0

Cj4j3j3j1ζ
(i1)
j1
ζ
(i4)
j4
,

A
(i1i3)p
5 =

p∑
j4,j3,j1=0

Cj4j3j4j1ζ
(i1)
j1
ζ
(i3)
j3
, A

(i1i2)p
6 =

p∑
j3,j2,j1=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
,

Bp
1 =

p∑
j1,j4=0

Cj4j4j1j1, Bp
2 =

p∑
j4,j3=0

Cj3j4j3j4,

Bp
3 =

p∑
j4,j3=0

Cj4j3j3j4;

Rp is the expression on the right-hand side of (2.321) before passing to the
limits, i.e.

Rp = −1{i1=i2 ̸=0}∆
(i3i4)p
1 + 1{i1=i3 ̸=0}

(
−∆

(i2i4)p
2 +∆

(i2i4)p
1 +∆

(i2i4)p
3

)
+

+1{i1=i4 ̸=0}

(
∆

(i2i3)p
4 −∆

(i2i3)p
5 +∆

(i2i3)p
6

)
− 1{i2=i3 ̸=0}∆

(i1i4)p
3 +

+1{i2=i4 ̸=0}

(
−∆

(i1i3)p
4 +∆

(i1i3)p
5 +∆

(i1i3)p
6

)
− 1{i3=i4 ̸=0}∆

(i1i2)p
6 −
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−1{i1=i3 ̸=0}1{i2=i4 ̸=0}

(
p∑

j3=0

apj3j3 +

p∑
j3=0

cpj3j3 −
p∑

j3=0

bpj3j3

)
−

−1{i1=i4 ̸=0}1{i2=i3 ̸=0}

(
2

p∑
j3=0

f pj3j3 −
p∑

j3=0

apj3j3 −
p∑

j3=0

cpj3j3 +

p∑
j3=0

bpj3j3

)
+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

p∑
j3=0

apj3j3,

where

∆
(i3i4)p
1 =

p∑
j3,j4=0

apj4j3ζ
(i3)
j3
ζ
(i4)
j4
, ∆

(i2i4)p
2 =

p∑
j4,j2=0

bpj4j2ζ
(i2)
j2
ζ
(i4)
j4
,

∆
(i2i4)p
3 =

p∑
j4,j2=0

cpj4j2ζ
(i2)
j2
ζ
(i4)
j4
, ∆

(i1i3)p
4 =

p∑
j3,j1=0

dpj3j1ζ
(i1)
j1
ζ
(i3)
j3
,

∆
(i1i3)p
5 =

p∑
j3,j1=0

epj3j1ζ
(i1)
j1
ζ
(i3)
j3
, ∆

(i1i3)p
6 =

p∑
j3,j1=0

f pj3j1ζ
(i1)
j1
ζ
(i3)
j3
,

where

apj4j3, bpj4j2, cpj4j2, dpj3j1, epj3j1, f pj3j1

are defined by the relations (2.304), (2.306), (2.307), (2.309)–(2.311).

Using (2.629) and the elementary inequality

(a1 + . . .+ a6)
2 ≤ 6

(
a21 + . . .+ a26

)
,

we get

M


(
J∗[ψ(4)]T,t −

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

)2
 ≤

≤ 6
(
Q(1)
p +Q(2)

p +Q(3)
p +Q(4)

p +Q(5)
p +Q(6)

p

)
, (2.630)

where

Q(1)
p = M

{(
J [ψ(4)]T,t − J [ψ(4)]p,p,p,pT,t

)2
}
,
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Q(2)
p =

1

4
1{i1=i2 ̸=0}M


 ∗∫

t

T ∗∫
t

s ∗∫
t

s1

ds2dw
(i3)
s1
dw(i4)

s − S
(i3i4)p
1

2
 ,

Q(3)
p =

1

4
1{i2=i3 ̸=0}M


 ∗∫

t

T ∗∫
t

s2 ∗∫
t

s1

dw(i1)
s ds1dw

(i4)
s2

− S
(i1i4)p
2

2
 ,

Q(4)
p =

1

4
1{i3=i4 ̸=0}M


 ∗∫

t

T ∗∫
t

s1 ∗∫
t

s2

dw(i1)
s dw(i2)

s2
ds1 − S

(i1i2)p
3

2
 ,

Q(5)
p = 1{i1=i2 ̸=0}1{i3=i4 ̸=0}×

×

1

4

T∫
t

(s1 − t)ds1 −
p∑

j4=0

1

2

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)(s1 − t)ds1ds

2

,

Q(6)
p = M

{
(Rp)

2
}
.

From Remark 1.7 (see (1.225)) we have

Q(1)
p ≤ C1

p
, (2.631)

where constant C1 is independent of p.

Let us prove the version of Theorem 2.25 for the case i1, i2, i3 = 0, 1, . . . ,m.
The case i1, i2, i3 = 1, . . . ,m has been proved in Theorem 2.25. It is easy to see
that, in addition to the proof of Theorem 2.25, we need to prove the following
inequalities ∣∣∣∣∣∣12

T∫
t

ψ3(t3)

t3∫
t

ψ1(t1)ψ2(t1)dt1dt3−

−
p∑

j1=0

T∫
t

ψ3(t3)

t3∫
t

ϕj1(t2)ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3

∣∣∣∣∣∣ ≤ C

p
, (2.632)
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T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)dt1dt3−

−
p∑

j3=0

T∫
t

ϕj3(t3)ψ3(t3)

t3∫
t

ϕj3(t2)ψ3(t2)

t2∫
t

ψ1(t1)dt1dt2dt3

∣∣∣∣∣∣ ≤ C

p
, (2.633)

∣∣∣∣∣∣
p∑

j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3

∣∣∣∣∣∣ ≤ C

p
, (2.634)

where constant C is independent of p.

The inequalities (2.632) and (2.633) are equivalent to the following inequal-
ities (see the proof of the cases (2.617), (2.618))∣∣∣∣∣∣12

T∫
t

ψ1(t2)ψ̃2(t2)dt2 −
p∑

j1=0

T∫
t

ϕj1(t2)ψ̃2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2

∣∣∣∣∣∣ ≤ C

p
,

(2.635)∣∣∣∣∣∣12
T∫
t

ψ3(t3)ψ̄2(t3)dt3 −
p∑

j3=0

T∫
t

ϕj3(t3)ψ3(t3)

t3∫
t

ϕj3(t2)ψ̄2(t2)dt2dt3

∣∣∣∣∣∣ ≤ C

p
,

(2.636)

where ψ̃2(t2), ψ̄2(t2) are defined by (2.622) and (2.625), respectively. The in-
equalities (2.635), (2.636) follow from (2.602), (2.604)–(2.606).

Let us prove (2.634). By analogy with the proof of (2.626) we have

p∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ϕj1(t1)ψ1(t1)dt1dt2dt3 =

=

p∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ̃1(t1)dt1dt3−

−
p∑

j1=0

T∫
t

ϕj1(t3)ψ̃3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)dt1dt3 =
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=
∞∑
j1=0

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ̃1(t1)dt1dt3−

−
∞∑
j1=0

T∫
t

ϕj1(t3)ψ̃3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)dt1dt3−

−
∞∑

j1=p+1

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ̃1(t1)dt1dt3+

+
∞∑

j1=p+1

T∫
t

ϕj1(t3)ψ̃3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)dt1dt3 =

= −
∞∑

j1=p+1

T∫
t

ϕj1(t3)ψ3(t3)

t3∫
t

ϕj1(t1)ψ̃1(t1)dt1dt3+

+
∞∑

j1=p+1

T∫
t

ϕj1(t3)ψ̃3(t3)

t3∫
t

ϕj1(t1)ψ1(t1)dt1dt3, (2.637)

where ψ̃1(t1), ψ̃3(t3) are defined by (2.627), (2.628), respectively.

Now the estimate (2.634) follows from (2.637) and (2.604)–(2.606). Theo-
rem 2.25 is proved for the case i1, i2, i3 = 0, 1, . . . ,m.

Using the version of Theorem 2.25 for the case i1, i2, i3 = 0, 1, . . . ,m, we
obtain the following estimates

Q(2)
p ≤ C2

p
, Q(3)

p ≤ C2

p
, Q(4)

p ≤ C2

p
, (2.638)

where constant C2 does not depend on p.

From Theorem 2.2 (see (2.37)) we get

1

2

T∫
t

(s1 − t)ds1 −
p∑

j4=0

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)(s1 − t)ds1ds =

=
∞∑

j4=p+1

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)(s1 − t)ds1ds. (2.639)
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Let us consider the case of Legendre polynomials. From (2.604) and (2.639)
we have ∣∣∣∣∣∣

∞∑
j4=p+1

T∫
t

ϕj4(s)

s∫
t

ϕj4(s1)(s1 − t)ds1ds

∣∣∣∣∣∣ ≤ C3

p
, (2.640)

where constant C3 is independent of p.

By analogy with (2.605) and (2.606) we have the estimate (2.640) for the
trigonometric case. Then

Q(5)
p ≤ C4

p2
, (2.641)

where constant C4 does not depend on p.

Analyzing the proof of Theorem 2.9, we conclude that

Q(6)
p ≤ C5

p
(2.642)

for the polynomial and trigonometric cases; constant C5 is independent of p.

Combining (2.630), (2.631), (2.638), (2.641), (2.642), we get (2.616). The-
orem 2.26 is proved.

2.9 Rate of the Mean-Square Convergence of Expan-

sions of Iterated Stratonovich Stochastic Integrals

of Multiplicities 2 to 4 in Theorems 2.18, 2.20, and

2.22 (The Case of Integration Interval [t, s] (s ∈ (t, T ]))

Let us prove the following theorem.

Theorem 2.27 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). Moreover, ψ1(τ), ψ2(τ) are continuously differentiable functions on
[t, T ]. Then, for the iterated Stratonovich stochastic integral

J∗[ψ(2)]s,t =

∗∫
t

s

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following estimate

M


(
J∗[ψ(2)]s,t −

p∑
j1,j2=0

Cj2j1(s)ζ
(i1)
j1
ζ
(i2)
j2

)2
 ≤ C(s)

p
(2.643)
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is valid, where s ∈ (t, T ] (s is fixed), constant C(s) is independent of p,

Cj2j1(s) =

s∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2,

and

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j.

Proof. The case s = T has already been considered in Theorem 2.24.
Below we consider the case s ∈ (t, T ). By analogy with (2.600) we obtain

M


(
J∗[ψ(2)]s,t −

p∑
j1,j2=0

Cj2j1(s)ζ
(i1)
j1
ζ
(i2)
j2

)2
 =

= M

{(
J [ψ(2)]s,t − J [ψ(2)]p,ps,t

)2
}
+

+1{i1=i2}

1

2

s∫
t

ψ1(t1)ψ2(t1)dt1 −
p∑

j1=0

Cj1j1(s)

2

, (2.644)

where (see (1.255))

J [ψ(2)]p,ps,t =

p∑
j1,j2=0

Cj2j1(s)

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2}

)
.

From Remark 1.12 (see (1.252)) we have

M

{(
J [ψ(2)]s,t − J [ψ(2)]p,ps,t

)2
}

≤ C1(s)

p
, (2.645)

where constant C1(s) is independent of p.

Using (2.535), we obtain (the existence of a limit on the right-hand side of
(2.535) and a useful estimate for this limit will be proved further in this section)

1

2

s∫
t

ψ1(t1)ψ2(t1)dt1 −
p∑

j1=0

Cj1j1(s) =
∞∑

j1=p+1

Cj1j1(s). (2.646)
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Consider the case of Legendre polynomials. By analogy with (2.82) we get
for n > m (n,m ∈ N)

n∑
j1=m+1

Cj1j1(s) =
n∑

j1=m+1

s∫
t

ψ2(θ)ϕj1(θ)

θ∫
t

ψ1(τ)ϕj1(τ)dτdθ =

=
T − t

4

z(s)∫
−1

ψ1(h(x))ψ2(h(x)) (Pn+1(x)Pn(x)− Pm+1(x)Pm(x)) dx−

−(T − t)2

8

n∑
j1=m+1

1

2j1 + 1

z(s)∫
−1

(Pj1+1(y)− Pj1−1(y))ψ
′
1(h(y))×

×

(
(Pj1+1(z(s))− Pj1−1(z(s)))ψ2(s)− (Pj1+1(y)− Pj1−1(y))ψ2(h(y))−

−T − t

2

z(s)∫
y

(Pj1+1(x)− Pj1−1(x))ψ
′
2(h(x))dx

)
dy, (2.647)

where

h(y) =
T − t

2
y +

T + t

2
, z(s) =

(
s− T + t

2

)
2

T − t
,

and ψ′
1, ψ

′
2 are derivatives of the functions ψ1(τ), ψ2(τ) with respect to the

variable h(y) (see (2.55)).

Applying the estimate (2.67) and taking into account the boundedness of
the functions ψ1(τ), ψ2(τ) and their derivatives, we finally obtain∣∣∣∣∣

n∑
j1=m+1

Cj1j1(s)

∣∣∣∣∣ ≤ C1

(
1

n
+

1

m

) z(s)∫
−1

dx

(1− x2)1/2
+

+C2

n∑
j1=m+1

1

j21

 z(s)∫
−1

dy

(1− y2)1/2
+

1

(1− z2(s))1/4

z(s)∫
−1

dy

(1− y2)1/4
+

+

z(s)∫
−1

1

(1− y2)1/4

z(s)∫
y

dx

(1− x2)1/4
dy

 , (2.648)
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where constants C1, C2 do not depend on n and m.

We assume that s ∈ (t, T ) (z(s) ̸= ±1) since the case s = T has already
been considered in Theorem 2.24. Then∣∣∣∣∣

n∑
j1=m+1

Cj1j1(s)

∣∣∣∣∣ ≤ C3(s)

(
1

n
+

1

m
+

n∑
j1=m+1

1

j21

)
, (2.649)

where constant C3(s) does not depend on n and m. Thus, the limit

lim
p→∞

p∑
j1=0

Cj1j1(s) (2.650)

exists for the polynomial case. For the trigonometric case, the existence of the
limit (2.650) can be proved by analogy with the proof of Lemma 2.2 (Sect. 2.1.2).
We also note that the existence of these limits follows from Sect. 2.1.4.

The relations (2.649) and (2.25) imply that∣∣∣∣∣
∞∑

j1=p+1

Cj1j1(s)

∣∣∣∣∣ ≤ C3(s)

(
1

p
+

∞∑
j1=p+1

1

j21

)
≤ C4(s)

p
, (2.651)

where constant C4(s) is independent of p.

For the trigonometric case, the analog of the inequality (2.651) can be
obtained by analogy with (2.605) and (2.606) (see the proof of Lemma 2.2).

Combining (2.644)–(2.646), (2.651), we obtain the estimate (2.643). Theo-
rem 2.27 is proved.

The arguments given earlier in Chapters 1 and 2 of this book allow us to
formulate the following two theorems.

Theorem 2.28 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal sys-
tem of Legendre polynomials or trigonometric functions in the space L2([t, T ]).
At the same time ψ2(τ) is a continuously differentiable nonrandom function on
[t, T ] and ψ1(τ), ψ3(τ) are twice continuously differentiable nonrandom func-
tions on [t, T ]. Then, for the iterated Stratonovich stochastic integral of third
multiplicity

J∗[ψ(3)]s,t =

∗∫
t

s

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 ,
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where i1, i2, i3 = 0, 1, . . . ,m, the following estimate

M


(
J∗[ψ(3)]s,t −

p∑
j1,j2,j3=0

Cj3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 ≤ C(s)

p

is valid, where s ∈ (t, T ] (s is fixed), constant C(s) is independent of p,

Cj3j2j1(s) =

s∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3,

and

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ

are independent standard Gaussian random variables for various i or j.

Theorem 2.29 [33]. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal sys-
tem of Legendre polynomials or trigonometric functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of fourth multiplicity

J∗[ψ(4)]s,t =

∗∫
t

s ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 (i1, i2, i3, i4 = 0, 1, . . . ,m)

the following estimate

M


(
J∗[ψ(4)]s,t −

p∑
j1,j2,j3,j4=0

Cj4j3j2j1(s)ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

)2
 ≤ C(s)

p

is valid, where s ∈ (t, T ] (s is fixed), constant C(s) is independent of p,

Cj4j3j2j1(s) =

s∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4,

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.
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2.10 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Arbitrary Multiplicity k (k ∈ N). Proof

of Hypotheses 2.2 and 2.3 Under the Condition of

Convergence of Trace Series

In this section, we prove the expansion of iterated Stratonovich stochastic in-
tegrals of arbitrary multiplicity k (k ∈ N) under the condition of convergence
of trace series. Let us introduce some notations.

Consider the unordered set {1, 2, . . . , k} and separate it into two parts: the
first part consists of r unordered pairs (sequence order of these pairs is also
unimportant) and the second one consists of the remaining k−2r numbers. So,
we have

({{g1, g2}, . . . , {g2r−1, g2r}︸ ︷︷ ︸
part 1

}, {q1, . . . , qk−2r︸ ︷︷ ︸
part 2

}), (2.652)

where

{g1, g2, . . . , g2r−1, g2r, q1, . . . , qk−2r} = {1, 2, . . . , k},

braces mean an unordered set, and parentheses mean an ordered set.

Consider the sum (1.53) with respect to all possible partitions (2.652)∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

ag1g2,...,g2r−1g2r,q1...qk−2r

and the Fourier coefficient

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (2.653)

corresponding to the function (1.6), where {ϕj(x)}∞j=0 is a complete orthonor-
mal system of functions in the space L2([t, T ]). At that we suppose ϕ0(x) =
1/
√
T − t.

Denote

Cjk...jl+1jljljl−2...j1

∣∣∣∣
(jljl)↷(·)

def
=
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def
=

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1
(tl+1)

tl+1∫
t

ψl(tl)ψl−1(tl)×

×
tl∫
t

ψl−2(tl−2)ϕjl−2
(tl−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtl−2dtltl+1 . . . dtk = (2.654)

=
√
T − t

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1
(tl+1)

tl+1∫
t

ψl(tl)ψl−1(tl)ϕ0(tl)×

×
tl∫
t

ψl−2(tl−2)ϕjl−2
(tl−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtl−2dtltl+1 . . . dtk =

=
√
T − tĈjk...jl+10jl−2...j1,

i.e.
√
T − tĈjk...jl+10jl−2...j1 is again the Fourier coefficient of type Cjk...j1 but

with a new shorter multi-index jk . . . jl+10jl−2 . . . j1 and new weight functions
ψ1(τ), . . . , ψl−2(τ),

√
T − tψl−1(τ)ψl(τ), ψl+1(τ), . . . , ψk(τ) (also we suppose

that {l, l − 1} is one of the pairs {g1, g2}, . . . , {g2r−1, g2r}).
Let

Cjk...jl+1jljljl−2...j1

∣∣∣∣
(jljl)↷jm

def
=

def
=

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1
(tl+1)

tl+1∫
t

ψl(tl)ψl−1(tl)ϕjm(tl)×

×
tl∫
t

ψl−2(tl−2)ϕjl−2
(tl−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtl−2dtltl+1 . . . dtk = (2.655)

= C̄jk...jl+1jmjl−2...j1,

i.e. C̄jk...jl+1jmjl−2...j1 is again the Fourier coefficient of type Cjk...j1 but with a new
shorter multi-index jk . . . jl+1jmjl−2 . . . j1 and new weight functions ψ1(τ), . . . ,
ψl−2(τ), ψl−1(τ)ψl(τ), ψl+1(τ), . . . , ψk(τ) (also we suppose that {l, l− 1} is one
of the pairs {g1, g2}, . . . , {g2r−1, g2r}).
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Denote

C̄
(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

def
=

def
=

∞∑
jg2r−1

=p+1

∞∑
jg2r−3

=p+1

. . .
∞∑

jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

. (2.656)

Introduce the following notation

Sl

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
=

1

2
1{g2l=g2l−1+1}

∞∑
jg2r−1

=p+1

∞∑
jg2r−3

=p+1

. . .

. . .

∞∑
jg2l+1

=p+1

∞∑
jg2l−3

=p+1

. . .

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg2ljg2l−1

)↷(·),jg1=jg2 ,...,jg2r−1
=jg2r

.

(2.657)

Note that the operation Sl (l = 1, 2, . . . , r) acts on the value

C̄
(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

(2.658)

as follows: Sl multiplies (2.658) by 1{g2l=g2l−1+1}/2, removes the summation

∞∑
jg2l−1

=p+1

,

and replaces

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

with

Cjk...j1

∣∣∣∣
(jg2ljg2l−1

)↷(·),jg1=jg2 ,...,jg2r−1
=jg2r

. (2.659)

Note that we write

Cjk...j1

∣∣∣∣
(jg1jg2)↷(·),jg1=jg2

= Cjk...j1

∣∣∣∣
(jg1jg1)↷(·),jg1=jg2

,



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series527

Cjk...j1

∣∣∣∣
(jg1jg2)↷jm,jg1=jg2

= Cjk...j1

∣∣∣∣
(jg1jg1)↷jm,jg1=jg2

,

Cjk...j1

∣∣∣∣
(jg1jg2)↷(·),(jg3jg4)↷(·),jg1=jg2 ,jg3=jg4

=

= Cjk...j1

∣∣∣∣
(jg1jg1)↷(·)(jg3jg3)↷(·),jg1=jg2 ,jg3=jg4

etc.

Since (2.659) is again the Fourier coefficient, then the action of superposition
SlSm on (2.659) is obvious. For example, for r = 3

S3S2S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
=

=
1

23

3∏
s=1

1{g2s=g2s−1+1}Cjk...j1

∣∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·)(jg6jg5)↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6

,

S3S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
=

=
1

22
1{g6=g5+1}1{g2=g1+1}

∞∑
jg3=p+1

Cjk...j1

∣∣∣∣∣
(jg2jg1)↷(·)(jg6jg5)↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6

,

S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
=

=
1

2
1{g4=g3+1}

∞∑
jg1=p+1

∞∑
jg5=p+1

Cjk...j1

∣∣∣∣∣
(jg4jg3)↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6

.

Theorem 2.30 [33], [38], [39], [64]. Assume that the continuously differ-
entiable functions ψl(τ) (l = 1, . . . , k) at the interval [t, T ] and the complete
orthonormal system {ϕj(x)}∞j=0 of continuous functions (ϕ0(x) = 1/

√
T − t) in

the space L2([t, T ]) are such that the following conditions are satisfied:



528D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

1. The equality

1

2

s∫
t

Φ1(t1)Φ2(t1)dt1 =
∞∑
j=0

s∫
t

Φ2(t2)ϕj(t2)

t2∫
t

Φ1(t1)ϕj(t1)dt1dt2 (2.660)

holds for all s ∈ (t, T ], where the nonrandom functions Φ1(τ), Φ2(τ) are con-
tinuously differentiable on [t, T ] and the series on the right-hand side of (2.660)
converges absolutely.

2. The estimates∣∣∣∣∣∣
s∫
t

ϕj(τ)Φ1(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)

j1/2+α
,

∣∣∣∣∣∣
T∫
s

ϕj(τ)Φ2(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)

j1/2+α
,

∣∣∣∣∣∣
∞∑

j=p+1

s∫
t

Φ2(τ)ϕj(τ)

τ∫
t

Φ1(θ)ϕj(θ)dθdτ

∣∣∣∣∣∣ ≤ Ψ2(s)

pβ

hold for all s ∈ (t, T ) and for some α, β > 0, where Φ1(τ), Φ2(τ) are continu-
ously differentiable nonrandom functions on [t, T ], j, p ∈ N, and

T∫
t

Ψ2
1(τ)dτ <∞,

T∫
t

|Ψ2(τ)| dτ <∞.

3. The condition

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

= 0

holds for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)) and l1, l2, . . . , ld such that
l1, l2, . . . , ld ∈ {1, 2, . . . , r}, l1 > l2 > . . . > ld, d = 0, 1, 2, . . . , r − 1, where
r = 1, 2, . . . , [k/2] and

Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
= C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

for d = 0.

Then, for the iterated Stratonovich stochastic integral of arbitrary multiplic-
ity k
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J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk (2.661)

the following expansion

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.662)

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (2.663)

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. First note that (2.660) is true (see the proof of Theorem 2.18). The
proof of Theorem 2.30 (k ≥ 2) will consist of several steps (the case k = 1 is
obvious (see (1.45)).

Step 1. Let us find a representation of the quantity

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

that will be convenient for further consideration.

Recall the equality (1.272) (also see (1.316), (1.390))

J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t =

k∏
l=1

ζ
(il)
jl

+

+

[k/2]∑
r=1

(−1)r
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql

(2.664)
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w. p. 1, where notations are the same as in Theorem 1.2 and J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t

is the multiple Wiener stochastic integral (1.23) (also see (1.258)).

From (2.664) we obtain

k∏
l=1

ζ
(il)
jl

= J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t −

−
[k/2]∑
r=1

(−1)r
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }

k−2r∏
l=1

ζ
(iql)

jql

(2.665)

w. p. 1.

By iteratively applying the formula (2.665) (also see (1.46)–(1.50)), we ob-
tain the following representation of the product

k∏
l=1

ζ
(il)
jl

as the sum of some constant value and multiple Wiener stochastic integrals of
multiplicities not exceeding k

k∏
l=1

ζ
(il)
jl

= J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s }
×

×J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t w. p. 1, (2.666)

where
J ′[ϕjq1 . . . ϕjqk−2r

]
(iq1 ...iqk−2r

)

T,t
def
= 1

for k = 2r.

Multiplying both sides of the equality (2.666) by Cjk...j1 and summing over
j1, . . . , jk, we get w. p. 1
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p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t +

+

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t w. p. 1. (2.667)

Denote

Kp1...pk(t1, . . . , tk) =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ϕjl(tl), (2.668)

Kg1...g2r,q1...qk−2r
p1...pk

(tq1, . . . , tqk−2r
) =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s}

k−2r∏
l=1

ϕjql(tql),

(2.669)

where Cjk...j1 is defined by (2.663) and

0∏
l=1

ϕjql(tql)
def
= 1, (2.670)

i.e. k = 2r in (2.670).

The equality (2.667) can be written as

J [Kp1...pk]
(i1...ik)
T,t = J ′[Kp1...pk]

(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′[Kg1...g2r,q1...qk−2r
p1...pk

]
(iq1 ...iqk−2r

)

T,t (2.671)
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w. p. 1, where Kp1...pk(t1, . . . , tk) and K
g1...g2r,q1...qk−2r
p1...pk (tq1, . . . , tqk−2r

) are de-

fined by the equalities (2.668), (2.669), J [Kp1...pk]
(i1...ik)
T,t is the multiple Stra-

tonovich stochastic integral (1.16) (also see (2.1493)) and J ′[Kp1...pk]
(i1...ik)
T,t ,

J ′[K
g1...g2r,q1...qk−2r
p1...pk ]

(iq1 ...iqk−2r
)

T,t are multiple Wiener stochastic integrals defined by
(1.23) (also see (1.258)).

Passing to the limit l.i.m.
p1,...,pk→∞

(p1 = . . . = pk = p) in (2.667) or (2.671), we

get w. p. 1 (see Theorems 1.1, 1.2 and (1.43))

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

= J [ψ(k)]
(i1...ik)
T,t +

+l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t = (2.672)

= J [ψ(k)]
(i1...ik)
T,t +

+l.i.m.
p→∞

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′[Kg1...g2r,q1...qk−2r
p1...pk

]
(iq1 ...iqk−2r

)

T,t (2.673)

w. p. 1, where J [ψ(k)]
(i1...ik)
T,t is the iterated Itô stochastic integral

J [ψ(k)]
(i1...ik)
T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk . (2.674)

If we prove that w. p. 1



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series533

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t =

= l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t , (2.675)

then (see (2.672), (2.675), and Theorem 2.12)

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

=

= J [ψ(k)]
(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t = J∗[ψ(k)]
(i1...ik)
T,t (2.676)

w. p. 1, where notations in (2.676) are the same as in Theorem 2.12. Thus
Theorem 2.30 will be proved.

From (2.671) we have that the multiple Stratonovich stochastic integral

J [Kp1...pk]
(i1...ik)
T,t of multiplicity k is expressed as a sum of some constant value

and multiple Wiener stochastic integrals

J ′[Kp1...pk]
(i1...ik)
T,t

and

J ′[Kg1...g2r,q1...qk−2r
p1...pk

]
(iq1 ...iqk−2r

)

T,t

of multiplicities k, k − 2, k − 4, . . . , k − 2[k/2] (r = 1, 2, . . . , [k/2]).

The formulas (2.667), (2.671) can be considered as new representations of
the Hu-Meyer formula for the case of a multidimensional Wiener process [142]
(also see [139], [141]) and kernel Kp1...pk(t1, . . . , tk) (see (2.668)).
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Further, we will use the representation (2.667) for p1 = . . . = pk = p, i.e.

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

=

p∑
j1,...,jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t +

+

p∑
j1,...,jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t w. p. 1. (2.677)

For example, for k = 2, 3, 4, 5, 6 from (2.667) we have w. p. 1

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

= J ′[Kp1p2]
(i1i2)
T,t +

p1∑
j1=0

p2∑
j2=0

Cj2j11{i1=i2 ̸=0}1{j1=j2}, (2.678)

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

= J ′[Kp1p2p3]
(i1i2i3)
T,t +

+

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1

(
1{i1=i2 ̸=0}1{j1=j2}J

′[ϕj3]
(i3)
T,t + 1{i2=i3 ̸=0}1{j2=j3}J

′[ϕj1]
(i1)
T,t+

+1{i1=i3 ̸=0}1{j1=j3}J
′[ϕj2]

(i2)
T,t

)
, (2.679)

p1∑
j1=0

. . .

p4∑
j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

= J ′[Kp1p2p3p4]
(i1i2i3i4)
T,t +

+

p1∑
j1=0

. . .

p4∑
j4=0

Cj4j3j2j1

(
1{i1=i2 ̸=0}1{j1=j2}J

′[ϕj3ϕj4]
(i3i4)
T,t +

+1{i1=i3 ̸=0}1{j1=j3}J
′[ϕj2ϕj4]

(i2i4)
T,t + 1{i1=i4 ̸=0}1{j1=j4}J

′[ϕj2ϕj3]
(i2i3)
T,t +

+1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj1ϕj4]

(i1i4)
T,t + 1{i2=i4 ̸=0}1{j2=j4}J

′[ϕj1ϕj3]
(i1i3)
T,t +
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+1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj1ϕj2]

(i1i2)
T,t +

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4} + 1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}

)
, (2.680)

p1∑
j1=0

. . .

p5∑
j5=0

Cj5j4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

= J ′[Kp1p2p3p4p5]
(i1i2i3i4i5)
T,t +

+

p1∑
j1=0

. . .

p5∑
j5=0

Cj5j4j3j2j1

(
1{i1=i2 ̸=0}1{j1=j2}J

′[ϕj3ϕj4ϕj5]
(i3i4i5)
T,t +

+1{i1=i3 ̸=0}1{j1=j3}J
′[ϕj2ϕj4ϕj5]

(i2i4i5)
T,t + 1{i1=i4 ̸=0}1{j1=j4}J

′[ϕj2ϕj3ϕj5]
(i2i3i5)
T,t +

+1{i1=i5 ̸=0}1{j1=j5}J
′[ϕj2ϕj3ϕj4]

(i2i3i4)
T,t + 1{i2=i3 ̸=0}1{j2=j3}J

′[ϕj1ϕj4ϕj5]
(i1i4i5)
T,t +

+1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj1ϕj3ϕj5]

(i1i3i5)
T,t + 1{i2=i5 ̸=0}1{j2=j5}J

′[ϕj1ϕj3ϕj4]
(i1i3i4)
T,t +

+1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj1ϕj2ϕj5]

(i1i2i5)
T,t + 1{i3=i5 ̸=0}1{j3=j5}J

′[ϕj1ϕj2ϕj4]
(i1i2i4)
T,t +

+1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj1ϕj2ϕj3]

(i1i2i3)
T,t +

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj5]

(i5)
T,t+

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj4]

(i4)
T,t+

+1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj3]

(i3)
T,t+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj5]

(i5)
T,t+

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj4]

(i4)
T,t+

+1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj2]

(i2)
T,t+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj5]

(i5)
T,t+

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj3]

(i3)
T,t+

+1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj2]

(i2)
T,t+

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj4]

(i4)
T,t+

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj3]

(i3)
T,t+
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+1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj2]

(i2)
T,t+

+1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj1]

(i1)
T,t+

+1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj1]

(i1)
T,t+

+1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj1]

(i1)
T,t

)
, (2.681)

p1∑
j1=0

. . .

p6∑
j6=0

Cj6j5j4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

= J ′[Kp1p2p3p4p5p6]
(i1i2i3i4i5i6)
T,t +

+

p1∑
j1=0

. . .

p6∑
j6=0

Cj6j5j4j3j2j1

(
1{i1=i6 ̸=0}1{j1=j6}J

′[ϕj2ϕj3ϕj4ϕj5]
(i2i3i4i5)
T,t +

+1{i2=i6 ̸=0}1{j2=j6}J
′[ϕj1ϕj3ϕj4ϕj5]

(i1i3i4i5)
T,t +1{i3=i6 ̸=0}1{j3=j6}J

′[ϕj1ϕj2ϕj4ϕj5]
(i1i2i4i5)
T,t +

+1{i4=i6 ̸=0}1{j4=j6}J
′[ϕj1ϕj2ϕj3ϕj5]

(i1i2i3i5)
T,t +1{i5=i6 ̸=0}1{j5=j6}J

′[ϕj1ϕj2ϕj3ϕj4]
(i1i2i3i4)
T,t +

+1{i1=i2 ̸=0}1{j1=j2}J
′[ϕj3ϕj4ϕj5ϕj6]

(i3i4i5i6)
T,t +1{i1=i3 ̸=0}1{j1=j3}J

′[ϕj2ϕj4ϕj5ϕj6]
(i2i4i5i6)
T,t +

+1{i1=i4 ̸=0}1{j1=j4}J
′[ϕj2ϕj3ϕj5ϕj6]

(i2i3i5i6)
T,t +1{i1=i5 ̸=0}1{j1=j5}J

′[ϕj2ϕj3ϕj4ϕj6]
(i2i3i4i6)
T,t +

+1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj1ϕj4ϕj5ϕj6]

(i1i4i5i6)
T,t +1{i2=i4 ̸=0}1{j2=j4}J

′[ϕj1ϕj3ϕj5ϕj6]
(i1i3i5i6)
T,t +

+1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj1ϕj3ϕj4ϕj6]

(i1i3i4i6)
T,t +1{i3=i4 ̸=0}1{j3=j4}J

′[ϕj1ϕj2ϕj5ϕj6]
(i1i2i5i6)
T,t +

+1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj1ϕj2ϕj4ϕj6]

(i1i2i4i6)
T,t +1{i4=i5 ̸=0}1{j4=j5}J

′[ϕj1ϕj2ϕj3ϕj6]
(i1i2i3i6)
T,t +

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj5ϕj6]

(i5i6)
T,t +

+1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj4ϕj6]

(i4i6)
T,t +

+1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj3ϕj6]

(i3i6)
T,t +

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj5ϕj6]

(i5i6)
T,t +

+1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj4ϕj6]

(i4i6)
T,t +

+1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj2ϕj6]

(i2i6)
T,t +

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj5ϕj6]

(i5i6)
T,t +

+1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj3ϕj6]

(i3i6)
T,t +
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+1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj2ϕj6]

(i2i6)
T,t +

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj4ϕj6]

(i4i6)
T,t +

+1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj3ϕj6]

(i3i6)
T,t +

+1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj2ϕj6]

(i2i6)
T,t +

+1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj1ϕj6]

(i1i6)
T,t +

+1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj1ϕj6]

(i1i6)
T,t +

+1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj1ϕj6]

(i1i6)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj2ϕj5]

(i2i5)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj2ϕj4]

(i2i4)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj3ϕj4]

(i3i4)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj3ϕj5]

(i3i5)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj2ϕj3]

(i2i3)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj4ϕj5]

(i4i5)
T,t +

+1{i6=i2 ̸=0}1{j6=j2}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj1ϕj4]

(i1i4)
T,t +

+1{i6=i2 ̸=0}1{j6=j2}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj1ϕj3]

(i1i3)
T,t +

+1{i6=i2 ̸=0}1{j6=j2}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj1ϕj5]

(i1i5)
T,t +

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i5 ̸=0}1{j1=j5}J
′[ϕj3ϕj4]

(i3i4)
T,t +

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i4 ̸=0}1{j1=j4}J
′[ϕj3ϕj5]

(i3i5)
T,t +

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i3 ̸=0}1{j1=j3}J
′[ϕj4ϕj5]

(i4i5)
T,t +

+1{i6=i3 ̸=0}1{j6=j3}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj1ϕj4]

(i1i4)
T,t +

+1{i6=i3 ̸=0}1{j6=j3}1{i4=i5 ̸=0}1{j4=j5}J
′[ϕj1ϕj2]

(i1i2)
T,t +

+1{i6=i3 ̸=0}1{j6=j3}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj1ϕj5]

(i1i5)
T,t +

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i5 ̸=0}1{j1=j5}J
′[ϕj2ϕj4]

(i2i4)
T,t +

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i4 ̸=0}1{j1=j4}J
′[ϕj2ϕj5]

(i2i5)
T,t +
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+1{i6=i3 ̸=0}1{j6=j3}1{i1=i2 ̸=0}1{j1=j2}J
′[ϕj4ϕj5]

(i4i5)
T,t +

+1{i6=i4 ̸=0}1{j6=j4}1{i3=i5 ̸=0}1{j3=j5}J
′[ϕj1ϕj2]

(i1i2)
T,t +

+1{i6=i4 ̸=0}1{j6=j4}1{i2=i5 ̸=0}1{j2=j5}J
′[ϕj1ϕj3]

(i1i3)
T,t +

+1{i6=i4 ̸=0}1{j6=j4}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj1ϕj5]

(i1i5)
T,t +

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i5 ̸=0}1{j1=j5}J
′[ϕj2ϕj3]

(i2i3)
T,t +

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i3 ̸=0}1{j1=j3}J
′[ϕj2ϕj5]

(i2i5)
T,t +

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i2 ̸=0}1{j1=j2}J
′[ϕj3ϕj5]

(i3i5)
T,t +

+1{i6=i5 ̸=0}1{j6=j5}1{i3=i4 ̸=0}1{j3=j4}J
′[ϕj1ϕj2]

(i1i2)
T,t +

+1{i6=i5 ̸=0}1{j6=j5}1{i2=i4 ̸=0}1{j2=j4}J
′[ϕj1ϕj3]

(i1i3)
T,t +

+1{i6=i5 ̸=0}1{j6=j5}1{i2=i3 ̸=0}1{j2=j3}J
′[ϕj1ϕj4]

(i1i4)
T,t +

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i4 ̸=0}1{j1=j4}J
′[ϕj2ϕj3]

(i2i3)
T,t +

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i3 ̸=0}1{j1=j3}J
′[ϕj2ϕj4]

(i2i4)
T,t +

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i2 ̸=0}1{j1=j2}J
′[ϕj3ϕj4]

(i3i4)
T,t +

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i5 ̸=0}1{j2=j5}1{i3=i4 ̸=0}1{j3=j4}+

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i4 ̸=0}1{j2=j4}1{i3=i5 ̸=0}1{j3=j5}+

+1{i6=i1 ̸=0}1{j6=j1}1{i2=i3 ̸=0}1{j2=j3}1{i4=i5 ̸=0}1{j4=j5}+

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i5 ̸=0}1{j1=j5}1{i3=i4 ̸=0}1{j3=j4}+

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i4 ̸=0}1{j1=j4}1{i3=i5 ̸=0}1{j3=j5}+

+1{i6=i2 ̸=0}1{j6=j2}1{i1=i3 ̸=0}1{j1=j3}1{i4=i5 ̸=0}1{j4=j5}+

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i5 ̸=0}1{j1=j5}1{i2=i4 ̸=0}1{j2=j4}+

+1{i6=i3 ̸=0}1{j6=j3}1{i1=i4 ̸=0}1{j1=j4}1{i2=i5 ̸=0}1{j2=j5}+

+1{i3=i6 ̸=0}1{j3=j6}1{i1=i2 ̸=0}1{j1=j2}1{i4=i5 ̸=0}1{j4=j5}+

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i5 ̸=0}1{j1=j5}1{i2=i3 ̸=0}1{j2=j3}+

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i3 ̸=0}1{j1=j3}1{i2=i5 ̸=0}1{j2=j5}+

+1{i6=i4 ̸=0}1{j6=j4}1{i1=i2 ̸=0}1{j1=j2}1{i3=i5 ̸=0}1{j3=j5}+

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i4 ̸=0}1{j1=j4}1{i2=i3 ̸=0}1{j2=j3}+
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+1{i6=i5 ̸=0}1{j6=j5}1{i1=i2 ̸=0}1{j1=j2}1{i3=i4 ̸=0}1{j3=j4}+

+1{i6=i5 ̸=0}1{j6=j5}1{i1=i3 ̸=0}1{j1=j3}1{i2=i4 ̸=0}1{j2=j4}

)
. (2.682)

Note that the relation (2.680) can be written in the following form

p1∑
j1=0

. . .

p4∑
j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

=

p1∑
j1=0

. . .

p4∑
j4=0

Cj4j3j2j1J
′[ϕj1ϕj2ϕj3ϕj4]

(i1i2i3i4)
T,t +

+1{i1=i2 ̸=0}

p3∑
j3=0

p4∑
j4=0

min{p1,p2}∑
j1=0

Cj4j3j1j1

 J ′[ϕj3ϕj4]
(i3i4)
T,t +

+1{i1=i3 ̸=0}

p2∑
j2=0

p4∑
j4=0

min{p1,p3}∑
j3=0

Cj4j3j2j3

 J ′[ϕj2ϕj4]
(i2i4)
T,t +

+1{i1=i4 ̸=0}

p2∑
j2=0

p3∑
j3=0

min{p1,p4}∑
j4=0

Cj4j3j2j4

 J ′[ϕj2ϕj3]
(i2i3)
T,t +

+1{i2=i3 ̸=0}

p1∑
j1=0

p4∑
j4=0

min{p2,p3}∑
j3=0

Cj4j3j3j1

 J ′[ϕj1ϕj4]
(i1i4)
T,t +

+1{i2=i4 ̸=0}

p1∑
j1=0

p3∑
j3=0

min{p2,p4}∑
j4=0

Cj4j3j4j1

 J ′[ϕj1ϕj3]
(i1i3)
T,t +

+1{i3=i4 ̸=0}

p1∑
j1=0

p2∑
j2=0

min{p3,p4}∑
j4=0

Cj4j4j2j1

 J ′[ϕj1ϕj2]
(i1i2)
T,t +

+1{i2=i3 ̸=0}1{i1=i4 ̸=0}

min{p2,p3}∑
j2=0

min{p1,p4}∑
j4=0

Cj4j2j2j4+

+1{i2=i4 ̸=0}1{i1=i3 ̸=0}

min{p1,p3}∑
j3=0

min{p2,p4}∑
j4=0

Cj4j3j4j3+

+1{i3=i4 ̸=0}1{i1=i2 ̸=0}

min{p1,p2}∑
j2=0

min{p3,p4}∑
j4=0

Cj4j4j2j2 w. p. 1.
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Step 2. Let us prove that

∞∑
jl=0

Cjk...jl+1jljl−1...js+1jljs−1...j1 = 0 (2.683)

or

p∑
jl=0

Cjk...jl+1jljl−1...js+1jljs−1...j1 = −
∞∑

jl=p+1

Cjk...jl+1jljl−1...js+1jljs−1...j1, (2.684)

where l − 1 ≥ s+ 1.

Our further proof will not fundamentally depend on the weight functions
ψ1(τ), . . . , ψk(τ). Therefore, sometimes in subsequent consideration we assume
for simplicity that ψ1(τ), . . . , ψk(τ) ≡ 1.

Using the integration order replacement, we have

Cjk...jl+1jljl−1...js+1jljs−1...j1 =

=

T∫
t

ϕjk(tk) . . .

tl+2∫
t

ϕjl+1
(tl+1)

tl+1∫
t

ϕjl(tl)

tl∫
t

ϕjl−1
(tl−1) . . .

. . .

ts+2∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjl(ts)

ts∫
t

ϕjs−1
(ts−1) . . .

. . .

t2∫
t

ϕj1(t1)dt1 . . . dts−1dtsdts+1 . . . dtl−1dtldtl+1 . . . dtk =

=

T∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjl(ts)

ts∫
t

ϕjs−1
(ts−1) . . .

t2∫
t

ϕj1(t1)dt1 . . . dts−1dts×

×

 T∫
ts+1

ϕjs+2
(ts+2) . . .

T∫
tl−2

ϕjl−1
(tl−1)

T∫
tl−1

ϕjl(tl)

T∫
tl

ϕjl+1
(tl+1) . . .

. . .

T∫
tk−1

ϕjk(tk)dtk . . . dtl+1dtldtl−1 . . . dts+2

 dts+1 =
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=

T∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjl(ts)

ts∫
t

ϕjs−1
(ts−1) . . .

t2∫
t

ϕj1(t1)dt1 . . . dts−1︸ ︷︷ ︸
Gjs−1...j1

(ts)

dts×

×
T∫

ts+1

ϕjl(tl)

T∫
tl

ϕjl+1
(tl+1) . . .

T∫
tk−1

ϕjk(tk)dtk . . . dtl+1

︸ ︷︷ ︸
Hjk...jl+1

(tl)

×

×


tl∫

ts+1

ϕjl−1
(tl−1) . . .

ts+3∫
ts+1

ϕjs+2
(ts+2)dts+2 . . . dtl−1

︸ ︷︷ ︸
Qjl−1...js+2

(tl,ts+1)

dtl

 dts+1 =

=

T∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjl(ts)Gjs−1...j1(ts)dts×

×
T∫

ts+1

ϕjl(tl)Hjk...jl+1
(tl)Qjl−1...js+2

(tl, ts+1)dtldts+1. (2.685)

Applying the additive property of the integral, we obtain

Qjl−1...js+2
(tl, ts+1) =

=

tl∫
ts+1

ϕjl−1
(tl−1) . . .

ts+3∫
ts+1

ϕjs+2
(ts+2)dts+2 . . . dtl−1 =

=

tl∫
ts+1

ϕjl−1
(tl−1) . . .

ts+4∫
ts+1

ϕjs+3
(ts+3)

ts+3∫
t

ϕjs+2
(ts+2)dts+2dts+3 . . . dtl−1−
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−
tl∫

ts+1

ϕjl−1
(tl−1) . . .

ts+4∫
ts+1

ϕjs+3
(ts+3)dts+3 . . . dtl−1

ts+1∫
t

ϕjs+2
(ts+2)dts+2 =

. . .

=
d∑

m=1

h
(m)
jl−1...js+2

(tl)q
(m)
jl−1...js+2

(ts+1), (2.686)

where d <∞.

Combining (2.685) and (2.686), we have

p∑
jl=0

Cjk...jl+1jljl−1...js+1jljs−1...j1 =

=
d∑

m=1

 T∫
t

ϕjs+1
(ts+1)q

(m)
jl−1...js+2

(ts+1)

p∑
jl=0

ts+1∫
t

ϕjl(ts)Gjs−1...j1(ts)dts×

×
T∫

ts+1

ϕjl(tl)Hjk...jl+1
(tl)h

(m)
jl−1...js+2

(tl)dtldts+1

 . (2.687)

Using the generalized Parseval equality, we obtain

∞∑
jl=0

ts+1∫
t

ϕjl(ts)Gjs−1...j1(ts)dts

T∫
ts+1

ϕjl(tl)Hjk...jl+1
(tl)h

(m)
jl−1...js+2

(tl)dtl =

=

T∫
t

1{τ<ts+1}Gjs−1...j1(τ) · 1{τ>ts+1}Hjk...jl+1
(τ)h

(m)
jl−1...js+2

(τ)dτ = 0. (2.688)

From (2.687) and (2.688) we get

p∑
jl=0

Cjk...jl+1jljl−1...js+1jljs−1...j1 =
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= −
d∑

m=1

 T∫
t

ϕjs+1
(ts+1)q

(m)
jl−1...js+2

(ts+1)
∞∑

jl=p+1

ts+1∫
t

ϕjl(ts)Gjs−1...j1(ts)dts×

×
T∫

ts+1

ϕjl(tl)Hjk...jl+1
(tl)h

(m)
jl−1...js+2

(tl)dtldts+1

 . (2.689)

Combining Condition 2 of Theorem 2.30 and (2.685)–(2.687), (2.689), we
have

p∑
jl=0

Cjk...jl+1jljl−1...js+1jljs−1...j1 =

= −
∞∑

jl=p+1

d∑
m=1

 T∫
t

ϕjs+1
(ts+1)q

(m)
jl−1...js+2

(ts+1)

ts+1∫
t

ϕjl(ts)Gjs−1...j1(ts)dts×

×
T∫

ts+1

ϕjl(tl)Hjk...jl+1
(tl)h

(m)
jl−1...js+2

(tl)dtldts+1

 =

= −
∞∑

jl=p+1

T∫
t

ϕjk(tk) . . .

tl+2∫
t

ϕjl+1
(tl+1)

tl+1∫
t

ϕjl(tl)

tl∫
t

ϕjl−1
(tl−1) . . .

. . .

ts+2∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjl(ts)

ts∫
t

ϕjs−1
(ts−1) . . .

. . .

t2∫
t

ϕj1(t1)dt1 . . . dts−1dtsdts+1 . . . dtl−1dtldtl+1 . . . dtk =

= −
∞∑

jl=p+1

Cjk...jl+1jljl−1...js+1jljs−1...j1. (2.690)

The equality (2.690) implies (2.683), (2.684).



544D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Step 3. Under the conditions of Theorem 2.30 we prove that

p∑
jl=0

Cjk...jl+1jljljl−2...j1 =

=
1

2
Cjk...j1

∣∣∣∣
(jljl)↷(·)

−
∞∑

jl=p+1

Cjk...jl+1jljljl−2...j1 (2.691)

or
∞∑
jl=0

Cjk...jl+1jljljl−2...j1 =
1

2
Cjk...j1

∣∣∣∣
(jljl)↷(·)

. (2.692)

Denote

Cjl−2...j1(tl−1) =

tl−1∫
t

ψl−2(tl−2)ϕjl−2
(tl−2) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtl−2.

Using the integration order replacement and Condition 1 of Theorem 2.30,
we obtain

∞∑
jl=0

Cjk...jl+1jljljl−2...j1 =

=
∞∑
jl=0

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1
(tl+1)×

×
tl+1∫
t

ψl(tl)ϕjl(tl)

tl∫
t

ψl−1(tl−1)ϕjl(tl−1)Cjl−2...j1(tl−1)dtl−1dtldtl+1 . . . dtk =

=
∞∑
jl=0

T∫
t

ψl(tl)ϕjl(tl)

tl∫
t

ψl−1(tl−1)ϕjl(tl−1)Cjl−2...j1(tl−1)dtl−1×

×
T∫
tl

ψl+1(tl+1)ϕjl+1
(tl+1) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dtl+1dtl =
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=
1

2

∞∑
jl=0

T∫
t

ψl(tl)ψl−1(tl)Cjl−2...j1(tl)×

×
T∫
tl

ψl+1(tl+1)ϕjl+1
(tl+1) . . .

T∫
tk−1

ψk(tk)ϕjk(tk)dtk . . . dtl+1dtl =

=
1

2

∞∑
jl=0

T∫
t

ψk(tk)ϕjk(tk) . . .

tl+2∫
t

ψl+1(tl+1)ϕjl+1
(tl+1)×

×
tl+1∫
t

ψl(tl)ψl−1(tl)Cjl−2...j1(tl)dtldtl+1 . . . dtk =

=
1

2
Cjk...j1

∣∣∣∣
(jljl)↷(·)

. (2.693)

The equalities (2.691) and (2.692) are proved.

Step 4. Passing to the limit l.i.m.
p→∞

in (2.677), we have (see (1.43))

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

= J [ψ(k)]
(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t (2.694)

w. p. 1.

Taking into account (2.684) and (2.691), we obtain for r = 1

1{ig1= ig2 ̸=0}l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j11{jg1= jg2 }
J ′[ϕjq1 . . . ϕjqk−2

]
(iq1 ...iqk−2

)

T,t =
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= −1{ig1= ig2 ̸=0}l.i.m.
p→∞

∞∑
jg1=p+1

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

Cjk...j1

∣∣∣∣
jg1= jg2

1{g2>g1+1}×

×J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t +

+1{ig1= ig2 ̸=0}l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

1

2
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·),jg1= jg2

1{g2=g1+1}×

×J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t −

−1{ig1= ig2 ̸=0}l.i.m.
p→∞

∞∑
jg1=p+1

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

Cjk...j1

∣∣∣∣
jg1= jg2

1{g2=g1+1}×

×J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t =

= −1{ig1= ig2 ̸=0}l.i.m.
p→∞

∞∑
jg1=p+1

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

Cjk...j1

∣∣∣∣
jg1= jg2

×

×J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t +

+1{ig1= ig2 ̸=0}l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

1

2
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·),jg1= jg2

1{g2=g1+1}×

×J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t = (2.695)

=
1

2
1{g2=g1+1}J [ψ

(k)]g1T,t + 1{ig1= ig2 ̸=0}l.i.m.
p→∞

R
(p)1,g1,g2
T,t w. p. 1, (2.696)

where J [ψ(k)]g1T,t (g1 = 1, 2, . . . , k − 1) is defined by (2.387),

R
(p)1,g1,g2
T,t = −

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

C̄
(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2

J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t .
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Let us explain the transition from (2.695) to (2.696). We have for g2 = g1+1

1{ig1= ig2 ̸=0}l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

1

2
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·),jg1= jg2

×

×J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t =

=
1

2
1{ig1= ig2 ̸=0}l.i.m.

p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

Cjk...j1

∣∣∣∣
(jg2jg1)↷0,jg1= jg2

×

×ζ(0)0 J ′[ϕjq1 . . . ϕjqk−2
]
(iq1 ...iqk−2

)

T,t =

=
1

2
1{ig1= ig2 ̸=0}l.i.m.

p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

p∑
jm1

=0

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

,jg1= jg2

×

×ζ(0)jm1
J ′[ϕjq1 . . . ϕjqk−2

]
(iq1 ...iqk−2

)

T,t =

=
1

2
1{ig1= ig2 ̸=0}l.i.m.

p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

p∑
jm1

=0

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

,jg1= jg2

×

×J ′[ϕjm1
ϕjq1 . . . ϕjqk−2

]
(0iq1 ...iqk−2

)

T,t = (2.697)

=
1

2
J [ψ(k)]g1T,t w. p. 1, (2.698)

where

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

,jg1= jg2 ,g2=g1+1

=

=

T∫
t

ψk(tk)ϕjk(tk) . . .

tg1+3∫
t

ψl(tg1+2)ϕjg1+2
(tg1+2)

tg1+2∫
t

ψg1+1(tg1)ψg1(tg1)ϕjm1
(tg1)×
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×

tg1∫
t

ψl(tg1−1)ϕjg1−1
(tg1−1) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtg1−1dtg1dtg1+2 . . . dtk,

ζ
(0)
jm1

=

T∫
t

ϕjm1
(τ)dw(0)

τ =

T∫
t

ϕjm1
(τ)dτ =


√
T − t if jm1

= 0

0 if jm1
̸= 0

, (2.699)

ϕ0(τ) =
1√
T − t

. (2.700)

The transition from (2.697) to (2.698) is based on (1.43) or (1.319).

By Condition 3 of Theorem 2.30 we have (also see the property (2.368) of
multiple Wiener stochastic integral)

lim
p→∞

M

{(
R

(p)1,g1,g2
T,t

)2}
≤ K lim

p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

(
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2

)2

= 0,

where constant K does not depend on p.

Thus

1{ig1= ig2 ̸=0}l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j11{jg1= jg2 }
J ′[ϕjq1 . . . ϕjqk−2

]
(iq1 ...iqk−2

)

T,t =

=
1

2
1{g2=g1+1}J [ψ

(k)]g1T,t w. p. 1.

Involving into consideration the second pair {g3, g4} (the first pair is
{g1, g2}), we obtain from (2.695) for r = 2

2∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

2∏
s=1

1{jg2s−1
= jg2s}

×

×J ′[ϕjq1 . . . ϕjqk−4
]
(iq1 ...iqk−4

)

T,t =

=
2∏
s=1

1{ig2s−1
= ig2s ̸=0}×
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×l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

(
1

4
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4

2∏
s=1

1{g2s=g2s−1+1}−

−1

2

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4

1{g4=g3+1}−

−1

2

∞∑
jg3=p+1

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·),jg1= jg2 ,jg3= jg4

1{g2=g1+1}+

+
∞∑

jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1= jg2 ,jg3= jg4

)
J ′[ϕjq1 . . . ϕjqk−4

]
(iq1 ...iqk−4

)

T,t = (2.701)

=
1

4

2∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]s2,s1T,t +

2∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞
R

(p)2,g1,g2,g3,g4
T,t

(2.702)

w. p. 1, where g3
def
= s2, g1

def
= s1, (s2, s1) ∈ Ak,2, J [ψ

(k)]s2,s1T,t is defined by (2.387)
and Ak,2 is defined by (2.388),

R
(p)2,g1,g2,g3,g4
T,t =

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

(
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,g3,g4

−

−S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,g3,g4

}
−S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,g3,g4

})
×

×J ′[ϕjq1 . . . ϕjqk−4
]
(iq1 ...iqk−4

)

T,t .

Let us explain the transition from (2.701) to (2.702). We have for g2 = g1+1,
g4 = g3 + 1

l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

1

4
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4

×

×
2∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−4
]
(iq1 ...iqk−4

)

T,t =
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=
1

4
l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

Cjk...j1

∣∣∣∣
(jg2jg1)↷0(jg4jg3)↷0,jg1= jg2 ,jg3= jg4

×

×
2∏
s=1

1{ig2s−1
= ig2s ̸=0}ζ

(0)
0 ζ

(0)
0 J ′[ϕjq1 . . . ϕjqk−4

]
(iq1 ...iqk−4

)

T,t =

=
1

4
l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

p∑
jm1

,jm3
=0

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

(jg4jg3)↷jm3
,jg1= jg2 ,jg3= jg4

×

×
2∏
s=1

1{ig2s−1
= ig2s ̸=0}ζ

(0)
jm1
ζ
(0)
jm3
J ′[ϕjq1 . . . ϕjqk−4

]
(iq1 ...iqk−4

)

T,t =

=
1

4
l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

p∑
jm1

,jm3
=0

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

(jg4jg3)↷jm3
,jg1= jg2 ,jg3= jg4

×

×
2∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjm1
ϕjm3

ϕjq1 . . . ϕjqk−4
]
(00iq1 ...iqk−4

)

T,t = (2.703)

=
1

4
J [ψ(k)]s2,s1T,t w. p. 1. (2.704)

The transition from (2.703) to (2.704) is based on (1.43) or (1.319).

Note that

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

,jg1= jg2

= Cjk...j1

∣∣∣∣
(jg1jg1)↷jm1

,jg1= jg2

is the Fourier coefficient, where g2 = g1 + 1. Therefore, the value

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

(jg4jg3)↷jm3
,jg1= jg2 ,jg3= jg4

=

= Cjk...j1

∣∣∣∣
(jg1jg1)↷jm1

(jg3jg3)↷jm3
,jg1= jg2 ,jg3= jg4
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is determined recursively using (2.655) in an obvious way for g2 = g1 + 1 and
g4 = g3 + 1.

By Condition 3 of Theorem 2.30 we have (also see the property (2.368) of
multiple Wiener stochastic integral)

lim
p→∞

M

{(
R

(p)2,g1,g2,g3,g4
T,t

)2}
≤

≤ K lim
p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,g3,g4

(C̄(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,g3,g4

)2

+

+

(
S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,g3,g4

})2

+

(
S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,g3,g4

})2
 = 0,

where constant K is independent of p.

Thus

2∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

2∏
s=1

1{jg2s−1
= jg2s }

×

×J ′[ϕjq1 . . . ϕjqk−4
]
(iq1 ...iqk−4

)

T,t =
1

4

2∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]s2,s1T,t w. p. 1,

where g3
def
= s2, g1

def
= s1, (s2, s1) ∈ Ak,2, J [ψ

(k)]s2,s1T,t is defined by (2.387) and Ak,2

is defined by (2.388).

Involving into consideration the third pair {g6, g5} ({g1, g2} is the first pair
and {g4, g3} is the second pair), we obtain from (2.701) for r = 3

3∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

3∏
s=1

1{jg2s−1
= jg2s }

×

×J ′[ϕjq1 . . . ϕjqk−6
]
(iq1 ...iqk−6

)

T,t =
3∏
s=1

1{ig2s−1
= ig2s ̸=0}×
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×l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,g3,g4,g5,g6

(
1

23
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·)(jg6jg5)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

×

×
3∏
s=1

1{g2s=g2s−1+1}−

− 1

22

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg4jg3)↷(·)(jg6jg5)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

1{g4=g3+1}1{g6=g5+1}−

− 1

22

∞∑
jg3=p+1

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg6jg5)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

1{g2=g1+1}1{g6=g5+1}−

− 1

22

∞∑
jg5=p+1

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

1{g2=g1+1}1{g4=g3+1}+

+
1

2

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg6jg5)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

1{g6=g5+1}+

+
1

2

∞∑
jg5=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

1{g4=g3+1}+

+
1

2

∞∑
jg5=p+1

∞∑
jg3=p+1

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·),jg1= jg2 ,jg3= jg4 ,jg5= jg6

1{g2=g1+1}−

−
∞∑

jg5=p+1

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1= jg2 ,jg3= jg4 ,jg5= jg6

×

×J ′[ϕjq1 . . . ϕjqk−6
]
(iq1 ...iqk−6

)

T,t =

=
1

23

3∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]s3,s2,s1T,t +

3∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞
R

(p)3,g1,g2,...,g5,g6
T,t

w. p. 1, where g2i−1
def
= si; i = 1, 2, 3, (s3, s2, s1) ∈ Ak,3, J [ψ

(k)]s3,s2,s1T,t is defined
by (2.387) and Ak,3 is defined by (2.388),



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series553

R
(p)3,g1,g2,...,g5,g6
T,t =

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,...,g5,g6

(
−C̄(p)

jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

+

+S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
+ S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
+

+S3

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
−

−S3S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
− S3S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

}
−

−S2S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})
J ′[ϕjq1 . . . ϕjqk−6

]
(iq1 ...iqk−6

)

T,t .

By Condition 3 of Theorem 2.30 we have (also see the property (2.368) of
multiple Wiener stochastic integral)

lim
p→∞

M

{(
R

(p)3,g1,g2,...,g5,g6
T,t

)2}
≤ K lim

p→∞

p∑
j1,...,jq,...,jk=0
q ̸=g1,g2,...,g5,g6

(C̄(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

)2

+

+

(
S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})2

+

(
S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})2

+

+

(
S3

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})2

+

+

(
S3S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})2

+

(
S3S2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})2

+

+

(
S2S1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g5,g6

})2
 = 0,

where constant K does not depend on p.
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Thus

l.i.m.
p→∞

3∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

3∏
s=1

1{jg2s−1
= jg2s }

×

×J ′[ϕjq1 . . . ϕjqk−6
]
(iq1 ...iqk−6

)

T,t =
1

23

3∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]s3,s2,s1T,t w. p. 1,

where g2i−1
def
= si; i = 1, 2, 3, (s3, s2, s1) ∈ Ak,3, J [ψ

(k)]s3,s2,s1T,t is defined by (2.387)
and Ak,3 is defined by (2.388).

Repeating the previous steps, we obtain for an arbitrary r (r = 1, 2, . . . ,
[k/2])

r∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s}

×

×J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =
r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{g2s=g2s−1+1}J
′[ϕjq1 . . . ϕjqk−2r

]
(iq1 ...iqk−2r

)

T,t +

+
r∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞
R

(p)r,g1,g2,...,g2r−1,g2r
T,t = (2.705)

=
1

2r

r∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]sr,...,s1T,t +

r∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞
R

(p)r,g1,g2,...,g2r−1,g2r
T,t

(2.706)

w. p. 1, where g2i−1
def
= si; i = 1, 2, . . . , r; r = 1, 2, . . . , [k/2] , (sr, . . . , s1) ∈ Ak,r,

J [ψ(k)]sr,...,s1T,t is defined by (2.387) and Ak,r is defined by (2.388),
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R
(p)r,g1,g2,...,g2r−1,g2r
T,t =

=

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
(−1)rC̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

+

+(−1)r−1
r∑

l1=1

Sl1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
+

+(−1)r−2
r∑

l1,l2=1
l1>l2

Sl1Sl2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
+

. . .

+(−1)1
r∑

l1,l2,...,lr−1=1

l1>l2>...>lr−1

Sl1Sl2 . . . Slr−1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}×

×J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t . (2.707)

Let us explain the transition from (2.705) to (2.706). We have for g2 =
g1 + 1, . . . , g2r = g2r−1 + 1

l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =

=
1

2r
l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

Cjk...j1

∣∣∣∣
(jg2jg1)↷0...(jg2rjg2r−1

)↷0,jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}

(
ζ
(0)
0

)r
J ′[ϕjq1 . . . ϕjqk−2r

]
(iq1 ...iqk−2r

)

T,t =
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=
1

2r
l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

p∑
jm1

,jm3
...,jm2r−1

=0

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×Cjk...j1
∣∣∣∣
(jg2jg1)↷jm1

...(jg2rjg2r−1
)↷jm2r−1

,jg1= jg2 ,...,jg2r−1
= jg2r

×

×ζ(0)jm1
ζ
(0)
jm3

. . . ζ
(0)
jm2r−1

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =

=
1

2r
l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

p∑
jm1

,jm3
...,jm2r−1

=0

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×Cjk...j1
∣∣∣∣
(jg2jg1)↷jm1

...(jg2rjg2r−1
)↷jm2r−1

,jg1= jg2 ,...,jg2r−1
= jg2r

×

×J ′[ϕjm1
ϕjm3

. . . ϕjm2r−1
ϕjq1 . . . ϕjqk−2r

]
(00...0iq1 ...iqk−2r

)

T,t = (2.708)

=
1

2r
J [ψ(k)]sr,...,s1T,t w. p. 1. (2.709)

The transition from (2.708) to (2.709) is based on (1.43) or (1.319).

Note that

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

,jg1= jg2

= Cjk...j1

∣∣∣∣
(jg1jg1)↷jm1

,jg1= jg2

is the Fourier coefficient, where g2 = g1 + 1. Therefore, the value

Cjk...j1

∣∣∣∣
(jg2jg1)↷jm1

...(jg2djg2d−1
)↷jm2d−1

,jg1= jg2 ,...,jg2d−1
= jg2d

=

= Cjk...j1

∣∣∣∣
(jg1jg1)↷jm1

...(jg2d−1
jg2d−1

)↷jm2d−1
,jg1= jg2 ,...,jg2d−1

= jg2d

is determined recursively using (2.655) in an obvious way for g2 = g1 + 1, . . . ,
g2d = g2d−1 + 1 and d = 2, . . . , r.
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By Condition 3 of Theorem 2.30 we have (also see the property (2.368) of
multiple Wiener stochastic integral)

lim
p→∞

M

{(
R

(p)r,g1,g2,...,g2r−1,g2r
T,t

)2}
≤

≤ K lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(C̄(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

)2

+

+
r∑

l1=1

(
Sl1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

+

+
r∑

l1,l2=1
l1>l2

(
Sl1Sl2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

+

. . .

+
r∑

l1,l2,...,lr−1=1

l1>l2>...>lr−1

(
Sl1Sl2 . . . Slr−1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

 = 0,

where constant K does not depend on p.

So we have

r∏
s=1

1{ig2s−1
= ig2s ̸=0}l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s }

×

×J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =

=
1

2r

r∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]sr,...,s1T,t w. p. 1, (2.710)

where g2i−1
def
= si; i = 1, 2, . . . , r; r = 1, 2, . . . , [k/2] , (sr, . . . , s1) ∈ Ak,r,

J [ψ(k)]sr,...,s1T,t is defined by (2.387) and Ak,r is defined by (2.388).
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Note that

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

∣∣∣∣∣
g2=g1+1,g3=g2+1,...,g2r=g2r−1+1

Ag1,g3,...,g2r−1
=

=
∑

(sr,...,s1)∈Ak,r

As1,s2,...,sr , (2.711)

where Ag1,g3,...,g2r−1
, As1,s2,...,sr are scalar values, g2i−1 = si; i = 1, 2, . . . , r; r =

1, 2, . . . , [k/2] , Ak,r is defined by (2.388):

Ak,r =
{
(sr, . . . , s1) : sr > sr−1 + 1, . . . , s2 > s1 + 1, sr, . . . , s1 = 1, . . . , k − 1

}
.

Using (2.694), (2.710), (2.711), and Theorem 2.12, we finally get

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

= l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

=

= J [ψ(k)]
(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t = J∗[ψ(k)]
(i1...ik)
T,t (2.712)

w. p. 1, where (see (2.387))

J [ψ(k)]sr,...,s1T,t
def
=

r∏
q=1

1{isq=isq+1 ̸=0} ×

×
T∫
t

ψk(tk) . . .

tsr+3∫
t

ψsr+2(tsr+2)

tsr+2∫
t

ψsr(tsr+1)ψsr+1(tsr+1)×

×
tsr+1∫
t

ψsr−1(tsr−1) . . .

ts1+3∫
t

ψs1+2(ts1+2)

ts1+2∫
t

ψs1(ts1+1)ψs1+1(ts1+1)×

×

ts1+1∫
t

ψs1−1(ts1−1) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(is1−1)
ts1−1

dts1+1dw
(is1+2)
ts1+2

. . .
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. . . dw
(isr−1)
tsr−1

dtsr+1dw
(isr+2)
tsr+2

. . . dw
(ik)
tk . (2.713)

Theorem 2.30 is proved.

Remark 2.4. Let us make a number of remarks about Theorem 2.30. An
expansion similar to (2.662) was obtained in [142] for the multiple Stratonovich
stochastic integral (2.978). The proof from [142] is somewhat simpler than the
proof proposed in this section. However, the results from [142] were obtained
under the condition of convergence of trace series. The verification of this con-
dition for the kernel (1.6) is a separate problem. In our proof we essentially
use the structure of the Fourier coefficients (2.663) corresponding to the kernel
(1.6). This circumstance actually made it possible to prove Theorem 2.30 using
not the condition of finiteness of trace series, but using the condition of conver-
gence to zero of explicit expressions for the remainders of the mentioned series.
This leaves hope that it is possible to prove an analogue of Theorems 2.24–2.26,
2.37–2.39 for the case of an arbitrary k (k ∈ N).

Note that under the conditions of Theorem 2.30 (also see (2.684), (2.691))
the sequential order of the series

∞∑
jg2r−1

=p+1

∞∑
jg2r−3

=p+1

. . .

∞∑
jg3=p+1

∞∑
jg1=p+1

in (2.656) is not important. We also note that Conditions 1, 2 of Theorem 2.30
are satisfied for complete orthonormal systems of Legendre polynomials and
trigonometric functions in the space L2([t, T ]) (see the proofs of Theorems 2.1,
2.2, 2.8, 2.9, 2.27). Moreover, the equality (2.660) is true for an arbitrary basis
in L2([t, T ]) (see (2.535)). It is easy to see that in the proofs of Theorems 2.1–2.9
the conditions of Theorem 2.30 are verified for various special cases of iterated
Stratonovich stochastic integrals of multiplicities 2–4.

Taking into account Theorem 1.11, we can formulate an analogue of The-
orem 2.30 for the case of integration interval [t, s] (s ∈ (t, T ); the case s = T
is considered in Theorem 2.30) of iterated Stratonovich stochastic integrals of
multiplicity k (k ∈ N).

Denote

C̄
(p)
jk...jq...j1

(s)

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

def
=

def
=

∞∑
jg2r−1

=p+1

∞∑
jg2r−3

=p+1

. . .

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1(s)

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r
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and introduce the following notation

Sl

{
C̄

(p)
jk...jq...j1

(s)

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
=

1

2
1{g2l=g2l−1+1}

∞∑
jg2r−1

=p+1

∞∑
jg2r−3

=p+1

. . .

. . .
∞∑

jg2l+1
=p+1

∞∑
jg2l−3

=p+1

. . .
∞∑

jg3=p+1

∞∑
jg1=p+1

Cjk...j1(s)

∣∣∣∣
(jg2ljg2l−1

)↷(·),jg1=jg2 ,...,jg2r−1
=jg2r

,

where l = 1, 2, . . . , r,

Cjk...j1(s)

∣∣∣∣∣
(jg2ljg2l−1

)↷(·)

is defined by analogy with (2.654),

Cjk...j1(s) =

s∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk. (2.714)

Theorem 2.31 [33], [38], [39], [64]. Assume that the continuously differ-
entiable functions ψl(τ) (l = 1, . . . , k) at the interval [t, T ] and the complete
orthonormal system {ϕj(x)}∞j=0 of continuous functions (ϕ0(x) = 1/

√
T − t) in

the space L2([t, T ]) are such that the following conditions are satisfied:

1. The equality

1

2

s∫
t

Φ1(t1)Φ2(t1)dt1 =
∞∑
j=0

s∫
t

Φ2(t2)ϕj(t2)

t2∫
t

Φ1(t1)ϕj(t1)dt1dt2 (2.715)

holds for all s ∈ (t, T ], where the nonrandom functions Φ1(τ), Φ2(τ) are con-
tinuously differentiable on [t, T ] and the series on the right-hand side of (2.715)
converges absolutely.

2. The estimates∣∣∣∣∣∣
s∫
t

ϕj(τ)Φ1(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)

j1/2+α
,

∣∣∣∣∣∣
s∫

τ

ϕj(θ)Φ2(θ)dθ

∣∣∣∣∣∣ ≤ Ψ2(s, τ)

j1/2+α
,

∣∣∣∣∣∣
∞∑

j=p+1

s∫
t

Φ2(τ)ϕj(τ)

τ∫
t

Φ1(θ)ϕj(θ)dθdτ

∣∣∣∣∣∣ ≤ Ψ3(s)

pβ
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hold for all s, τ such that t < τ < s < T and for some α, β > 0, where Φ1(τ),
Φ2(τ) are continuously differentiable nonrandom functions on [t, T ], j, p ∈ N,
and

s∫
t

|Ψ1(τ)Ψ2(s, τ)| dτ <∞,

s∫
t

|Ψ3(τ)| dτ <∞

for all s ∈ (t, T ).

3. The condition

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

(s)

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

= 0

holds for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)) and l1, l2, . . . , ld such that
l1, l2, . . . , ld ∈ {1, 2, . . . , r}, l1 > l2 > . . . > ld, d = 0, 1, 2, . . . , r − 1, where
r = 1, 2, . . . , [k/2] and

Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

(s)

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
= C̄

(p)
jk...jq...j1

(s)

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

for d = 0.

Then, for the iterated Stratonovich stochastic integral of arbitrary multiplic-
ity k

J∗[ψ(k)]
(i1...ik)
s,t =

∗∫
t

s

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk (2.716)

the following expansion

J∗[ψ(k)]
(i1...ik)
s,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1(s)
k∏
l=1

ζ
(il)
jl

that converges in the mean-square sense is valid, where Cjk...j1(s) is the Fourier
coefficient (2.714), l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m, s ∈ (t, T ),

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ
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are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

It is easy to see that the estimates (1.211), (1.217), (2.270), (2.294), and
the results of Sect. 2.9 imply the fulfillment of Condition 2 of Theorem 2.31
for complete orthonormal systems of Legendre polynomials and trigonometric
functions in the space L2([t, T ]).

Also the equality (2.535) guarantees the fulfillment of Condition 1 of The-
orem 2.31 for these two systems of functions.

It should be noted that (see (2.707))

(−1)rC̄
(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

+

+(−1)r−1
r∑

l1=1

Sl1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
+

+(−1)r−2
r∑

l1,l2=1
l1>l2

Sl1Sl2

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
+

. . .

+(−1)1
r∑

l1,l2,...,lr−1=1

l1>l2>...>lr−1

Sl1Sl2 . . . Slr−1

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
=

=

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

, (2.717)

where the meaning of the notations used in (2.707) is preserved.

For example, from (2.717) for the case r = 2 we get

∞∑
jg3=p+1

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1= jg2 ,jg3= jg4

−
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−1

2
1{g4=g3+1}

∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4

−

−1

2
1{g2=g1+1}

∞∑
jg3=p+1

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·),jg1= jg2 ,jg3= jg4

=

=

p∑
jg1=0

p∑
jg3=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

−

−1

4
1{g2=g1+1}1{g4=g3+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4

.

As a result, Condition 3 of Theorem 2.30 can be replaced by a weaker
condition

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0,

(2.718)

where r = 1, 2, . . . , [k/2].

However, Condition 3 of Theorem 2.30 itself contains a way of proving of the
condition (2.718), which is partially realized in the proof of Theorems 2.33–2.36
(see below).

In fact, when proving Theorem 2.35 (the case r = 3 is proved in Theo-
rem 2.36 for ψ1(τ), . . . , ψ6(τ) ≡ 1), we proved the following equality

lim
p→∞

p∑
jg1=0

p∑
jg3=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

=

=
1

4
1{g2=g1+1}1{g4=g3+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)(jg4jg3)↷(·),jg1= jg2 ,jg3= jg4

.

On the other hand, iterative application of (2.684), (2.691) gives
∞∑

jg1=0

∞∑
jg3=0

. . .

∞∑
jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=
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=
1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

,

where r = 1, 2, . . . , [k/2].

Moreover, we have (see (2.709))

l.i.m.
p→∞

p∑
j1,...,jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s}

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =

= l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1= jg2 ,...,jg2r−1

= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =

= l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1= jg2 ,...,jg2r−1

= jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t +

+l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}

r∏
s=1

1{g2s=g2s−1+1}J
′[ϕjq1 . . . ϕjqk−2r

]
(iq1 ...iqk−2r

)

T,t =
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= l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1= jg2 ,...,jg2r−1

= jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t +

+
1

2r

r∏
s=1

1{g2s=g2s−1+1}J [ψ
(k)]sr,...,s1T,t w. p. 1. (2.719)

Using (2.719) and the condition (2.718), we obtain (2.710). This means
that we get (2.712). Thus the expansion (2.662) is proved.

Analyzing the proof of Theorems 2.30 and 2.12 and taking into account the
above arguments, it is easy to see that the following theorem is true.

Theorem 2.32 [38], [39]. Assume that the continuous functions ψ1(τ), . . . ,
ψk(τ) at the interval [t, T ] and the complete orthonormal system {ϕj(x)}∞j=0 of

functions (ϕ0(x) = 1/
√
T − t) in the space L2([t, T ]) are such that the following

condition

lim
p1,...,pk→∞

p1∑
j1=0

. . .

pq∑
jq=0

. . .

pk∑
jk=0

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

×

×

( min{pg1 ,pg2}∑
jg1=0

min{pg3 ,pg4}∑
jg3=0

. . .

min{pg2r−1
,pg2r}∑

jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0

(2.720)

is satisfied for all r = 1, 2, . . . , [k/2] and for all possible g1, g2, . . . , g2r−1, g2r (see
(2.652)). Then, for the iterated Stratonovich stochastic integral of arbitrary
multiplicity k
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J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following expansion

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

2.11 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 3. The Case p1 = p2 = p3 → ∞
and Continuously Differentiable Weight Functions

ψ1(τ ), ψ2(τ ), ψ3(τ ) (The Cases of Legendre Polyno-

mials and Trigonometric Functions)

In this section, we present a simple proof of Theorem 2.8 based on Theorem 2.30.
In this case, the conditions of Theorem 2.8 will be weakened.

First, consider the following equalities

1

2

t2∫
t1

Φ1(τ)Φ2(τ)dτ =
∞∑
j=0

t2∫
t1

Φ2(τ)ϕj(τ)

τ∫
t1

Φ1(θ)ϕj(θ)dθdτ, (2.721)

1

2

t2∫
t1

Φ1(τ)Φ2(τ)dτ =
∞∑
j=0

t2∫
t1

Φ1(θ)ϕj(θ)

t2∫
θ

Φ2(τ)ϕj(τ)dτdθ (2.722)
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that will be used further, where t ≤ t1 < t2 ≤ T, Φ1(τ),Φ2(τ) ∈ L2([t, T ]),
{ϕj(x)}∞j=0 is the same as in the conditions of Theorem 2.8.

The equality (2.722) is proved in Sect. 2.7.2 (see (2.546)–(2.548)). Using
(2.722) and Fubini’s Theorem, we get (2.721).

Theorem 2.33 [33], [38], [39], [64]. Suppose that {ϕj(x)}∞j=0 is a com-
plete orthonormal system of Legendre polynomials or trigonometric functions
in the space L2([t, T ]). Furthermore, let ψ1(τ), ψ2(τ), ψ3(τ) are continuously dif-
ferentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
stochastic integral of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 (2.723)

the following expansion

J∗[ψ(3)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

that converges in the mean-square sense is valid, where i1, i2, i3 = 0, 1, . . . ,m,

Cj3j2j1 =

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. As noted in Remark 2.4, Conditions 1 and 2 of Theorem 2.30 are sat-
isfied for complete orthonormal systems of Legendre polynomials and trigono-
metric functions in the space L2([t, T ]). Let us verify Condition 3 of Theo-
rem 2.30 for the iterated Stratonovich stochastic integral (2.723). Thus, we
have to check the following conditions

lim
p→∞

p∑
j3=0

( ∞∑
j1=p+1

Cj3j1j1

)2

= 0, (2.724)
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lim
p→∞

p∑
j1=0

( ∞∑
j3=p+1

Cj3j3j1

)2

= 0, (2.725)

lim
p→∞

p∑
j2=0

( ∞∑
j1=p+1

Cj1j2j1

)2

= 0. (2.726)

We have
p∑

j3=0

( ∞∑
j1=p+1

Cj3j1j1

)2

=

=

p∑
j3=0

 ∞∑
j1=p+1

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

2

=

(2.727)

=

p∑
j3=0

 T∫
t

ψ3(t3)ϕj3(t3)
∞∑

j1=p+1

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

2

≤

(2.728)

≤
∞∑
j3=0

 T∫
t

ψ3(t3)ϕj3(t3)
∞∑

j1=p+1

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

2

=

(2.729)

=

T∫
t

ψ2
3(t3)

 ∞∑
j1=p+1

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2

2

dt3 ≤ (2.730)

≤ K

p2
→ 0 (2.731)

if p→ ∞, where constant K does not depend on p.

Note that the transition from (2.727) to (2.728) is based on the estimate
(2.651) for the polynomial case and its analogue for the trigonometric case, the
transition from (2.729) to (2.730) is based on the Parseval equality, and the
transition from (2.730) to (2.731) is also based on the estimate (2.651) and its
analogue for the trigonometric case.

By analogy with the previous case we have

p∑
j1=0

( ∞∑
j3=p+1

Cj3j3j1

)2

=
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=

p∑
j1=0

 ∞∑
j3=p+1

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj3(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

2

=

=

p∑
j1=0

 ∞∑
j3=p+1

T∫
t

ψ1(t1)ϕj1(t1)

T∫
t1

ψ2(t2)ϕj3(t2)

T∫
t2

ψ3(t3)ϕj3(t3)dt3dt2dt1

2

=

(2.732)

=

p∑
j1=0

 T∫
t

ψ1(t1)ϕj1(t1)
∞∑

j3=p+1

T∫
t1

ψ2(t2)ϕj3(t2)

T∫
t2

ψ3(t3)ϕj3(t3)dt3dt2dt1

2

≤

(2.733)

≤
∞∑
j1=0

 T∫
t

ψ1(t1)ϕj1(t1)
∞∑

j3=p+1

T∫
t1

ψ2(t2)ϕj3(t2)

T∫
t2

ψ3(t3)ϕj3(t3)dt3dt2dt1

2

=

=

T∫
t

ψ2
1(t1)

 ∞∑
j3=p+1

T∫
t1

ψ2(t2)ϕj3(t2)

T∫
t2

ψ1(t3)ϕj3(t3)dt3dt2

2

dt1 ≤ (2.734)

≤ K

p2
→ 0 (2.735)

if p→ ∞, where constant K is independent of p.

The transition from (2.732) to (2.733) is based on an analogue of the esti-
mate (2.651) for the value∣∣∣∣∣∣

∞∑
j3=p+1

T∫
t1

ψ2(t2)ϕj3(t2)

T∫
t2

ψ3(t3)ϕj3(t3)dt3dt2

∣∣∣∣∣∣
for the polynomial and trigonometric cases, the transition from (2.734) to
(2.735) is also based on the mentioned analogue of the estimate (2.651).

Further, we have
p∑

j2=0

( ∞∑
j1=p+1

Cj1j2j1

)2

=

=

p∑
j2=0

 ∞∑
j1=p+1

T∫
t

ψ3(t3)ϕj1(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

2

=
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=

p∑
j2=0

 ∞∑
j1=p+1

T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t2

ψ3(t3)ϕj1(t3)dt3dt2

2

=

(2.736)

=

p∑
j2=0

 T∫
t

ψ2(t2)ϕj2(t2)
∞∑

j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t2

ψ3(t3)ϕj1(t3)dt3dt2

2

≤

(2.737)

≤
∞∑
j2=0

 T∫
t

ψ2(t2)ϕj2(t2)
∞∑

j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t2

ψ3(t3)ϕj1(t3)dt3dt2

2

=

=

T∫
t

ψ2
2(t2)

 ∞∑
j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t2

ψ3(t3)ϕj1(t3)dt3

2

dt2. (2.738)

The transition from (2.736) to (2.737) is based on the estimate (2.295) and
its obvious analogue for the trigonometric case. However, the estimate (2.295)
cannot be used to estimate the right-hand side of (2.738), since we get the
divergent integral. For this reason, we will obtain a new estimate based on the
relation (2.293).

From (2.157) and the estimate |Pj(y)| ≤ 1, y ∈ [−1, 1] we obtain

|Pj(y)| = |Pj(y)|ε · |Pj(y)|1−ε ≤ |Pj(y)|1−ε <
C

j1/2−ε/2(1− y2)1/4−ε/4
, (2.739)

where y ∈ (−1, 1), j ∈ N, ε ∈ (0, 1) is an arbitrary small positive real number.

Combining (2.293) and (2.739), we have the following estimate∣∣∣∣∣∣
s∫
t

ψ1(τ)ϕj1(τ)dτ

∣∣∣∣∣∣ < C

(j1)1−ε/2

(
1

(1− z2(s))1/4−ε/4
+ 1

)
, (2.740)

where j1 ∈ N, s ∈ (t, T ), z(s) is defined by (2.20), constant C does not depend
on j1.

Similarly to (2.740) we obtain∣∣∣∣∣∣
T∫
s

ψ3(τ)ϕj1(τ)dτ

∣∣∣∣∣∣ < C

(j1)1−ε/2

(
1

(1− z2(s))1/4−ε/4
+ 1

)
, (2.741)
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where j1 ∈ N, s ∈ (t, T ), constant C does not depend on j1.

Combining (2.294) and (2.741), we have∣∣∣∣∣∣
s∫
t

ψ1(τ)ϕj1(τ)dτ

T∫
s

ψ3(τ)ϕj1(τ)dτ

∣∣∣∣∣∣ <
<

L

(j1)2−ε/2

(
1

(1− z2(s))1/4−ε/4
+ 1

)(
1

(1− z2(s))1/4
+ 1

)
, (2.742)

where j1 ∈ N, s ∈ (t, T ), z(s) is defined by (2.20), constant L does not depend
on j1.

Observe that

∞∑
j1=p+1

1

(j1)2−ε/2
≤

∞∫
p

dx

x2−ε/2
=

1

(1− ε/2)p1−ε/2
. (2.743)

Applying (2.742) and (2.743) to estimate the right-hand side of (2.738) gives

p∑
j2=0

( ∞∑
j1=p+1

Cj1j2j1

)2

≤ K

p2−ε
→ 0 (2.744)

if p → ∞, where ε is an arbitrary small positive real number, constant K is
independent of p.

The estimation of the right-hand side of (2.738) for the trigonometric case is
carried out using the estimates (2.270), (2.271). At that we obtain the estimate
(2.744) with ε = 0. Theorem 2.33 is proved.

2.12 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 4. The Case p1 = . . . = p4 → ∞
and Continuously Differentiable Weight Functions

ψ1(τ ), . . . , ψ4(τ ) (The Cases of Legendre Polynomials

and Trigonometric Functions)

Theorem 2.34 [33], [38], [39], [64]. Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
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the space L2([t, T ]). Furthermore, let ψ1(τ), . . . , ψ4(τ) are continuously dif-
ferentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
stochastic integral of fourth multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T

ψ4(t4)

∗∫
t

t4

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

(2.745)
the following expansion

J∗[ψ(4)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

that converges in the mean-square sense is valid, where i1, i2, i3, i4 = 0, 1, . . . ,m,

Cj4j3j2j1 =

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1×

×dt2dt3dt4
and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. As noted in Remark 2.4, Conditions 1 and 2 of Theorem 2.30 are sat-
isfied for complete orthonormal systems of Legendre polynomials and trigono-
metric functions in the space L2([t, T ]). Let us verify Condition 3 of Theo-
rem 2.30 for the iterated Stratonovich stochastic integral (2.745). Thus, we
have to check the following conditions

lim
p→∞

p∑
j3,j4=0

( ∞∑
j1=p+1

Cj4j3j1j1

)2

= 0, (2.746)

lim
p→∞

p∑
j2,j4=0

( ∞∑
j1=p+1

Cj4j1j2j1

)2

= 0, (2.747)

lim
p→∞

p∑
j2,j3=0

( ∞∑
j1=p+1

Cj1j3j2j1

)2

= 0, (2.748)
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lim
p→∞

p∑
j1,j4=0

( ∞∑
j2=p+1

Cj4j2j2j1

)2

= 0, (2.749)

lim
p→∞

p∑
j1,j3=0

( ∞∑
j2=p+1

Cj2j3j2j1

)2

= 0, (2.750)

lim
p→∞

p∑
j1,j2=0

( ∞∑
j3=p+1

Cj3j3j2j1

)2

= 0, (2.751)

lim
p→∞

( ∞∑
j2=p+1

∞∑
j1=p+1

Cj2j1j2j1

)2

= 0, (2.752)

lim
p→∞

( ∞∑
j2=p+1

∞∑
j1=p+1

Cj1j2j2j1

)2

= 0, (2.753)

lim
p→∞

( ∞∑
j3=p+1

∞∑
j1=p+1

Cj3j3j1j1

)2

= 0, (2.754)

lim
p→∞

( ∞∑
j3=p+1

Cj3j3j1j1

∣∣∣∣
(j1j1)↷(·)

)2

= 0, (2.755)

lim
p→∞

( ∞∑
j1=p+1

Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)

)2

= 0, (2.756)

lim
p→∞

( ∞∑
j1=p+1

Cj1j2j2j1

∣∣∣∣
(j2j2)↷(·)

)2

= 0, (2.757)

where in (2.755)–(2.757) we use the notation (2.654).

Applying arguments similar to those we used in the proof of Theorem 2.33,
we obtain for (2.746)

p∑
j3,j4=0

( ∞∑
j1=p+1

Cj4j3j1j1

)2

=

p∑
j3,j4=0

 ∞∑
j1=p+1

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

= (2.758)
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=

p∑
j3,j4=0

 T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
∞∑

j1=p+1

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

≤ (2.759)

≤
∞∑

j3,j4=0

 T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
∞∑

j1=p+1

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

= (2.760)

=

∫
[t,T ]2

1{t3<t4}ψ
2
4(t4)ψ

2
3(t3)×

×

 ∞∑
j1=p+1

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2

2

dt3dt4 ≤ (2.761)

≤ K

p2
→ 0 (2.762)

if p→ ∞, where constant K is independent of p.

Note that the transition from (2.758) to (2.759) is based on the estimate
(2.651) for the polynomial case and its analogue for the trigonometric case, the
transition from (2.760) to (2.761) is based on the Parseval equality, and the
transition from (2.761) to (2.762) is also based on the estimate (2.651) and its
analogue for the trigonometric case.

Further, we have for (2.747)

p∑
j2,j4=0

( ∞∑
j1=p+1

Cj4j1j2j1

)2

=

p∑
j2,j4=0

 ∞∑
j1=p+1

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj1(t3)×

×
t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

= (2.763)
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=

p∑
j2,j4=0

 ∞∑
j1=p+1

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ2(t2)ϕj2(t2)×

×
t2∫
t

ψ1(t1)ϕj1(t1)dt1

t4∫
t2

ψ3(t3)ϕj1(t3)dt3dt2dt4

2

= (2.764)

=

p∑
j2,j4=0

 T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ2(t2)ϕj2(t2)×

×
∞∑

j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

t4∫
t2

ψ3(t3)ϕj1(t3)dt3dt2dt4

2

≤

≤
∞∑

j2,j4=0

 T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ2(t2)ϕj2(t2)×

×
∞∑

j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

t4∫
t2

ψ3(t3)ϕj1(t3)dt3dt2dt4

2

=

=

∫
[t,T ]2

1{t2<t4}ψ
2
4(t4)ψ

2
2(t2)×

×

 ∞∑
j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

t4∫
t2

ψ3(t3)ϕj1(t3)dt3

2

dt2dt4 ≤

≤ K

p2−ε
→ 0 (2.765)

if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K does not depend on p.

The relation (2.765) was obtained by the same method as (2.762). Note
that in obtaining (2.765) we used the estimates (1.211) and (2.740) for the
polynomial case and (1.217) and (2.270) for the trigonometric case. We also
used the integration order replacement in the iterated Riemann integrals (see
(2.763), (2.764)).
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Repeating the previous steps for (2.748) and (2.749), we get

p∑
j2,j3=0

( ∞∑
j1=p+1

Cj1j3j2j1

)2

=

p∑
j2,j3=0

 ∞∑
j1=p+1

T∫
t

ψ4(t4)ϕj1(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j2,j3=0

 ∞∑
j1=p+1

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)×

×
t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t3

ψ4(t4)ϕj1(t4)dt4dt2dt3

2

=

=

p∑
j2,j3=0

 T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)×

×
∞∑

j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t3

ψ4(t4)ϕj1(t4)dt4dt2dt3

2

≤

≤
∞∑

j2,j3=0

 T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)×

×
∞∑

j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t3

ψ4(t4)ϕj1(t4)dt4dt2dt3

2

=

=

∫
[t,T ]2

1{t2<t3}ψ
2
3(t3)ψ

2
2(t2)×

×

 ∞∑
j1=p+1

t2∫
t

ψ1(t1)ϕj1(t1)dt1

T∫
t3

ψ4(t4)ϕj1(t4)dt4

2

dt2dt3 ≤

≤ K

p2
→ 0 (2.766)
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if p→ ∞, where constant K does not depend on p;

p∑
j1,j4=0

( ∞∑
j2=p+1

Cj4j2j2j1

)2

=

p∑
j1,j4=0

 ∞∑
j2=p+1

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj2(t3)×

×
t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j1,j4=0

 ∞∑
j2=p+1

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ1(t1)ϕj1(t1)×

×
t4∫
t1

ψ2(t2)ϕj2(t2)

t4∫
t2

ψ3(t3)ϕj2(t3)dt3dt2dt1dt4

2

=

=

p∑
j1,j4=0

 T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ1(t1)ϕj1(t1)×

×
∞∑

j2=p+1

t4∫
t1

ψ2(t2)ϕj2(t2)

t4∫
t2

ψ3(t3)ϕj2(t3)dt3dt2dt1dt4

2

≤

≤
∞∑

j1,j4=0

 T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ1(t1)ϕj1(t1)×

×
∞∑

j2=p+1

t4∫
t1

ψ2(t2)ϕj2(t2)

t4∫
t2

ψ3(t3)ϕj2(t3)dt3dt2dt1dt4

2

=

=

∫
[t,T ]2

1{t1<t4}ψ
2
4(t4)ψ

2
1(t1)×

×

 ∞∑
j2=p+1

t4∫
t1

ψ2(t2)ϕj2(t2)

t4∫
t2

ψ3(t3)ϕj2(t3)dt3dt2

2

dt1dt4. (2.767)
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Note that, by virtue of the additivity property of the integral, we have

∞∑
j2=p+1

t4∫
t1

ψ2(t2)ϕj2(t2)

t4∫
t2

ψ3(t3)ϕj2(t3)dt3dt2 = (2.768)

=
∞∑

j2=p+1

t4∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj2(t2)dt2dt3−

−
∞∑

j2=p+1

t1∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj2(t2)dt2dt3−

−
∞∑

j2=p+1

t4∫
t1

ψ3(t3)ϕj2(t3)dt3

t1∫
t

ψ2(t2)ϕj2(t2)dt2. (2.769)

However, all three series on the right-hand side of (2.769) have already been
evaluated in (2.762) and (2.765). From (2.767) and (2.769) we finally obtain

p∑
j1,j4=0

( ∞∑
j2=p+1

Cj4j2j2j1

)2

≤ K

p2−ε
→ 0 (2.770)

if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K does not depend on p.

In complete analogy with (2.765), we have for (2.750)

p∑
j1,j3=0

( ∞∑
j2=p+1

Cj2j3j2j1

)2

=

p∑
j1,j3=0

 ∞∑
j2=p+1

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j1,j3=0

 ∞∑
j2=p+1

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)×

×
t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2

T∫
t3

ψ4(t4)ϕj2(t4)dt4dt3

2

=
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=

p∑
j1,j3=0

 ∞∑
j2=p+1

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ1(t1)ϕj1(t1)×

×
t3∫
t1

ψ2(t2)ϕj2(t2)dt2dt1

T∫
t3

ψ4(t4)ϕj2(t4)dt4dt3

2

=

=

p∑
j1,j3=0

 T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ1(t1)ϕj1(t1)×

×
∞∑

j2=p+1

t3∫
t1

ψ2(t2)ϕj2(t2)dt2

T∫
t3

ψ4(t4)ϕj2(t4)dt4dt1dt3

2

≤

≤
∞∑

j1,j3=0

 T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ1(t1)ϕj1(t1)×

×
∞∑

j2=p+1

t3∫
t1

ψ2(t2)ϕj2(t2)dt2

T∫
t3

ψ4(t4)ϕj2(t4)dt4dt1dt3

2

=

=

∫
[t,T ]2

1{t1<t3}ψ
2
3(t3)ψ

2
1(t1)×

×

 ∞∑
j2=p+1

t3∫
t1

ψ2(t2)ϕj2(t2)dt2

T∫
t3

ψ4(t4)ϕj2(t4)dt4

2

dt1dt3 ≤
K

p2−ε
→ 0 (2.771)

if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K does not depend on p.

We have for (2.751)

p∑
j1,j2=0

( ∞∑
j3=p+1

Cj3j3j2j1

)2

=

p∑
j1,j2=0

 ∞∑
j3=p+1

T∫
t

ψ4(t4)ϕj3(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4

2

=
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=

p∑
j1,j2=0

 ∞∑
j3=p+1

T∫
t

ψ1(t1)ϕj1(t1)

T∫
t1

ψ2(t2)ϕj2(t2)×

×
T∫

t2

ψ3(t3)ϕj3(t3)

T∫
t3

ψ4(t4)ϕj3(t4)dt4dt3dt2dt1

2

=

=

p∑
j1,j2=0

 T∫
t

ψ1(t1)ϕj1(t1)

T∫
t1

ψ2(t2)ϕj2(t2)×

×
∞∑

j3=p+1

T∫
t2

ψ3(t3)ϕj3(t3)

T∫
t3

ψ4(t4)ϕj3(t4)dt4dt3dt2dt1

2

≤

≤
∞∑

j1,j2=0

 T∫
t

ψ1(t1)ϕj1(t1)

T∫
t1

ψ2(t2)ϕj2(t2)×

×
∞∑

j3=p+1

T∫
t2

ψ3(t3)ϕj3(t3)

T∫
t3

ψ4(t4)ϕj3(t4)dt4dt3dt2dt1

2

=

=

∫
[t,T ]2

1{t1<t2}ψ
2
1(t1)ψ

2
2(t2)×

×

 ∞∑
j3=p+1

T∫
t2

ψ3(t3)ϕj3(t3)

T∫
t3

ψ4(t4)ϕj3(t4)dt4dt3

2

dt2dt1. (2.772)

It is easy to see that the integral (see (2.772))

T∫
t2

ψ3(t3)ϕj3(t3)

T∫
t3

ψ4(t4)ϕj3(t4)dt4dt3

is similar to the integral from the formula (2.768) if in the last integral we
substitute t4 = T. Therefore, by analogy with (2.770), we obtain

p∑
j1,j2=0

( ∞∑
j3=p+1

Cj3j3j2j1

)2

≤ K

p2−ε
→ 0 (2.773)
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if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K does not depend on p.

Now consider (2.752)–(2.754). We have for (2.752) (see Step 2 in the proof
of Theorem 2.30)( ∞∑

j2=p+1

∞∑
j1=p+1

Cj2j1j2j1

)2

=

(
p∑

j1=0

∞∑
j2=p+1

Cj2j1j2j1

)2

≤

≤ (p+ 1)

p∑
j1=0

( ∞∑
j2=p+1

Cj2j1j2j1

)2

. (2.774)

Consider (2.750) and (2.771). We have

p∑
j1=0

( ∞∑
j2=p+1

Cj2j1j2j1

)2

=

p∑
j1,j3=0

( ∞∑
j2=p+1

Cj2j3j2j1

)2 ∣∣∣∣∣
j1=j3

≤

≤
p∑

j1,j3=0

( ∞∑
j2=p+1

Cj2j3j2j1

)2

≤ K

p2−ε
, (2.775)

where ε is an arbitrary small positive real number for the polynomial case and
ε = 0 for the trigonometric case, constant K does not depend on p. Combining
(2.774) and (2.775), we obtain( ∞∑

j2=p+1

∞∑
j1=p+1

Cj2j1j2j1

)2

≤ (p+ 1)K

p2−ε
≤ K1

p1−ε
→ 0

if p→ ∞, where constant K1 does not depend on p.

Similarly for (2.753) we have (see (2.749), (2.770))( ∞∑
j2=p+1

∞∑
j1=p+1

Cj1j2j2j1

)2

=

(
p∑

j1=0

∞∑
j2=p+1

Cj1j2j2j1

)2

≤

≤ (p+ 1)

p∑
j1=0

( ∞∑
j2=p+1

Cj1j2j2j1

)2

, (2.776)

p∑
j1=0

( ∞∑
j2=p+1

Cj1j2j2j1

)2

=

p∑
j1,j4=0

( ∞∑
j2=p+1

Cj4j2j2j1

)2 ∣∣∣∣∣
j1=j4

≤
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≤
p∑

j1,j4=0

( ∞∑
j2=p+1

Cj4j2j2j1

)2

≤ K

p2−ε
, (2.777)

where ε is an arbitrary small positive real number for the polynomial case and
ε = 0 for the trigonometric case, constant K does not depend on p. Combining
(2.776) and (2.777), we obtain( ∞∑

j2=p+1

∞∑
j1=p+1

Cj1j2j2j1

)2

≤ (p+ 1)K

p2−ε
≤ K1

p1−ε
→ 0

if p→ ∞, where constant K1 does not depend on p.

Consider (2.754). Using (2.691), we obtain

∞∑
j3=p+1

∞∑
j1=p+1

Cj3j3j1j1 =
∞∑

j3=p+1

∞∑
j1=0

Cj3j3j1j1 −
∞∑

j3=p+1

p∑
j1=0

Cj3j3j1j1 =

=
1

2

∞∑
j3=p+1

Cj3j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
∞∑

j3=p+1

p∑
j1=0

Cj3j3j1j1, (2.778)

where (see (2.654))

Cj3j3j1j1

∣∣∣∣
(j1j1)↷(·)

=

T∫
t

ψ4(t4)ϕj3(t4)

t4∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2dt3dt4.

From the estimate (2.83) (polynomial case) and its analogue for the trigono-
metric case (see the proof of Lemma 2.2, Sect. 2.1.2) we get∣∣∣∣∣

∞∑
j3=p+1

Cj3j3j1j1

∣∣∣∣
(j1j1)↷(·)

∣∣∣∣∣ ≤ C

p
, (2.779)

where constant C is independent of p.

Further, we have (see (2.773))(
p∑

j1=0

∞∑
j3=p+1

Cj3j3j1j1

)2

≤ (p+ 1)

p∑
j1=0

( ∞∑
j3=p+1

Cj3j3j1j1

)2

=
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= (p+ 1)

p∑
j1,j2=0

( ∞∑
j3=p+1

Cj3j3j2j1

)2 ∣∣∣∣∣
j1=j2

≤

≤ (p+ 1)

p∑
j1,j2=0

( ∞∑
j3=p+1

Cj3j3j2j1

)2

≤ (p+ 1)K

p2−ε
≤ K1

p1−ε
, (2.780)

where constant K1 does not depend on p.

Combining (2.778)–(2.780), we obtain( ∞∑
j3=p+1

∞∑
j1=p+1

Cj3j3j1j1

)2

≤ K2

p1−ε
→ 0

if p→ ∞, where constant K2 does not depend on p.

Let us prove (2.755)–(2.757). It is not difficult to see that the estimate
(2.779) proves (2.755).

Using the integration order replacement, we obtain

∞∑
j1=p+1

Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)

=

=
∞∑

j1=p+1

T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt4 =

=
∞∑

j1=p+1

T∫
t

ψ2(t2)

T∫
t2

ψ4(t4)ψ3(t4)dt4

ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2, (2.781)

∞∑
j1=p+1

Cj1j2j2j1

∣∣∣∣
(j2j2)↷(·)

=

=
∞∑

j1=p+1

T∫
t

ψ4(t4)ϕj1(t4)

t4∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)ϕj1(t1)dt1dt3dt4 =

=
∞∑

j1=p+1

T∫
t

ψ4(t4)ϕj1(t4)

t4∫
t

ψ1(t1)ϕj1(t1)

t4∫
t1

ψ3(t3)ψ2(t3)dt3dt1dt4 =
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=
∞∑

j1=p+1

T∫
t

ψ4(t4)ϕj1(t4)

t4∫
t

ψ1(t1)ϕj1(t1)

 t4∫
t

−
t1∫
t

ψ3(t3)ψ2(t3)dt3dt1dt4 =

=
∞∑

j1=p+1

T∫
t

ψ4(t4)

t4∫
t

ψ3(t3)ψ2(t3)dt3

ϕj1(t4)

t4∫
t

ψ1(t1)ϕj1(t1)dt1dt4− (2.782)

−
∞∑

j1=p+1

T∫
t

ψ4(t4)ϕj1(t4)

t4∫
t

ψ1(t1)

t1∫
t

ψ3(t3)ψ2(t3)dt3

ϕj1(t1)dt1dt4. (2.783)

Applying the estimate (2.83) (polynomial case) and its analogue for the
trigonometric case (see the proof of Lemma 2.2, Sect. 2.1.2) to the right-hand
sides of (2.781)–(2.783), we get∣∣∣∣∣

∞∑
j3=p+1

Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)

∣∣∣∣∣ ≤ C

p
, (2.784)

∣∣∣∣∣
∞∑

j1=p+1

Cj1j2j2j1

∣∣∣∣
(j2j2)↷(·)

∣∣∣∣∣ ≤ C

p
, (2.785)

where constant C is independent of p. The estimates (2.784), (2.785) prove
(2.756), (2.757).

The relations (2.746)–(2.757) are proved. Theorem 2.34 is proved.

2.13 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 5. The Case p1 = . . . = p5 → ∞
and Continuously Differentiable Weight Functions

ψ1(τ ), . . . , ψ5(τ ) (The Cases of Legendre Polynomials

and Trigonometric Functions)

Theorem 2.35 [33], [38], [39], [64]. Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t, T ]). Furthermore, let ψ1(τ), . . . , ψ5(τ) are continuously dif-
ferentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
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stochastic integral of fifth multiplicity

J∗[ψ(5)]T,t =

∗∫
t

T

ψ5(t5) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i5)
t5 (2.786)

the following expansion

J∗[ψ(5)]T,t = l.i.m.
p→∞

p∑
j1,...,j5=0

Cj5...j1ζ
(i1)
j1

. . . ζ
(i5)
j5

that converges in the mean-square sense is valid, where i1, . . . , i5 = 0, 1, . . . ,m,

Cj5...j1 =

T∫
t

ψ5(t5)ϕj5(t5) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dt5

and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. Note that in this proof we write k instead of 5 when this is true
for an arbitrary k (k ∈ N). As noted in Remark 2.4, Conditions 1 and 2
of Theorem 2.30 are satisfied for complete orthonormal systems of Legendre
polynomials and trigonometric functions in the space L2([t, T ]). Let us verify
Condition 3 of Theorem 2.30 for the iterated Stratonovich stochastic integral
(2.786). Thus, we have to check the following conditions

lim
p→∞

p∑
jq1 ,jq2 ,jq3=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2

2

= 0, (2.787)

lim
p→∞

p∑
jq1=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

= 0, (2.788)

lim
p→∞

p∑
jq1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg2jg1)↷(·),jg1=jg2 ,jg3=jg4 ,g2=g1+1

2

= 0, (2.789)
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where ({g1, g2}, {g3, g4}, {q1}) and ({g1, g2}, {q1, q2, q3}) are partitions of the set
{1, 2, . . . , 5} that is {g1, g2, g3, g4, q1} = {g1, g2, q1, q2, q3} = {1, 2, . . . , 5}; braces
mean an unordered set, and parentheses mean an ordered set.

Let us find a representation for Cjk...j1
∣∣
jg1=jg2 , g2>g1+1

that will be convenient

for further consideration.

Using the integration order replacement in Riemann integrals, we obtain

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

hl(tl)

tl∫
t

hl−1(tl−1) . . .

t2∫
t

h1(t1)dt1 . . .

. . . dtl−1dtldtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−2

hl−1(tl−1)

tl+1∫
tl−1

hl(tl)dtl×

×dtl−1 . . . dt2dt1dtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

 tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−2

hl−1(tl−1)×

×dtl−1 . . . dt2dt1dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−2

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

×

×dtl−1 . . . dt2dt1dtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

 tl+1∫
t

hl−1(tl−1) . . .

. . .

t2∫
t

h1(t1)dt1 . . . dtl−1dtl+1 . . . dtk−
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−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

 tl−1∫
t

hl−2(tl−2) . . .

. . .

t2∫
t

h1(t1)dt1 . . . dtl−2dtl−1dtl+1 . . . dtk, (2.790)

where 2 < l < k−1 and h1(τ), . . . , hk(τ) are continuous functions on the interval
[t, T ]. The case l = 1 is obvious. By analogy with (2.790) we have for l = k

T∫
t

hl(tl)

tl∫
t

hl−1(tl−1) . . .

t2∫
t

h1(t1)dt1 . . . dtl−1dtl =

=

T∫
t

h1(t1)

T∫
t1

h2(t2) . . .

T∫
tl−2

hl−1(tl−1)

T∫
tl−1

hl(tl)dtldtl−1 . . . dt2dt1 =

=

 T∫
t

hl(tl)dtl

 T∫
t

h1(t1)

T∫
t1

h2(t2) . . .

T∫
tl−2

hl−1(tl−1)dtl−1 . . . dt2dt1−

−
T∫
t

h1(t1)

T∫
t1

h2(t2) . . .

T∫
tl−2

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

 dtl−1 . . . dt2dt1 =

=

 T∫
t

hl(tl)dtl

 T∫
t

hl−1(tl−1) . . .

t2∫
t

h1(t1)dt1 . . . dtl−1−

−
T∫
t

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

 tl−1∫
t

hl−2(tl−2) . . .

t2∫
t

h1(t1)dt1 . . . dtl−1. (2.791)

The formulas (2.790), (2.791) will be used further.

Our further proof will not fundamentally depend on the weight functions
ψ1(τ), . . . , ψk(τ). Therefore, sometimes in subsequent consideration we assume
for simplicity that ψ1(τ), . . . , ψk(τ) ≡ 1.
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Let us continue the proof. Applying (2.790) to Cjk...jl+1jljl−1...js+1jljs−1...j1 (more
precisely to hs(ts) = ψs(ts)ϕjl(ts)), we obtain for l+1 ≤ k, s−1 ≥ 1, l−1 ≥ s+1

∞∑
jl=p+1

Cjk...jl+1jljl−1...js+1jljs−1...j1 = (2.792)

=
∞∑

jl=p+1

T∫
t

ϕjk(tk) . . .

tl+2∫
t

ϕjl+1
(tl+1)

tl+1∫
t

ϕjl(tl)

tl∫
t

ϕjl−1
(tl−1) . . .

. . .

ts+2∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjl(ts)

ts∫
t

ϕjs−1
(ts−1) . . .

. . .

t2∫
t

ϕj1(t1)dt1 . . . dts−1dtsdts+1 . . . dtl−1dtldtl+1 . . . dtk =

=
∞∑

jl=p+1

T∫
t

ϕjk(tk) . . .

tl+2∫
t

ϕjl+1
(tl+1)

tl+1∫
t

ϕjl(tl)

tl∫
t

ϕjl−1
(tl−1) . . .

. . .

ts+2∫
t

ϕjs+1
(ts+1)

 ts+1∫
t

ϕjl(ts)dts

 ts+1∫
t

ϕjs−1
(ts−1) . . .

. . .

t2∫
t

ϕj1(t1)dt1 . . . dts−1dts+1 . . . dtl−1dtldtl+1 . . . dtk−

−
∞∑

jl=p+1

T∫
t

ϕjk(tk) . . .

tl+2∫
t

ϕjl+1
(tl+1)

tl+1∫
t

ϕjl(tl)

tl∫
t

ϕjl−1
(tl−1) . . .

. . .

ts+2∫
t

ϕjs+1
(ts+1)

ts+1∫
t

ϕjs−1
(ts−1)

 ts−1∫
t

ϕjl(ts)dts

 ts−1∫
t

ϕjs−2
(ts−2) . . .

. . .

t2∫
t

ϕj1(t1)dt1 . . . dts−2dts−1dts+1 . . . dtl−1dtldtl+1 . . . dtk =

=
∞∑

jl=p+1

Ajk...jl+1jljl−1...js+1jljs−1...j1 −
∞∑

jl=p+1

Bjk...jl+1jljl−1...js+1jljs−1...j1.
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Now we apply the formula (2.790) to the quantities Ajk...jl+1jljl−1...js+1jljs−1...j1

and Bjk...jl+1jljl−1...js+1jljs−1...j1 (more precisely to hl(tl) = ψl(tl)ϕjl(tl)). Then we
have for l + 1 ≤ k, s− 1 ≥ 1, l − 1 ≥ s+ 1

∞∑
jl=p+1

Cjk...jl+1jljl−1...js+1jljs−1...j1 =

=

∫
[t,T ]k−2

4∑
d=1

F (d)
p (t1, . . . , ts−1, ts+1, . . . , tl−1, tl+1, . . . , tk)×

×
k∏

g=1
g ̸=l,s

ψg(tg)ϕjg(tg)dt1 . . . dts−1dts+1 . . . dtl−1dtl+1 . . . dtk =

=
4∑
d=1

C
∗(d)
jk...jl+1jl−1...js+1js−1...j1

=
4∑
d=1

C
∗(d)
jk...jq...j1

∣∣∣∣
q ̸=l,s

, (2.793)

where

F (1)
p (t1, . . . , ts−1, ts+1, . . . , tl−1, tl+1, . . . , tk) =

= 1{t1<...<ts−1<ts+1<...<tl−1<tl+1<...<tk}

∞∑
jl=p+1

ts+1∫
t

ψs(τ)ϕjl(τ)dτ

tl+1∫
t

ψl(τ)ϕjl(τ)dτ,

(2.794)

F (2)
p (t1, . . . , ts−1, ts+1, . . . , tl−1, tl+1, . . . , tk) =

= 1{t1<...<ts−1<ts+1<...<tl−1<tl+1<...<tk}

∞∑
jl=p+1

ts−1∫
t

ψs(τ)ϕjl(τ)dτ

tl−1∫
t

ψl(τ)ϕjl(τ)dτ,

(2.795)

F (3)
p (t1, . . . , ts−1, ts+1, . . . , tl−1, tl+1, . . . , tk) =

= −1{t1<...<ts−1<ts+1<...<tl−1<tl+1<...<tk}

∞∑
jl=p+1

ts−1∫
t

ψs(τ)ϕjl(τ)dτ

tl+1∫
t

ψl(τ)ϕjl(τ)dτ,

(2.796)

F (4)
p (t1, . . . , ts−1, ts+1, . . . , tl−1, tl+1, . . . , tk) =
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= −1{t1<...<ts−1<ts+1<...<tl−1<tl+1<...<tk}

∞∑
jl=p+1

ts+1∫
t

ψs(τ)ϕjl(τ)dτ

tl−1∫
t

ψl(τ)ϕjl(τ)dτ.

(2.797)

By analogy with (2.793) we can consider the expressions

∞∑
jl=p+1

Cjljk−1...j2jl, (2.798)

∞∑
jl=p+1

Cjk...jl+1jljl−1...j2jl (l + 1 ≤ k), (2.799)

∞∑
jl=p+1

Cjljk−1...js+1jljs−1...j1 (s− 1 ≥ 1). (2.800)

Then we have for (2.798)–(2.800) (see (2.790), (2.791))

∞∑
jl=p+1

Cjljk−1...j2jl =

∫
[t,T ]k−2

2∑
d=1

G(d)
p (t2, . . . , tk−1)

k−1∏
g=2

ψg(tg)ϕjg(tg)dt2 . . . dtk−1,

(2.801)
∞∑

jl=p+1

Cjk...jl+1jljl−1...j2jl =

∫
[t,T ]k−2

2∑
d=1

E(d)
p (t2, . . . , tl−1, tl+1, . . . , tk)×

×
k∏

g=2
g ̸=l

ψg(tg)ϕjg(tg)dt2 . . . dtl−1dtl+1 . . . dtk, (2.802)

∞∑
jl=p+1

Cjljk−1...js+1jljs−1...j1 =

∫
[t,T ]k−2

4∑
d=1

D(d)
p (t1, . . . , ts−1, ts+1, . . . , tk−1)×

×
k−1∏
g=1
g ̸=s

ψg(tg)ϕjg(tg)dt1 . . . dts−1dts+1 . . . dtk−1, (2.803)

where

G(1)
p (t2, . . . , tk−1) = 1{t2<...<tk−1}

∞∑
jl=p+1

T∫
t

ψk(τ)ϕjl(τ)dτ

t2∫
t

ψ1(τ)ϕjl(τ)dτ,



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series591

G(2)
p (t2, . . . , tk−1) = −1{t2<...<tk−1}

∞∑
jl=p+1

tk−1∫
t

ψk(τ)ϕjl(τ)dτ

t2∫
t

ψ1(τ)ϕjl(τ)dτ,

E(1)
p (t2, . . . , tl−1, tl+1, . . . , tk) =

= 1{t2<...<tl−1<tl+1<...<tk}

∞∑
jl=p+1

tl+1∫
t

ψl(τ)ϕjl(τ)dτ

t2∫
t

ψ1(τ)ϕjl(τ)dτ,

E(2)
p (t2, . . . , tl−1, tl+1, . . . , tk) =

= −1{t2<...<tl−1<tl+1<...<tk}

∞∑
jl=p+1

tl−1∫
t

ψl(τ)ϕjl(τ)dτ

t2∫
t

ψ1(τ)ϕjl(τ)dτ,

D(1)
p (t1, . . . , ts−1, ts+1, . . . , tk−1) =

= 1{t1<...<ts−1<ts+1<...<tk−1}

∞∑
jl=p+1

T∫
t

ψk(τ)ϕjl(τ)dτ

ts+1∫
t

ψs(τ)ϕjl(τ)dτ,

D(2)
p (t1, . . . , ts−1, ts+1, . . . , tk−1) =

= −1{t1<...<ts−1<ts+1<...<tk−1}

∞∑
jl=p+1

T∫
t

ψk(τ)ϕjl(τ)dτ

ts−1∫
t

ψs(τ)ϕjl(τ)dτ,

D(3)
p (t1, . . . , ts−1, ts+1, . . . , tk−1) =

= −1{t1<...<ts−1<ts+1<...<tk−1}

∞∑
jl=p+1

tk−1∫
t

ψk(τ)ϕjl(τ)dτ

ts+1∫
t

ψs(τ)ϕjl(τ)dτ,

D(4)
p (t1, . . . , ts−1, ts+1, . . . , tk−1) =

= 1{t1<...<ts−1<ts+1<...<tk−1}

∞∑
jl=p+1

tk−1∫
t

ψk(τ)ϕjl(τ)dτ

ts−1∫
t

ψs(τ)ϕjl(τ)dτ.
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Now let us consider the value Cjk...j1
∣∣
jg1=jg2 , g2=g1+1

. To do this, we will make

the following transformations

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

hl(tl)

tl∫
t

hl(tl−1)

tl−1∫
t

hl−2(tl−2) . . .

t2∫
t

h1(t1)dt1 . . .

. . . dtl−2dtl−1dtldtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−3

hl−2(tl−2)×

×

 tl+1∫
t

−
tl−2∫
t

hl(tl−1)

 tl+1∫
t

−
tl−1∫
t

hl(tl)dtldtl−1dtl−2 . . . dt2dt1dtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

tl+1∫
t

hl(tl−1)dtl−1

 tl+1∫
t

h1(t1)×

×
tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−3

hl−2(tl−2)dtl−2 . . . dt2dt1dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

 tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

. . .

tl+1∫
tl−3

hl−2(tl−2)

 tl−2∫
t

hl(tl−1)dtl−1

 dtl−2 . . . dt2dt1dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl−1)

tl−1∫
t

hl(tl)dtldtl−1

 tl+1∫
t

h1(t1)×

×
tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−3

hl−2(tl−2)dtl−2 . . . dt2dt1dtl+1 . . . dtk+
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+

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−3

hl−2(tl−2)×

×

 tl−2∫
t

hl(tl−1)

tl−1∫
t

hl(tl)dtldtl−1

 dtl−2 . . . dt2dt1dtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

tl+1∫
t

hl(tl−1)dtl−1

 tl+1∫
t

hl−2(tl−2)×

×
tl−2∫
t

hl−3(tl−3) . . .

t2∫
t

h1(t1)dt1 . . . dtl−3dtl−2dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

 tl+1∫
t

hl−2(tl−2)×

×

 tl−2∫
t

hl(tl−1)dtl−1

 tl−2∫
t

hl−3(tl−3) . . .

t2∫
t

h1(t1)dt1 . . . dtl−3dtl−2dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl−1)

tl−1∫
t

hl(tl)dtldtl−1

×

×
tl+1∫
t

hl−2(tl−2)

tl−2∫
t

hl−3(tl−3) . . .

t2∫
t

h1(t1)dt1 . . . dtl−3dtl−2dtl+1 . . . dtk+

+

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

hl−2(tl−2)

 tl−2∫
t

hl(tl−1)

tl−1∫
t

hl(tl)dtldtl−1

×

×
tl−2∫
t

hl−3(tl−3) . . .

t2∫
t

h1(t1)dt1 . . . dtl−3dtl−2dtl+1 . . . dtk, (2.804)

where l+1 ≤ k, l− 2 ≥ 1, and h1(τ), . . . , hk(τ) are continuous functions on the
interval [t, T ]. The case l = k follows from (2.804) with tl+1 = T, and the case
l = 2 is obvious.
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Applying (2.804) to Cjk...jl+1jljljl−2......j1, we obtain for l + 1 ≤ k, l − 2 ≥ 1

∞∑
jl=p+1

Cjk...jl+1jljljl−2......j1 =

=

∫
[t,T ]k−2

4∑
d=1

H(d)
p (t1, . . . , tl−2, tl+1, . . . , tk)

k∏
g=1

g ̸=l−1,l

ψg(tg)ϕjg(tg)×

×dt1 . . . dtl−2dtl+1 . . . dtk =

=
4∑
d=1

C
∗∗(d)
jk...jl+1jl−2...j1

=
4∑
d=1

C
∗∗(d)
jk...jq...j1

∣∣∣∣
q ̸=l−1,l

, (2.805)

where
H(1)
p (t1, . . . , tl−2, tl+1, . . . , tk) =

= 1{t1<...<tl−2<tl+1<...<tk}

∞∑
jl=p+1

tl+1∫
t

ψl(τ)ϕjl(τ)dτ

tl+1∫
t

ψl−1(τ)ϕjl(τ)dτ, (2.806)

H(2)
p (t1, . . . , tl−2, tl+1, . . . , tk) =

= −1{t1<...<tl−2<tl+1<...<tk}

∞∑
jl=p+1

tl+1∫
t

ψl(τ)ϕjl(τ)dτ

tl−2∫
t

ψl−1(τ)ϕjl(τ)dτ, (2.807)

H(3)
p (t1, . . . , tl−2, tl+1, . . . , tk) =

= −1{t1<...<tl−2<tl+1<...<tk}

∞∑
jl=p+1

tl+1∫
t

ψl−1(τ)ϕjl(τ)

τ∫
t

ψl(θ)ϕjl(θ)dθdτ, (2.808)

H(4)
p (t1, . . . , tl−2, tl+1, . . . , tk) =

= 1{t1<...<tl−2<tl+1<...<tk}

∞∑
jl=p+1

tl−2∫
t

ψl−1(τ)ϕjl(τ)

τ∫
t

ψl(θ)ϕjl(θ)dθdτ. (2.809)

By analogy with (2.805) we can consider the expressions
∞∑

jl=p+1

Cjk...jl+1jljl, (2.810)
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∞∑
jl=p+1

Cjljljk−2...j1. (2.811)

Then we have for (2.810), (2.811) (see (2.804) and its analogue for tl+1 = T )

∞∑
jl=p+1

Cjk...jl+1jljl =

∫
[t,T ]k−2

Lp(t3, . . . , tk)
k∏
g=3

ψg(tg)ϕjg(tg)dt3 . . . dtk, (2.812)

∞∑
jl=p+1

Cjljljk−2...j1 =

∫
[t,T ]k−2

4∑
d=1

M (d)
p (t1, . . . , tk−2)

k−2∏
g=1

ψg(tg)ϕjg(tg)dt1 . . . dtk−2,

(2.813)
where

Lp(t3, . . . , tk) = 1{t3<...<tk}

∞∑
jl=p+1

t3∫
t

ψ2(τ)ϕjl(τ)

τ∫
t

ψ1(θ)ϕjl(θ)dθdτ,

M (1)
p (t1, . . . , tk−2) =

= 1{t1<...<tk−2}

∞∑
jl=p+1

T∫
t

ψk(τ)ϕjl(τ)dτ

T∫
t

ψk−1(τ)ϕjl(τ)dτ,

M (2)
p (t1, . . . , tk−2) =

= −1{t1<...<tk−2}

∞∑
jl=p+1

T∫
t

ψk(τ)ϕjl(τ)dτ

tk−2∫
t

ψk−1(τ)ϕjl(τ)dτ,

M (3)
p (t1, . . . , tk−2) =

= −1{t1<...<tk−2}

∞∑
jl=p+1

T∫
t

ψk−1(τ)ϕjl(τ)

τ∫
t

ψk(θ)ϕjl(θ)dθdτ,

M (4)
p (t1, . . . , tk−2) =

= 1{t1<...<tk−2}

∞∑
jl=p+1

tk−2∫
t

ψk−1(τ)ϕjl(τ)

τ∫
t

ψk(θ)ϕjl(θ)dθdτ.
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It is important to note that C
∗(d)
jk...jl+1jl−2...j1

, C
∗∗(d)
jk...jl+1jl−2...j1

(d = 1, . . . , 4) are
Fourier coefficients (see (2.793), (2.805)), that is, we can use Parseval’s equality
in the further proof.

Combining the equalities (2.793)–(2.797) (the case g2 > g1 + 1), using Par-
seval’s equality and applying the estimates for integrals from basis functions
that we used in the proof of Theorems 2.33, 2.34, we obtain for (2.793)

p∑
jq1 ,...,jqk−2

=0

 ∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2 ,g2>g1+1

2

=

=

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

 ∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2 ,g2>g1+1

2

=

=

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

(
4∑
d=1

C
∗(d)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2

)2

≤
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2

(
4∑
d=1

C
∗(d)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2

)2

=

=
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2

 ∫
[t,T ]k−2

4∑
d=1

F (d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2−1, tg2+1, . . . , tk)×

×
k∏

q=1
q ̸=g1,g2

ψq(tq)ϕjq(tq)dt1 . . . dtg1−1dtg1+1 . . . dtg2−1dtg2+1 . . . dtk


2

=

=

∫
[t,T ]k−2

 4∑
d=1

F (d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2−1, tg2+1, . . . , tk)

k∏
q=1

q ̸=g1,g2

ψq(tq)


2

×

×dt1 . . . dtg1−1dtg1+1 . . . dtg2−1dtg2+1 . . . dtk ≤

≤ 4
4∑
d=1

∫
[t,T ]k−2

F (d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2−1, tg2+1, . . . , tk)

k∏
q=1

q ̸=g1,g2

ψq(tq)


2

×

×dt1 . . . dtg1−1dtg1+1 . . . dtg2−1dtg2+1 . . . dtk ≤
K

p2−ε
→ 0 (2.814)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series597

if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K does not depend on p.
The cases (2.798)–(2.800) are considered analogously.

Absolutely similarly (see (2.814)) combining the equalities (2.805)–(2.809)
(the case g2 = g1 + 1), using Parseval’s equality and applying the estimates for
integrals from basis functions that we used in the proof of Theorems 2.33, 2.34,
we get for (2.805)

p∑
jq1 ,...,jqk−2

=0

 ∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2 ,g2=g1+1

2

=

=

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

 ∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2 ,g2=g1+1

2

=

=

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2

(
4∑
d=1

C
∗∗(d)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2

)2

≤
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2

(
4∑
d=1

C
∗∗(d)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2

)2

=

=
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2

 ∫
[t,T ]k−2

4∑
d=1

H(d)
p (t1, . . . , tg1−1, tg1+2, . . . , tk)×

×
k∏

q=1
q ̸=g1,g1+1

ψq(tq)ϕjq(tq)dt1 . . . dtg1−1dtg1+2 . . . dtk


2

=

=

∫
[t,T ]k−2

 4∑
d=1

H(d)
p (t1, . . . , tg1−1, tg1+2, . . . , tk)

k∏
q=1

q ̸=g1,g1+1

ψq(tq)


2

×

×dt1 . . . dtg1−1dtg1+2 . . . . . . dtk ≤

≤ 4
4∑
d=1

∫
[t,T ]k−2

H(d)
p (t1, . . . , tg1−1, tg1+2, . . . , tk)

k∏
q=1

q ̸=g1,g1+1

ψq(tq)


2

×

×dt1 . . . dtg1−1dtg1+2 . . . dtk ≤
K

p2−ε
→ 0 (2.815)
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if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K does not depend on p.
The cases (2.810), (2.811) are considered analogously.

From (2.814), (2.815) and their analogues for the cases (2.798)–(2.800),
(2.810), (2.811) we obtain

p∑
jq1 ,...,jqk−2

=0

 ∞∑
jg1=p+1

Cjk...j1

∣∣∣∣
jg1=jg2

2

≤ K

p2−ε
, (2.816)

where constant K is independent of p. Thus the equality (2.787) is proved.

Let us prove the equality (2.788). Consider the following cases

1. g2 > g1 + 1, g4 = g3 + 1, 2. g2 = g1 + 1, g4 > g3 + 1,

3. g2 > g1 + 1, g4 > g3 + 1, 4. g2 = g1 + 1, g4 = g3 + 1.

The proof for Cases 1–3 will be similar. Consider, for example, Case 2.
Using (2.690), we obtain

p∑
jq1=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,g4>g3+1,g2=g1+1

2

=

=

p∑
jq1=0

 ∞∑
jg1=p+1

p∑
jg3=0

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,g4>g3+1,g2=g1+1

2

=

=

p∑
jq1=0

 p∑
jg3=0

∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,g4>g3+1,g2=g1+1

2

≤ (2.817)

≤ (p+ 1)

p∑
jq1=0

p∑
jg3=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,g4>g3+1,g2=g1+1

2

=

= (p+ 1)

p∑
jq1=0

p∑
jg3 ,jg4=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,g4>g3+1,g2=g1+1

2 ∣∣∣∣∣
jg3=jg4

≤

≤ (p+ 1)

p∑
jq1=0

p∑
jg3 ,jg4=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,g4>g3+1,g2=g1+1

2

. (2.818)
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It is easy to see that the expression (2.818) (without the multiplier p + 1)
is a particular case (k = 5, g4 > g3 + 1, g2 = g1 + 1) of the left-hand side of
(2.816). Combining (2.816) and (2.818), we have

p∑
jq1=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,g4>g3+1,g2=g1+1

2

≤ (p+ 1)K

p2−ε
≤ K1

p1−ε
→ 0

(2.819)

if p→ ∞, where ε is an arbitrary small positive real number for the polynomial
case and ε = 0 for the trigonometric case, constant K1 does not depend on p.

Consider Case 4 (g2 = g1 + 1, g4 = g3 + 1). We have (see (2.691))

p∑
jq1=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

=

=

p∑
jq1=0

 ∞∑
jg1=p+1

 ∞∑
jg3=0

−
p∑

jg3=0

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

=

=

p∑
jq1=0

1

2

∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,(jg3jg3)↷(·)

−
p∑

jg3=0

∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

≤

≤ 1

2

p∑
jq1=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,(jg3jg3)↷(·)

2

+ (2.820)

+2

p∑
jq1=0

 p∑
jg3=0

∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

. (2.821)

An expression similar to (2.821) was estimated (see (2.817)–(2.819)). Let
us estimate (2.820). We have

p∑
jq1=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,(jg3jg3)↷(·)

2

=

= (T − t)

p∑
jq1=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,(jg3jg3)↷0

2

≤
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≤ (T − t)

p∑
jq1=0

p∑
jg3=0

 ∞∑
jg1=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,(jg3jg3)↷jg3

2

, (2.822)

where the notations are the same as in the proof of Theorem 2.30.

The expression (2.822) without the multiplier T − t is an expression of
type (2.746)–(2.751) before passing to the limit lim

p→∞
(the only difference is the

replacement of one of the weight functions ψ1(τ), . . . , ψ4(τ) in (2.746)–(2.751)
by the product ψl+1(τ)ψl(τ) (l = 1, . . . , 4). Therefore, for Case 4 (g2 = g1 + 1,
g4 = g3 + 1), we obtain the estimate

p∑
jq1=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,g4=g3+1,g2=g1+1

2

≤ K

p1−ε
, (2.823)

where ε is an arbitrary small positive real number for the polynomial case and
ε = 0 for the trigonometric case, constant K is independent of p.

The estimates (2.819), (2.823) prove (2.788).

Let us prove (2.789). By analogy with (2.822) we have

p∑
jq1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg2jg1)↷(·),jg1=jg2 ,jg3=jg4 ,g2=g1+1

2

=

=

p∑
jq1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg1jg1)↷(·),jg3=jg4 ,g2=g1+1

2

=

= (T − t)

p∑
jq1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg1jg1)↷0,jg3=jg4 ,g2=g1+1

2

≤

≤ (T − t)

p∑
jq1=0

p∑
jg1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg1jg1)↷jg1 ,jg3=jg4 ,g2=g1+1

2

. (2.824)

Thus, we obtain the estimate (see (2.822) and the proof of Theorem 2.34)

p∑
jq1=0

 ∞∑
jg3=p+1

Cj5...j1

∣∣∣∣
(jg2jg1)↷(·),jg1=jg2 ,jg3=jg4 ,g2=g1+1

2

≤ K

p2−ε
, (2.825)
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where ε is an arbitrary small positive real number for the polynomial case and
ε = 0 for the trigonometric case, constant K does not depend on p.

The estimate (2.825) proves (2.789). Theorem 2.35 is proved.

2.14 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 6. The Case p1 = . . . = p6 → ∞
and ψ1(τ ), . . . , ψ6(τ ) ≡ 1 (The Cases of Legendre

Polynomials and Trigonometric Functions)

Theorem 2.36 [33], [38], [39], [65]. Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]). Then, for the iterated Stratonovich stochastic integral of sixth
multiplicity

J
∗(i1...i6)
T,t =

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(i6)
t6 (2.826)

the following expansion

J
∗(i1...i6)
T,t = l.i.m.

p→∞

p∑
j1,...,j6=0

Cj6...j1ζ
(i1)
j1

. . . ζ
(i6)
j6

that converges in the mean-square sense is valid, where i1, . . . , i6 = 0, 1, . . . ,m,

Cj6...j1 =

T∫
t

ϕj6(t6) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt6

and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. As noted in Remark 2.4, Conditions 1 and 2 of Theorem 2.30 are sat-
isfied for complete orthonormal systems of Legendre polynomials and trigono-
metric functions in the space L2([t, T ]). Let us verify Condition 3 of Theo-
rem 2.30 for the iterated Stratonovich stochastic integral (2.826). Thus, we
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have to check the following conditions

lim
p→∞

p∑
jq1 ,jq2 ,jq3 ,jq4=0

 ∞∑
jg1=p+1

Cj6...j1

∣∣∣∣
jg1=jg2

2

= 0, (2.827)

lim
p→∞

p∑
jq1 ,jq2=0

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj6...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4

2

= 0, (2.828)

lim
p→∞

p∑
jq1 ,jq2=0

 ∞∑
jg1=p+1

Cj6...j1

∣∣∣∣
(jg4jg3)↷(·),jg1=jg2 ,jg3=jg4 ,g4=g3+1

2

= 0, (2.829)

lim
p→∞

 ∞∑
jg1=p+1

∞∑
jg3=p+1

∞∑
jg5=p+1

Cj6...j1

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

2

= 0, (2.830)

lim
p→∞

 ∞∑
jg1=p+1

∞∑
jg3=p+1

Cj6...j1

∣∣∣∣
(jg6jg5)↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6 ,g6=g5+1

2

= 0,

(2.831)

lim
p→∞

 ∞∑
jg1=p+1

Cj6...j1

∣∣∣∣
(jg4jg3)↷(·)(jg6jg5)↷(·),jg1=jg2 ,jg3=jg4 ,jg5=jg6 ,g4=g3+1,g6=g5+1

2

= 0,

(2.832)

where the expressions ({g1, g2}, {g3, g4}, {g5, g6}}) , ({g1, g2}, {g3, g4}, {q1, q2}}) ,
({g1, g2}, {q1, q2, q3, q4}) are partitions of the set {1, 2, . . . , 6} that is {g1, g2, g3,
g4, g5, g6} = {g1, g2, g3, g4, q1, q2} = {g1, g2, q1, q2, q3, q4} = {1, 2, . . . , 6}; braces
mean an unordered set, and parentheses mean an ordered set.

The equalities (2.827), (2.829) were proved earlier (see the proof of equalities
(2.816), (2.822)). The relation (2.832) follows from the estimate (2.83) for the
polynomial case and its analogue for the trigonometric case. It is easy to see
that the equalities (2.828) and (2.831) are proved in complete analogy with the
proof of (2.788), (2.822).

Thus, we have to prove the relation (2.830). The equality (2.830) is equiv-
alent to the following equalities

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j1j3j2j1 = 0, (2.833)
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lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj1j3j2j3j2j1 = 0, (2.834)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j3j1j2j1 = 0, (2.835)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj1j2j3j3j2j1 = 0, (2.836)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj1j2j2j3j3j1 = 0, (2.837)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1 = 0, (2.838)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j3j2j1j1 = 0, (2.839)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j3j2j1j1 = 0, (2.840)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j2j1j2j1 = 0, (2.841)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j1j2j2j1 = 0, (2.842)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j1j3j3j2j1 = 0, (2.843)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j1j2j3j2j1 = 0, (2.844)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j1j3j2j1 = 0, (2.845)

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j1j3j2j2j1 = 0, (2.846)



604D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j3j1j2j1 = 0. (2.847)

Consider in detail the case of Legendre polynomials (the case of trigono-
metric functions is considered in complete analogy).

First, we prove the following equality for the Fourier coefficients for the case
ψ1(τ), . . . , ψ6(τ) ≡ 1

Cj6j5j4j3j2j1 + Cj1j2j3j4j5j6 = Cj6Cj5j4j3j2j1 − Cj5j6Cj4j3j2j1+

+Cj4j5j6Cj3j2j1 − Cj3j4j5j6Cj2j1 + Cj2j3j4j5j6Cj1. (2.848)

Using the integration order replacement, we have

Cj6j5j4j3j2j1 =

=

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt5dt6 =

=

T∫
t

ϕj6(t6)

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt4dt5dt6−

−
T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5)

t5∫
t

ϕj4(t4) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt4dt5dt6 =

= Cj6Cj5j4j3j2j1−

−
T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5)

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt3dt4dt5dt6+

+

T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5)

T∫
t5

ϕj4(t4)

t4∫
t

ϕj3(t3) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt3dt4dt5dt6 =

= Cj6Cj5j4j3j2j1−

−
T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5)dt5dt6 Cj4j3j2j1+
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+

T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5)

T∫
t5

ϕj4(t4)

t4∫
t

ϕj3(t3) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt3dt4dt5dt6 =

= Cj6Cj5j4j3j2j1 − Cj5j6Cj4j3j2j1+

+

T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5)

T∫
t5

ϕj4(t4)

t4∫
t

ϕj3(t3) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt3dt4dt5dt6 =

. . .

= Cj6Cj5j4j3j2j1 − Cj5j6Cj4j3j2j1 + Cj4j5j6Cj3j2j1 − Cj3j4j5j6Cj2j1 + Cj2j3j4j5j6Cj1−

−
T∫
t

ϕj6(t6)

T∫
t6

ϕj5(t5) . . .

T∫
t2

ϕj1(t1)dt1 . . . dt5dt6 =

= Cj6Cj5j4j3j2j1 − Cj5j6Cj4j3j2j1 + Cj4j5j6Cj3j2j1−

−Cj3j4j5j6Cj2j1 + Cj2j3j4j5j6Cj1 − Cj1j2j3j4j5j6. (2.849)

The equality (2.849) completes the proof of the relation (2.848).

Let us consider (2.833). From (2.684) we obtain

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j1j3j2j1 = −
p∑

j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1j3j2j1. (2.850)

Applying (2.848), we get

p∑
j1,j2,j3=0

Cj3j2j1j3j2j1 +

p∑
j1,j2,j3=0

Cj1j2j3j1j2j3 = 2

p∑
j1,j2,j3=0

Cj3j2j1j3j2j1 =

=

p∑
j1,j2,j3=0

(
Cj3Cj2j1j3j2j1 − Cj2j3Cj1j3j2j1 + Cj1j2j3Cj3j2j1−

−Cj3j1j2j3Cj2j1 + Cj2j3j1j2j3Cj1

)
. (2.851)
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Note that

Cj2j1 =

T∫
t

ϕj2(τ)

τ∫
t

ϕj1(θ)dθdτ =

=
T − t

2



1/
√

(2j1 + 1)(2j1 + 3) if j2 = j1 + 1, j1 = 0, 1, 2, . . .

−1/
√

4j21 − 1 if j2 = j1 − 1, j1 = 1, 2, . . .

1 if j1 = j2 = 0

0 otherwise

, (2.852)

Cj1 =

T∫
t

ϕj1(τ)dτ =


√
T − t if j1 = 0

0 if j1 ̸= 0

. (2.853)

Moreover, the generalized Parseval equality gives

lim
p→∞

p∑
j1,j2,j3=0

Cj1j2j3Cj3j2j1 =

= lim
p→∞

p∑
j1,j2,j3=0

T∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj3(t1)dt1dt2dt3×

×
T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3 =

= lim
p→∞

p∑
j1,j2,j3=0

T∫
t

ϕj3(t3)

T∫
t3

ϕj2(t2)

T∫
t2

ϕj1(t1)dt1dt2dt3×

×
T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3 =
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= lim
p→∞

p∑
j1,j2,j3=0

∫
[t,T ]3

1{t3<t2<t1}

3∏
l=1

ϕjl(tl)dt1dt2dt3×

×
∫

[t,T ]3

1{t1<t2<t3}

3∏
l=1

ϕjl(tl)dt1dt2dt3 =

=

∫
[t,T ]3

1{t3<t2<t1}1{t1<t2<t3}dt1dt2dt3 = 0. (2.854)

Using the above arguments and also (2.684), (2.850), and (2.851), we get

− lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j1j3j2j1 = lim
p→∞

p∑
j1,j2,j3=0

Cj3j2j1j3j2j1 =

=
1

2
lim
p→∞

p∑
j1,j2,j3=0

(
Cj3Cj2j1j3j2j1 − Cj2j3Cj1j3j2j1−

−Cj3j1j2j3Cj2j1 + Cj2j3j1j2j3Cj1

)
=

= lim
p→∞

p∑
j1,j2,j3=0

(
Cj3Cj2j1j3j2j1 − Cj3j1j2j3Cj2j1

)
=

=
√
T − t lim

p→∞

p∑
j1,j2=0

Cj2j10j2j1 − lim
p→∞

p∑
j1,j2,j3=0

Cj3j1j2j3Cj2j1 =

=
√
T − t lim

p→∞

p∑
j1,j2=0

Cj2j10j2j1 + lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

Cj3j1j2j3Cj2j1. (2.855)

By analogy with the proof of (2.752) (see the proof of Theorem 2.34) we
obtain

lim
p→∞

p∑
j1,j2=0

Cj2j10j2j1 = lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

Cj2j10j2j1 = 0, (2.856)

where we used the following representation

Cj2j10j2j1 =
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=
1√
T − t

T∫
t

ϕj2(t5)

t5∫
t

ϕj1(t4)

t4∫
t

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4dt5 =

=
1√
T − t

T∫
t

ϕj2(t5)

t5∫
t

ϕj1(t4)

t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1

t4∫
t2

dt3dt2dt4dt5 =

=
1√
T − t

T∫
t

ϕj2(t5)

t5∫
t

ϕj1(t4)(t4 − t)

t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt4dt5+

+
1√
T − t

T∫
t

ϕj2(t5)

t5∫
t

ϕj1(t4)

t4∫
t

ϕj2(t2)(t− t2)

t2∫
t

ϕj1(t1)dt1dt2dt4dt5
def
=

def
= C̄j2j1j2j1 + C̃j2j1j2j1.

Further, we have (see (2.852))

lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

Cj3j1j2j3Cj2j1 = lim
p→∞

∞∑
j3=p+1

(
C00Cj300j3+

+

p∑
j1=1

Cj1−1,j1Cj3j1,j1−1,j3 +

p−1∑
j1=1

Cj1+1,j1Cj3j1,j1+1,j3 + C1,0Cj301j3

)
. (2.857)

Observe that

|Cj1−1,j1|+ |Cj1+1,j1| ≤
K

j1
(j1 = 1, . . . , p), (2.858)

|Cj300j3|+ |Cj3j1,j1−1,j3|+ |Cj3j1,j1+1,j3|+ |Cj301j3| ≤

≤ K1

j23
(j3 ≥ p+ 1), (2.859)

where constants K,K1 do not depend on j1, j3.

The estimate (2.858) follows from (2.852). At the same time, the estimate
(2.859) can be obtained using the following reasoning. First note that the
integration order replacement gives

Cj3j1j2j3 =

T∫
t

ϕj3(t4)

t4∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj3(t1)dt1dt2dt3dt4 =
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=

T∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

 t2∫
t

ϕj3(t1)dt1

 dt2

 T∫
t3

ϕj3(t4)dt4

 dt3. (2.860)

Applying the estimates (2.158), (2.159), and (2.175) to (2.860) gives the
estimate (2.859).

Using (2.857), (2.858), and (2.859), we obtain∣∣∣∣∣
p∑

j1,j2=0

∞∑
j3=p+1

Cj3j1j2j3Cj2j1

∣∣∣∣∣ ≤ K
∞∑

j3=p+1

1

j23

(
1 +

p∑
j1=1

1

j1

)
≤

≤ K

∞∫
p

dx

x2

2 +

p∫
1

dx

x

 =
K(2 + lnp)

p
→ 0 (2.861)

if p → ∞, where constant K is independent of p. Thus, the equality (2.833) is
proved (see (2.855), (2.856), (2.861)).

The relation (2.834) is proved in complete analogy with the proof of equality
(2.833). For (2.834) we have (see (2.848))

lim
p→∞

(
p∑

j1,j2,j3=0

Cj1j3j2j3j2j1 +

p∑
j1,j2,j3=0

Cj1j2j3j2j3j1

)
= 2 lim

p→∞

p∑
j1,j2,j3=0

Cj1j3j2j3j2j1 =

= lim
p→∞

p∑
j1,j2,j3=0

(
Cj1Cj3j2j3j2j1 − Cj3j1Cj2j3j2j1 + Cj2j3j1Cj3j2j1−

−Cj3j2j3j1Cj2j1 + Cj2j3j2j3j1Cj1

)
=

= 2 lim
p→∞

(
√
T − t

p∑
j2,j3=0

Cj3j2j3j20 −
p∑

j1,j2,j3=0

Cj2j1Cj3j2j3j1

)
=

= −2 lim
p→∞

p∑
j1,j2,j3=0

Cj2j1Cj3j2j3j1.

To estimate the Fourier coefficient Cj3j2j3j1, we use the following (see the
proof of (2.833) for more details)

Cj3j2j3j1 =

T∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

t3∫
t

ϕj3(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =
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=

T∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

t3∫
t

ϕj1(t1)

t3∫
t1

ϕj3(t2)dt2dt1dt3dt4 =

=

T∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

 t3∫
t

ϕj3(t2)dt2

 t3∫
t

ϕj1(t1)dt1dt3dt4−

−
T∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

t3∫
t

ϕj1(t1)

 t1∫
t

ϕj3(t2)dt2

 dt1dt3dt4 =

=

T∫
t

ϕj2(t3)

 t3∫
t

ϕj3(t2)dt2

 t3∫
t

ϕj1(t1)dt1

 T∫
t3

ϕj3(t4)dt4

 dt3−

−
T∫
t

ϕj2(t3)

t3∫
t

ϕj1(t1)

 t1∫
t

ϕj3(t2)dt2

 dt1

 T∫
t3

ϕj3(t4)dt4

 dt3.

Let us prove (2.835). From (2.684) we obtain

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j3j1j2j1 = −
p∑

j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j3j1j2j1. (2.862)

Applying (2.848) and (2.862), we get (we replaced j3 by j4)

p∑
j1,j2,j4=0

Cj4j2j4j1j2j1 +

p∑
j1,j2,j4=0

Cj1j2j1j4j2j4 = 2

p∑
j1,j2,j4=0

Cj4j2j4j1j2j1 =

=

p∑
j1,j2,j4=0

(
Cj4Cj2j4j1j2j1 − Cj2j4Cj4j1j2j1 + Cj4j2j4Cj1j2j1−

−Cj1j4j2j4Cj2j1 + Cj2j1j4j2j4Cj1

)
=

= 2

p∑
j1,j2,j4=0

(
Cj2j1j4j2j4Cj1 − Cj1j4j2j4Cj2j1

)
+

+

p∑
j1,j2,j4=0

Cj4j2j4Cj1j2j1. (2.863)
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Further, we have (see (2.684))

lim
p→∞

p∑
j1,j2,j4=0

Cj4j2j4Cj1j2j1 = lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

=

= lim
p→∞

p∑
j2=0

( ∞∑
j1=p+1

Cj1j2j1

)2

= 0, (2.864)

where we applied the equality (2.726).

Furthermore, by analogy with the proof of (2.833), we have

lim
p→∞

p∑
j1,j2,j4=0

(
Cj2j1j4j2j4Cj1 − Cj1j4j2j4Cj2j1

)
= 0. (2.865)

To estimate the Fourier coefficient Cj1j4j2j4 in (2.865), we use the following
(see the proof of (2.833) for more details)

Cj1j4j2j4 =

T∫
t

ϕj1(t4)

t4∫
t

ϕj4(t3)

t3∫
t

ϕj2(t2)

 t2∫
t

ϕj4(t1)dt1

 dt2dt3dt4 =

=

T∫
t

ϕj1(t4)

t4∫
t

ϕj2(t2)

 t2∫
t

ϕj4(t1)dt1

 t4∫
t2

ϕj4(t3)dt3dt2dt4 =

=

T∫
t

ϕj1(t4)

 t4∫
t

ϕj4(t3)dt3

 t4∫
t

ϕj2(t2)

 t2∫
t

ϕj4(t1)dt1

 dt2dt4−

−
T∫
t

ϕj1(t4)

t4∫
t

ϕj2(t2)

 t2∫
t

ϕj4(t3)dt3

 t2∫
t

ϕj4(t1)dt1

 dt2dt4.

The relations (2.862)–(2.865) complete the proof of equality (2.835).

Let us prove (2.836). Using (2.684), we get

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj1j2j3j3j2j1 =

p∑
j1=0

p∑
j2=0

∞∑
j3=p+1

Cj1j2j3j3j2j1. (2.866)
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Applying (2.848) and (2.866), we obtain

2

p∑
j1,j2=0

∞∑
j3=p+1

Cj1j2j3j3j2j1 =

=

p∑
j1,j2=0

∞∑
j3=p+1

(
Cj1Cj2j3j3j2j1 − Cj2j1Cj3j3j2j1 + (Cj3j2j1)

2−

−Cj3j3j2j1Cj2j1 + Cj2j3j3j2j1Cj1

)
=

= 2

p∑
j1,j2=0

∞∑
j3=p+1

(
Cj1Cj2j3j3j2j1 − Cj2j1Cj3j3j2j1

)
+

+

p∑
j1,j2=0

∞∑
j3=p+1

(Cj3j2j1)
2 . (2.867)

Using the estimate (1.219), we get

lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

(Cj3j2j1)
2 = 0. (2.868)

By analogy with the proof of (2.833), we have

lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

(
Cj1Cj2j3j3j2j1 − Cj2j1Cj3j3j2j1

)
= 0, (2.869)

where we applied the equality (2.753). To estimate the Fourier coefficient
Cj3j3j2j1 in (2.869), we used the following (see the proof of (2.833) for more
details)

Cj3j3j2j1 =

T∫
t

ϕj3(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

=

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj3(t3)

T∫
t3

ϕj3(t4)dt4dt3dt2dt1 =
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=
1

2

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

 T∫
t2

ϕj3(t3)dt3

2

dt2dt1. (2.870)

Combining the equalities (2.866)–(2.869), we obtain (2.836).

Let us prove (2.837) (we replace j2 by j4 and j3 by j2 in (2.837)). As noted
in Remark 2.4, the sequential order of the series

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j4=p+1

is not important. This follows directly from the formulas (2.691) and (2.684).

Applying the mentioned property and (2.684), we get

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j4=p+1

Cj1j4j4j2j2j1 = −
p∑

j1=0

∞∑
j2=p+1

∞∑
j4=p+1

Cj1j4j4j2j2j1. (2.871)

Observe that (see the above reasoning)

∞∑
j2=p+1

∞∑
j4=p+1

Cj1j4j4j2j2j1 =
∞∑

j4=p+1

∞∑
j2=p+1

Cj1j4j4j2j2j1. (2.872)

Using (2.848) and (2.872), we obtain

p∑
j1=0

∞∑
j2=p+1

∞∑
j4=p+1

(
Cj1j4j4j2j2j1 + Cj1j2j2j4j4j1

)
= 2

p∑
j1=0

∞∑
j2=p+1

∞∑
j4=p+1

Cj1j4j4j2j2j1 =

=

p∑
j1=0

∞∑
j2=p+1

∞∑
j4=p+1

(
Cj1Cj4j4j2j2j1 − Cj4j1Cj4j2j2j1 + Cj4j4j1Cj2j2j1−

−Cj2j4j4j1Cj2j1 + Cj2j2j4j4j1Cj1

)
=

=

p∑
j1=0

∞∑
j2=p+1

∞∑
j4=p+1

(
Cj1Cj4j4j2j2j1 −Cj4j1Cj4j2j2j1 −Cj2j4j4j1Cj2j1 +Cj2j2j4j4j1Cj1

)
+

+

p∑
j1=0

( ∞∑
j2=p+1

Cj2j2j1

)2

. (2.873)
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The equality

lim
p→∞

p∑
j1=0

( ∞∑
j2=p+1

Cj2j2j1

)2

= 0 (2.874)

follows from the relation (2.725).

By analogy with the proof of equality (2.833) we obtain

lim
p→∞

p∑
j1=0

∞∑
j2=p+1

∞∑
j4=p+1

(
Cj1Cj4j4j2j2j1 − Cj4j1Cj4j2j2j1−

−Cj2j4j4j1Cj2j1 + Cj2j2j4j4j1Cj1

)
= 0, (2.875)

where we applied the equality (2.754). To estimate the Fourier coefficient
Cj2j4j4j1 in (2.875), we used the following (see the proof of (2.833) for more
details)

Cj2j4j4j1 =

T∫
t

ϕj2(t4)

t4∫
t

ϕj4(t3)

t3∫
t

ϕj4(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

=

T∫
t

ϕj2(t4)

t4∫
t

ϕj1(t1)

t4∫
t1

ϕj4(t2)

t4∫
t2

ϕj4(t3)dt3dt2dt1dt4 =

=
1

2

T∫
t

ϕj2(t4)

t4∫
t

ϕj1(t1)

 t4∫
t1

ϕj4(t2)dt2

2

dt1dt4 =

=
1

2

T∫
t

ϕj2(t4)

 t4∫
t

ϕj4(t2)dt2

2 t4∫
t

ϕj1(t1)dt1dt4+

+
1

2

T∫
t

ϕj2(t4)

t4∫
t

ϕj1(t1)

 t1∫
t

ϕj4(t2)dt2

2

dt1dt4−

−
T∫
t

ϕj2(t4)

 t4∫
t

ϕj4(t2)dt2

 t4∫
t

ϕj1(t1)

 t1∫
t

ϕj4(t2)dt2

 dt1dt4.
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The relation (2.837) follows from (2.871), (2.873)–(2.875).

Consider (2.838). Using the integration order replacement, we obtain

Cj3j3j2j2j1j1 =

=
1

2

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj2(t4)

t4∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2

dt3dt4dt5dt6 =

=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj2(t4)

T∫
t4

ϕj3(t5)

T∫
t5

ϕj3(t6)dt6dt5dt4dt3 =

=
1

4

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj2(t4)

 T∫
t4

ϕj3(t5)dt5

2

dt4dt3. (2.876)

Applying the estimates (2.158), (2.159), and (2.175) to (2.876) gives the
following estimate

|Cj3j3j2j2j1j1| ≤
K

j21j
2
3

(j1, j3 > 0, j2 ≥ 0), (2.877)

where constant K does not depend on j1, j2, j3.

Further, we get (see (2.691))

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1 =
∞∑

j1=p+1

∞∑
j3=p+1

∞∑
j2=p+1

Cj3j3j2j2j1j1 =

=
1

2

∞∑
j1=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

∞∑
j1=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1, (2.878)

where

Cj3j3j2j2j1j1

∣∣∣∣
(j2j2)↷(·)

=

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)

t5∫
t

t4∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt4dt5dt6 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1

t5∫
t2

dt4dt2dt5dt6 =
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=

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)(t5 − t)

t5∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt5dt6+

+

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj1(t2)(t− t2)

t2∫
t

ϕj1(t1)dt1dt2dt5dt6
def
=

def
= C ′

j3j3j1j1
+ C ′′

j3j3j1j1
. (2.879)

Let us substitute (2.879) into (2.878)

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1 =
1

2

∞∑
j1=p+1

∞∑
j3=p+1

C ′
j3j3j1j1

+

+
1

2

∞∑
j1=p+1

∞∑
j3=p+1

C ′′
j3j3j1j1

−
p∑

j2=0

∞∑
j1=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1. (2.880)

The relation (2.754) implies that

lim
p→∞

∞∑
j1=p+1

∞∑
j3=p+1

C ′
j3j3j1j1

= 0, lim
p→∞

∞∑
j1=p+1

∞∑
j3=p+1

C ′′
j3j3j1j1

= 0. (2.881)

From the estimate (2.877) we get∣∣∣∣∣
p∑

j2=0

∞∑
j1=p+1

∞∑
j3=p+1

Cj3j3j2j2j1j1

∣∣∣∣∣ ≤ K(p+ 1)
∞∑

j1=p+1

1

j21

∞∑
j3=p+1

1

j23
≤

≤ K(p+ 1)

 ∞∫
p

dx

x2

2

≤ K(p+ 1)

p2
→ 0 (2.882)

if p→ ∞, where constant K is independent of p.

The relations (2.880)–(2.882) complete the proof of (2.838).

Let us prove (2.839). Using the integration order replacement, we get

Cj2j3j3j2j1j1 =

=
1

2

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2

dt3dt4dt5dt6 =
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=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj3(t4)

T∫
t4

ϕj3(t5)

T∫
t5

ϕj2(t6)dt6dt5dt4dt3 =

=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj3(t5)

T∫
t5

ϕj2(t6)dt6

t5∫
t3

ϕj3(t4)dt4dt5dt3 =

=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj3(t5)

 T∫
t5

ϕj2(t6)dt6

 t5∫
t

ϕj3(t4)dt4

×

×dt5dt3−

−1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 t3∫
t

ϕj3(t4)dt4

 T∫
t3

ϕj3(t5)

 T∫
t5

ϕj2(t6)dt6

×

×dt5dt3. (2.883)

Applying (2.684) and (2.691), we obtain

−
∞∑

j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j3j2j1j1 = −
∞∑

j1=p+1

∞∑
j3=p+1

∞∑
j2=p+1

Cj2j3j3j2j1j1 =

=

p∑
j2=0

∞∑
j1=p+1

∞∑
j3=p+1

Cj2j3j3j2j1j1 =

=
1

2

p∑
j2=0

∞∑
j1=p+1

Cj2j3j3j2j1j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j2=0

p∑
j3=0

∞∑
j1=p+1

Cj2j3j3j2j1j1 =

=
1

2

p∑
j2=0

∞∑
j1=p+1

Cj2j3j3j2j1j1

∣∣∣∣
(j3j3)↷(·)

−
∞∑

j1=p+1

C0000j1j1−

−
p∑

j3=1

∞∑
j1=p+1

C0j3j30j1j1 −
p∑

j2=1

∞∑
j1=p+1

Cj200j2j1j1−

−
p∑

j2=1

p∑
j3=1

∞∑
j1=p+1

Cj2j3j3j2j1j1. (2.884)
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The equality

lim
p→∞

1

2

p∑
j2=0

∞∑
j1=p+1

Cj2j3j3j2j1j1

∣∣∣∣
(j3j3)↷(·)

= 0 (2.885)

follows from the inequality similar to (2.780) (see the proof of Theorem 2.34),
where we used the following representation

Cj2j3j3j2j1j1

∣∣∣∣
(j3j3)↷(·)

=

=

T∫
t

ϕj2(t6)

t6∫
t

t4∫
t

ϕj2(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4dt6 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj2(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2

t6∫
t3

dt4dt3dt6 =

+

T∫
t

ϕj2(t6)(t6 − t)

t6∫
t

ϕj2(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt6+

+

T∫
t

ϕj2(t6)

t6∫
t

ϕj2(t3)(t− t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt6
def
=

def
= C∗

j2j2j1j1
+ C∗∗

j2j2j1j1
. (2.886)

Applying the estimates (2.158), (2.159), (2.175), and (2.740) (ε = 1/2) to
(2.883) gives the following estimates

|Cj2j3j3j2j1j1| ≤
K

j21j2j
3/4
3

(j1, j2, j3 > 0), (2.887)

|Cj200j2j1j1| ≤
K

j21j2
(j1, j2 > 0), (2.888)

|C0j3j30j1j1| ≤
K

j21j3
(j1, j3 > 0), (2.889)

|C0000j1j1| ≤
K

j21
(j1 > 0). (2.890)
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Using the estimate (2.887), we have∣∣∣∣∣
p∑

j2=1

p∑
j3=1

∞∑
j1=p+1

Cj2j3j3j2j1j1

∣∣∣∣∣ ≤ K
∞∑

j1=p+1

1

j21

p∑
j2=1

1

j2

p∑
j3=1

1

j
3/4
3

≤

≤ K

∞∫
p

dx

x2

1 +

p∫
1

dx

x

1 +

p∫
1

dx

x3/4

 ≤ K1
1 + lnp

p3/4
→ 0 (2.891)

if p→ ∞, where constants K,K1 do not depend on p.

Similarly we get (see (2.888)–(2.890))∣∣∣∣∣
∞∑

j1=p+1

C0000j1j1

∣∣∣∣∣+
∣∣∣∣∣
p∑

j3=1

∞∑
j1=p+1

C0j3j30j1j1

∣∣∣∣∣+
∣∣∣∣∣
p∑

j2=1

∞∑
j1=p+1

Cj200j2j1j1

∣∣∣∣∣ → 0 (2.892)

if p→ ∞.

The relations (2.884), (2.885), (2.891), (2.892) prove (2.839).

Consider (2.840). Using the integration order replacement, we get

Cj3j2j3j2j1j1 =

=
1

2

T∫
t

ϕj3(t6)

t6∫
t

ϕj2(t5)

t5∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2

dt3dt4dt5dt6 =

=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj3(t4)

T∫
t4

ϕj2(t5)

T∫
t5

ϕj3(t6)dt6dt5dt4dt3 =

=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj2(t5)

T∫
t5

ϕj3(t6)dt6

t5∫
t3

ϕj3(t4)dt4dt5dt3 =

=
1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 T∫
t3

ϕj2(t5)

 t5∫
t

ϕj3(t4)dt4

 T∫
t5

ϕj3(t6)dt6

×

×dt5dt3−

−1

2

T∫
t

ϕj2(t3)

 t3∫
t

ϕj1(t1)dt1

2 t3∫
t

ϕj3(t4)dt4

 T∫
t3

ϕj2(t5)

 T∫
t5

ϕj3(t6)dt6

×
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×dt5dt3. (2.893)

Applying (2.684), we obtain

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j2j3j2j1j1 =
∞∑

j1=p+1

∞∑
j3=p+1

∞∑
j2=p+1

Cj3j2j3j2j1j1 =

= −
p∑

j2=0

∞∑
j1=p+1

∞∑
j3=p+1

Cj3j2j3j2j1j1. (2.894)

Further proof of the equality (2.840) is based on the relations (2.893),
(2.894) and is similar to the proof of the formula (2.839).

Let us prove (2.841). Applying the integration order replacement, we obtain

Cj3j3j2j1j2j1 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj2(t4)

t4∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj1(t3)

T∫
t3

ϕj2(t4)

T∫
t4

ϕj3(t5)

T∫
t5

ϕj3(t6)dt6dt5dt4dt3dt2dt1 =

=
1

2

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj1(t3)

T∫
t3

ϕj2(t4)

 T∫
t4

ϕj3(t5)dt5

2

dt4dt3dt2dt1 =

=
1

2

T∫
t

ϕj2(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

=
1

2

T∫
t

ϕj2(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3dt2dt4 =

=
1

2

T∫
t

ϕj2(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj1(t3)dt3

 t4∫
t

ϕj2(t2)

 t2∫
t

ϕj1(t1)dt1

×

×dt2dt4−
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−1

2

T∫
t

ϕj2(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj2(t2)

 t2∫
t

ϕj1(t1)dt1

2

×

×dt2dt4. (2.895)

Using (2.684), we get

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j2j1j2j1 =
∞∑

j1=p+1

∞∑
j3=p+1

∞∑
j2=p+1

Cj3j3j2j1j2j1 =

= −
p∑

j2=0

∞∑
j1=p+1

∞∑
j3=p+1

Cj3j3j2j1j2j1. (2.896)

Further proof of the equality (2.841) is based on the relations (2.895),
(2.896) and is similar to the proof of the relations (2.839), (2.840).

Consider (2.842). Using the integration order replacement, we have

Cj3j3j1j2j2j1 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj1(t4)

t4∫
t

ϕj2(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj2(t3)

T∫
t3

ϕj1(t4)

T∫
t4

ϕj3(t5)

T∫
t5

ϕj3(t6)dt6dt5dt4dt3dt2dt1 =

=
1

2

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj2(t3)

T∫
t3

ϕj1(t4)

 T∫
t4

ϕj3(t5)dt5

2

dt4dt3dt2dt1 =

=
1

2

T∫
t

ϕj1(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj2(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

=
1

2

T∫
t

ϕj1(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj2(t3)dt3dt2dt4 =

=
1

2

T∫
t

ϕj1(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj2(t3)dt3

 t4∫
t

ϕj2(t2)

 t2∫
t

ϕj1(t1)dt1

×
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×dt2dt4−

−1

2

T∫
t

ϕj1(t4)

 T∫
t4

ϕj3(t5)dt5

2 t4∫
t

ϕj2(t2)

 t2∫
t

ϕj1(t1)dt1

 t2∫
t

ϕj2(t3)dt3

×

×dt2dt4. (2.897)

Applying (2.684) and (2.691), we obtain

−
∞∑

j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j3j1j2j2j1 = −
∞∑

j2=p+1

∞∑
j3=p+1

∞∑
j1=p+1

Cj2j3j1j2j2j1 =

=

p∑
j1=0

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j1j2j2j1 =

p∑
j1=0

∞∑
j3=p+1

∞∑
j2=p+1

Cj2j3j1j2j2j1 =

=
1

2

p∑
j1=0

∞∑
j3=p+1

Cj3j3j1j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j1=0

p∑
j2=0

∞∑
j3=p+1

Cj3j3j1j2j2j1. (2.898)

The equality

lim
p→∞

1

2

p∑
j1=0

∞∑
j3=p+1

Cj3j3j1j2j2j1

∣∣∣∣
(j2j2)↷(·)

= 0 (2.899)

follows from the inequality (2.780), where we proceed similarly to the proof of
equality (2.885) (see (2.886)).

The relation

lim
p→∞

p∑
j1=0

p∑
j2=0

∞∑
j3=p+1

Cj3j3j1j2j2j1 = 0 (2.900)

is proved on the basis of (2.897) and similarly with the proof of (2.839). The
equalities (2.898)–(2.900) prove (2.842).

Let us prove (2.843). Using (2.684) and (2.691), we get

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j1j3j3j2j1 =
∞∑

j3=p+1

p∑
j1,j2=0

Cj2j1j3j3j2j1 =

=
1

2

p∑
j1,j2=0

Cj2j1j3j3j2j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j1,j2,j3=0

Cj2j1j3j3j2j1. (2.901)
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Using the equality (2.752) we have

lim
p→∞

1

2

p∑
j1,j2=0

Cj2j1j3j3j2j1

∣∣∣∣
(j3j3)↷(·)

= 0, (2.902)

where we proceed similarly to the proof of equality (2.885) (see (2.886)).

Further, we will prove the following relation

lim
p→∞

p∑
j1,j2,j3=0

Cj2j1j3j3j2j1 = 0 (2.903)

using the equality (2.848). From (2.848) we have

p∑
j1,j2,j3=0

Cj2j1j3j3j2j1 =
1

2

p∑
j1,j2,j3=0

(
Cj2j1j3j3j2j1 + Cj1j2j3j3j1j2

)
=

=
1

2

p∑
j1,j2,j3=0

(
Cj2Cj1j3j3j2j1 − Cj1j2Cj3j3j2j1 + Cj3j1j2Cj3j2j1−

−Cj3j3j1j2Cj2j1 + Cj2j3j3j1j2Cj1

)
=

=

p∑
j1,j2,j3=0

(
Cj2j3j3j1j2Cj1 − Cj3j3j1j2Cj2j1

)
+

+
1

2

p∑
j1,j2,j3=0

Cj3j1j2Cj3j2j1. (2.904)

The generalized Parseval equality gives (by analogy with (2.854))

lim
p→∞

1

2

p∑
j1,j2,j3=0

Cj3j1j2Cj3j2j1 = 0. (2.905)

Let us prove the following equality

lim
p→∞

p∑
j1,j2,j3=0

(
Cj2j3j3j1j2Cj1 − Cj3j3j1j2Cj2j1

)
= 0. (2.906)
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The relation

lim
p→∞

p∑
j1,j2,j3=0

Cj2j3j3j1j2Cj1 = 0 (2.907)

is proved by the same methods as in the proof of equality (2.833) and also using
Theorem 2.34 and (2.691).

Further, we have (see (2.691))

p∑
j3=0

Cj3j3j1j2 =
1

2
Cj3j3j1j2

∣∣∣∣
(j3j3)↷(·)

−
∞∑

j3=p+1

Cj3j3j1j2. (2.908)

Moreover,

Cj3j3j1j2

∣∣∣∣
(j3j3)↷(·)

=

=

T∫
t

t3∫
t

ϕj1(t2)

t2∫
t

ϕj2(t1)dt1dt2dt3 =

=

T∫
t

ϕj1(t2)

t2∫
t

ϕj2(t1)dt1

T∫
t2

dt3dt2 =

=

T∫
t

(T − t2)ϕj1(t2)

t2∫
t

ϕj2(t1)dt1dt2 =

=

T∫
t

ϕj2(t1)

T∫
t1

(T − t2)ϕj1(t2)dt2dt1 =

=

T∫
t

ϕj2(t2)

T∫
t2

(T − t1)ϕj1(t1)dt1dt2 =

=

∫
[t,T ]2

(T − t1)1{t2<t1}ϕj1(t1)ϕj2(t2)dt1dt2
def
=

def
= C̃j2j1. (2.909)
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Using (2.908), (2.909), and the generalized Parseval equality, we obtain

lim
p→∞

p∑
j1,j2,j3=0

Cj3j3j1j2Cj2j1 =
1

2
lim
p→∞

p∑
j1,j2=0

Cj2j1C̃j2j1−

− lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

Cj3j3j1j2Cj2j1 = − lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

Cj3j3j1j2Cj2j1. (2.910)

We have (see (2.870))

Cj3j3j1j2 =
1

2

T∫
t

ϕj2(t1)

T∫
t1

ϕj1(t2)

 T∫
t2

ϕj3(t3)dt3

2

dt2dt1. (2.911)

By analogy with (2.861) and also using (2.911), we get

lim
p→∞

p∑
j1,j2=0

∞∑
j3=p+1

Cj3j3j1j2Cj2j1 = 0. (2.912)

Combining (2.910) and (2.912), we obtain

lim
p→∞

p∑
j1,j2,j3=0

Cj3j3j1j2Cj2j1 = 0. (2.913)

The relation (2.906) follows from (2.907) and (2.913). From (2.904)–(2.906)
we get (2.903). The equalities (2.901)–(2.903) complete the proof of (2.843).

For the proof of (2.844)–(2.847) we will use a new idea. More precisely,
we will consider the sums of expressions (2.844)–(2.847) with the expressions
already studied throughout this proof.

Let us begin from (2.844). Applying the integration order replacement, we
obtain

Cj3j1j2j3j2j1 + Cj3j1j2j3j1j2 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

t5∫
t

ϕj2(t4)

t4∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×dt3dt4dt5dt6 =
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=

T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

 t5∫
t3

ϕj2(t4)dt4×

×dt3dt5dt6 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

 t5∫
t

ϕj2(t4)dt4

 t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3dt5dt6−

−
T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

2 t3∫
t

ϕj1(t1)dt1

×

×dt3dt5dt6 =

=

T∫
t

ϕj1(t5)

 t5∫
t

ϕj2(t4)dt4

 t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3

 T∫
t5

ϕj3(t6)dt6

 dt5−

−
T∫
t

ϕj1(t5)

t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

2 t3∫
t

ϕj1(t1)dt1

 dt3×

×

 T∫
t5

ϕj3(t6)dt6

 dt5. (2.914)

Using (2.684), we get

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj3j1j2j3j2j1 + Cj3j1j2j3j1j2

)
=

=

p∑
j1=0

p∑
j3=0

∞∑
j2=p+1

(
Cj3j1j2j3j2j1 + Cj3j1j2j3j1j2

)
. (2.915)
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Further, by analogy with the proof of equality (2.839) and using (2.914),
we obtain

lim
p→∞

p∑
j1=0

p∑
j3=0

∞∑
j2=p+1

(
Cj3j1j2j3j2j1 + Cj3j1j2j3j1j2

)
= 0. (2.916)

From (2.915) and (2.916) we get

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj3j1j2j3j2j1 + Cj3j1j2j3j1j2

)
= 0. (2.917)

Moreover (see (2.833)),

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j1j2j3j1j2 = 0. (2.918)

Combining (2.917) and (2.918), we have

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j1j2j3j2j1 = 0.

The equality (2.844) is proved.

Consider (2.845). Using the integration order replacement, we have

Cj2j3j1j3j2j1 + Cj2j3j1j3j1j2 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj1(t4)

t4∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×dt3dt4dt5dt6 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

 t5∫
t3

ϕj1(t4)dt4×

×dt3dt5dt6 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

 t5∫
t

ϕj1(t4)dt4

 t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

×
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×

 t3∫
t

ϕj1(t1)dt1

 dt3dt5dt6−

−
T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

2

×

×dt3dt5dt6 =

=

T∫
t

ϕj3(t5)

 t5∫
t

ϕj1(t4)dt4

 t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3

 T∫
t5

ϕj2(t6)dt6

 dt5−

−
T∫
t

ϕj3(t5)

t5∫
t

ϕj3(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

2

dt3×

×

 T∫
t5

ϕj2(t6)dt6

 dt5. (2.919)

Using (2.684), we obtain

−
∞∑

j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj2j3j1j3j2j1 + Cj2j3j1j3j1j2

)
=

=

p∑
j3=0

∞∑
j1=p+1

∞∑
j2=p+1

(
Cj2j3j1j3j2j1 + Cj2j3j1j3j1j2

)
. (2.920)

By analogy with the proof of (2.839) and applying (2.919), we get

lim
p→∞

p∑
j3=0

∞∑
j1=p+1

∞∑
j2=p+1

(
Cj2j3j1j3j2j1 + Cj2j3j1j3j1j2

)
= 0. (2.921)

From (2.920) and (2.921) we have

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj2j3j1j3j2j1 + Cj2j3j1j3j1j2

)
= 0. (2.922)
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Moreover (see (2.834)),

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j1j3j1j2 = 0. (2.923)

Combining (2.922) and (2.923), we finally obtain

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j1j3j2j1 = 0.

The equality (2.845) is proved.

Now consider (2.846). Using the integration order replacement, we obtain

Cj3j1j3j2j2j1 + Cj3j1j3j2j1j2 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

t5∫
t

ϕj3(t4)

t4∫
t

ϕj2(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×dt3dt4dt5dt6 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

t5∫
t

ϕj2(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

 t5∫
t3

ϕj3(t4)dt4×

×dt3dt5dt6 =

=

T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

 t5∫
t

ϕj3(t4)dt4

 t5∫
t

ϕj2(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3dt5dt6−

−
T∫
t

ϕj3(t6)

t6∫
t

ϕj1(t5)

t5∫
t

ϕj2(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×

 t3∫
t

ϕj3(t4)dt4

 dt3dt5dt6 =
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=

T∫
t

ϕj1(t5)

 t5∫
t

ϕj3(t4)dt4

 t5∫
t

ϕj2(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3

 T∫
t5

ϕj3(t6)dt6

 dt5−

−
T∫
t

ϕj1(t5)

t5∫
t

ϕj2(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×

 t3∫
t

ϕj3(t4)dt4

 dt3

 T∫
t5

ϕj3(t6)dt6

 dt5. (2.924)

Applying (2.684) and (2.691), we obtain

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj3j1j3j2j2j1 + Cj3j1j3j2j1j2

)
=

= −
p∑

j1=0

∞∑
j3=p+1

∞∑
j2=p+1

(
Cj3j1j3j2j2j1 + Cj3j1j3j2j1j2

)
=

=

p∑
j1=0

p∑
j2=0

∞∑
j3=p+1

(
Cj3j1j3j2j2j1 + Cj3j1j3j2j1j2

)
−

−1

2

p∑
j1=0

∞∑
j3=p+1

Cj3j1j3j2j2j1

∣∣∣∣
(j2j2)↷(·)

. (2.925)

The equality

lim
p→∞

1

2

p∑
j1=0

∞∑
j3=p+1

Cj3j1j3j2j2j1

∣∣∣∣
(j2j2)↷(·)

= 0 (2.926)

follows from the equality (2.752), where we proceed similarly to the proof of
equality (2.885) (see (2.886)).

By analogy with the proof of (2.839) and applying (2.924), we get

lim
p→∞

p∑
j1=0

p∑
j2=0

∞∑
j3=p+1

(
Cj3j1j3j2j2j1 + Cj3j1j3j2j1j2

)
= 0. (2.927)
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From (2.925)–(2.927) we have

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj3j1j3j2j2j1 + Cj3j1j3j2j1j2

)
= 0. (2.928)

Moreover (see (2.835)),

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j1j3j2j1j2 = 0. (2.929)

Combining (2.928) and (2.929), we finally obtain

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj3j1j3j2j2j1 = 0.

The equality (2.846) is proved.

Finally consider (2.847). Using the integration order replacement, we have

Cj2j3j3j1j2j1 + Cj2j3j3j1j1j2 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj3(t4)

t4∫
t

ϕj1(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×dt3dt4dt5dt6 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj1(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

 t5∫
t3

ϕj3(t4)dt4×

×dt3dt5dt6 =

=

T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

 t5∫
t

ϕj3(t4)dt4

 t5∫
t

ϕj1(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3dt5dt6−

−
T∫
t

ϕj2(t6)

t6∫
t

ϕj3(t5)

t5∫
t

ϕj1(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×



632D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

×

 t3∫
t

ϕj3(t4)dt4

 dt3dt5dt6 =

=

T∫
t

ϕj3(t5)

 t5∫
t

ϕj3(t4)dt4

 t5∫
t

ϕj1(t3)

 t3∫
t

ϕj2(t2)dt2

×

×

 t3∫
t

ϕj1(t1)dt1

 dt3

 T∫
t5

ϕj2(t6)dt6

 dt5−

−
T∫
t

ϕj3(t5)

t5∫
t

ϕj1(t3)

 t3∫
t

ϕj2(t2)dt2

 t3∫
t

ϕj1(t1)dt1

×

×

 t3∫
t

ϕj3(t4)dt4

 dt3

 T∫
t5

ϕj2(t6)dt6

 dt5. (2.930)

Using (2.684) and (2.691), we get

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj2j3j3j1j2j1 + Cj2j3j3j1j1j2

)
=

=
1

2

∞∑
j1=p+1

∞∑
j2=p+1

(
Cj2j3j3j1j2j1

∣∣∣∣
(j3j3)↷(·)

+ Cj2j3j3j1j1j2

∣∣∣∣
(j3j3)↷(·)

)
−

−
p∑

j3=0

∞∑
j1=p+1

∞∑
j2=p+1

(
Cj2j3j3j1j2j1 + Cj2j3j3j1j1j2

)
=

=
1

2

∞∑
j1=p+1

∞∑
j2=p+1

(
Cj2j3j3j1j2j1

∣∣∣∣
(j3j3)↷(·)

+ Cj2j3j3j1j1j2

∣∣∣∣
(j3j3)↷(·)

)
+

+

p∑
j1=0

p∑
j3=0

∞∑
j2=p+1

(
Cj2j3j3j1j2j1 + Cj2j3j3j1j1j2

)
−

−1

2

p∑
j3=0

∞∑
j2=p+1

Cj2j3j3j1j1j2

∣∣∣∣
(j1j1)↷(·)

. (2.931)
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The equalities

lim
p→∞

1

2

∞∑
j1=p+1

∞∑
j2=p+1

(
Cj2j3j3j1j2j1

∣∣∣∣
(j3j3)↷(·)

+ Cj2j3j3j1j1j2

∣∣∣∣
(j3j3)↷(·)

)
= 0, (2.932)

lim
p→∞

1

2

p∑
j3=0

∞∑
j2=p+1

Cj2j3j3j1j1j2

∣∣∣∣
(j1j1)↷(·)

=

= lim
p→∞

1

4

∞∑
j2=p+1

Cj2j3j3j1j1j2

∣∣∣∣
(j1j1)↷(·)(j3j3)↷(·)

−

− lim
p→∞

1

2

∞∑
j3=p+1

∞∑
j2=p+1

Cj2j3j3j1j1j2

∣∣∣∣
(j1j1)↷(·)

= 0 (2.933)

follows from the equalities (2.752), (2.753), where we used the same technique
as in (2.886). When proving (2.933), we also applied (2.691) and (2.83).

By analogy with the proof of (2.839) and applying (2.930), we obtain

lim
p→∞

p∑
j1=0

p∑
j3=0

∞∑
j2=p+1

(
Cj2j3j3j1j2j1 + Cj2j3j3j1j1j2

)
= 0. (2.934)

From (2.931)–(2.934) we have

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

(
Cj2j3j3j1j2j1 + Cj2j3j3j1j1j2

)
= 0. (2.935)

Furthermore (see (2.837)),

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j3j1j1j2 = 0. (2.936)

Combining (2.935) and (2.936), we finally obtain

lim
p→∞

∞∑
j1=p+1

∞∑
j2=p+1

∞∑
j3=p+1

Cj2j3j3j1j2j1 = 0.

The equality (2.847) is proved. Theorem 2.36 is proved.
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2.15 Estimates for the Mean-Square Approximation Er-

ror of Iterated Stratonovich Stochastic Integrals of

Multiplicity k in Theorems 2.30, 2.31

In this section, we estimate the mean-square approximation error for iterated
Stratonovich stochastic integrals of multiplicity k (k ∈ N) in Theorems 2.30,
2.31.

Theorem 2.37 [33], [38], [39], [64]. Suppose that every ψl(τ) (l = 1, . . . , k)
is a continuously differentiable nonrandom function at the interval [t, T ].
Furthermore, let {ϕj(x)}∞j=0 is a complete orthonormal system of Legendre poly-
nomials or trigonometric functions in the space L2([t, T ]). Then the following
estimates

M


(
J∗[ψ(k)]

(i1...ik)
T,t −

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

)2
 ≤

≤ K1

1

p
+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

M

{(
R

(p)r,g1,g2,...,g2r−1,g2r
T,t

)2} ,

(2.937)

M


(
J∗[ψ(k)]

(i1...ik)
s,t −

p∑
j1,...,jk=0

Cjk...j1(s)
k∏
l=1

ζ
(il)
jl

)2
 ≤

≤ K2(s)

1

p
+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

M

{(
R

(p)r,g1,g2,...,g2r−1,g2r
s,t

)2}
(2.938)

hold, where s ∈ (t, T ] (s is fixed), i1, . . . , ik = 1, . . . ,m,

R
(p)r,g1,g2,...,g2r−1,g2r
s,t = R

(p)r,g1,g2,...,g2r−1,g2r
T,t

∣∣∣∣
T=s

,
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R
(p)r,g1,g2,...,g2r−1,g2r
T,t is defined by (2.707), J∗[ψ(k)]

(i1...ik)
T,t and J∗[ψ(k)]

(i1...ik)
s,t are iter-

ated Stratonovich stochastic integrals (2.661) and (2.716), Cjk...j1 and Cjk...j1(s)
are Fourier coefficients (2.653) and (2.714), constants K1 and K2(s) are inde-
pendent of p; another notations are the same as in Theorems 1.1, 2.30, 2.31.

Proof. Note that Conditions 1 and 2 of Theorems 2.30, 2.31 are satisfied
under the conditions of Theorem 2.37 (see Remark 2.4). From the proof of
Theorem 2.30 it follows that the expression (2.712) (i1, . . . , ik = 1, . . . ,m) before
passing to the limit l.i.m.

p→∞
has the form

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

= J [ψ(k)]
(i1...ik)p
T,t +

+

[k/2]∑
r=1

(
1

2r

∑
(sr,...,s1)∈Ak,r

I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)p

T,t +

+
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

R
(p)r,g1,g2,...,g2r−1,g2r
T,t

)
(2.939)

w. p. 1, where J [ψ(k)]
(i1...ik)p
T,t is the approximation (1.224) of the iterated Itô

stochastic integral (2.674), I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)p

T,t is the approximation

obtained using (1.224) for the iterated Itô stochastic integral J [ψ(k)]sr,...,s1T,t (see
(2.713)).

Using (2.939) and Theorem 2.12, we have

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

= J [ψ(k)]
(i1...ik)
T,t +

+

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t +

+

(
J [ψ(k)]

(i1...ik)p
T,t − J [ψ(k)]

(i1...ik)
T,t

)
+

+

[k/2]∑
r=1

∑
(sr,...,s1)∈Ak,r

1

2r

(
I[ψ(k)]

(i1...is1−1is1+2...isr−1isr+2...ik)p

T,t −
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−I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t

)
+

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

R
(p)r,g1,g2,...,g2r−1,g2r
T,t =

= J∗[ψ(k)]
(i1...ik)
T,t +

(
J [ψ(k)]

(i1...ik)p
T,t − J [ψ(k)]

(i1...ik)
T,t

)
+

+

[k/2]∑
r=1

∑
(sr,...,s1)∈Ak,r

1

2r

(
I[ψ(k)]

(i1...is1−1is1+2...isr−1isr+2...ik)p

T,t −

−I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t

)
+

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

R
(p)r,g1,g2,...,g2r−1,g2r
T,t (2.940)

w. p. 1, where we denote J [ψ(k)]sr,...,s1T,t as I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t .

Applying (1.228) (see Remark 1.7), we obtain the following estimates

M

{(
J [ψ(k)]

(i1...ik)p
T,t − J [ψ(k)]

(i1...ik)
T,t

)2
}

≤ C

p
, (2.941)

M


(
I[ψ(k)]

(i1...is1−1is1+2...isr−1isr+2...ik)p

T,t − I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t

)2
 ≤

≤ C

p
, (2.942)

where constant C does not depend on p.

From (2.940)–(2.942) and the elementary inequality

(a1 + a2 + . . .+ an)
2 ≤ n

(
a21 + a22 + . . .+ a2n

)
, n ∈ N,
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we obtain (2.937). The estimate (2.938) is obtained similarly to the estimate
(2.937) using Theorems 1.11, 2.31 and (1.252) (see Remark 1.12). Theorem 2.37
is proved.

2.16 Rate of the Mean-Square Convergence of Expan-

sions of Iterated Stratonovich Stochastic Integrals

of Multiplicities 3–5 in Theorems 2.33–2.35

In this section, we consider the rate of convergence of approximations of iterated
Stratonovich stochastic integrals in Theorems 2.33–2.35. It is easy to see that
in Theorems 2.33–2.35 the second term in parentheses on the right-hand side of
(2.937) is estimated for k = 3, 4, 5. Combining these results with Theorem 2.37,
we obtain the following theorems.

Theorem 2.38 [33], [38], [39], [64]. Suppose that {ϕj(x)}∞j=0 is a com-
plete orthonormal system of Legendre polynomials or trigonometric functions
in the space L2([t, T ]). Furthermore, let ψ1(τ), ψ2(τ), ψ3(τ) are continuously dif-
ferentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
stochastic integral of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3

the following estimate

M


(
J∗[ψ(3)]T,t −

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 ≤ C

p

is fulfilled, where i1, i2, i3 = 1, . . . ,m, constant C is independent of p,

Cj3j2j1 =

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j.



638D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Theorem 2.39 [33], [38], [39], [64]. Let {ϕj(x)}∞j=0 be a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). Furthermore, let ψ1(τ), . . . , ψ4(τ) be continuously differentiable non-
random functions on [t, T ]. Then, for the iterated Stratonovich stochastic inte-
gral of fourth multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T

ψ4(t4)

∗∫
t

t4

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 df

(i4)
t4

the following estimate

M


(
J∗[ψ(4)]T,t −

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

)2
 ≤ C

p1−ε

holds, where i1, i2, i3, i4 = 1, . . . ,m, constant C does not depend on p, ε is an
arbitrary small positive real number for the case of complete orthonormal system
of Legendre polynomials in the space L2([t, T ]) and ε = 0 for the case of complete
orthonormal system of trigonometric functions in the space L2([t, T ]),

Cj4j3j2j1 =

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1×

×dt2dt3dt4;

another notations are the same as in Theorem 2.38.

Note that Theorem 2.26 is an analog of Theorem 2.39. At that ε = 0,
ψ1(τ), . . . , ψ4(τ) ≡ 1, and i1, . . . , ik = 0, 1, . . . ,m in Theorem 2.26.

Theorem 2.40 [33], [38], [39], [64]. Assume that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in the
space L2([t, T ]) and ψ1(τ), . . . , ψ5(τ) are continuously differentiable nonrandom
functions on [t, T ]. Then, for the iterated Stratonovich stochastic integral of fifth
multiplicity

J∗[ψ(5)]T,t =

∗∫
t

T

ψ5(t5) . . .

∗∫
t

t2

ψ1(t1)df
(i1)
t1 . . . df

(i5)
t5

the following estimate

M


(
J∗[ψ(5)]T,t −

p∑
j1,...,j5=0

Cj5...j1ζ
(i1)
j1

. . . ζ
(i5)
j5

)2
 ≤ C

p1−ε
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is valid, where i1, . . . , i5 = 1, . . . ,m, constant C is independent of p, ε is an
arbitrary small positive real number for the case of complete orthonormal system
of Legendre polynomials in the space L2([t, T ]) and ε = 0 for the case of complete
orthonormal system of trigonometric functions in the space L2([t, T ]),

Cj5...j1 =

T∫
t

ψ5(t5)ϕj5(t5) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dt5;

another notations are the same as in Theorem 2.38, 2.39.

2.17 Generalization of Theorems 2.4–2.8. The Case p1,

p2, p3 → ∞ and Continuously Differetiable Weight

Functions (The Cases of Legendre Polynomials and

Trigonometric Functions). Proof of Hypothesis 2.3

for the Case k = 3

This section is devoted to the following theorem.

Theorem 2.41 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is a complete
orthonormal system of Legendre polynomials or trigonometric functions in
the space L2([t, T ]). Furthermore, let ψ1(τ), ψ2(τ), ψ3(τ) are continuously dif-
ferentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
stochastic integral of third multiplicity

J∗[ψ(3)]
(i1i2i3)
T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3

the following expansion

J∗[ψ(3)]
(i1i2i3)
T,t = l.i.m.

p1,p2,p3→∞

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.943)

that converges in the mean-square sense is valid, where i1, i2, i3 = 0, 1, . . . ,m,

Cj3j2j1 =

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3
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and

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. Let us consider the case of Legendre polynomials (the trigonometric
case is simpler and can be considered similarly). Applying (2.679), we obtain

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

= J ′[Kp1p2p3]
(i1i2i3)
T,t +

+1{i1=i2 ̸=0}

p3∑
j3=0

min{p1,p2}∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t+

+1{i2=i3 ̸=0}

p1∑
j1=0

min{p2,p3}∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t+

+1{i1=i3 ̸=0}

p2∑
j2=0

min{p1,p3}∑
j1=0

Cj1j2j1J
′[ϕj2]

(i2)
T,t (2.944)

w. p. 1, where notations are the same as in (2.679).

Using (2.399), Theorem 1.1 (see (1.43)), Theorem 2.12 (see (2.389)) as well
as (2.698) (see the derivation of (2.698)) and (2.691), we get

J∗[ψ(3)]
(i1i2i3)
T,t = J [ψ(3)]

(i1i2i3)
T,t +

1

2
1{i1=i2 ̸=0}

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2dw
(i3)
t3 +

+
1

2
1{i2=i3 ̸=0}

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)dw
(i1)
t1 dt3 =

= J [ψ(3)]
(i1i2i3)
T,t +

1

2
J [ψ(3)]1T,t +

1

2
J [ψ(3)]2T,t =

= l.i.m.
p1,p2,p3→∞

J ′[Kp1p2p3]
(i1i2i3)
T,t +
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+1{i1=i2 ̸=0}l.i.m.
p3→∞

1

2

p3∑
j3=0

Cj3j2j1

∣∣∣∣
(j2j1)↷(·),j1=j2

J ′[ϕj3]
(i3)
T,t+

+1{i2=i3 ̸=0}l.i.m.
p1→∞

1

2

p1∑
j1=0

Cj3j2j1

∣∣∣∣
(j3j2)↷(·),j2=j3

J ′[ϕj1]
(i1)
T,t =

= l.i.m.
p1,p2,p3→∞

J ′[Kp1p2p3]
(i1i2i3)
T,t +

+1{i1=i2 ̸=0}l.i.m.
p3→∞

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t+

+1{i2=i3 ̸=0}l.i.m.
p1→∞

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t (2.945)

w. p. 1.

Using (2.944), (2.945) and the elementary inequality

(a+ b+ c+ d)2 ≤ 4
(
a2 + b2 + c2 + d2

)
,

we obtain

M


(
J∗[ψ(3)]

(i1i2i3)
T,t −

p1∑
j1=0

p2∑
j2=0

p3∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

)2
 ≤

≤ 4M

{(
J [ψ(3)]

(i1i2i3)
T,t − J ′[Kp1p2p3]

(i1i2i3)
T,t

)2
}
+

+4 · 1{i1=i2 ̸=0}×

×M


l.i.m.

p3→∞

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t −

p3∑
j3=0

min{p1,p2}∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t

2
+

+4 · 1{i2=i3 ̸=0}×

×M


l.i.m.

p1→∞

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t −

p1∑
j1=0

min{p2,p3}∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t

2
+
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+4 · 1{i1=i3 ̸=0}M


 p2∑
j2=0

min{p1,p3}∑
j1=0

Cj1j2j1J
′[ϕj2]

(i2)
T,t

2
 =

= 4Ap1p2p3 + 4 · 1{i1=i2 ̸=0}Bp1p2p3 + 4 · 1{i2=i3 ̸=0}Cp1p2p3 + 4 · 1{i1=i3 ̸=0}Dp1p2p3.
(2.946)

Theorem 1.1 gives (see (1.43))

lim
p1,p2,p3→∞

Ap1p2p3 = 0. (2.947)

Further, in complete analogy with (2.744) and using (2.684), we obtain

Dp1p2p3 =

=

p2∑
j2=0

min{p1,p3}∑
j1=0

Cj1j2j1

2

=

p2∑
j2=0

 ∞∑
j1=min{p1,p3}+1

Cj1j2j1

2

≤

≤
∞∑
j2=0

 ∞∑
j1=min{p1,p3}+1

Cj1j2j1

2

≤ K

(min{p1, p3})2−ε
→ 0 (2.948)

if p1, p2, p3 → ∞, where ε is an arbitrary small positive real number, constant
K is independent of p.

We have

Bp1p2p3 =

= M

{((
l.i.m.
p3→∞

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t −

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t

)
+

+

(
p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t −

p3∑
j3=0

min{p1,p2}∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t

))2
 ≤

≤ 2Ep3 + 2Fp1p2p3, (2.949)

where

Ep3 =
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= M


(
l.i.m.
p3→∞

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t −

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t

)2
 ,

Fp1p2p3 =

= M


(

p3∑
j3=0

∞∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t −

p3∑
j3=0

min{p1,p2}∑
j1=0

Cj3j1j1J
′[ϕj3]

(i3)
T,t

)2
 =

= M


(

p3∑
j3=0

∞∑
j1=min{p1,p2}+1

Cj3j1j1J
′[ϕj3]

(i3)
T,t

)2
 =

=

p3∑
j3=0

( ∞∑
j1=min{p1,p2}+1

Cj3j1j1

)2

. (2.950)

By analogy with (2.731) we get

p3∑
j3=0

( ∞∑
j1=min{p1,p2}+1

Cj3j1j1

)2

≤

≤
∞∑
j3=0

( ∞∑
j1=min{p1,p2}+1

Cj3j1j1

)2

≤

≤ K

(min{p1, p2})2
→ 0 (2.951)

if p1, p2, p3 → ∞, where constant K does not depend on p.

Moreover,

lim
p3→∞

Ep3 = lim
p1,p2,p3→∞

Ep3 = 0. (2.952)

Combining (2.949)–(2.952), we obtain

lim
p1,p2,p3→∞

Bp1p2p3 = 0. (2.953)

Consider Cp1p2p3. We have

Cp1p2p3 =
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= M

{((
l.i.m.
p1→∞

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t −

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t

)
+

+

(
p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t −

p1∑
j1=0

min{p2,p3}∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t

))2
 ≤

≤ 2Gp1 + 2Hp1p2p3, (2.954)

where
Gp1 =

= M


(
l.i.m.
p1→∞

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t −

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t

)2
 ,

Hp1p2p3 =

= M


(

p1∑
j1=0

∞∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t −

p1∑
j1=0

min{p2,p3}∑
j3=0

Cj3j3j1J
′[ϕj1]

(i1)
T,t

)2
 =

= M


(

p1∑
j1=0

∞∑
j3=min{p2,p3}+1

Cj3j3j1J
′[ϕj1]

(i1)
T,t

)2
 =

=

p1∑
j1=0

( ∞∑
j3=min{p2,p3}+1

Cj3j3j1

)2

. (2.955)

By analogy with (2.735) we get

p1∑
j1=0

( ∞∑
j3=min{p2,p3}+1

Cj3j3j1

)2

≤

≤
∞∑
j1=0

( ∞∑
j3=min{p2,p3}+1

Cj3j3j1

)2

≤

≤ K

(min{p2, p3})2
→ 0 (2.956)

if p1, p2, p3 → ∞, where constant K does not depend on p.
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Moreover,

lim
p1→∞

Gp1 = lim
p1,p2,p3→∞

Gp1 = 0. (2.957)

Combining (2.954)–(2.957), we obtain

lim
p1,p2,p3→∞

Cp1p2p3 = 0. (2.958)

The relations (2.946)–(2.948), (2.953), (2.958) complete the proof of Theo-
rem 2.41. Theorem 2.41 is proved.

2.18 Generalization of Theorem 2.30 for Complete Or-

thonormal Systems of Functions in L2([t, T ]) and

ψ1(τ ), . . . , ψk(τ ) ∈ L2([t, T ]) such that the Condition

(2.720) is Satisfied

In this section, we generalize Theorem 2.30 to the case of complete orthonormal
systems of functions in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ])
such that the condition (2.720) is satisfied.

Let (Ω,F,P) be a complete probability space and let f(t, ω)
def
= ft :

[0, T ] × Ω → R be the standard Wiener process defined on the probability
space (Ω,F,P).

Let us consider the family of σ-algebras {Ft, t ∈ [0, T ]} defined on the prob-
ability space (Ω,F,P) and connected with the Wiener process ft in such a way
that

1. Fs ⊂ Ft ⊂ F for s < t.

2. The Wiener process ft is Ft-measurable for all t ∈ [0, T ].

3. The process ft+∆− ft for all t ≥ 0, ∆ > 0 is independent with the events
of σ-algebra Ft.

Let ξ(τ, ω)
def
= ξτ : [0, T ] × Ω → R be some random process, which is mea-

surable with respect to the pair of variables (τ, ω) and satisfies to the following
condition

T∫
t

|ξτ |dτ <∞ w. p. 1 (t ≥ 0).
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Let τ
(N)
j , j = 0, 1, . . . , N be a partition of the interval [t, T ], t ≥ 0 such that

t = τ
(N)
0 < τ

(N)
1 < . . . < τ

(N)
N = T, max

0≤j≤N−1

∣∣∣τ (N)
j+1 − τ

(N)
j

∣∣∣→ 0 if N → ∞.

(2.959)

Further, for simplicity, we write τj instead of τ
(N)
j .

Consider the definition of the Stratonovich stochastic integral, which differs
from the definition given in Sect. 2.1.1.

The mean-square limit (if it exists)

l.i.m.
N→∞

N−1∑
j=0

1

τj+1 − τj

τj+1∫
τj

ξsds
(
fτj+1

− fτj
) def
=

T∫
t

ξτ ◦ dfτ (2.960)

is called [143], [144] the Stratonovich stochastic integral of the process ξτ , τ ∈
[t, T ], where τj, j = 0, 1, . . . , N is a partition of the interval [t, T ] satisfying the
condition (2.959).

We also denote by
τ∫
t

ξs ◦ dfs

the Stratonovich stochastic integral like (2.960) (if it exists) of ξs1{s∈[t,τ ]} for
τ ∈ [t, T ], t ≥ 0.

It is known [144] (Lemma A.2) that the following iterated Stratonovich
stochastic integral

JS[ψ(k)]
(i1...ik)
τ,t =

τ∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1) ◦ dw(i1)
t1 . . . ◦ dw(ik)

tk (2.961)

exists for the case i1 = . . . = ik ̸= 0, where τ ∈ [t, T ], ψ1(τ), . . . , ψk(τ) ∈
L2([t, T ]), i1, . . . , ik = 0, 1, . . . ,m, w

(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ , f

(i)
τ

(i = 1, . . . ,m) are independent standard Wiener processes defined as above in
this section.

Note that in [145] (2021) an analogue of Theorem 2.12 (1997) is proved for

the integral JS[ψ(k)]
(i1...ik)
τ,t (i1 = . . . = ik ̸= 0, ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ])).

Let us denote

J [ψ(k)]
(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t
def
= J̄∗[ψ(k)]

(i1...ik)
T,t , (2.962)
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where ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), ψl(τ)ψl−1(τ) ∈ L2([t, T ]) (l = 2, 3, . . . , k),

J [ψ(k)]
(i1...ik)
T,t is the iterated Itô stochastic integral

J [ψ(k)]
(i1...ik)
T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (2.963)

∑
∅

is supposed to be equal to zero; another notations as in Theorem 2.12.

We will also notice that

JS[ψ(1)]
(i1)
T,t = J [ψ(1)]

(i1)
T,t w. p. 1. (2.964)

Further, by analogy with (2.667), (2.671) and using (1.316) (also see Theo-
rem 1.23) instead of (1.272) we obtain the following generalization of (2.667) to
the case of an arbitrary complete orthonormal system of functions in the space
L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ])

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t +

+

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t w. p. 1, (2.965)

where k ≥ 2, J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t , J ′[ϕjq1 . . . ϕjqk−2r

]
(iq1 ...iqk−2r

)

T,t are multiple Wiener

stochastic integrals (see (1.304)) and J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t
def
= 1 for k = 2r.

Using the equalities (1.316) and (1.321), we can reformulate Theorem 1.16
as follows

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t w. p. 1, (2.966)

where J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t is the multiple Wiener stochastic integral defined by

(1.304); another notations are the same as in Theorem 1.16.

Passing to the limit l.i.m.
p1,...,pk→∞

in (2.965) and using the equality (2.966), we

get w. p. 1
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l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

= J [ψ(k)]
(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

× l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s}

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t ,

(2.967)

where J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t is the multiple Wiener stochastic integral de-

fined by (1.304), J [ψ(k)]
(i1...ik)
T,t is the iterated Itô stochastic integral (2.963).

Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in L2([t, T ]) and Φ1(τ),Φ2(τ) ∈ L2([t, T ]). Then we have

∞∑
j=0

∣∣∣∣∣∣
s∫
t

ϕj(τ)Φ1(τ)dτ

T∫
s

ϕj(τ)Φ2(τ)dτ

∣∣∣∣∣∣ ≤

≤ 1

2

∞∑
j=0


 T∫

t

1{τ<s}ϕj(τ)Φ1(τ)dτ

2

+

 T∫
t

1{τ>s}ϕj(τ)Φ2(τ)dτ

2
 =

=
1

2

 s∫
t

Φ2
1(τ)dτ +

T∫
s

Φ2
2(τ)dτ

 ≤ 1

2

(
∥Φ1∥2L2([t,T ])

+ ∥Φ2∥2L2([t,T ])

)
<∞,

(2.968)
i.e. ∣∣∣∣∣∣

p∑
j=0

s∫
t

ϕj(τ)Φ1(τ)dτ

T∫
s

ϕj(τ)Φ2(τ)dτ

∣∣∣∣∣∣ ≤ C <∞, (2.969)

where p ∈ N.

By interpreting the integrals in (2.685)–(2.688) as Lebesgue integrals, using
Fubini’s Theorem in (2.685) and Lebesgue’s Dominated Convergence Theorem
in (2.689), we obtain (2.683) (see (2.969)) for the case of an arbitrary complete
orthonormal system of functions in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈
L2([t, T ]).
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Using the equality (2.535) for the case of an arbitrary complete orthonormal
system of functions in the space L2([t, T ]) and ψ1(τ), ψ2(τ) ∈ L2([t, T ]) as well
as Fubini’s Theorem when deriving (2.693), we obtain the generalization of
(2.691) for the case of an arbitrary complete orthonormal system of functions
in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

Repeating the steps of the proof of Theorem 2.30 below the formula
(2.694) using (2.962), (2.967) or steps of the proof of Theorem 2.32 us-
ing (2.962), (2.967), we obtain for complete orthonormal systems {ϕj(x)}∞j=0

(ϕ0(x) = 1/
√
T − t) in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]),

ψl(τ)ψl−1(τ) ∈ L2([t, T ]) (l = 2, 3, . . . , k) (for which the condition (2.720) is
satisfied) the following equality

l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

=

= J [ψ(k)]
(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t = J̄∗[ψ(k)]
(i1...ik)
T,t (2.970)

w. p. 1, where notations in (2.970) are the same as in Theorem 2.12 and

J̄∗[ψ(k)]
(i1...ik)
T,t is defined by (2.962).

Thus the following two theorems are proved (compare with Theorem 1.16
(Sect. 1.11) on the expansion of iterated Itô stochastic integrals).

Theorem 2.42 [33], [38], [39]. Assume that the complete orthonor-
mal system {ϕj(x)}∞j=0 (ϕ0(x) = 1/

√
T − t) in the space L2([t, T ]) and

ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), ψl(τ)ψl−1(τ) ∈ L2([t, T ]) (l = 2, 3, . . . , k) are such
that

lim
p1,...,pk→∞

p1∑
j1=0

. . .

pq∑
jq=0

. . .

pk∑
jk=0

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

×

×

( min{pg1 ,pg2}∑
jg1=0

min{pg3 ,pg4}∑
jg3=0

. . .

min{pg2r−1
,pg2r}∑

jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0

(2.971)
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for all r = 1, 2, . . . , [k/2] and for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)).

Then, for the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô stochastic integrals defined by

(2.962) the following expansion

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.972)

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Theorem 2.43 [33], [38], [39]. Assume that the complete orthonor-
mal system {ϕj(x)}∞j=0 (ϕ0(x) = 1/

√
T − t) in the space L2([t, T ]) and

ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), ψl(τ)ψl−1(τ) ∈ L2([t, T ]) (l = 2, 3, . . . , k) are such
that the condition

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

= 0

holds for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)) and l1, l2, . . . , ld such that
l1, l2, . . . , ld ∈ {1, 2, . . . , r}, l1 > l2 > . . . > ld, d = 0, 1, 2, . . . , r − 1, where
r = 1, 2, . . . , [k/2] and

Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
= C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

for d = 0. Then, for the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô stochastic integrals
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defined by (2.962) the following expansion

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Note that in Theorems 2.42, 2.43 (the case k = 2) the condition ψ1(τ)ψ2(τ)
∈ L2([t, T ]) can be omitted.

Using Theorem 2.12 together with Proposition 3.1 [145] and the proof of

Lemma A.2 [144], we can write J̄∗[ψ(k)]
(i1...ik)
T,t = JS[ψ(k)]

(i1...ik)
T,t w. p. 1 and refor-

mulate Theorems 2.42, 2.43 for JS[ψ(k)]
(i1...ik)
T,t defined by (2.961).

Let us consider the special case k = 2 of Theorem 2.42 in more detail. In
this case, the condition (2.971) takes the following form (compare with (2.10))

∞∑
j1=0

Cj1j1 =
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1. (2.973)

As follows from Sect. 2.1.4, the equality (2.973) is valid for the case
of an arbitrary complete orthonormal system of functions in L2([t, T ]) and
ψ1(τ), ψ2(τ) ∈ L2([t, T ]).

From Proposition 3.1 [145] for the case k = 2 we obtain

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ dw(i)
t1 ◦ dw(i)

t2 =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i)
t1 dw

(i)
t2 +
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+
1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 (2.974)

w. p. 1, where ψ1(τ), ψ2(τ) ∈ L2([t, T ]), i = 1, . . . ,m,

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ dw(i)
t1 ◦ dw(i)

t2

is defined by (2.960), (2.961) and

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i)
t1 dw

(i)
t2

is the iterated Itô stochastic integral of the form (2.7) (k = 2).

On the other hand, it is not difficult to show that

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ dw(i)
t1 ◦ dw(j)

t2 =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i)
t1 dw

(j)
t2 (2.975)

w. p. 1, where ψ1(τ), ψ2(τ) ∈ L2([t, T ]), i ̸= j (i, j = 1, . . . ,m), another nota-
tions are the same as in (2.974).

Combining (2.974) and (2.975), we get (see (2.962))

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ dw(i1)
t1 ◦ dw(i2)

t2 =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 +

+
1

2
1{i1=i2}

T∫
t

ψ1(t1)ψ2(t1)dt1
def
= J̄∗[ψ(2)]

(i1i2)
T,t (2.976)

w. p. 1, where ψ1(τ), ψ2(τ) ∈ L2([t, T ]), i1, i2 = 1, . . . ,m.

It is easy to see that the condition ϕ0(x) = 1/
√
T − t can be omitted in

Theorems 2.42, 2.43 for the case k = 2 (see the proof of Theorem 2.30).

Summing up the above arguments, we obtain the following generalization
of Theorem 2.3 to the case of an arbitrary complete orthonormal system of
functions in L2([t, T ]) and ψ1(τ), ψ2(τ) ∈ L2([t, T ]).
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Theorem 2.44 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary com-
plete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ), ψ2(τ) ∈
L2([t, T ]). Then, for the iterated Stratonovich stochastic integral

JS[ψ(2)]
(i1i2)
T,t =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1) ◦ df (i1)t1 ◦ df (i2)t2 (i1, i2 = 1, . . . ,m)

the following expansion

JS[ψ(2)]
(i1i2)
T,t = l.i.m.

p1,p2→∞

p1∑
j1=0

p2∑
j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

(2.977)

that converges in the mean-square sence is valid, where the notations are the
same as in Theorems 2.1–2.3 and JS[ψ(2)]

(i1i2)
T,t is defined by (2.961).

Note that the analog of (2.977) for k = 1 is also true (see (1.45) and (2.964)).

In this section, it is also appropriate to mention the so-called multiple
Stratonovich stochastic integral [143], [144] (also see [139]).

The mean-square limit (if it exists)

l.i.m.
N→∞

N−1∑
l1=0

. . .

N−1∑
lk=0

1

∆τl1 . . .∆τlk

∫
[τl1 ,τl1+1]×...×[τlk ,τlk+1]

K(t1, . . . , tk)dt1 . . . dtk×

×∆w(i1)
τl1

. . .∆w(ik)
τlk

def
= J̄S[K]

(i1...ik)
T,t (2.978)

is called [143], [144] the multiple Stratonovich stochastic integral of the function

K(t1, . . . , tk) ∈ L2([t, T ]
k), where ∆w

(i)
τj = w

(i)
τj+1 −w

(i)
τj (i = 0, 1, . . . ,m), ∆τj =

τj+1 − τj, {τj}Nj=0 is a partition of the interval [t, T ] satisfying the condition

(2.959), i1, . . . , ik = 0, 1, . . . ,m, w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ , f

(i)
τ

(i = 1, . . . ,m) are independent standard Wiener processes defined as above in
this section.

Note that in [144] the case i1 = . . . = ik ̸= 0 was considered. We also

denote by J̄S[K]
(i1...ik)
s,t the stochastic integral (2.978) (if it exists) of the function

K(t1, . . . , tk)1{(t1,...,tk)∈[t,s]k}, where K(t1, . . . , tk) ∈ L2([t, T ]
k), s ∈ [t, T ], t ≥ 0.

Let the function K(t1, . . . , tk) be chosen as follows

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 ≤ . . . ≤ tk

0, otherwise

, (2.979)
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where ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), t1, . . . , tk ∈ [t, T ] (k ≥ 2) and K(t1) ≡
ψ1(t1) for t1 ∈ [t, T ].

We will denote the multiple Stratonovich stochastic integral (2.978) of the

function (2.979) as J̄S[ψ(k)]
(i1...ik)
T,t .

It is known [144] (Lemma A.2) that the Stratonovich stochastic integrals

JS[ψ(k)]
(i1...ik)
T,t and J̄S[ψ(k)]

(i1...ik)
T,t exist for the case i1 = . . . = ik ̸= 0. Moreover,

JS[ψ(k)]
(i1...ik)
T,t = J̄S[ψ(k)]

(i1...ik)
T,t w. p. 1 for this case [144] (Lemma A.2).

Recall that an expansion similar to (2.972) for p1 = . . . = pk = p was
obtained in [142] for the multiple Stratonovich stochastic integral (2.978) under
the condition of convergence of trace series (see Remarks 2.4, 2.7 for details).

Recently, another approach to the expansion of integral (2.978) has been
proposed (assuming that the integral (2.978) exists), where multiple Fourier–
Walsh and Fourier–Haar series (k ∈ N) have been applied [221]. The conver-
gence was proved with respect to the special subsequence (p1 = . . . = pk = p =
2m, m→ ∞ in a formula similar to (2.972) [221]).

2.19 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 3. The Case of an Ar-

bitrary Complete Orthonormal System of Func-

tions (ϕ0(x) = 1/
√
T − t) in the Space L2([t, T ]) and

ψ1(τ ), ψ2(τ ), ψ3(τ ) ≡ 1

In this section, we will prove the following theorem.

Theorem 2.45 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 (ϕ0(x) = 1/
√
T − t)

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of third multiplicity

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 (i1, i2, i3 = 0, 1, . . . ,m)

the following expansion

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.980)
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that converges in the mean-square sense is valid, where

Cj3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. First, note that under the conditions of Theorem 2.45 the equality

J̄∗[ψ(3)]
(i1i2i3)
T,t =

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3

is true w. p. 1 (see Theorem 2.12), where J̄∗[ψ(3)]
(i1i2i3)
T,t is defined by (2.962).

According to Theorem 2.42, we come to the conclusion that Theorem 2.45
will be proved if we prove the following equalities

lim
p→∞

p∑
j3=0

(
p∑

j1=0

Cj3j2j1

∣∣∣∣
j1=j2

−1

2
Cj3j2j1

∣∣∣∣
(j1j2)↷(·),j1=j2

)2

= 0, (2.981)

lim
p→∞

p∑
j1=0

(
p∑

j3=0

Cj3j2j1

∣∣∣∣
j2=j3

−1

2
Cj3j2j1

∣∣∣∣
(j2j3)↷(·),j2=j3

)2

= 0, (2.982)

lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj3j2j1

∣∣∣∣
j1=j3

)2

= 0. (2.983)

Note that using Theorem 2.43 (also see (2.125)), we can rewrite the relations
(2.981)–(2.983)) in the form (compare with (2.724)–(2.726))

lim
p→∞

p∑
j3=0

( ∞∑
j1=p+1

Cj3j2j1

∣∣∣∣
j1=j2

)2

= 0, lim
p→∞

p∑
j1=0

( ∞∑
j3=p+1

Cj3j2j1

∣∣∣∣
j2=j3

)2

= 0,

lim
p→∞

p∑
j2=0

( ∞∑
j1=p+1

Cj3j2j1

∣∣∣∣
j1=j3

)2

= 0.
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Let us prove (2.981). Using Fubini’s Theorem and Parseval’s equality, we
have

lim
p→∞

p∑
j3=0

(
p∑

j1=0

Cj3j2j1

∣∣∣∣
j1=j2

−1

2
Cj3j2j1

∣∣∣∣
(j1j2)↷(·),j1=j2

)2

=

= lim
p→∞

p∑
j3=0

(
1

2
Cj3j2j1

∣∣∣∣
(j1j2)↷(·),j1=j2

−
p∑

j1=0

Cj3j1j1

)2

=

= lim
p→∞

p∑
j3=0

 T∫
t

ϕj3(τ)

1

2

τ∫
t

ds−
p∑

j1=0

1

2

 τ∫
t

ϕj1(s)ds

2
 dτ


2

≤

≤ lim
p→∞

∞∑
j3=0

 T∫
t

ϕj3(τ)

1

2
(τ − t)−

p∑
j1=0

1

2

 τ∫
t

ϕj1(s)ds

2
 dτ


2

=

= lim
p→∞

T∫
t

1

2
(τ − t)−

p∑
j1=0

1

2

 τ∫
t

ϕj1(s)ds

2


2

dτ. (2.984)

Applying the Parseval equality, we have

∞∑
j1=0

1

2

 τ∫
t

ϕj1(s)ds

2

=
∞∑
j1=0

1

2

 T∫
t

1{s<τ}ϕj1(s)ds

2

=

=
1

2

T∫
t

(
1{s<τ}

)2
ds =

1

2
(τ − t). (2.985)

Moreover,∣∣∣∣∣∣∣
1

2
(τ − t)−

p∑
j1=0

1

2

 τ∫
t

ϕj1(s)ds

2
∣∣∣∣∣∣∣ ≤

1

2
(τ − t) ≤ 1

2
(T − t) <∞. (2.986)

Using (2.985), (2.986) and applying Lebesgue’s Dominated Convergence
Theorem in (2.984), we obtain the equality (2.981).



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series657

Note that we could use Dini’s Theorem instead of Lebesgue’s Dominated
Convergence Theorem. Using the continuity of the functions up(τ) (see below),
the nondecreasing property of the functional sequence

up(τ) =

p∑
j1=0

1

2

 τ∫
t

ϕj1(s)ds

2

,

and the continuity of the limit function u(τ) = (τ − t)/2 according to Dini’s
Theorem, we have the uniform convergence up(τ) to u(τ) at the interval [t, T ].
Then we can swap the limit and integral in (2.984) and get (2.981).

Let us prove (2.982). Using Fubini’s Theorem and Parseval’s equality, we
obtain

lim
p→∞

p∑
j1=0

(
p∑

j3=0

Cj3j2j1

∣∣∣∣
j2=j3

−1

2
Cj3j2j1

∣∣∣∣
(j2j3)↷(·),j2=j3

)2

=

= lim
p→∞

p∑
j1=0

(
1

2
Cj3j2j1

∣∣∣∣
(j2j3)↷(·),j2=j3

−
p∑

j3=0

Cj3j3j1

)2

=

= lim
p→∞

p∑
j1=0

1

2

T∫
t

τ∫
t

ϕj1(s)dsdτ −
p∑

j3=0

T∫
t

ϕj3(θ)

θ∫
t

ϕj3(τ)

τ∫
t

ϕj1(s)dsdτdθ

2

=

= lim
p→∞

p∑
j1=0

1

2

T∫
t

ϕj1(s)(T − s)ds−
p∑

j3=0

T∫
t

ϕj1(s)

T∫
s

ϕj3(τ)

T∫
τ

ϕj3(θ)dθdτds

2

=

= lim
p→∞

p∑
j1=0

 T∫
t

ϕj1(s)

1

2
(T − s)−

p∑
j3=0

1

2

 T∫
s

ϕj3(τ)dτ

2
 ds


2

≤

≤ lim
p→∞

∞∑
j1=0

 T∫
t

ϕj1(s)

1

2
(T − s)−

p∑
j3=0

1

2

 T∫
s

ϕj3(τ)dτ

2
 ds


2

=

= lim
p→∞

T∫
t

1

2
(T − s)−

p∑
j3=0

1

2

 T∫
s

ϕj3(τ)dτ

2


2

ds. (2.987)
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Using the Parseval equality, we get

∞∑
j3=0

1

2

 T∫
s

ϕj3(τ)dτ

2

=
∞∑
j3=0

1

2

 T∫
t

1{s<τ}ϕj3(τ)dτ

2

=

=
1

2

T∫
t

(
1{s<τ}

)2
dτ =

1

2
(T − s). (2.988)

Moreover,∣∣∣∣∣∣∣
1

2
(T − s)−

p∑
j3=0

1

2

 T∫
s

ϕj3(τ)dτ

2
∣∣∣∣∣∣∣ ≤

1

2
(T −s) ≤ 1

2
(T − t) <∞. (2.989)

Combining (2.987)–(2.989) and using the same reasoning as in the proof of
(2.981), we obtain

lim
p→∞

T∫
t

1

2
(T − s)−

p∑
j3=0

1

2

 T∫
s

ϕj3(τ)dτ

2


2

ds = 0.

The equality (2.982) is proved.

Let us prove (2.983). Applying Fubini’s Theorem and Parseval’s equality,
we have

lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

=

= lim
p→∞

p∑
j2=0

 p∑
j1=0

T∫
t

ϕj1(θ)

θ∫
t

ϕj2(τ)

τ∫
t

ϕj1(s)dsdτdθ

2

=

= lim
p→∞

p∑
j2=0

 p∑
j1=0

T∫
t

ϕj2(τ)

τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθdτ

2

≤

≤ lim
p→∞

∞∑
j2=0

 T∫
t

ϕj2(τ)

p∑
j1=0

τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθdτ

2

=



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series659

= lim
p→∞

T∫
t

 p∑
j1=0

τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθ

2

dτ. (2.990)

Applying (2.968), we obtain∣∣∣∣∣∣
p∑

j1=0

τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθ

∣∣∣∣∣∣ ≤
p∑

j1=0

∣∣∣∣∣∣
τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθ

∣∣∣∣∣∣ ≤

≤
∞∑
j1=0

∣∣∣∣∣∣
τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθ

∣∣∣∣∣∣ ≤ 1

2
(T − t) <∞. (2.991)

Using the generalized Parseval equality, we get

lim
p→∞

p∑
j1=0

τ∫
t

ϕj1(s)ds

T∫
τ

ϕj1(θ)dθ =
∞∑
j1=0

T∫
t

1{s<τ}ϕj1(s)ds

T∫
t

1{s>τ}ϕj1(s)ds =

=

T∫
t

1{s<τ}1{s>τ}ds = 0. (2.992)

Taking into account (2.991), (2.992) and applying Lebesgue’s Dominated
Convergence Theorem in (2.990), we obtain the equality (2.983). Theorem 2.45
is proved.

2.20 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 4. The Case of an Ar-

bitrary Complete Orthonormal System of Func-

tions (ϕ0(x) = 1/
√
T − t) in the Space L2([t, T ]) and

ψ1(τ ), . . . , ψ4(τ ) ≡ 1

In this section, we will prove the following theorem.

Theorem 2.46 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 (ϕ0(x) = 1/
√
T − t)

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
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Then, for the iterated Stratonovich stochastic integral of fourth multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 (i1, i2, i3, i4 = 0, 1, . . . ,m)

the following expansion

J∗[ψ(4)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

that converges in the mean-square sense is valid, where

Cj4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. First, note that under the conditions of Theorem 2.46 the equality

J̄∗[ψ(4)]
(i1i2i3i4)
T,t =

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

is valid w. p. 1 (see Theorem 2.12), where J̄∗[ψ(4)]
(i1i2i3i4)
T,t is defined by (2.962).

It is easy to see that Theorem 2.46 will be proved if we prove the following
equalities (see Theorem 2.42)

lim
p→∞

p∑
j3,j4=0

(
p∑

j1=0

Cj4j3j1j1 −
1

2
Cj4j3j1j1

∣∣∣∣
(j1j1)↷(·)

)2

= 0, (2.993)

lim
p→∞

p∑
j2,j4=0

(
p∑

j1=0

Cj4j1j2j1

)2

= 0, (2.994)

lim
p→∞

p∑
j2,j3=0

(
p∑

j1=0

Cj1j3j2j1

)2

= 0, (2.995)
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lim
p→∞

p∑
j1,j4=0

(
p∑

j2=0

Cj4j2j2j1 −
1

2
Cj4j2j2j1

∣∣∣∣
(j2j2)↷(·)

)2

= 0, (2.996)

lim
p→∞

p∑
j1,j3=0

(
p∑

j2=0

Cj2j3j2j1

)2

= 0, (2.997)

lim
p→∞

p∑
j1,j2=0

(
p∑

j3=0

Cj3j3j2j1 −
1

2
Cj3j3j2j1

∣∣∣∣
(j3j3)↷(·)

)2

= 0, (2.998)

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 =
1

4
Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)(j1j1)↷(·)

=
1

8
(T − t)2, (2.999)

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = 0, (2.1000)

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = 0. (2.1001)

Let us prove the equalities (2.993)–(2.998). Using Fubini’s Theorem and
Parseval’s equality, we obtain the following relations for the prelimit expressions
on the left-hand sides of (2.993)–(2.998)

p∑
j3,j4=0

(
p∑

j1=0

Cj4j3j1j1 −
1

2
Cj4j3j1j1

∣∣∣∣
(j1j1)↷(·)

)2

=

=

p∑
j3,j4=0

1

2

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)(t3 − t)dt3dt4−

−
p∑

j1=0

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j3,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

(
1

2
(t3 − t)−

−
p∑

j1=0

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2

)
dt3dt4

2

=
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=

p∑
j3,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

1

2
(t3 − t)−

p∑
j1=0

1

2

 t3∫
t

ϕj1(s)ds

2
 dt3dt4


2

≤

≤
∞∑

j3,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

1

2
(t3 − t)−

p∑
j1=0

1

2

 t3∫
t

ϕj1(s)ds

2
 dt3dt4


2

=

=

∫
[t,T ]2

1{t3<t4}

1

2
(t3 − t)−

p∑
j1=0

1

2

 t3∫
t

ϕj1(s)ds

2


2

dt3dt4, (2.1002)

p∑
j2,j4=0

(
p∑

j1=0

Cj4j1j2j1

)2

=

=

p∑
j2,j4=0

 p∑
j1=0

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j2,j4=0

 p∑
j1=0

T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3dt2dt4

2

=

=

p∑
j2,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3dt2dt4

2

≤

≤
∞∑

j2,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3dt2dt4

2

=

=

∫
[t,T ]2

1{t2<t4}

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3

2

dt2dt4, (2.1003)

p∑
j2,j3=0

(
p∑

j1=0

Cj1j3j2j1

)2

=
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=

p∑
j2,j3=0

 p∑
j1=0

T∫
t

ϕj1(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j2,j3=0

 p∑
j1=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1

T∫
t3

ϕj1(t4)dt4dt2dt3

2

=

=

p∑
j2,j3=0

 T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t3

ϕj1(t4)dt4dt2dt3

2

≤

≤
∞∑

j2,j3=0

 T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t3

ϕj1(t4)dt4dt2dt3

2

=

=

∫
[t,T ]2

1{t2<t3}

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t3

ϕj1(t4)dt4

2

dt2dt3, (2.1004)

p∑
j1,j4=0

(
p∑

j2=0

Cj4j2j2j1 −
1

2
Cj4j2j2j1

∣∣∣∣
(j2j2)↷(·)

)2

=

=

p∑
j1,j4=0

1

2

T∫
t

ϕj4(t4)

t4∫
t

t2∫
t

ϕj1(t1)dt1dt2dt4−

−
p∑

j2=0

T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j1,j4=0

1

2

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

t4∫
t1

dt2dt1dt4−

−
p∑

j2=0

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

t4∫
t1

ϕj2(t2)

t4∫
t2

ϕj2(t3)dt3dt2dt1dt4

2

=

=

p∑
j1,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

t4 − t1
2

−
p∑

j2=0

1

2

 t4∫
t1

ϕj2(s)ds

2
 dt1dt4


2

≤
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≤
∞∑

j1,j4=0

 T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

t4 − t1
2

−
p∑

j2=0

1

2

 t4∫
t1

ϕj2(s)ds

2
 dt1dt4


2

=

=

∫
[t,T ]2

1{t1<t4}

1

2
(t4 − t1)−

p∑
j2=0

1

2

 t4∫
t1

ϕj2(s)ds

2


2

dt1dt4, (2.1005)

p∑
j1,j3=0

(
p∑

j2=0

Cj2j3j2j1

)2

=

=

p∑
j1,j3=0

 p∑
j2=0

T∫
t

ϕj2(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j1,j3=0

 p∑
j2=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj2(t4)dt4dt3

2

=

=

p∑
j1,j3=0

 p∑
j2=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

t3∫
t1

ϕj2(t2)dt2

T∫
t3

ϕj2(t4)dt4dt1dt3

2

=

=

p∑
j1,j3=0

 T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

T∫
t3

ϕj2(t4)dt4dt1dt3

2

≤

≤
∞∑

j1,j3=0

 T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

T∫
t3

ϕj2(t4)dt4dt1dt3

2

=

=

∫
[t,T ]2

1{t1<t3}

 p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

T∫
t3

ϕj2(t4)dt4

2

dt1dt3, (2.1006)

p∑
j1,j2=0

(
p∑

j3=0

Cj3j3j2j1 −
1

2
Cj3j3j2j1

∣∣∣∣
(j3j3)↷(·)

)2

=
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=

p∑
j1,j2=0

1

2

T∫
t

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3−

−
p∑

j3=0

T∫
t

ϕj3(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

2

=

=

p∑
j1,j2=0

1

2

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

dt3dt2dt1−

−
p∑

j3=0

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj3(t3)

T∫
t3

ϕj3(t4)dt4dt3dt2dt1

2

=

=

p∑
j1,j2=0

 T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T − t2
2

−
p∑

j3=0

1

2

 T∫
t2

ϕj3(s)ds

2
 dt2dt1


2

≤

≤
∞∑

j1,j2=0

 T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T − t2
2

−
p∑

j3=0

1

2

 T∫
t2

ϕj3(s)ds

2
 dt2dt1


2

=

=

∫
[t,T ]2

1{t1<t2}

1

2
(T − t2)−

p∑
j3=0

1

2

 T∫
t2

ϕj3(s)ds

2


2

dt2dt1. (2.1007)

Using Parseval’s equality, generalized Parseval’s equality and Lebesgue’s
Dominated Convergence Theorem, as well as applying the same reasoning as
in the proof of Theorem 2.45, we obtain that the right-hand sides of (2.1002)–
(2.1007) tend to zero when p→ ∞. The equalities (2.993)–(2.998) are proved.

Let us prove the equalities (2.999)–(2.1001). We will use our idea from
Sect. 2.14. More precisely, we consider the following analogue of the equality
(2.848)

Cj4j3j2j1 + Cj1j2j3j4 = Cj4Cj3j2j1 − Cj3j4Cj2j1+

+Cj2j3j4Cj1. (2.1008)

Using Fubini’s Theorem, we have

Cj4j3j2j1 =
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=

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

=

T∫
t

ϕj4(t4)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4−

−
T∫
t

ϕj4(t4)

T∫
t4

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

= Cj4Cj3j2j1−

−
T∫
t

ϕj4(t4)

T∫
t4

ϕj3(t3)

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4+

+

T∫
t

ϕj4(t4)

T∫
t4

ϕj3(t3)

T∫
t3

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4 =

= Cj4Cj3j2j1 − Cj3j4Cj2j1+

+

T∫
t

ϕj4(t4)

T∫
t4

ϕj3(t3)

T∫
t3

ϕj2(t2)

T∫
t

ϕj1(t1)dt1dt2dt3dt4−

−
T∫
t

ϕj4(t4)

T∫
t4

ϕj3(t3)

T∫
t3

ϕj2(t2)

T∫
t2

ϕj1(t1)dt1dt2dt3dt4 =

= Cj4Cj3j2j1 − Cj3j4Cj2j1 + Cj2j3j4Cj1 − Cj1j2j3j4. (2.1009)

The equality (2.1009) completes the proof of the relation (2.1008).

Let us prove (2.999). Substitute j4 = j3, j2 = j1 into (2.1008)

Cj3j3j1j1 + Cj1j1j3j3 = Cj3Cj3j1j1 − Cj3j3Cj1j1+

+Cj1j3j3Cj1. (2.1010)

From (2.1010) we obtain
p∑

j1,j3=0

(
Cj3j3j1j1 + Cj1j1j3j3

)
=

p∑
j1,j3=0

Cj3Cj3j1j1 −
p∑

j1,j3=0

Cj3j3Cj1j1+
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+

p∑
j1,j3=0

Cj1j3j3Cj1.

Then

2

p∑
j1,j3=0

Cj3j3j1j1 = 2

p∑
j1,j3=0

Cj3Cj3j1j1 −

(
p∑

j1=0

Cj1j1

)2

. (2.1011)

From (2.1011) we get

p∑
j1,j3=0

Cj3j3j1j1 =

p∑
j1,j3=0

Cj3Cj3j1j1 −
1

2

(
p∑

j1=0

Cj1j1

)2

=

=

p∑
j1,j3=0

Cj3Cj3j1j1 −
1

2

(
p∑

j1=0

1

2

(
Cj1
)2)2

=

p∑
j1,j3=0

Cj3Cj3j1j1 −
1

8

(
p∑

j1=0

(
Cj1
)2)2

.

(2.1012)

Recall that ϕ0(τ) = 1/
√
T − t. Then

Cj =

T∫
t

ϕj(τ)dτ =


√
T − t if j = 0

0 if j ̸= 0

. (2.1013)

Combining (2.1012), (2.1013) and using Fubini’s Theorem, we obtain

p∑
j1,j3=0

Cj3j3j1j1 =
√
T − t

p∑
j1=0

C0j1j1 −
1

8
(T − t)2 =

=

p∑
j1=0

T∫
t

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3 −
1

8
(T − t)2 =

=

p∑
j1=0

T∫
t

ϕj1(t1)

T∫
t1

ϕj1(t2)

T∫
t2

dt3dt2dt1 −
1

8
(T − t)2 =

=

p∑
j1=0

T∫
t

ϕj1(t1)

T∫
t1

ϕj1(t2)(T − t2)dt2dt1 −
1

8
(T − t)2 =
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=

p∑
j1=0

T∫
t

ϕj1(t2)(T − t2)

t2∫
t

ϕj1(t1)dt1dt2 −
1

8
(T − t)2. (2.1014)

Finally applying (2.125) and (2.1014), we have

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 =
1

2

T∫
t

(T − t2)dt2 −
1

8
(T − t)2 =

1

8
(T − t)2.

The equality (2.999) is proved.

Let us prove (2.1000). Substitute j4 = j1, j2 = j3 into (2.1008)

Cj1j3j3j1 + Cj1j3j3j1 = Cj1Cj3j3j1 − Cj3j1Cj3j1+

+Cj3j3j1Cj1. (2.1015)

Using (2.1015), we get

2

p∑
j1,j3=0

Cj1j3j3j1 = 2

p∑
j1,j3=0

Cj1Cj3j3j1 −
p∑

j1,j3=0

(
Cj3j1

)2
. (2.1016)

Then applying (2.1016), (2.1013), Parseval’s equality, and (2.125), we obtain

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = lim
p→∞

p∑
j1,j3=0

Cj1Cj3j3j1 −
1

2
lim
p→∞

p∑
j1,j3=0

(
Cj3j1

)2
=

=
√
T − t

∞∑
j3=0

Cj3j30 −
1

2

∞∑
j1,j3=0

 T∫
t

ϕj3(t2)

t2∫
t

ϕj1(t1)dt1dt2

2

=

=
∞∑
j3=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj3(t2)

t2∫
t

dt1dt2dt3−

−1

2

∞∑
j1,j3=0

 ∫
[t,T ]2

1{t1<t2}ϕj1(t1)ϕj3(t2)dt1dt2


2

=

=
∞∑
j3=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj3(t2)(t2 − t)dt2dt3 −
1

2

∫
[t,T ]2

(
1{t1<t2}

)2
dt1dt2 =
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=
1

2

T∫
t

(t2 − t)dt2 −
1

2

T∫
t

t2∫
t

dt1dt2 = 0.

The equality (2.1000) is proved.

Let us prove (2.1001). Substitute j3 = j1, j4 = j2 into (2.1008)

Cj2j1j2j1 + Cj1j2j1j2 = Cj2Cj1j2j1 − Cj1j2Cj2j1+

+Cj2j1j2Cj1. (2.1017)

Then
p∑

j1,j2=0

(
Cj2j1j2j1 + Cj1j2j1j2

)
=

p∑
j1,j2=0

(
Cj2Cj1j2j1 + Cj2j1j2Cj1

)
−

−
p∑

j1,j2=0

Cj1j2Cj2j1. (2.1018)

From (2.1018) we have

2

p∑
j1,j2=0

Cj2j1j2j1 = 2

p∑
j1,j2=0

Cj1Cj2j1j2−

−
p∑

j1,j2=0

1

2

((
Cj1j2 + Cj2j1

)2 − (Cj1j2)2 − (Cj2j1)2) =

= 2

p∑
j1,j2=0

Cj1Cj2j1j2 −
1

2

p∑
j1,j2=0

(
Cj1j2 + Cj2j1

)2
+

+

p∑
j1,j2=0

(
Cj2j1

)2
. (2.1019)

Using Fubini’s Theorem, we obtain (also see (1.60))

Cj1j2 + Cj2j1 = Cj1Cj2. (2.1020)

Applying (2.1019), (2.1020), (2.1013), Fubini’s Theorem, Parseval’s equal-
ity, and (2.125), we get

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = lim
p→∞

p∑
j1,j2=0

Cj1Cj2j1j2 −
1

4
lim
p→∞

p∑
j1,j2=0

(
Cj1j2 + Cj2j1

)2
+
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+
1

2
lim
p→∞

p∑
j1,j2=0

(
Cj2j1

)2
=

=
√
T − t

∞∑
j2=0

Cj20j2 −
1

4

∞∑
j1,j2=0

(
Cj1Cj2

)2
+

1

2

∞∑
j1,j2=0

(
Cj2j1

)2
=

=
∞∑
j2=0

T∫
t

ϕj2(t3)

t3∫
t

t2∫
t

ϕj2(t1)dt1dt2dt3 −
1

4
(T − t)2 +

1

2

∫
[t,T ]2

(
1{t1<t2}

)2
dt1dt2 =

=
∞∑
j2=0

T∫
t

ϕj2(t3)

t3∫
t

ϕj2(t1)

t3∫
t1

dt2dt1dt3 =

=
∞∑
j2=0

T∫
t

ϕj2(t3)(t3 − t)

t3∫
t

ϕj2(t1)dt1dt3 +
∞∑
j2=0

T∫
t

ϕj2(t3)

t3∫
t

ϕj2(t1)(t− t1)dt1dt3 =

=
1

2

T∫
t

(t3 − t)dt3 +
1

2

T∫
t

(t− t3)dt3 = 0.

The equality (2.1001) is proved. The equalities (2.993)–(2.1001) are proved.
Theorem 2.46 is proved.

2.21 Condition ϕ0(x) = 1/
√
T − t in Theorems 2.45 and

2.46 can be Omitted

In this section, we will show that the condition ϕ0(x) = 1/
√
T − t in Theo-

rems 2.45 and 2.46 can be omitted.

Theorem 2.47 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary com-
plete orthonormal system of functions in the space L2([t, T ]). Then, for the it-
erated Stratonovich stochastic integral of third multiplicity

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 (i1, i2, i3 = 0, 1, . . . ,m)
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the following expansion

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.1021)

that converges in the mean-square sense is valid, where

Cj3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. Analyzing the proof of Theorems 2.42 and 2.45 (also see the deriva-
tion of (2.709) and (2.719)), we notice that Theorem 2.47 will be proved if we
prove that

T∫
t

t3∫
t

dt2dw
(i3)
t3 = l.i.m.

p→∞

p∑
j3=0

T∫
t

ϕj3(t3)

t3∫
t

dt2dt3 ζ
(i3)
j3
, (2.1022)

T∫
t

t2∫
t

dw
(i1)
t1 dt2 = l.i.m.

p→∞

p∑
j1=0

T∫
t

t2∫
t

ϕj1(t1)dt1dt2 ζ
(i1)
j1
. (2.1023)

The equality (2.1022) immediately follows from Theorem 1.16 (see (1.321)
for k = 1).

Let us prove (2.1023). Using the theorem on replacement of the integration
order in iterated Itô stochastic integrals (see Theorem 3.1 and (3.31)) or the
Itô formula, Theorem 1.16 (see (1.321) for k = 1) and Fubini’s Theorem, we
obtain w. p. 1

T∫
t

t2∫
t

dw
(i1)
t1 dt2 =

T∫
t

T∫
t1

dt2dw
(i1)
t1 = l.i.m.

p→∞

p∑
j1=0

T∫
t

ϕj1(t1)

T∫
t1

dt2dt1 ζ
(i1)
j1

=
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= l.i.m.
p→∞

p∑
j1=0

T∫
t

t2∫
t

ϕj1(t1)dt1dt2 ζ
(i1)
j1
.

The equality (2.1023) is proved. Theorem 2.47 is proved.

Let us develop this approach and prove the following generalization of The-
orem 2.46.

Theorem 2.48 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary com-
plete orthonormal system of functions in the space L2([t, T ]). Then, for the it-
erated Stratonovich stochastic integral of fourth multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 (i1, i2, i3, i4 = 0, 1, . . . ,m)

the following expansion

J∗[ψ(4)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

that converges in the mean-square sense is valid, where

Cj4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. Considering the proof of Theorems 2.42 and 2.46 (also see the deriva-
tion of (2.709) and (2.719)), we conclude that Theorem 2.48 will be proved if
we prove that under the conditions of Theorem 2.48 the following equalities

T∫
t

t3∫
t

t2∫
t

dt1dw
(i2)
t2 dw

(i3)
t3 = l.i.m.

p→∞

p∑
j2,j3=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

dt1dt2dt3×

×J ′[ϕj2ϕj3]
(i2i3)
T,t , (2.1024)
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T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i3)
t3 = l.i.m.

p→∞

p∑
j1,j3=0

T∫
t

ϕj3(t3)

t3∫
t

t2∫
t

ϕj1(t1)dt1dt2dt3×

×J ′[ϕj1ϕj3]
(i1i3)
T,t , (2.1025)

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 = l.i.m.

p→∞

p∑
j1,j2=0

T∫
t

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3×

×J ′[ϕj1ϕj2]
(i1i2)
T,t , (2.1026)

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 =
1

4
Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)(j1j1)↷(·)

=
1

8
(T − t)2, (2.1027)

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = 0, (2.1028)

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = 0 (2.1029)

holds, where we use (1.319), i.e.

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t , (2.1030)

where J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t is the multiple Wiener stochastic integral defined by

(1.304).

Moreover, for k = 4, r = 2, g1 = 1, g2 = 2, g3 = 3, g4 = 4 we can write (see
the derivation of (2.709))

l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =



674D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

=
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}Cj3j3j1j1

∣∣∣∣
(j3j3)↷(·)(j1j1)↷(·)

=

=
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

t2∫
t

dt1dt2 = 1{i1=i2 ̸=0}1{i3=i4 ̸=0}
(T − t)2

8
,

where J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t
def
= 1 for k = 2r.

The equality (2.1024) immediately follows from Theorem 1.16 (see (1.319)
or (2.1030) for k = 2).

Let us prove (2.1026). Using the theorem on replacement of the integration
order in iterated Itô stochastic integrals (see Theorem 3.1 and (3.34)) or the
Itô formula, Theorem 1.16 (see (1.319) or (2.1030) for k = 2) and Fubini’s
Theorem, we get w. p. 1

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 =

T∫
t

(T − t2)

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 =

= l.i.m.
p→∞

p∑
j1,j2=0

T∫
t

(T − t2)ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2J
′[ϕj1ϕj2]

(i1i2)
T,t =

= l.i.m.
p→∞

p∑
j1,j2=0

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)(T − t2)dt2dt1J
′[ϕj1ϕj2]

(i1i2)
T,t =

= l.i.m.
p→∞

p∑
j1,j2=0

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

dt3dt2dt1J
′[ϕj1ϕj2]

(i1i2)
T,t =

= l.i.m.
p→∞

p∑
j1,j2=0

T∫
t

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3J
′[ϕj1ϕj2]

(i1i2)
T,t .

The equality (2.1026) is proved. To prove (2.1025) we will use the above
arguments ((2.1031) (see below) also directly follows from the Itô formula)

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i3)
t3 = [by Theorems 3.1, 3.3] =

T∫
t

t3∫
t

dw
(i1)
t1

t3∫
t1

dt2dw
(i3)
t3 =
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=

T∫
t

t3∫
t

(t3 − t1)dw
(i1)
t1 dw

(i3)
t3 =

=

T∫
t

(t3 − t)

t3∫
t

dw
(i1)
t1 dw

(i3)
t3 −

T∫
t

t3∫
t

(t1 − t)dw
(i1)
t1 dw

(i3)
t3 = (2.1031)

= l.i.m.
p→∞

p∑
j1,j3=0

T∫
t

(t3 − t)ϕj3(t3)

t3∫
t

ϕj1(t1)dt1dt3J
′[ϕj1ϕj3]

(i1i3)
T,t −

−l.i.m.
p→∞

p∑
j1,j3=0

T∫
t

ϕj3(t3)

t3∫
t

(t1 − t)ϕj1(t1)dt1dt3J
′[ϕj1ϕj3]

(i1i3)
T,t =

= l.i.m.
p→∞

p∑
j1,j3=0

 T∫
t

(t3 − t)ϕj3(t3)

t3∫
t

ϕj1(t1)dt1dt3−

−
T∫
t

ϕj3(t3)

t3∫
t

(t1 − t)ϕj1(t1)dt1dt3

 J ′[ϕj1ϕj3]
(i1i3)
T,t =

= l.i.m.
p→∞

p∑
j1,j3=0

T∫
t

ϕj3(t3)

t3∫
t

(t3 − t+ t− t1)ϕj1(t1)dt1dt3J
′[ϕj1ϕj3]

(i1i3)
T,t =

= l.i.m.
p→∞

p∑
j1,j3=0

T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

t3∫
t1

dt2dt1dt3J
′[ϕj1ϕj3]

(i1i3)
T,t =

= l.i.m.
p→∞

p∑
j1,j3=0

T∫
t

ϕj3(t3)

t3∫
t

t2∫
t

ϕj1(t1)dt1dt2dt3J
′[ϕj1ϕj3]

(i1i3)
T,t .

The equality (2.1025) is proved. Let us prove (2.1027)–(2.1029). Using
(2.1012), we obtain

p∑
j1,j3=0

Cj3j3j1j1 =

p∑
j1,j3=0

Cj3Cj3j1j1 −
1

8

(
p∑

j1=0

(
Cj1
)2)2

. (2.1032)
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Applying Parseval’s equality, we have

lim
p→∞

p∑
j1=0

(
Cj1
)2

=

T∫
t

12dτ = T − t. (2.1033)

Combining (2.1032) and (2.1033), we get

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 = lim
p→∞

p∑
j1,j3=0

Cj3Cj3j1j1 −
(T − t)2

8
. (2.1034)

Further, we have

lim
p→∞

p∑
j1,j3=0

Cj3Cj3j1j1 =

=
1

2
lim
p→∞

p∑
j3=0

Cj3Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

− lim
p→∞

p∑
j3=0

Cj3

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)
.

(2.1035)

Applying the generalized Parseval equality, we obtain

lim
p→∞

p∑
j3=0

Cj3Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

= lim
p→∞

p∑
j3=0

T∫
t

ϕj3(τ)dτ

T∫
t

ϕj3(τ)

τ∫
t

dθdτ =

=

T∫
t

1 ·
τ∫
t

dθdτ =
(T − t)2

2
. (2.1036)

From (2.1035) and (2.1036) we have

lim
p→∞

p∑
j1,j3=0

Cj3Cj3j1j1 =

=
(T − t)2

4
− lim

p→∞

p∑
j3=0

Cj3

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)
. (2.1037)

Combining (2.1034) and (2.1037), we obtain

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 =
(T − t)2

8
− lim

p→∞

p∑
j3=0

Cj3

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)
.

(2.1038)
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Due to the inequality of Cauchy–Bunyakovsky and (2.981), (2.1033), we get

lim
p→∞

(
p∑

j3=0

Cj3

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

))2

≤

≤ lim
p→∞

p∑
j3=0

(Cj3)
2

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

≤

≤ lim
p→∞

∞∑
j3=0

(Cj3)
2

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

=

= (T − t) lim
p→∞

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

= 0. (2.1039)

Taking into account (2.1038) and (2.1039), we obtain (2.1027). It is not
difficult to see that by analogy with (2.1027) we get

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1(s) =
1

8
(s− t)2, (2.1040)

where s ∈ (t, T ] and

Cj4j3j2j1(s) =

s∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4. (2.1041)

Let us prove (2.1028). Using (2.1018), we have

p∑
j1,j2=0

Cj2j1j2j1 =

p∑
j1,j2=0

Cj2Cj1j2j1 −
1

2

p∑
j1,j2=0

Cj1j2Cj2j1. (2.1042)

Fubini’s Theorem and the generalized Parseval equality give

lim
p→∞

p∑
j1,j2=0

Cj1j2Cj2j1 =

= lim
p→∞

p∑
j1,j2=0

T∫
t

ϕj2(t2)

T∫
t2

ϕj1(t1)dt1dt2

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2 =
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= lim
p→∞

p∑
j1,j2=0

∫
[t,T ]2

1{t2<t1}ϕj1(t1)ϕj2(t2)dt1dt2

∫
[t,T ]2

1{t1<t2}ϕj1(t1)ϕj2(t2)dt1dt2 =

=

∫
[t,T ]2

1{t2<t1}1{t1<t2}dt1dt2 = 0. (2.1043)

The equalities (2.1042) and (2.1043) imply the relation

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = lim
p→∞

p∑
j1,j2=0

Cj2Cj1j2j1. (2.1044)

Further, we have (see the derivation of (2.1039))

lim
p→∞

(
p∑

j2=0

Cj2

p∑
j1=0

Cj1j2j1

)2

≤ lim
p→∞

p∑
j2=0

(Cj2)
2

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

≤

≤ lim
p→∞

∞∑
j2=0

(Cj2)
2

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

= (T − t) lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

= 0,

(2.1045)
where (2.1045) follows from (2.983).

The relations (2.1044) and (2.1045) complete the proof of (2.1028). By
analogy with the above reasoning, we obviously get

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1(s) = 0, (2.1046)

where s ∈ (t, T ] and Cj2j1j2j1(s) is defined by (2.1041).

Let us prove (2.1029). Using (2.1016), we obtain

p∑
j1,j3=0

Cj1j3j3j1 =

p∑
j1,j3=0

Cj1Cj3j3j1 −
1

2

p∑
j1,j3=0

(
Cj3j1

)2
. (2.1047)

Parseval’s equality gives

lim
p→∞

p∑
j1,j3=0

(
Cj3j1

)2
= lim

p→∞

p∑
j1,j3=0

 ∫
[t,T ]2

1{t1<t2}ϕj1(t1)ϕj3(t2)dt1dt2


2

=
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=

∫
[t,T ]2

(
1{t1<t2}

)2
dt1dt2 =

(T − t)2

2
. (2.1048)

Combining (2.1047) and (2.1048), we have

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = lim
p→∞

p∑
j1,j3=0

Cj1Cj3j3j1 −
(T − t)2

4
. (2.1049)

Further, we have

lim
p→∞

p∑
j1,j3=0

Cj1Cj3j3j1 =

=
1

2
lim
p→∞

p∑
j1=0

Cj1Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

− lim
p→∞

p∑
j1=0

Cj1

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)
.

(2.1050)

Applying Fubini’s Theorem and the generalized Parseval equality, we obtain

lim
p→∞

p∑
j1=0

Cj1Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

= lim
p→∞

p∑
j1=0

T∫
t

ϕj1(τ)dτ

T∫
t

t2∫
t

ϕj1(τ)dτdt2 =

= lim
p→∞

p∑
j1=0

T∫
t

ϕj1(τ)dτ

T∫
t

ϕj1(τ)

T∫
τ

dt2dτ =

T∫
t

1 ·
T∫
τ

dθdτ =
(T − t)2

2
. (2.1051)

From (2.1050) and (2.1051) we have

lim
p→∞

p∑
j1,j3=0

Cj1Cj3j3j1 =

=
(T − t)2

4
− lim

p→∞

p∑
j1=0

Cj1

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)
. (2.1052)

Combining (2.1049) and (2.1052), we obtain

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = − lim
p→∞

p∑
j1=0

Cj1

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)
.

(2.1053)
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Due to the inequality of Cauchy–Bunyakovsky and (2.982), (2.1033), we get

lim
p→∞

(
p∑

j1=0

Cj1

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

))2

≤

≤ lim
p→∞

p∑
j1=0

(Cj1)
2

p∑
j1=0

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)2

≤

≤ lim
p→∞

∞∑
j1=0

(Cj1)
2

p∑
j1=0

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)2

=

= (T − t) lim
p→∞

p∑
j1=0

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)2

= 0. (2.1054)

The relations (2.1053) and (2.1054) complete the proof of (2.1029). By
analogy with the above reasoning, we obviously have

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1(s) = 0, (2.1055)

where s ∈ (t, T ] and Cj1j3j3j1(s) is defined by (2.1041).

The equalities (2.1024)–(2.1029) are proved. Theorem 2.48 is proved.

Note that the equalities (2.1046) and (2.1055) can be proved by another
way. Using Fubini’s Theorem, we obtain

Cj2j1j2j1(s) =
1

2
(Cj2j1(s))

2 − 2Cj2j2j1j1(s), (2.1056)∑
(j1,j2,j3,j4)

Cj4j3j2j1(s) = Cj1(s)Cj2(s)Cj3(s)Cj4(s), (2.1057)

where s ∈ (t, T ], ∑
(j1,j2,j3,j4)

means the sum with respect to all possible permutations (j1, j2, j3, j4) and

Cjk...j1(s) =

s∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtk (k = 1, . . . , 4).
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Taking into account (2.1040), (2.1048) (for s instead of T ), (2.1056), we get

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1(s) =
1

2
lim
p→∞

p∑
j1,j2=0

(Cj2j1(s))
2 − 2 lim

p→∞

p∑
j1,j2=0

Cj2j2j1j1(s) =

=
1

2
· (s− t)2

2
− 2 · (s− t)2

8
= 0.

The equality (2.1046) is proved. Let us substitute j2 = j1 and j4 = j3 into
(2.1057). Then we obtain

4

(
Cj3j3j1j1(s) + Cj1j1j3j3(s) + Cj3j1j1j3(s) + Cj1j3j3j1(s)+

+Cj3j1j3j1(s) + Cj1j3j1j3(s)

)
= (Cj1(s))

2 (Cj3(s))
2 . (2.1058)

The equality (2.1058) implies that

8

p∑
j1,j3=0

(
Cj3j3j1j1(s) + Cj1j3j3j1(s) + Cj3j1j3j1(s)

)
=

p∑
j1=0

(Cj1(s))
2

p∑
j3=0

(Cj3(s))
2 .

(2.1059)

Passing to the limit lim
p→∞

in (2.1059) and taking into account (2.1033) (for

s instead of T ), (2.1040), (2.1046), we get

8

(
(s− t)2

8
+ lim

p→∞

p∑
j1,j3=0

Cj1j3j3j1(s) + 0

)
= (s− t)2.

The equality (2.1055) is proved.

2.22 Generalization of Theorem 2.42 to the Case When

the Conditions ϕ0(x) = 1/
√
T − t and ψl(τ )ψl−1(τ ) ∈

L2([t, T ]) (l = 2, 3, . . . , k) are Omitted

In this section, we will consider the following generalization of Theorem 2.42.

Theorem 2.49 [33], [38], [39]. Assume that the complete orthonormal sys-
tem {ϕj(x)}∞j=0 in L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) are such that

lim
p1,...,pk→∞

p1∑
j1=0

. . .

pq∑
jq=0

. . .

pk∑
jk=0

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

×
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×

( min{pg1 ,pg2}∑
jg1=0

min{pg3 ,pg4}∑
jg3=0

. . .

min{pg2r−1
,pg2r}∑

jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0

(2.1060)

for all r = 1, 2, . . . , [k/2] and for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)).

Then, for the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô stochastic integrals defined by

(2.962) the following expansion

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (2.1061)

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. To prove Theorem 2.49, we need to prove that under the conditions
of Theorem 2.49 the following equality

l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t =

=
1

2r
J [ψ(k)]sr,...,s1T,t (2.1062)
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holds w. p. 1, where g2 = g1 + 1, . . . , g2r = g2r−1 + 1, g2i−1
def
= si; i = 1, 2, . . . , r;

r = 1, 2, . . . , [k/2] , (sr, . . . , s1) ∈ Ak,r, J [ψ
(k)]sr,...,s1T,t is defined by (2.387) and

Ak,r is defined by (2.388); also we put p1 = . . . = pk = p in (2.1062) to simplify
the notation; another notations in (2.1062) are the same as in Sect. 2.10.

Using the Itô formula, we obtain w. p. 1

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

tl+1∫
t

ψl(tl−1)ψl−1(tl−1)

tl−1∫
t

ψl−2(tl−2) . . .

. . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(il−2)
tl−2

dtl−1dw
(il+1)
tl+1

. . . dw
(ik)
tk =

=

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

 tl+1∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

 tl+1∫
t

ψl−2(tl−2) . . .

. . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(il−2)
tl−2

dw
(il+1)
tl+1

. . . dw
(ik)
tk −

−
T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

tl+1∫
t

ψl−2(tl−2)

 tl−2∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

×

×
tl−2∫
t

ψl−3(tl−3) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(il−3)
tl−3

dw
(il−2)
tl−2

dw
(il+1)
tl+1

. . . dw
(ik)
tk ,

(2.1063)
where l ≥ 3. Note that the formula (2.1063) will change in an obvious way for
the case tl+1 = T. We will also assume that the transformation (2.1063) is not
carried out for l = 2 since the integral

t3∫
t

ψ2(t1)ψ1(t1)dt1

is an internal integral on the left-hand side of (2.1063) for this case.

It is important to note that the transformation (2.1063) fully complies with
the classical rules for replacing the order of integration (Fubini’s Theorem) if

we replace all differentials of the form dw
(ij)
tj with dtj in (2.1063).
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Indeed, formally changing the order of integration on the left-hand side of
(2.1063) according to the classical rules, we have

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

tl+1∫
t

ψl(tl−1)ψl−1(tl−1)

tl−1∫
t

ψl−2(tl−2) . . . (2.1064)

. . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(il−2)
tl−2

dtl−1dw
(il+1)
tl+1

. . . dw
(ik)
tk =

=

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

 tl+1∫
t

ψ1(t1)dw
(i1)
t1 . . .

tl+1∫
tl−3

ψl−2(tl−2)dw
(il−2)
tl−2

×

×
tl+1∫
tl−2

ψl(tl−1)ψl−1(tl−1)dtl−1

 dw
(il+1)
tl+1

. . . dw
(ik)
tk =

=

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

 tl+1∫
t

ψ1(t1)dw
(i1)
t1 . . .

tl+1∫
tl−3

ψl−2(tl−2)dw
(il−2)
tl−2

×

×

 tl+1∫
t

−
tl−2∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

 dw
(il+1)
tl+1

. . . dw
(ik)
tk =

=

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

 tl+1∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

 tl+1∫
t

ψ1(t1)dw
(i1)
t1 . . .

. . .

tl+1∫
tl−3

ψl−2(tl−2)dw
(il−2)
tl−2

dw
(il+1)
tl+1

. . . dw
(ik)
tk −

−
T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

tl+1∫
t

ψ1(t1)dw
(i1)
t1 . . .

tl+1∫
tl−3

ψl−2(tl−2)×

×

 tl−2∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

 dw
(il−2)
tl−2

dw
(il+1)
tl+1

. . . dw
(ik)
tk =
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=

T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

 tl+1∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

 tl+1∫
t

ψl−2(tl−2) . . .

. . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(il−2)
tl−2

dw
(il+1)
tl+1

. . . dw
(ik)
tk −

−
T∫
t

ψk(tk) . . .

tl+2∫
t

ψl+1(tl+1)

tl+1∫
t

ψl−2(tl−2)

 tl−2∫
t

ψl(tl−1)ψl−1(tl−1)dtl−1

×

×
tl−2∫
t

ψl−3(tl−3) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(il−3)
tl−3

dw
(il−2)
tl−2

dw
(il+1)
tl+1

. . . dw
(ik)
tk .

(2.1065)

Comparing the right-hand sides of (2.1063) and (2.1065) we come to the
conclusion that we got the same result.

The strict mathematical meaning of the transformations leading to (2.1065)
is explained in Chapter 3, at least for the case when ψ1(τ), . . . , ψk(τ) are con-
tinuous functions on the interval [t, T ].

Note that under the conditions of Theorem 2.49, the derivation of the for-
mulas (2.1063) and (2.1065) will remain valid if in (2.1063) and (2.1065) we

replace all differentials dw
(ij)
tj with dtj (this follows from Fubini’s Theorem).

Recall that

J [ψ(k)]sr,...,s1T,t
def
=

r∏
q=1

1{isq=isq+1 ̸=0} ×

×
T∫
t

ψk(tk) . . .

tsr+3∫
t

ψsr+2(tsr+2)

tsr+2∫
t

ψsr(tsr+1)ψsr+1(tsr+1)×

×
tsr+1∫
t

ψsr−1(tsr−1) . . .

ts1+3∫
t

ψs1+2(ts1+2)

ts1+2∫
t

ψs1(ts1+1)ψs1+1(ts1+1)×

×

ts1+1∫
t

ψs1−1(ts1−1) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(is1−1)
ts1−1

dts1+1dw
(is1+2)
ts1+2

. . .

. . . dw
(isr−1)
tsr−1

dtsr+1dw
(isr+2)
tsr+2

. . . dw
(ik)
tk , (2.1066)
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where Ak,r is defined by (2.388):

Ak,r =
{
(sr, . . . , s1) : sr > sr−1 + 1, . . . , s2 > s1 + 1, sr, . . . , s1 = 1, . . . , k − 1

}
.

Temporarily denote

J [ψ(k)]sr,...,s1T,t
def
= I[ψ(k)]

(i1...is1−1is1+2...isr−1isr+2...ik)

T,t .

Let us carry out the transformation (2.1063) for the iterated Itô stochastic

integral I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t iteratively for s1, . . . , sr. After this, apply
(2.1030) to each of the obtained iterated Itô stochastic integrals. As a result,
we obtain w. p. 1

I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t =
r∏
q=1

1{isq=isq+1 ̸=0}×

×
2r∑
d=1

(
Î[ψ(k)]

d(i1...is1−1is1+2...isr−1isr+2...ik)

T,t − Ī[ψ(k)]
d(i1...is1−1is1+2...isr−1isr+2...ik)

T,t

)
=

=
r∏
q=1

1{isq=isq+1 ̸=0}×

×l.i.m.
p→∞

p∑
j1,...,js1−1,js1+2,...,jsr−1,jsr+2,...,jk=0

2r∑
d=1

(
Ĉ

(d)
j1...js1−1js1+2...jsr−1jsr+2...jk

−

−C̄(d)
j1...js1−1js1+2...jsr−1jsr+2...jk

)
×

×J ′[ϕj1 . . . ϕjs1−1
ϕjs1+2

. . . ϕjsr−1
ϕjsr+2

. . . ϕjk]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t , (2.1067)

where some terms in the sum
2r∑
d=1

can be identically equal to zero due to the remark to (2.1063).



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series687

Taking into account that the integrals Î[ψ(k)]
d(i1...is1−1is1+2...isr−1isr+2...ik)

T,t and

the Fourier coefficients Ĉ
(d)
j1...js1−1js1+2...jsr−1jsr+2...jk

are formed on the basis of the

same kernels (the same applies to the integrals Ī[ψ(k)]
d(i1...is1−1is1+2...isr−1isr+2...ik)

T,t

and the Fourier coefficients C̄
(d)
j1...js1−1js1+2...jsr−1jsr+2...jk

), as well as a remark about

the relationship of the transformation (2.1063) based on the Itô formula and
on the basis of classical rules for replacing the order of integration (see the
derivation of (2.1065)), we obtain using Fubini’s theorem (applying the inverse
transformation from (2.1065) to (2.1064) in which all differentials of the form

dw
(ij)
tj are replaced with dtj)

2r∑
d=1

(
Ĉ

(d)
j1...js1−1js1+2...jsr−1jsr+2...jk

− C̄
(d)
j1...js1−1js1+2...jsr−1jsr+2...jk

)
=

= Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

, (2.1068)

where g2 = g1+1, . . . , g2r = g2r−1+1. Combining (2.1067) and (2.1068), we get
w. p. 1

I[ψ(k)]
(i1...is1−1is1+2...isr−1isr+2...ik)

T,t =

= l.i.m.
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×
r∏
s=1

1{ig2s−1
= ig2s ̸=0}J

′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t ,

where we use the notations from Sect. 2.10. The equality (2.1062) is proved
for the case when {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of

functions in the space L2([t, T ]). Thus, the condition ϕ0(x) = 1/
√
T − t in

Theorem 2.42 can be omitted.

Let us separately explain why the condition ψl(τ)ψl−1(τ) ∈ L2([t, T ]) (l =
2, 3, . . . , k) in Theorem 2.42 can also be omitted. Recall that this condition
appeared due to the direct application of (1.319) to the iterated Itô stochastic
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integral J [ψ(k)]sr,...,s1T,t defined by (2.1066) (see the transition from (2.708) to
(2.709)).

It is easy to see that the kernels K̂d(t1, . . . , tk−2r) and K̄d(t1, . . . , tk−2r)

of the iterated Itô stochastic integrals Î[ψ(k)]
d(i1...is1−1is1+2...isr−1isr+2...ik)

T,t and

Ī[ψ(k)]
d(i1...is1−1is1+2...isr−1isr+2...ik)

T,t have the same structure as (1.310) but with new

wight functions ψ̂1(τ), . . . , ψ̂k−2r(τ) and ψ̄1(τ), . . . , ψ̄k−2r(τ), some of which pos-
sibly coincide with ψ1(τ), . . . , ψk(τ) (see (2.1063)). Moreover, the conditions
ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and ψl(τ)ψl−1(τ) ∈ L1([t, T ]) (l = 2, 3, . . . , k) guar-
antee that K̂d(t1, . . . , tk−2r), K̄d(t1, . . . , tk−2r) ∈ L2([t, T ]) (see (2.1063)). This
means that the formula (2.1067) is true if ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and
ψl(τ)ψl−1(τ) ∈ L1([t, T ]) (l = 2, 3, . . . , k). Furthermore, the formula (2.1068)
holds under the conditions ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and ψl(τ)ψl−1(τ) ∈
L1([t, T ]) (l = 2, 3, . . . , k).

Since the condition ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) implies the condition
ψl(τ)ψl−1(τ) ∈ L1([t, T ]) (l = 2, 3, . . . , k), then the condition ψl(τ)ψl−1(τ) ∈
L1([t, T ]) (l = 2, 3, . . . , k) can be omitted in the above reasoning.

Thus, the equalities (2.1067) and (2.1068) are satisfied under the condition
ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) and the condition ψl(τ)ψl−1(τ) ∈ L2([t, T ]) (l =
2, 3, . . . , k) can be omitted in Theorem 2.42. Theorem 2.49 is proved.

2.23 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 5. The Case of an Arbitrary

Complete Orthonormal System of Functions in the

Space L2([t, T ]) and ψ1(τ ), . . . , ψ5(τ ) ≡ 1

Theorem 2.50 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete
orthonormal system of functions in the space L2([t, T ]). Then, for the iterated
Stratonovich stochastic integral of fifth multiplicity

J∗[ψ(5)]T,t =

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(i5)
t5

the following expansion

J∗[ψ(5)]T,t = l.i.m.
p→∞

p∑
j1,...,j5=0

Cj5...j1ζ
(i1)
j1

. . . ζ
(i5)
j5
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that converges in the mean-square sense is valid, where i1, . . . , i5 = 0, 1, . . . ,m,

Cj5...j1 =

T∫
t

ϕj5(t5) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt5

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. Step 1. According to Theorem 2.49, we conclude that Theorem 2.50
will be proved if we prove the following equalities (see (2.1060) for k = 5, r = 1
and k = 5, r = 2 (p1 = . . . = p5 = p)) under the conditions of Theorem 2.50

lim
p→∞

p∑
j3,j4,j5=0

(
p∑

j1=0

Cj5j4j3j1j1 −
1

2
Cj5j4j3j1j1

∣∣∣∣
(j1j1)↷(·)

)2

= 0, (2.1069)

lim
p→∞

p∑
j2,j4,j5=0

(
p∑

j1=0

Cj5j4j1j2j1

)2

= 0, (2.1070)

lim
p→∞

p∑
j2,j3,j5=0

(
p∑

j1=0

Cj5j1j3j2j1

)2

= 0, (2.1071)

lim
p→∞

p∑
j2,j3,j4=0

(
p∑

j1=0

Cj1j4j3j2j1

)2

= 0, (2.1072)

lim
p→∞

p∑
j1,j4,j5=0

(
p∑

j2=0

Cj5j4j2j2j1 −
1

2
Cj5j4j2j2j1

∣∣∣∣
(j2j2)↷(·)

)2

= 0, (2.1073)

lim
p→∞

p∑
j1,j3,j5=0

(
p∑

j2=0

Cj5j2j3j2j1

)2

= 0, (2.1074)

lim
p→∞

p∑
j1,j3,j4=0

(
p∑

j2=0

Cj2j4j3j2j1

)2

= 0, (2.1075)

lim
p→∞

p∑
j1,j2,j5=0

(
p∑

j3=0

Cj5j3j3j2j1 −
1

2
Cj5j3j3j2j1

∣∣∣∣
(j3j3)↷(·)

)2

= 0, (2.1076)
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lim
p→∞

p∑
j1,j2,j4=0

(
p∑

j3=0

Cj3j4j3j2j1

)2

= 0, (2.1077)

lim
p→∞

p∑
j1,j2,j3=0

(
p∑

j4=0

Cj4j4j3j2j1 −
1

2
Cj4j4j3j2j1

∣∣∣∣
(j4j4)↷(·)

)2

= 0, (2.1078)

lim
p→∞

p∑
j5=0

(
p∑

j1,j3=0

Cj5j3j3j1j1 −
1

4
Cj5j3j3j1j1

∣∣∣∣
(j1j1)↷(·),(j3j3)↷(·)

)2

= 0, (2.1079)

lim
p→∞

p∑
j4=0

(
p∑

j1,j3=0

Cj3j4j3j1j1

)2

= 0, (2.1080)

lim
p→∞

p∑
j3=0

(
p∑

j1,j4=0

Cj4j4j3j1j1 −
1

4
Cj4j4j3j1j1

∣∣∣∣
(j1j1)↷(·),(j4j4)↷(·)

)2

= 0, (2.1081)

lim
p→∞

p∑
j5=0

(
p∑

j1,j2=0

Cj5j2j1j2j1

)2

= 0, (2.1082)

lim
p→∞

p∑
j4=0

(
p∑

j1,j2=0

Cj2j4j1j2j1

)2

= 0, (2.1083)

lim
p→∞

p∑
j2=0

(
p∑

j1,j4=0

Cj4j4j1j2j1

)2

= 0, (2.1084)

lim
p→∞

p∑
j5=0

(
p∑

j1,j2=0

Cj5j1j2j2j1

)2

= 0, (2.1085)

lim
p→∞

p∑
j3=0

(
p∑

j1,j2=0

Cj2j1j3j2j1

)2

= 0, (2.1086)

lim
p→∞

p∑
j2=0

(
p∑

j1,j3=0

Cj3j1j3j2j1

)2

= 0, (2.1087)

lim
p→∞

p∑
j4=0

(
p∑

j1,j2=0

Cj1j4j2j2j1

)2

= 0, (2.1088)
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lim
p→∞

p∑
j3=0

(
p∑

j1,j2=0

Cj1j2j3j2j1

)2

= 0, (2.1089)

lim
p→∞

p∑
j2=0

(
p∑

j1,j3=0

Cj1j3j3j2j1

)2

= 0, (2.1090)

lim
p→∞

p∑
j1=0

(
p∑

j2,j4=0

Cj4j4j2j2j1 −
1

4
Cj4j4j2j2j1

∣∣∣∣
(j2j2)↷(·),(j4j4)↷(·)

)2

= 0, (2.1091)

lim
p→∞

p∑
j1=0

(
p∑

j2,j3=0

Cj3j2j3j2j1

)2

= 0, (2.1092)

lim
p→∞

p∑
j1=0

(
p∑

j2,j3=0

Cj2j3j3j2j1

)2

= 0. (2.1093)

Step 2. Let us prove the equalities (2.1069)–(2.1078). Using Fubini’s The-
orem and Parseval’s equality, we obtain the following relations for the prelimit
expressions on the left-hand sides of (2.1069)–(2.1078)

p∑
j3,j4,j5=0

(
p∑

j1=0

Cj5j4j3j1j1 −
1

2
Cj5j4j3j1j1

∣∣∣∣
(j1j1)↷(·)

)2

=

=

p∑
j3,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

 p∑
j1=0

1

2

 t3∫
t

ϕj1(τ)dτ

2

− t3 − t

2

×

×dt3dt4dt5

)2

≤

≤
∞∑

j3,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

 p∑
j1=0

1

2

 t3∫
t

ϕj1(τ)dτ

2

− t3 − t

2

×

×dt3dt4dt5

)2

=

=

∫
[t,T ]3

(
1{t3<t4<t5}

)2 p∑
j1=0

1

2

 t3∫
t

ϕj1(τ)dτ

2

− t3 − t

2


2

dt3dt4dt5, (2.1094)
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p∑
j2,j4,j5=0

(
p∑

j1=0

Cj5j4j1j2j1

)2

=

=

p∑
j2,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3×

×dt2dt4dt5

)2

≤

≤
∞∑

j2,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3×

×dt2dt4dt5

)2

=

=

∫
[t,T ]3

(
1{t2<t4<t5}

)2 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3

2

dt2dt4dt5, (2.1095)

p∑
j2,j3,j5=0

(
p∑

j1=0

Cj5j1j3j2j1

)2

=

=

p∑
j2,j3,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t5∫
t3

ϕj1(t4)dt4×

×dt2dt3dt5

)2

≤

≤
∞∑

j2,j3,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t5∫
t3

ϕj1(t4)dt4×

×dt2dt3dt5

)2

=
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=

∫
[t,T ]3

(
1{t2<t3<t5}

)2 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t5∫
t3

ϕj1(t4)dt4

2

dt2dt3dt5, (2.1096)

p∑
j2,j3,j4=0

(
p∑

j1=0

Cj1j4j3j2j1

)2

=

=

p∑
j2,j3,j4=0

( T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t4

ϕj1(t5)dt5×

×dt2dt3dt4

)2

≤

≤
∞∑

j2,j3,j4=0

( T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t4

ϕj1(t5)dt5×

×dt2dt3dt4

)2

=

=

∫
[t,T ]3

(
1{t2<t3<t4}

)2 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t4

ϕj1(t5)dt5

2

dt2dt3dt4, (2.1097)

p∑
j1,j4,j5=0

(
p∑

j2=0

Cj5j4j2j2j1 −
1

2
Cj5j4j2j2j1

∣∣∣∣
(j2j2)↷(·)

)2

=

=

p∑
j1,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

p∑
j2=0

t4∫
t1

ϕj2(t2)

t4∫
t2

ϕj2(t3)dt3dt2×

×dt1dt4dt5 −
1

2

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

t2∫
t

ϕj1(t1)dt1dt2dt4dt5

)2

=

=

p∑
j1,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

 p∑
j2=0

1

2

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2

×
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×dt1dt4dt5

)2

≤

≤
∞∑

j1,j4,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)

 p∑
j2=0

1

2

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2

×

×dt1dt4dt5

)2

=

=

∫
[t,T ]3

(
1{t1<t4<t5}

)2 p∑
j2=0

1

2

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2


2

dt1dt4dt5, (2.1098)

p∑
j1,j3,j5=0

(
p∑

j2=0

Cj5j2j3j2j1

)2

=

=

p∑
j1,j3,j5=0

(
p∑

j2=0

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

t5∫
t3

ϕj2(t4)dt4×

×dt3dt5

)2

=

=

p∑
j1,j3,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

t5∫
t3

ϕj2(t4)dt4×

×dt1dt3dt5

)2

≤

≤
∞∑

j1,j3,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

t5∫
t3

ϕj2(t4)dt4×

×dt1dt3dt5

)2

=
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=

∫
[t,T ]3

(
1{t1<t3<t5}

)2 p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

t5∫
t3

ϕj2(t4)dt4

2

dt1dt3dt5, (2.1099)

p∑
j1,j3,j4=0

(
p∑

j2=0

Cj2j4j3j2j1

)2

=

=

p∑
j1,j3,j4=0

(
p∑

j2=0

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj2(t5)dt5×

×dt4

)2

=

=

p∑
j1,j3,j4=0

( T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

T∫
t4

ϕj2(t5)dt5×

×dt1dt3dt4

)2

≤

≤
∞∑

j1,j3,j4=0

( T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)

p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

T∫
t4

ϕj2(t5)dt5×

×dt1dt3dt4

)2

=

=

∫
[t,T ]3

(
1{t1<t3<t4}

)2 p∑
j2=0

t3∫
t1

ϕj2(t2)dt2

T∫
t4

ϕj2(t5)dt5

2

dt1dt3dt4, (2.1100)

p∑
j1,j2,j5=0

(
p∑

j3=0

Cj5j3j3j2j1 −
1

2
Cj5j3j3j2j1

∣∣∣∣
(j3j3)↷(·)

)2

=

=

p∑
j1,j2,j5=0

(
p∑

j3=0

T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)

t5∫
t1

ϕj2(t2)

t5∫
t2

ϕj3(t3)

t5∫
t3

ϕj3(t4)dt4dt3×
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×dt2dt1dt5 −
1

2

T∫
t

ϕj5(t5)

t5∫
t

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt5

)2

=

=

p∑
j1,j2,j5=0

(
p∑

j3=0

T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)

t5∫
t1

ϕj2(t2)

t5∫
t2

ϕj3(t3)

t5∫
t3

ϕj3(t4)dt4dt3×

×dt2dt1dt5 −
1

2

T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)

t5∫
t1

ϕj2(t2)

t5∫
t2

dt3dt2dt1dt5

)2

=

=

p∑
j1,j2,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)

t5∫
t1

ϕj2(t2)

 p∑
j3=0

1

2

 t5∫
t2

ϕj3(t3)dt3

2

− t5 − t2
2

×

×dt2dt1dt5

)2

≤

≤
∞∑

j1,j2,j5=0

( T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)

t5∫
t1

ϕj2(t2)

 p∑
j3=0

1

2

 t5∫
t2

ϕj3(t3)dt3

2

− t5 − t2
2

×

×dt2dt1dt5

)2

=

=

∫
[t,T ]3

(
1{t1<t2<t5}

)2 p∑
j3=0

1

2

 t5∫
t2

ϕj3(t3)dt3

2

− t5 − t2
2


2

dt2dt1dt5, (2.1101)

p∑
j1,j2,j4=0

(
p∑

j3=0

Cj3j4j3j2j1

)2

=

=

p∑
j1,j2,j4=0

(
p∑

j3=0

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj3(t3)

T∫
t3

ϕj4(t4)

T∫
t4

ϕj3(t5)dt5dt4dt3×

×dt2dt1

)2

=
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=

p∑
j1,j2,j4=0

( T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj4(t4)

p∑
j3=0

T∫
t4

ϕj3(t5)dt5

t4∫
t2

ϕj3(t3)dt3dt4×

×dt2dt1

)2

≤

≤
∞∑

j1,j2,j4=0

( T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t2)

T∫
t2

ϕj4(t4)

p∑
j3=0

T∫
t4

ϕj3(t5)dt5

t4∫
t2

ϕj3(t3)dt3dt4×

×dt2dt1

)2

=

=

∫
[t,T ]3

(
1{t1<t2<t4}

)2 p∑
j3=0

T∫
t4

ϕj3(t5)dt5

t4∫
t2

ϕj3(t3)dt3

2

dt4dt2dt1, (2.1102)

p∑
j1,j2,j3=0

(
p∑

j4=0

Cj4j4j3j2j1 −
1

2
Cj4j4j3j2j1

∣∣∣∣
(j4j4)↷(·)

)2

=

=

p∑
j1,j2,j3=0

( T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

p∑
j4=0

T∫
t3

ϕj4(t4)

T∫
t4

ϕj4(t5)dt5dt4×

×dt3 −
1

2

T∫
t

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3dt4

)2

=

=

p∑
j1,j2,j3=0

( T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)

 p∑
j4=0

1

2

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2

×

×dt1dt2dt3

)2

≤

≤
∞∑

j1,j2,j3=0

( T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)

 p∑
j4=0

1

2

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2

×
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×dt1dt2dt3

)2

=

=

∫
[t,T ]3

(
1{t1<t2<t3}

)2 p∑
j4=0

1

2

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2


2

dt1dt2dt3. (2.1103)

Further, applying the Parseval equality and the generalized Parseval equal-
ity as well as using the Cauchy–Bunyakovsky inequality, we have (see the proof
of Theorem 2.45)

∞∑
j=0

 t2∫
t1

ϕj(s)ds

2

=

T∫
t

(
1{t1<s<t2}

)2
ds = t2 − t1, (2.1104)

∞∑
j=0

t2∫
t1

ϕj(s)ds

t4∫
t3

ϕj(s)ds =
∞∑
j=0

T∫
t

1{t1<s<t2}ϕj(s)ds

T∫
t

1{t3<s<t4}ϕj(s)ds =

=

T∫
t

1{t1<s<t2}1{t3<s<t4}ds = 0, (2.1105)

∣∣∣∣∣∣∣(t2 − t1)−
p∑
j=0

 t2∫
t1

ϕj(s)ds

2
∣∣∣∣∣∣∣ ≤ t2 − t1 ≤ T − t <∞, (2.1106)

 p∑
j=0

t2∫
t1

ϕj(s)ds

t4∫
t3

ϕj(s)ds

2

≤
p∑
j=0

 t2∫
t1

ϕj(s)ds

2
p∑
j=0

 t4∫
t3

ϕj(s)ds

2

≤

≤ (t2 − t1)(t4 − t3) ≤ (T − t)2 <∞, (2.1107)

where t ≤ t1 < t2 ≤ t3 < t4 ≤ T.

Using Lebesgue’s Dominated Convergence Theorem and (2.1104)–(2.1107),
we obtain that the right-hand sides of (2.1094)–(2.1103) tend to zero when
p→ ∞. The equalities (2.1069)–(2.1078) are proved.

Step 3. Before proving the equalities (2.1079)–(2.1093), we show that∣∣∣∣∣
p∑

j1,j3=0

Cj3j3j1j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1108)
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p∑

j1,j3=0

Cj1j3j3j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1109)

∣∣∣∣∣
p∑

j1,j2=0

Cj2j1j2j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1110)

p∑
j2=0

(
p∑

j1=0

Cj1j2j1(s, τ)

)2

≤
s∫

τ

 p∑
j1=0

t2∫
τ

ϕj1(t1)dt1

s∫
t2

ϕj1(t3)dt3

2

dt2, (2.1111)

where constant K does not depend on p, s, τ ; here and further in this proof

Cjk...j1(s, τ) =

s∫
τ

ϕjk(tk) . . .

t2∫
τ

ϕj1(t1)dt1 . . . dtk (k = 1, . . . , 4, t ≤ τ < s ≤ T ).

Further, by K,K1, K2 we will denote contants that can change from line to
line.

By analogy with (2.1032), (2.1042), (2.1047) and (2.1040), (2.1046),
(2.1055) we get

p∑
j1,j3=0

Cj3j3j1j1(s, τ) =

p∑
j1,j3=0

Cj3(s, τ)Cj3j1j1(s, τ)−
1

8

(
p∑

j1=0

(
Cj1(s, τ)

)2)2

,

(2.1112)
p∑

j1,j2=0

Cj2j1j2j1(s, τ) =

p∑
j1,j2=0

Cj2(s, τ)Cj1j2j1(s, τ)−
1

2

p∑
j1,j2=0

Cj1j2(s, τ)Cj2j1(s, τ),

(2.1113)
p∑

j1,j3=0

Cj1j3j3j1(s, τ) =

p∑
j1,j3=0

Cj1(s, τ)Cj3j3j1(s, τ)−
1

2

p∑
j1,j3=0

(
Cj3j1(s, τ)

)2
,

(2.1114)

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1(s, τ) =
1

8
(s− τ)2, (2.1115)

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1(s, τ) = 0, (2.1116)

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1(s, τ) = 0. (2.1117)
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Using (2.1112), Parseval’s equality, Cauchy–Bunyakovsky’s inequality, as
well as Fubini’s Theorem and the elementary inequality (a + b)2 ≤ 2a2 + 2b2,
we obtain(

p∑
j1,j3=0

Cj3j3j1j1(s, τ)

)2

≤ 2

(
p∑

j1,j3=0

Cj3(s, τ)Cj3j1j1(s, τ)

)2

+

+2 · 1

64

(
p∑

j1=0

(
Cj1(s, τ)

)2)4

≤

≤ 2

p∑
j3=0

(Cj3(s, τ))
2

p∑
j3=0

(
p∑

j1=0

Cj3j1j1(s, τ)

)2

+K1 ≤

≤ K2

∞∑
j3=0

(
p∑

j1=0

Cj3j1j1(s, τ)

)2

+K1 =

= K2

∞∑
j3=0

 s∫
τ

ϕj3(t3)

p∑
j1=0

t3∫
τ

ϕj1(t2)

t2∫
τ

ϕj1(t1)dt1dt2dt3

2

+K1 =

= K2

s∫
τ

1

2

p∑
j1=0

 t3∫
τ

ϕj1(t2)dt2

2


2

dt3 +K1 ≤

≤ K2

s∫
τ

1

2

∞∑
j1=0

 t3∫
τ

ϕj1(t2)dt2

2


2

dt3 +K1 =

= K2

s∫
τ

(
1

2
(t3 − τ)

)2

dt3 +K1 ≤ K <∞,

where constants K,K1, K2 do not depend on p, s, τ. The equality (2.1108) is
proved.

Let us prove (2.1109). Using (2.1114) and the above reasoning, we get(
p∑

j1,j3=0

Cj1j3j3j1(s, τ)

)2

≤ 2

(
p∑

j1,j3=0

Cj1(s, τ)Cj3j3j1(s, τ)

)2

+
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+2 · 1
4

(
p∑

j1,j3=0

(
Cj3j1(s, τ)

)2)2

≤

≤ 2

p∑
j1=0

(Cj1(s, τ))
2

p∑
j1=0

(
p∑

j3=0

Cj3j3j1(s, τ)

)2

+K1 ≤

≤ K2

∞∑
j1=0

(
p∑

j3=0

Cj3j3j1(s, τ)

)2

+K1 =

= K2

∞∑
j1=0

 s∫
τ

ϕj1(t1)

p∑
j3=0

s∫
t1

ϕj3(t2)

s∫
t2

ϕj3(t3)dt3dt2dt1

2

+K1 =

= K2

s∫
τ

1

2

p∑
j3=0

 s∫
t1

ϕj3(t2)dt2

2


2

dt1 +K1 ≤

≤ K2

s∫
τ

1

2

∞∑
j3=0

 s∫
t1

ϕj3(t2)dt2

2


2

dt1 +K1 =

= K2

s∫
τ

(
1

2
(s− t1)

)2

dt1 +K1 ≤ K <∞,

where constants K,K1, K2 do not depend on p, s, τ. The equality (2.1109) is
proved.

Let us prove (2.1110), (2.1111). Applying (2.1113), (2.1107) and the above
reasoning, we have(

p∑
j1,j2=0

Cj2j1j2j1(s, τ)

)2

≤ 2

(
p∑

j1,j2=0

Cj2(s, τ)Cj1j2j1(s, τ)

)2

+

+2 · 1
4

(
p∑

j1,j2=0

Cj1j2(s, τ)Cj2j1(s, τ)

)2

≤

≤ 2

p∑
j2=0

(Cj2(s, τ))
2

p∑
j2=0

(
p∑

j1=0

Cj1j2j1(s, τ)

)2

+
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+
1

2

p∑
j1,j2=0

(Cj1j2(s, τ))
2

p∑
j1,j2=0

(Cj2j1(s, τ))
2 ≤

≤ K2

p∑
j2=0

(
p∑

j1=0

Cj1j2j1(s, τ)

)2

+K1 ≤ K2

∞∑
j2=0

(
p∑

j1=0

Cj1j2j1(s, τ)

)2

+K1 =

(2.1118)

= K2

∞∑
j2=0

 s∫
τ

ϕj2(t2)

p∑
j1=0

t2∫
τ

ϕj1(t1)dt1

s∫
t2

ϕj1(t3)dt3dt2

2

+K1 =

= K2

s∫
τ

 p∑
j1=0

t2∫
τ

ϕj1(t1)dt1

s∫
t2

ϕj1(t3)dt3

2

dt2 +K1 ≤ (2.1119)

≤ K2

s∫
τ

((t2 − τ)(s− t2))
2 dt2 +K1 ≤ K <∞,

where constants K,K1, K2 do not depend on p, s, τ. The equalities (2.1110) and
(2.1111) (see (2.1118), (2.1119)) are proved.

Step 4. Let us start proving the equalities (2.1079)–(2.1093). Using Fu-
bini’s Theorem and Parseval’s equality, we obtain the following relations for
the prelimit expressions on the left-hand sides of (2.1079), (2.1082), (2.1085),
(2.1091)–(2.1093)

p∑
j5=0

(
p∑

j1,j3=0

Cj5j3j3j1j1 −
1

4
Cj5j3j3j1j1

∣∣∣∣
(j1j1)↷(·),(j3j3)↷(·)

)2

=

=

p∑
j5=0

 T∫
t

ϕj5(t5)

 p∑
j1,j3=0

Cj3j3j1j1(t5, t)−
1

4

t5∫
t

(τ − t)dτ

 dt5

2

≤

≤
∞∑
j5=0

 T∫
t

ϕj5(t5)

 p∑
j1,j3=0

Cj3j3j1j1(t5, t)−
1

4

t5∫
t

(τ − t)dτ

 dt5

2

=

=

T∫
t

(
p∑

j1,j3=0

Cj3j3j1j1(t5, t)−
1

8
(t5 − t)2

)2

dt5, (2.1120)
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p∑
j5=0

(
p∑

j1,j2=0

Cj5j2j1j2j1

)2

=

p∑
j5=0

 T∫
t

ϕj5(t5)

p∑
j1,j2=0

Cj2j1j2j1(t5, t)dt5

2

≤

≤
∞∑
j5=0

 T∫
t

ϕj5(t5)

p∑
j1,j2=0

Cj2j1j2j1(t5, t)dt5

2

=

T∫
t

(
p∑

j1,j2=0

Cj2j1j2j1(t5, t)

)2

dt5,

(2.1121)

p∑
j5=0

(
p∑

j1,j2=0

Cj5j1j2j2j1

)2

=

p∑
j5=0

 T∫
t

ϕj5(t5)

p∑
j1,j2=0

Cj1j2j2j1(t5, t)dt5

2

≤

≤
∞∑
j5=0

 T∫
t

ϕj5(t5)

p∑
j1,j2=0

Cj1j2j2j1(t5, t)dt5

2

=

T∫
t

(
p∑

j1,j2=0

Cj1j2j2j1(t5, t)

)2

dt5,

(2.1122)

p∑
j1=0

(
p∑

j2,j4=0

Cj4j4j2j2j1 −
1

4
Cj4j4j2j2j1

∣∣∣∣
(j2j2)↷(·),(j4j4)↷(·)

)2

=

=

p∑
j1=0

 T∫
t

ϕj1(t1)

p∑
j2,j4=0

T∫
t1

ϕj2(t2)

T∫
t2

ϕj2(t3)

T∫
t3

ϕj4(t4)

T∫
t4

ϕj4(t5)dt5dt4dt3dt2dt1−

−1

4

T∫
t

t5∫
t

t3∫
t

ϕj1(t1)dt1dt3dt5

2

=

=

p∑
j1=0

 T∫
t

ϕj1(t1)

 p∑
j2,j4=0

Cj4j4j2j2(T, t1)−
1

4

T∫
t1

(T − t3)dt3

 dt1

2

≤

≤
∞∑
j1=0

 T∫
t

ϕj1(t1)

(
p∑

j2,j4=0

Cj4j4j2j2(T, t1)−
1

8
(T − t1)

2

)
dt1

2

=

=

T∫
t

(
p∑

j2,j4=0

Cj4j4j2j2(T, t1)−
1

8
(T − t1)

2

)2

dt1, (2.1123)
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p∑
j1=0

(
p∑

j2,j3=0

Cj3j2j3j2j1

)2

=

=

p∑
j1=0

( T∫
t

ϕj1(t1)

p∑
j2,j3=0

T∫
t1

ϕj2(t2)

T∫
t2

ϕj3(t3)

T∫
t3

ϕj2(t4)

T∫
t4

ϕj3(t5)dt5dt4×

×dt3dt2dt1

)2

=

=

p∑
j1=0

 T∫
t

ϕj1(t1)

p∑
j2,j3=0

Cj3j2j3j2(T, t1)dt1

2

≤

≤
∞∑
j1=0

 T∫
t

ϕj1(t1)

p∑
j2,j3=0

Cj3j2j3j2(T, t1)dt1

2

=

T∫
t

(
p∑

j2,j3=0

Cj3j2j3j2(T, t1)

)2

dt1,

(2.1124)

p∑
j1=0

(
p∑

j2,j3=0

Cj2j3j3j2j1

)2

=

=

p∑
j1=0

( T∫
t

ϕj1(t1)

p∑
j2,j3=0

T∫
t1

ϕj2(t2)

T∫
t2

ϕj3(t3)

T∫
t3

ϕj3(t4)

T∫
t4

ϕj2(t5)dt5dt4×

×dt3dt2dt1

)2

=

=

p∑
j1=0

 T∫
t

ϕj1(t1)

p∑
j2,j3=0

Cj2j3j3j2(T, t1)dt1

2

≤

≤
∞∑
j1=0

 T∫
t

ϕj1(t1)

p∑
j2,j3=0

Cj2j3j3j2(T, t1)dt1

2

=

T∫
t

(
p∑

j2,j3=0

Cj2j3j3j2(T, t1)

)2

dt1.

(2.1125)

Using Lebesgue’s Dominated Convergence Theorem and (2.1108)–(2.1110),
(2.1115)–(2.1117), we obtain that the right-hand sides of (2.1120)–(2.1125) tend
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to zero when p → ∞. The equalities (2.1079), (2.1082), (2.1085), (2.1091)–
(2.1093) are proved.

Further, let us prove the equalities (2.1081), (2.1083), (2.1086), (2.1087),
(2.1089).

Using Fubini’s Theorem, Parseval’s equality and Cauchy–Bunyakovsky’s
inequality, we have the following relations for the prelimit expressions on the
left-hand sides of (2.1081), (2.1083), (2.1086), (2.1087), (2.1089)

p∑
j3=0

(
p∑

j1,j4=0

Cj4j4j3j1j1 −
1

4
Cj4j4j3j1j1

∣∣∣∣
(j1j1)↷(·),(j4j4)↷(·)

)2

=

=

p∑
j3=0

 T∫
t

ϕj3(t3)

p∑
j1,j4=0

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj4(t4)

T∫
t4

ϕj4(t5)dt5dt4dt3−

−1

4

T∫
t

t4∫
t

ϕj3(t3)

t3∫
t

dt1dt3dt4

2

≤

≤
∞∑
j3=0

 T∫
t

ϕj3(t3)

 p∑
j1,j4=0

1

4

 t3∫
t

ϕj1(t2)dt2

2 T∫
t3

ϕj4(t4)dt4

2

−

−1

4
(t3 − t)

T∫
t3

dt4

 dt3

2

=

=

T∫
t

1

4

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2
p∑

j4=0

 T∫
t3

ϕj4(t4)dt4

2

− 1

4
(t3 − t)(T − t3)


2

dt3,

(2.1126)

p∑
j4=0

(
p∑

j1,j2=0

Cj2j4j1j2j1

)2

=

=

p∑
j4=0

 T∫
t

ϕj4(t4)

p∑
j1,j2=0

t4∫
t

ϕj1(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj2(t5)dt5dt4

2

≤
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≤
∞∑
j4=0

 T∫
t

ϕj4(t4)

p∑
j1,j2=0

Cj1j2j1(t4, t)Cj2(T, t4)dt4

2

=

=

T∫
t

(
p∑

j2=0

p∑
j1=0

Cj1j2j1(t4, t)Cj2(T, t4)

)2

dt4 ≤

≤
T∫
t

p∑
j2=0

(Cj2(T, t4))
2

p∑
j2=0

(
p∑

j1=0

Cj1j2j1(t4, t)

)2

dt4 ≤

≤
T∫
t

∞∑
j2=0

(Cj2(T, t4))
2

p∑
j2=0

(
p∑

j1=0

Cj1j2j1(t4, t)

)2

dt4 ≤

≤ K1

T∫
t

p∑
j2=0

(
p∑

j1=0

Cj1j2j1(t4, t)

)2

dt4 ≤ (2.1127)

≤ K1

T∫
t

t4∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3

2

dt2dt4 = (2.1128)

= K1

∫
[t,T ]2

1{t2<t4}

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

t4∫
t2

ϕj1(t3)dt3

2

dt2dt4, (2.1129)

where constant K1 does not depend on p and the transition from (2.1127) to
(2.1128) is based on (2.1111);

p∑
j3=0

(
p∑

j1,j2=0

Cj2j1j3j2j1

)2

=

=

p∑
j3=0

 T∫
t

ϕj3(t3)

p∑
j1,j2=0

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj1(t4)

T∫
t4

ϕj2(t5)dt5dt4dt3

2

≤

≤
∞∑
j3=0

 T∫
t

ϕj3(t3)

p∑
j1,j2=0

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj1(t1)

T∫
t1

ϕj2(t2)dt2dt1dt3

2

=



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series707

=

T∫
t

 p∑
j1,j2=0

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj1(t1)

T∫
t1

ϕj2(t2)dt2dt1

2

dt3 =

=

T∫
t

 p∑
j1,j2=0

∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2×

×
∫

[t,T ]2

1{t2>t1>t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

dt3, (2.1130)

where, using the generalized Parseval equality and the Cauchy–Bunyakovsky
inequality, we obtain

lim
p→∞

p∑
j1,j2=0

∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2

∫
[t,T ]2

1{t2>t1>t3}ϕj2(t2)ϕj1(t1)dt1dt2=

=

∫
[t,T ]2

1{t1<t2<t3}1{t2>t1>t3}dt1dt2 = 0,

 p∑
j1,j2=0

∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2

∫
[t,T ]2

1{t2>t1>t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

≤

≤
p∑

j1,j2=0

 ∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

×

×
p∑

j1,j2=0

 ∫
[t,T ]2

1{t2>t1>t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

≤ K1 <∞,

where constant K1 does not depend on p;

p∑
j2=0

(
p∑

j1,j3=0

Cj3j1j3j2j1

)2

=
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=

p∑
j2=0

 T∫
t

ϕj2(t2)

p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj3(t3)

T∫
t3

ϕj1(t4)

T∫
t4

ϕj3(t5)dt5dt4dt3dt2

2

≤

≤
∞∑
j2=0

 T∫
t

ϕj2(t2)

p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj3(t3)

T∫
t3

ϕj1(t4)

T∫
t4

ϕj3(t5)dt5dt4dt3dt2

2

=

=

T∫
t

 p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj3(t3)

T∫
t3

ϕj1(t4)

T∫
t4

ϕj3(t5)dt5dt4dt3

2

dt2 =

=

T∫
t

 p∑
j1=0

Cj1(t2, t)

p∑
j3=0

T∫
t2

ϕj3(t5)

t5∫
t2

ϕj1(t4)

t4∫
t2

ϕj3(t3)dt3dt4dt5

2

dt2 =

=

T∫
t

(
p∑

j1=0

Cj1(t2, t)

p∑
j3=0

Cj3j1j3(T, t2)

)2

dt2 ≤

≤
T∫
t

p∑
j1=0

(Cj1(t2, t))
2

p∑
j1=0

(
p∑

j3=0

Cj3j1j3(T, t2)

)2

dt2 ≤

≤ K1

T∫
t

p∑
j1=0

(
p∑

j3=0

Cj3j1j3(T, t2)

)2

dt2 ≤ (2.1131)

≤ K1

T∫
t

T∫
t2

 p∑
j3=0

θ∫
t2

ϕj3(t1)dt1

T∫
θ

ϕj3(t3)dt3

2

dθdt2 = (2.1132)

= K1

∫
[t,T ]2

1{t2<θ}

 p∑
j3=0

θ∫
t2

ϕj3(t1)dt1

T∫
θ

ϕj3(t3)dt3

2

dθdt2, (2.1133)

where constant K1 does not depend on p and the transition from (2.1131) to
(2.1132) is based on (2.1111);

lim
p→∞

p∑
j3=0

(
p∑

j1,j2=0

Cj1j2j3j2j1

)2

=
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=

p∑
j3=0

 T∫
t

ϕj3(t3)

p∑
j1,j2=0

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj2(t4)

T∫
t4

ϕj1(t5)dt5dt4dt3

2

≤

≤
∞∑
j3=0

 T∫
t

ϕj3(t3)

p∑
j1,j2=0

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj2(t2)

T∫
t2

ϕj1(t1)dt1dt2dt3

2

=

=

T∫
t

 p∑
j1,j2=0

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2

T∫
t3

ϕj2(t2)

T∫
t2

ϕj1(t1)dt1dt2

2

dt3 =

=

T∫
t

 p∑
j1,j2=0

∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2×

×
∫

[t,T ]2

1{t1>t2>t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

dt3, (2.1134)

where, using the generalized Parseval equality and the Cauchy–Bunyakovsky
inequality, we obtain

lim
p→∞

p∑
j1,j2=0

∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2

∫
[t,T ]2

1{t1>t2>t3}ϕj2(t2)ϕj1(t1)dt1dt2=

=

∫
[t,T ]2

1{t1<t2<t3}1{t1>t2>t3}dt1dt2 = 0,

 p∑
j1,j2=0

∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2

∫
[t,T ]2

1{t1>t2>t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

≤

≤
p∑

j1,j2=0

 ∫
[t,T ]2

1{t1<t2<t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

×

×
p∑

j1,j2=0

 ∫
[t,T ]2

1{t1>t2>t3}ϕj2(t2)ϕj1(t1)dt1dt2


2

≤ K1 <∞,
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where constant K1 does not depend on p.

Using Lebesgue’s Dominated Convergence Theorem, we obtain that the
right-hand sides of (2.1126), (2.1129), (2.1130), (2.1133), (2.1134) tend to zero
when p→ ∞. The equalities (2.1081), (2.1083), (2.1086), (2.1087), (2.1089) are
proved.

Step 5. Finally, let us prove the equalities (2.1080), (2.1084), (2.1088),
(2.1090).

Using Parseval’s equality, Cauchy–Bunyakovsky’s inequality, as well as Fu-
bini’s Theorem and the elementary inequality (a + b)2 ≤ 2a2 + 2b2, we obtain
for the prelimit expression on the left-hand side of (2.1080)

p∑
j4=0

(
p∑

j1,j3=0

Cj3j4j3j1j1

)2

=

=

p∑
j4=0

 T∫
t

ϕj4(t4)

p∑
j1,j3=0

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj3(t5)dt5dt4

2

≤

≤
∞∑
j4=0

 T∫
t

ϕj4(t4)

p∑
j1,j3=0

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj3(t5)dt5dt4

2

=

=

T∫
t

 p∑
j1,j3=0

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj3(t5)dt5

2

dt4 =

=

T∫
t

 p∑
j3=0

t4∫
t

ϕj3(t3)

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

∓ t3 − t

2

 dt3

T∫
t4

ϕj3(t5)dt5


2

dt4≤

≤ 2

T∫
t

 p∑
j3=0

t4∫
t

ϕj3(t3)

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

− t3 − t

2

 dt3

T∫
t4

ϕj3(t5)dt5


2

dt4+

+2

T∫
t

 p∑
j3=0

t4∫
t

ϕj3(t3)
t3 − t

2
dt3

T∫
t4

ϕj3(t5)dt5

2

dt4 ≤
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≤ 2

T∫
t

p∑
j3=0

(Cj3(T, t4))
2×

×
p∑

j3=0

 t4∫
t

ϕj3(t3)

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

− t3 − t

2

 dt3


2

dt4 + εp ≤

≤ K1

T∫
t

p∑
j3=0

 t4∫
t

ϕj3(t3)

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

− t3 − t

2

 dt3


2

dt4 + εp ≤

≤ K1

T∫
t

∞∑
j3=0

 t4∫
t

ϕj3(t3)

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

− t3 − t

2

 dt3


2

dt4 + εp =

= K1

T∫
t

t4∫
t

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

− t3 − t

2


2

dt3dt4 + εp =

= K1

∫
[t,T ]2

1{t3<t4}

1

2

p∑
j1=0

 t3∫
t

ϕj1(t2)dt2

2

− t3 − t

2


2

dt3dt4+εp, (2.1135)

where constant K1 does not depend on p,

εp = 2

T∫
t

 p∑
j3=0

t4∫
t

ϕj3(t3)
t3 − t

2
dt3

T∫
t4

ϕj3(t5)dt5

2

dt4.

By analogy with (2.1105), (2.1107) we get p∑
j3=0

t4∫
t

ϕj3(t3)
t3 − t

2
dt3

T∫
t4

ϕj3(t5)dt5

2

≤ K2 <∞, (2.1136)

∞∑
j3=0

t4∫
t

ϕj3(t3)
t3 − t

2
dt3

T∫
t4

ϕj3(t5)dt5 = 0, (2.1137)

where constant K2 does not depend on p.
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Using Lebesgue’s Dominated Convergence Theorem and (2.1104), (2.1106),
(2.1136), (2.1137), we obtain that the right-hand side of (2.1135) tends to zero
when p→ ∞. The equality (2.1080) is proved.

Let us prove the equality (2.1084). Using Parseval’s equality, Cauchy–
Bunyakovsky’s inequality, as well as Fubini’s Theorem and the elementary in-
equality (a + b)2 ≤ 2a2 + 2b2, we obtain for the prelimit expression on the
left-hand side of (2.1084)

p∑
j2=0

(
p∑

j1,j4=0

Cj4j4j1j2j1

)2

=

=

p∑
j2=0

 T∫
t

ϕj2(t2)

p∑
j1,j4=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)

T∫
t3

ϕj4(t4)

T∫
t4

ϕj4(t5)dt5dt4dt3dt2

2

≤

≤
∞∑
j2=0

 T∫
t

ϕj2(t2)

p∑
j1,j4=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)

T∫
t3

ϕj4(t4)

T∫
t4

ϕj4(t5)dt5dt4dt3dt2

2

=

=

T∫
t

 p∑
j1,j4=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)

T∫
t3

ϕj4(t4)

T∫
t4

ϕj4(t5)dt5dt4dt3

2

dt2 =

=

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

∓ T − t3
2

dt3


2

dt2≤

≤ 2

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2

dt3


2

dt2+

+2

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)
T − t3

2
dt3

2

dt2 ≤

≤ 2

T∫
t

p∑
j1=0

(Cj1(t2, t))
2×
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×
p∑

j1=0

 T∫
t2

ϕj1(t3)

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2

 dt3


2

dt2 + µp ≤

≤ K1

T∫
t

p∑
j1=0

 T∫
t2

ϕj1(t3)

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2

 dt3


2

dt2 + µp ≤

≤ K1

T∫
t

∞∑
j1=0

 T∫
t2

ϕj1(t3)

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2

 dt3


2

dt2 + µp =

= K1

T∫
t

T∫
t2

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2


2

dt3dt2 + µp =

= K1

∫
[t,T ]2

1{t2<t3}

1

2

p∑
j4=0

 T∫
t3

ϕj4(t4)dt4

2

− T − t3
2


2

dt3dt2+µp, (2.1138)

where constant K1 does not depend on p,

µp = 2

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)
T − t3

2
dt3

2

dt2.

By analogy with (2.1105), (2.1107) we get p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)
T − t3

2
dt3

2

≤ K2 <∞, (2.1139)

∞∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t3)
T − t3

2
dt3 = 0, (2.1140)

where constant K2 does not depend on p.

Using Lebesgue’s Dominated Convergence Theorem and (2.1104), (2.1106),
(2.1139), (2.1140), we obtain that the right-hand side of (2.1138) tends to zero
when p→ ∞. The equality (2.1084) is proved.
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Let us prove the equality (2.1088). Using Parseval’s equality, Cauchy–
Bunyakovsky’s inequality, as well as Fubini’s Theorem and the elementary in-
equality (a + b)2 ≤ 2a2 + 2b2, we obtain for the prelimit expression on the
left-hand side of (2.1088)

p∑
j4=0

(
p∑

j1,j2=0

Cj1j4j2j2j1

)2

=

=

p∑
j4=0

 T∫
t

ϕj4(t4)

p∑
j1,j2=0

t4∫
t

ϕj2(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj1(t5)dt5dt4

2

≤

≤
∞∑
j4=0

 T∫
t

ϕj4(t4)

p∑
j1,j2=0

t4∫
t

ϕj2(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj1(t5)dt5dt4

2

=

=

T∫
t

 p∑
j1,j2=0

t4∫
t

ϕj2(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2dt3

T∫
t4

ϕj1(t5)dt5

2

dt4 =

=

T∫
t

 p∑
j1,j2=0

t4∫
t

ϕj1(t1)

t4∫
t1

ϕj2(t2)

t4∫
t2

ϕj2(t3)dt3dt2dt1

T∫
t4

ϕj1(t5)dt5

2

dt4 =

=

T∫
t

 p∑
j1=0

t4∫
t

ϕj1(t1)

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

∓ t4 − t1
2

dt1 T∫
t4

ϕj1(t5)dt5


2

dt4≤

≤ 2

T∫
t

 p∑
j1=0

t4∫
t

ϕj1(t1)

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2

dt1 T∫
t4

ϕj1(t5)dt5


2

dt4+

+2

T∫
t

 p∑
j1=0

t4∫
t

ϕj1(t1)
t4 − t1

2
dt1

T∫
t4

ϕj1(t5)dt5

2

dt4 ≤

≤ 2

T∫
t

p∑
j1=0

(Cj1(T, t4))
2×
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×
p∑

j1=0

 t4∫
t

ϕj1(t1)

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2

 dt1


2

dt4 + ρp ≤

≤ K1

T∫
t

p∑
j1=0

 t4∫
t

ϕj1(t1)

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2

 dt1


2

dt4 + ρp ≤

≤ K1

T∫
t

∞∑
j1=0

 t4∫
t

ϕj1(t1)

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2

 dt1


2

dt4 + ρp =

= K1

T∫
t

t4∫
t

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2


2

dt1dt4 + ρp =

= K1

∫
[t,T ]2

1{t1<t4}

1

2

p∑
j2=0

 t4∫
t1

ϕj2(t2)dt2

2

− t4 − t1
2


2

dt1dt4+ρp, (2.1141)

where constant K1 does not depend on p,

ρp = 2

T∫
t

 p∑
j1=0

t4∫
t

ϕj1(t1)
t4 − t1

2
dt1

T∫
t4

ϕj1(t5)dt5

2

dt4.

By analogy with (2.1105), (2.1107) we get (t4 − t1 = (t4 − t) + (t− t1)) p∑
j1=0

t4∫
t

ϕj1(t1)
t4 − t1

2
dt1

T∫
t4

ϕj1(t5)dt5

2

≤ K2 <∞, (2.1142)

∞∑
j1=0

t4∫
t

ϕj1(t1)
t4 − t1

2
dt1

T∫
t4

ϕj1(t5)dt5 = 0, (2.1143)

where constant K2 does not depend on p.

Using Lebesgue’s Dominated Convergence Theorem and (2.1104), (2.1106),
(2.1142), (2.1143), we obtain that the right-hand side of (2.1141) tends to zero
when p→ ∞. The equality (2.1088) is proved.
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Let us prove the equality (2.1090). Using Parseval’s equality, Cauchy–
Bunyakovsky’s inequality, as well as Fubini’s Theorem and the elementary in-
equality (a + b)2 ≤ 2a2 + 2b2, we obtain for the prelimit expression on the
left-hand side of (2.1090)

p∑
j2=0

(
p∑

j1,j3=0

Cj1j3j3j2j1

)2

=

=

p∑
j2=0

 T∫
t

ϕj2(t2)

p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj3(t3)

T∫
t3

ϕj3(t4)

T∫
t4

ϕj1(t5)dt5dt4dt3dt2

2

≤

≤
∞∑
j2=0

 T∫
t

ϕj2(t2)

p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj3(t3)

T∫
t3

ϕj3(t4)

T∫
t4

ϕj1(t5)dt5dt4dt3dt2

2

=

=

T∫
t

 p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj3(t3)

T∫
t3

ϕj3(t4)

T∫
t4

ϕj1(t5)dt5dt4dt3

2

dt2 =

=

T∫
t

 p∑
j1,j3=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)

t5∫
t2

ϕj3(t4)

t4∫
t2

ϕj3(t3)dt3dt4dt5

2

dt2 =

=

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

∓ t5 − t2
2

 dt5


2

dt2≤

≤ 2

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

− t5 − t2
2

 dt5


2

dt2+

+2

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)
t5 − t2

2
dt5

2

dt2 ≤

≤ 2

T∫
t

p∑
j1=0

(Cj1(t2, t))
2×
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×
p∑

j1=0

 T∫
t2

ϕj1(t5)

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

− t5 − t2
2

 dt5


2

dt2 + χp ≤

≤ K1

T∫
t

p∑
j1=0

 T∫
t2

ϕj1(t5)

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

− t5 − t2
2

 dt5


2

dt2 + χp ≤

≤ K1

T∫
t

∞∑
j1=0

 T∫
t2

ϕj1(t5)

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

− t5 − t2
2

 dt5


2

dt2 + χp =

= K1

T∫
t

T∫
t2

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

− t5 − t2
2


2

dt5dt2 + χp =

= K1

∫
[t,T ]2

1{t2<t5}

1

2

p∑
j3=0

 t5∫
t2

ϕj3(t4)dt4

2

− t5 − t2
2


2

dt5dt2+χp, (2.1144)

where constant K1 does not depend on p,

χp = 2

T∫
t

 p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)
t5 − t2

2
dt5

2

dt2.

By analogy with (2.1105), (2.1107) we get (t5 − t2 = (t5 − t) + (t− t2)) p∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)
t5 − t2

2
dt5

2

≤ K2 <∞, (2.1145)

∞∑
j1=0

t2∫
t

ϕj1(t1)dt1

T∫
t2

ϕj1(t5)
t5 − t2

2
dt5 = 0, (2.1146)

where constant K2 does not depend on p.

Using Lebesgue’s Dominated Convergence Theorem and (2.1104), (2.1106),
(2.1145), (2.1146), we obtain that the right-hand side of (2.1144) tends to zero
when p→ ∞. The equality (2.1090) is proved. The equalities (2.1069)–(2.1093)
are proved. Theorem 2.50 is proved.
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2.24 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 3. The Case of an Arbitrary

Complete Orthonormal System of Functions in the

Space L2([t, T ]) and Binomial Weight Functions

In this section, we will consider a generalization of Theorems 2.45, 2.47. Namely,
we will prove the following theorem.

Theorem 2.51 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary com-
plete orthonormal system of functions in the space L2([t, T ]). Then, for the it-
erated Stratonovich stochastic integral of third multiplicity

I
∗(i1i2i3)
l1l2l3T,t

=

∗∫
t

T

(t3 − t)l3

∗∫
t

t3

(t2 − t)l2

∗∫
t

t2

(t1 − t)l1dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 (2.1147)

the following expansion

I
∗(i1i2i3)
l1l2l3T,t

= l.i.m.
p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

(2.1148)

that converges in the mean-square sense is valid, where i1, i2, i3 = 0, 1, . . . ,m;
l1, l2, l3 = 0, 1, 2, . . . ,

Cj3j2j1 =

T∫
t

(t3 − t)l3ϕj3(t3)

t3∫
t

(t2 − t)l2ϕj2(t2)

t2∫
t

(t1 − t)l1ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Note that the iterated Stratonovich stochastic integrals (2.1147) are impor-
tant for applications (see Chapter 4).

Proof. According to Theorems 2.49, 2.12, we come to the conclusion that
Theorem 2.51 will be proved if we prove the following equalities

lim
p→∞

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

= 0, (2.1149)
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lim
p→∞

p∑
j1=0

(
1

2
Cj2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cj2j2j1

)2

= 0, (2.1150)

lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

= 0. (2.1151)

First, we prove that∣∣∣∣∣∣
p∑
j=0

t2∫
t1

(s− t)lϕj(s)

s∫
t1

(τ − t)mϕj(τ)dτds

∣∣∣∣∣∣ ≤ K <∞, (2.1152)

where l,m = 0, 1, 2, . . . , t ≤ t1 < t2 ≤ T, constant K does not depend on
p, t1, t2.

Using Fubini’s Theorem and Parseval’s equality, we have for m > l (l,m =
0, 1, 2, . . .)

p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)mϕj(τ)dτds =

=

p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)l(τ − t)m−lϕj(τ)dτds =

=

p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)lϕj(τ)

τ∫
t

(θ − t)m−l−1(m− l)dθdτds =

= (m− l)

p∑
j=0

t2∫
t

(θ − t)m−l−1

t2∫
θ

(τ − t)lϕj(τ)

t2∫
τ

(s− t)lϕj(s)dsdτdθ =

= (m− l)

t2∫
t

(θ − t)m−l−11

2

p∑
j=0

 t2∫
θ

(τ − t)lϕj(τ)dτ

2

dθ ≤

≤ m− l

2

t2∫
t

(θ − t)m−l−1
∞∑
j=0

 t2∫
θ

(τ − t)lϕj(τ)dτ

2

dθ =

=
m− l

2

t2∫
t

(θ − t)m−l−1

t2∫
θ

(τ − t)2ldτdθ ≤ K1 <∞, (2.1153)
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where constant K1 does not depend on p, t2.

For l > m (l,m = 0, 1, 2, . . .) we get

p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)mϕj(τ)dτds =

=

p∑
j=0

t2∫
t

(s− t)lϕj(s)ds

t2∫
t

(τ − t)mϕj(τ)dτ−

−
p∑
j=0

t2∫
t

(s− t)lϕj(s)

t2∫
s

(τ − t)mϕj(τ)dτds =

=

p∑
j=0

t2∫
t

(s− t)lϕj(s)ds

t2∫
t

(τ − t)mϕj(τ)dτ−

−
p∑
j=0

t2∫
t

(τ − t)mϕj(τ)

τ∫
t

(s− t)lϕj(s)dsdτ. (2.1154)

Applying Cauchy–Bunyakovsky’s inequality and Parseval’s equality, we ob-
tain  p∑

j=0

t2∫
t

(s− t)lϕj(s)ds

t2∫
t

(τ − t)mϕj(τ)dτ

2

≤

≤
p∑
j=0

 t2∫
t

(s− t)lϕj(s)ds

2
p∑
j=0

 t2∫
t

(τ − t)mϕj(τ)dτ

2

≤

≤
∞∑
j=0

 t2∫
t

(s− t)lϕj(s)ds

2
∞∑
j=0

 t2∫
t

(τ − t)mϕj(τ)dτ

2

=

=

t2∫
t

(s− t)2lds

t2∫
t

(τ − t)2mdτ ≤ K2 <∞, (2.1155)

where constant K2 does not depend on p, t2.
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Using (2.1153)–(2.1155), we obtain∣∣∣∣∣∣
p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)mϕj(τ)dτds

∣∣∣∣∣∣ ≤ K3 <∞, (2.1156)

where l > m (l,m = 0, 1, 2, . . .), constant K3 does not depend on p, t2.

For the case l = m we get

p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)lϕj(τ)dτds =

=

p∑
j=0

1

2

 t2∫
t

(s− t)lϕj(s)ds

2

≤
∞∑
j=0

1

2

 t2∫
t

(s− t)lϕj(s)ds

2

=

=
1

2

t2∫
t

(s− t)2lds ≤ K4 <∞, (2.1157)

where constant K4 does not depend on p, t2.

Combining (2.1153), (2.1156), (2.1157), we have∣∣∣∣∣∣
p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)mϕj(τ)dτds

∣∣∣∣∣∣ ≤ K5 <∞, (2.1158)

where l,m = 0, 1, 2, . . . , constant K5 does not depend on p, t2.

Note that
p∑
j=0

t2∫
t1

(s− t)lϕj(s)

s∫
t1

(τ − t)mϕj(τ)dτds =

=

p∑
j=0

t2∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)mϕj(τ)dτds−

−
p∑
j=0

t1∫
t

(s− t)lϕj(s)

s∫
t

(τ − t)mϕj(τ)dτds−

−
p∑
j=0

t2∫
t1

(s− t)lϕj(s)ds

t1∫
t

(τ − t)mϕj(τ)dτ, (2.1159)
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where l,m = 0, 1, 2, . . . and t ≤ t1 < t2 ≤ T.

By analogy with (2.1155) we get∣∣∣∣∣∣
p∑
j=0

t2∫
t1

(s− t)lϕj(s)ds

t1∫
t

(τ − t)mϕj(τ)dτ

∣∣∣∣∣∣ ≤ K6 <∞, (2.1160)

where l,m = 0, 1, 2, . . . , constant K6 does not depend on p, t2.

Combining (2.1159), (2.1158), and (2.1160), we obtain (2.1152).

Let us prove (2.1149). Using Parseval’s equality, we have

lim
p→∞

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

=

= lim
p→∞

p∑
j3=0

 T∫
t

(τ − t)l3ϕj3(τ)

1

2

τ∫
t

(s− t)l1+l2ds−

−
p∑

j1=0

τ∫
t

(s− t)l2ϕj1(s)

s∫
t

(θ − t)l1ϕj1(θ)dθds

 dτ

2

≤

≤ lim
p→∞

∞∑
j3=0

 T∫
t

(τ − t)l3ϕj3(τ)

1

2

τ∫
t

(s− t)l1+l2ds−

−
p∑

j1=0

τ∫
t

(s− t)l2ϕj1(s)

s∫
t

(θ − t)l1ϕj1(θ)dθds

 dτ

2

=

= lim
p→∞

T∫
t

(τ − t)2l3

1

2

τ∫
t

(s− t)l1+l2ds−

−
p∑

j1=0

τ∫
t

(s− t)l2ϕj1(s)

s∫
t

(θ − t)l1ϕj1(θ)dθds

2

dτ. (2.1161)

Using (2.721), (2.1152) and applying Lebesgue’s Dominated Convergence
Theorem in (2.1161), we obtain the equality (2.1149).
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Let us prove (2.1150). Using Fubini’s Theorem and Parseval’s equality, we
obtain

lim
p→∞

p∑
j1=0

(
1

2
Cj2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cj2j2j1

)2

=

= lim
p→∞

p∑
j1=0

1

2

T∫
t

(s− t)l2+l3

s∫
t

(θ − t)l1ϕj1(θ)dθds−

−
p∑

j2=0

T∫
t

(s− t)l3ϕj2(s)

s∫
t

(τ − t)l2ϕj2(τ)

τ∫
t

(θ − t)l1ϕj1(θ)dθdτds

2

=

= lim
p→∞

p∑
j1=0

 T∫
t

(θ − t)l1ϕj1(θ)

1

2

T∫
θ

(s− t)l2+l3ds−

−
p∑

j2=0

T∫
θ

(τ − t)l2ϕj2(τ)

T∫
τ

(s− t)l3ϕj2(s)dsdτ

 dθ

2

≤

≤ lim
p→∞

∞∑
j1=0

 T∫
t

(θ − t)l1ϕj1(θ)

1

2

T∫
θ

(s− t)l2+l3ds−

−
p∑

j2=0

T∫
θ

(τ − t)l2ϕj2(τ)

T∫
τ

(s− t)l3ϕj2(s)dsdτ

 dθ

2

=

= lim
p→∞

T∫
t

(θ − t)2l1

1

2

T∫
θ

(s− t)l2+l3ds−

−
p∑

j2=0

T∫
θ

(τ − t)l2ϕj2(τ)

T∫
τ

(s− t)l3ϕj2(s)dsdτ

2

dθ =

= lim
p→∞

T∫
t

(θ − t)2l1

1

2

T∫
θ

(s− t)l2+l3ds−

−
p∑

j2=0

T∫
θ

(s− t)l3ϕj2(s)

s∫
θ

(τ − t)l2ϕj2(τ)dτds

2

dθ. (2.1162)
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Applying (2.721), (2.1152) and using Lebesgue’s Dominated Convergence
Theorem in (2.1162), we get the equality (2.1150).

Let us prove (2.1151). Applying Fubini’s Theorem and Parseval’s equality,
we have

lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

=

= lim
p→∞

p∑
j2=0

 p∑
j1=0

T∫
t

(θ − t)l3ϕj1(θ)

θ∫
t

(τ − t)l2ϕj2(τ)

τ∫
t

(s− t)l1ϕj1(s)dsdτdθ

2

=

= lim
p→∞

p∑
j2=0

 p∑
j1=0

T∫
t

(τ − t)l2ϕj2(τ)

τ∫
t

(s− t)l1ϕj1(s)ds

T∫
τ

(θ − t)l3ϕj1(θ)dθdτ

2

≤

≤ lim
p→∞

∞∑
j2=0

 T∫
t

(τ − t)l2ϕj2(τ)

p∑
j1=0

τ∫
t

(s− t)l1ϕj1(s)ds

T∫
τ

(θ − t)l3ϕj1(θ)dθdτ

2

≤

= lim
p→∞

T∫
t

(τ − t)2l2

 p∑
j1=0

τ∫
t

(s− t)l1ϕj1(s)ds

T∫
τ

(θ − t)l3ϕj1(θ)dθ

2

dτ. (2.1163)

Applying (2.969), we obtain∣∣∣∣∣∣
p∑

j1=0

τ∫
t

(s− t)l1ϕj1(s)ds

T∫
τ

(θ − t)l3ϕj1(θ)dθ

∣∣∣∣∣∣ ≤ C <∞, (2.1164)

where constant C does not depend on p, τ.

Using the generalized Parseval equality, we get

∞∑
j1=0

τ∫
t

(s− t)l1ϕj1(s)ds

T∫
τ

(θ − t)l3ϕj1(θ)dθ =

=

T∫
t

(s− t)l1+l31{s<τ}1{s>τ}ds = 0. (2.1165)

Taking into account (2.1164), (2.24) and applying Lebesgue’s Dominated
Convergence Theorem in (2.1163), we obtain the equality (2.1151). Theo-
rem 2.51 is proved.
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2.25 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 3 Under Additional As-

sumptions. The Case of an Arbitrary Complete

Orthonormal System of Functions in the Space

L2([t, T ]) and ψ1(τ ), ψ2(τ ), ψ3(τ ) ∈ L2([t, T ])

In this section, we will prove the following two theorems.

Theorem 2.52 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
ψ2(τ), ψ3(τ) ∈ L2([t, T ]) are such that∣∣∣∣∣

p∑
j1=0

s∫
t

ψ2(τ)ϕj1(τ)

τ∫
t

ψ1(θ)ϕj1(θ)dθdτ

∣∣∣∣∣
2

≤ K <∞, (2.1166)

∣∣∣∣∣
p∑

j3=0

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτ

∣∣∣∣∣
2

≤ K <∞ (2.1167)

∀p ∈ N, where constant K does not depend on p and s (t ≤ s ≤ T ). Then, for

the sum J̄∗[ψ(3)]
(i1i2i3)
T,t (i1, i2, i3 = 0, 1, . . . ,m) of iterated Itô stochastic integrals

defined by (2.962) (k = 3) the following expansion

J̄∗[ψ(3)]
(i1i2i3)
T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

that converges in the mean-square sense is valid, where

Cj3j2j1 =

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.
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Theorem 2.53 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
ψ2(τ), ψ3(τ) are continuous functions on [t, T ]. Furthermore, let the conditions
(2.1166), (2.1167) are satisfied. Then, for the iterated Stratonovich stochastic
integral of third multiplicity

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 (i1, i2, i3 = 0, 1, . . . ,m)

the following expansion

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

that converges in the mean-square sense is valid, where notations are the same
as in Theorem 2.52.

Note that Theorem 2.53 is a simple consequence of Theorem 2.52 and The-
orem 2.12 (k = 3). Let us prove Theorem 2.52.

Proof. First, let us note some facts that follows from Monotone Conver-
gence Theorem ([147], Theorem 3.5.1) and Lebesgue’s Dominated Convergence
Theorem. Suppose that {gj(x)}∞j=0 is an arbitrary sequence of real-valued mea-
surable functions such that

∞∑
j=0

|gj(x)| ≤ K <∞ (2.1168)

almost everywhere on X (with respect to Lebesgue’s measure), where constant
K does not depend on x.

It is easy to see that under the above conditions the following equality

lim
p→∞

∫
X

h2(x)

(
p∑
j=0

gj(x)

)2

dx =

∫
X

h2(x)

( ∞∑
j=0

gj(x)

)2

dx (2.1169)

is true, where h(x) ∈ L2(X) (further, we put h(x) ≡ 1 for simplicity). Indeed,
we have

|gj(x)| = g+j (x) + g−j (x), gj(x) = g+j (x)− g−j (x),

where

g+j (x) = max{gj(x), 0} ≥ 0, g−j (x) = −min{gj(x), 0} ≥ 0.
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Moreover,
∞∑
j=0

|gj(x)| =
∞∑
j=0

g+j (x) +
∞∑
j=0

g−j (x), (2.1170)

∞∑
j=0

gj(x) =
∞∑
j=0

g+j (x)−
∞∑
j=0

g−j (x).

Using (2.1168), we obtain that the series (with non-negative terms) on the
right-hand side of (2.1170) satisfy the condition (2.1168). Further, using Mono-
tone Convergence Theorem, we obtain

lim
p→∞

∫
X

(
p∑
j=0

gj(x)

)2

dx = lim
p→∞

∫
X

(
p∑
j=0

g+j (x)−
p∑
j=0

g−j (x)

)2

dx =

= lim
p→∞

∫
X

(
p∑
j=0

g+j (x)

)2

dx− lim
p→∞

2

∫
X

p∑
j=0

g+j (x)

p∑
j=0

g−j (x)dx+

+ lim
p→∞

∫
X

(
p∑
j=0

g−j (x)

)2

dx =

=

∫
X

lim
p→∞

(
p∑
j=0

g+j (x)

)2

dx− 2

∫
X

lim
p→∞

p∑
j=0

g+j (x)

p∑
j=0

g−j (x)dx+

+

∫
X

lim
p→∞

(
p∑
j=0

g−j (x)

)2

dx =

=

∫
X

( ∞∑
j=0

g+j (x)

)2

dx− 2

∫
X

∞∑
j=0

g+j (x)
∞∑
j=0

g−j (x)dx+

∫
X

( ∞∑
j=0

g−j (x)

)2

dx =

(2.1171)

=

∫
X

( ∞∑
j=0

g+j (x)−
∞∑
j=0

g−j (x)

)2

dx =

∫
X

( ∞∑
j=0

gj(x)

)2

dx.

The equality (2.1169) can be obtained under another conditions. If we
replace the condition (2.1168) with∣∣∣∣∣

p∑
j=0

gj(x)

∣∣∣∣∣ ≤ K <∞ ∀p ∈ N and lim
p→∞

p∑
j=0

gj(x) exists (2.1172)
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almost everywhere on X (with respect to Lebesgue’s measure), then by
Lebesgue’s Dominated Convergence Theorem we obtain (2.1169). Here con-
stant K does not depend on x and p.

According to Theorem 2.49, we come to the conclusion that Theorem 2.52
will be proved if we prove the following equalities

lim
p→∞

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

= 0, (2.1173)

lim
p→∞

p∑
j1=0

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)2

= 0, (2.1174)

lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

= 0. (2.1175)

Let us prove (2.1173). Using Parseval’s equality, we have

lim
p→∞

p∑
j3=0

(
1

2
Cj3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cj3j1j1

)2

=

= lim
p→∞

p∑
j3=0

 T∫
t

ψ3(s)ϕj3(s)

1

2

s∫
t

ψ2(τ)ψ1(τ)dτ−

−
p∑

j1=0

s∫
t

ψ2(τ)ϕj1(τ)

τ∫
t

ψ1(θ)ϕj1(θ)dθdτ

 ds

2

≤

≤ lim
p→∞

∞∑
j3=0

 T∫
t

ψ3(s)ϕj3(s)

1

2

s∫
t

ψ2(τ)ψ1(τ)dτ−

−
p∑

j1=0

s∫
t

ψ2(τ)ϕj1(τ)

τ∫
t

ψ1(θ)ϕj1(θ)dθdτ

 ds

2

=

= lim
p→∞

T∫
t

ψ2
3(s)

1

2

s∫
t

ψ2(τ)ψ1(τ)dτ−
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−
p∑

j1=0

s∫
t

ψ2(τ)ϕj1(τ)

τ∫
t

ψ1(θ)ϕj1(θ)dθdτ

2

ds = (2.1176)

=

T∫
t

ψ2
3(s) lim

p→∞

1

2

s∫
t

ψ2(τ)ψ1(τ)dτ−

−
p∑

j1=0

s∫
t

ψ2(τ)ϕj1(τ)

τ∫
t

ψ1(θ)ϕj1(θ)dθdτ

2

ds = 0, (2.1177)

where (2.1177) follows from from (2.125) (also see (2.721)) and the transition
from (2.1176) to (2.1177) is based on (2.1169), (2.1172) and Lebesgue’s Domi-
nated Convergence Theorem (see (2.1166)). The equality (2.1173) is proved.

Let us prove (2.1174). Using Fubini’s Theorem and Parseval’s equality, we
obtain

lim
p→∞

p∑
j1=0

(
1

2
Cj3j3j1

∣∣∣∣
(j3j3)↷(·)

−
p∑

j3=0

Cj3j3j1

)2

=

= lim
p→∞

p∑
j1=0

1

2

T∫
t

ψ3(τ)ψ2(τ)

τ∫
t

ψ1(s)ϕj1(s)dsdτ−

−
p∑

j3=0

T∫
t

ψ3(θ)ϕj3(θ)

θ∫
t

ψ2(τ)ϕj3(τ)

τ∫
t

ψ1(s)ϕj1(s)dsdτdθ

2

=

= lim
p→∞

p∑
j1=0

1

2

T∫
t

ψ1(s)ϕj1(s)

T∫
s

ψ3(τ)ψ2(τ)dτds−

−
p∑

j3=0

T∫
t

ψ1(s)ϕj1(s)

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτds

2

=

= lim
p→∞

p∑
j1=0

 T∫
t

ψ1(s)ϕj1(s)

1

2

T∫
s

ψ3(τ)ψ2(τ)dτ−

−
p∑

j3=0

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτ

 ds

2

≤
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≤ lim
p→∞

∞∑
j1=0

 T∫
t

ψ1(s)ϕj1(s)

1

2

T∫
s

ψ3(τ)ψ2(τ)dτ−

−
p∑

j3=0

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτ

 ds

2

=

= lim
p→∞

T∫
t

ψ2
1(s)

1

2

T∫
s

ψ3(τ)ψ2(τ)dτ−

−
p∑

j3=0

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτ

2

ds = (2.1178)

=

T∫
t

ψ2
1(s) lim

p→∞

1

2

T∫
s

ψ3(τ)ψ2(τ)dτ−

−
p∑

j3=0

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτ

2

ds = 0, (2.1179)

where (2.1179) follows from (2.125) and the transition from (2.1178) to (2.1179)
is based on (2.1169), (2.1172) and Lebesgue’s Dominated Convergence Theorem
(see (2.1167)). The equality (2.1174) is proved.

Let us prove (2.1175). Applying Fubini’s Theorem and Parseval’s equality,
we have

lim
p→∞

p∑
j2=0

(
p∑

j1=0

Cj1j2j1

)2

=

= lim
p→∞

p∑
j2=0

 p∑
j1=0

T∫
t

ψ3(θ)ϕj1(θ)

θ∫
t

ψ2(τ)ϕj2(τ)

τ∫
t

ψ1(s)ϕj1(s)dsdτdθ

2

=

= lim
p→∞

p∑
j2=0

 p∑
j1=0

T∫
t

ψ2(τ)ϕj2(τ)

τ∫
t

ψ1(s)ϕj1(s)ds

T∫
τ

ψ3(θ)ϕj1(θ)dθdτ

2

≤

≤ lim
p→∞

∞∑
j2=0

 T∫
t

ψ2(τ)ϕj2(τ)

p∑
j1=0

τ∫
t

ψ1(s)ϕj1(s)ds

T∫
τ

ψ3(θ)ϕj1(θ)dθdτ

2

=
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= lim
p→∞

T∫
t

ψ2
2(τ)

 p∑
j1=0

τ∫
t

ψ1(s)ϕj1(s)ds

T∫
τ

ψ3(θ)ϕj1(θ)dθ

2

dτ = (2.1180)

=

T∫
t

ψ2
2(τ) lim

p→∞

 p∑
j1=0

τ∫
t

ψ1(s)ϕj1(s)ds

T∫
τ

ψ3(θ)ϕj1(θ)dθ

2

dτ = 0, (2.1181)

where (2.1181) follows from the equality

∞∑
j1=0

τ∫
t

ψ1(s)ϕj1(s)ds

T∫
τ

ψ3(θ)ϕj1(θ)dθ =

T∫
t

ψ1(s)1{s<τ}ψ3(s)1{s>τ}ds = 0

(2.1182)

(the relation (2.1182) follows from the generalized Parseval equality) and
the transition from (2.1180) to (2.1181) is based on (2.1169), (2.1172) and
Lebesgue’s Dominated Convergence Theorem (see (2.969)). The equality
(2.1175) is proved. Theorem 2.52 is proved.

2.26 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicities 4 and 5 Under Additional

Assumptions. The Case of an Arbitrary Complete

Orthonormal System of Functions in the Space

L2([t, T ]) and ψ1(τ ), . . . , ψ5(τ ) ∈ L2([t, T ])

Let us develop the approach discussed in the previous section. It is easy to see
(according to Theorem 2.49) that analogues of Theorems 2.52 and 2.53 for the
cases k = 4 and k = 5 (ψ1(τ), . . . , ψ5(τ) ∈ L2([t, T ])) will be true if the relations
(2.993)–(2.998), (2.1069)–(2.1093) as well as the equalities

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 =
1

4

T∫
t

ψ4(t3)ψ3(t3)

t3∫
t

ψ2(t1)ψ1(t1)dt1dt3, (2.1183)

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = 0, (2.1184)

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = 0, (2.1185)
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lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1(s, τ) =
1

4

s∫
τ

ψ4(t3)ψ3(t3)

t3∫
τ

ψ2(t1)ψ1(t1)dt1dt3, (2.1186)

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1(s, τ) = 0, (2.1187)

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1(s, τ) = 0 (2.1188)

are satisfied, provided that {ϕj(x)}∞j=0 is an arbitrary complete orthonormal
system of functions in the space L2([t, T ]), ψ1(τ), . . . , ψ5(τ) ∈ L2([t, T ]), the
series on the left-hand sides of (2.1183)–(2.1188) converge absolutely, and

Cj4...j1 =

T∫
t

ψ4(t4)ϕj4(t4) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dt4,

Cj5...j1 =

T∫
t

ψ5(t5)ϕj5(t5) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dt5,

Cj4...j1(s, τ) =

s∫
τ

ψ4(t4)ϕj4(t4) . . .

t2∫
τ

ψ1(t1)ϕj1(t1)dt1 . . . dt4 (t ≤ τ < s ≤ T )

in (2.993)–(2.998), (2.1069)–(2.1093), (2.1183)–(2.1188).

It is obvious that the equalities (2.1186)–(2.1188) follow from the equalities
(2.1183)–(2.1185) if in (2.1183)–(2.1185) we replace ψ4(t4), ψ3(t3), ψ2(t2), ψ1(t1)
with 1{τ<t4<s}ψ4(t4), 1{τ<t3}ψ3(t3), 1{τ<t2}ψ2(t2), 1{τ<t1}ψ1(t1), respectively.

Further, the proofs of Theorems 2.46 and 2.50 must be modified and carried
out by analogy with the proof of Theorem 2.52, i.e. using the equalities (2.1169),
(2.1172) and Lebesgue’s Dominated Convergence Theorem. At that, the deri-
vation of formulas similar to (2.1002)–(2.1007), (2.1094)–(2.1103), (2.1120)–
(2.1126), (2.1129), (2.1130), (2.1133), (2.1134), (2.1135), (2.1138), (2.1141),
(2.1144) is carried out completely similarly to (2.1002)–(2.1007), (2.1094)–
(2.1103), (2.1120)–(2.1126), (2.1129), (2.1130), (2.1133), (2.1134), (2.1135),
(2.1138), (2.1141), (2.1144), adjusted for the fact that in (2.1002)–(2.1007),
(2.1094)–(2.1103), (2.1120)–(2.1126), (2.1129), (2.1130), (2.1133), (2.1134),
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(2.1135), (2.1138), (2.1141), (2.1144) the functions ψ1(τ), . . . , ψ5(τ) ≡ 1 are
replaced by ψ1(τ), . . . , ψ5(τ) ∈ L2([t, T ]).

Furthermore, the following additional conditions∣∣∣∣∣∣
p∑
j=0

s∫
τ

ψm+1(t2)ϕj(t2)

t2∫
τ

ψm(t1)ϕj(t1)dt1dt2

∣∣∣∣∣∣
2

≤ K <∞ (m = 1, 2, 3, 4),

(2.1189)∣∣∣∣∣
p∑

j1,j2=0

C
ψm+3ψm+2ψm+1ψm

j2j2j1j1
(s, τ)

∣∣∣∣∣
2

≤ K <∞ (m = 1, 2), (2.1190)

∣∣∣∣∣
p∑

j1,j2=0

C
ψm+3ψm+2ψm+1ψm

j2j1j2j1
(s, τ)

∣∣∣∣∣
2

≤ K <∞ (m = 1, 2), (2.1191)

∣∣∣∣∣
p∑

j1,j2=0

C
ψm+3ψm+2ψm+1ψm

j1j2j2j1
(s, τ)

∣∣∣∣∣
2

≤ K <∞ (m = 1, 2), (2.1192)

must be satisfied ∀p ∈ N, where constant K does not depend on p, τ, s,

C
ψm+3ψm+2ψm+1ψm

j4j3j2j1
(s, τ) =

s∫
τ

ψm+3(t4)ϕj4(t4)×

×
t4∫
τ

ψm+2(t3)ϕj3(t3)

t3∫
τ

ψm+1(t2)ϕj2(t2)

t2∫
τ

ψm(t1)ϕj1(t1)dt1dt2dt3dt4,

where m = 1, 2 and t ≤ τ < s ≤ T.

The conditions (2.1189)–(2.1192) are required to perform the passage to
the limit using Lebesgue’s Dominated Convergence Theorem (see the proofs of
Theorems 2.50, 2.52 for details).

The equality (2.1183) is proved in [118] for the case when {ϕj(x)}∞j=0 is
an arbitrary complete orthonormal system of functions in the space L2([t, T ])
and ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]). The equalities (2.1184), (2.1185) can also
be obtained [119] using the approach from [118]. At that, the series on the
left-hand sides of (2.1183)–(2.1185) converge absolutly. We will return to these
issues in Sect. 2.27.3 and 2.27.4. Sect. 2.27.3 will be devoted to the method from
[118] based on trace class operators. In Sect. 2.27.4 we will prove the equalities
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(2.1183)–(2.1185) using an approach based on the generalized Parseval equality
and (2.125) (the case when {ϕj(x)}∞j=0 is an arbitrary complete orthonormal
system of functions in the space L2([t, T ]) and ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ])).

Taking into account everything said above in this section, we obtain the
following four theorems.

Theorem 2.54 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
. . . , ψ4(τ) ∈ L2([t, T ]). Furthermore, let the condition (2.1189) (m = 1, 2, 3) is

satisfied. Then, for the sum J̄∗[ψ(4)]
(i1...i4)
T,t (i1, . . . , i4 = 0, 1, . . . ,m) of iterated

Itô stochastic integrals defined by (2.962) (k = 4) the following expansion

J̄∗[ψ(4)]
(i1...i4)
T,t = l.i.m.

p→∞

p∑
j1,...,j4=0

Cj4...j1ζ
(i1)
j1

. . . ζ
(i4)
j4

that converges in the mean-square sense is valid, where

Cj4...j1 =

T∫
t

ψ4(t4)ϕj4(t4) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dt4

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Theorem 2.55 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
. . . , ψ4(τ) are continuous functions on [t, T ]. Furthermore, let the condition
(2.1189) (m = 1, 2, 3) is satisfied. Then, for the iterated Stratonovich stochastic
integral of fourth multiplicity

∗∫
t

T

ψ4(t4) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i4)
t4 (i1, . . . , i4 = 0, 1, . . . ,m)

the following expansion

∗∫
t

T

ψ4(t4) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i4)
t4 = l.i.m.

p→∞

p∑
j1,...,j4=0

Cj4...j1ζ
(i1)
j1

. . . ζ
(i4)
j4
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that converges in the mean-square sense is valid, where notations are the same
as in Theorem 2.54.

Theorem 2.56 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
. . . , ψ5(τ) ∈ L2([t, T ]). Furthermore, let the conditions (2.1189)–(2.1192) are

satisfied. Then, for the sum J̄∗[ψ(5)]
(i1...i5)
T,t (i1, . . . , i5 = 0, 1, . . . ,m) of iterated

Itô stochastic integrals defined by (2.962) (k = 5) the following expansion

J̄∗[ψ(5)]
(i1...i5)
T,t = l.i.m.

p→∞

p∑
j1,...,j5=0

Cj5...j1ζ
(i1)
j1

. . . ζ
(i5)
j5

that converges in the mean-square sense is valid, where

Cj5...j1 =

T∫
t

ψ5(t5)ϕj5(t5) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dt5

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Theorem 2.57 [33], [38], [39]. Suppose that {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]) and ψ1(τ),
. . . , ψ5(τ) are continuous functions on [t, T ]. Furthermore, let the conditions
(2.1189)–(2.1192) are satisfied. Then, for the iterated Stratonovich stochastic
integral of fifth multiplicity

∗∫
t

T

ψ5(t5) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i5)
t5 (i1, . . . , i5 = 0, 1, . . . ,m)

the following expansion

∗∫
t

T

ψ5(t5) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i5)
t5 = l.i.m.

p→∞

p∑
j1,...,j5=0

Cj5...j1ζ
(i1)
j1

. . . ζ
(i5)
j5

that converges in the mean-square sense is valid, where notations are the same
as in Theorem 2.56.
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Note that Theorems 2.55 and 2.57 are simple consequences of Theorems 2.54
and 2.56, respectively (see Theorem 2.12 (k = 4, 5)).

2.27 On the Calculation of Matrix Traces of Volterra–

Type Integral Operators

2.27.1 Introduction

It is easy to see that the function (1.310) for even k = 2r (r ∈ N) forms a family
of integral operators K : L2([t, T ]

r) → L2([t, T ]
r) (with the kernel (1.310)) of

the form

(Kf) (tg1, . . . , tgr) =
∫

[t,T ]r

K(t1, . . . , tk)f(tgr+1
, . . . , tgk)dtgr+1

. . . dtgk, (2.1193)

where {g1, . . . , gk} = {1, . . . , k}, the kernel K(t1, . . . , tk) is defined by (1.310),
i.e. has the form

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

, (2.1194)

where ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), t1, . . . , tk ∈ [t, T ] (k ≥ 2) and K(t1) ≡
ψ1(t1) for t1 ∈ [t, T ].

For example,

(Kf) (t2) =
T∫
t

K(t1, t2)f(t1)dt1 = ψ2(t2)

t2∫
t

ψ1(t1)f(t1)dt1, (2.1195)

(Kf) (t3, t4) =
∫

[t,T ]2

K(t1, . . . , t4)f(t1, t2)dt1dt2 =

= 1{t3<t4}ψ3(t3)ψ4(t4)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)f(t1, t2)dt1dt2,
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(Kf) (t1, t2) =
∫

[t,T ]2

K(t1, . . . , t4)f(t3, t4)dt3dt4 =

= ψ1(t1)ψ2(t2)1{t1<t2}

T∫
t2

ψ3(t3)

T∫
t3

ψ4(t4)f(t3, t4)dt4dt3.

The simplest representative of the family (2.1193) has the form

(Vf) (x) =
x∫

0

f(τ)dτ (2.1196)

and is called the Volterra integral operator, where V : L2([0, 1]) → L2([0, 1]),
f(τ) ∈ L2([0, 1]). The kernel of the Volterra integral operator has the following
form

K(τ, x) =


1, τ < x

0, otherwise

, τ, x ∈ [0, 1].

Suppose that A : H → H is a linear bounded operator. Recall [127] that A
has a finite matrix trace if for any orthonormal basis {Ψj(x)}∞j=0 of the space
H the series

∞∑
j=0

⟨AΨj,Ψj⟩H (2.1197)

converges, where ⟨·, ·⟩H is a scalar probuct in H.

Note that the series (2.1197) converges absolutely since its sum does not
depend on the permutation of the terms of the series (2.1197) (any permutation
of basis functions Ψj(x) forms a basis in H) [127].

It is well known that the Volterra integral operator (2.1196) is not a trace
class operator since its singular values are equal to sj(V) = 2 (π(2j + 1))−1

[150]. On the other hand, it is known [150] that for trace class operators the
equality of matrix and integral traces holds. It turns out that for the Volterra
integral operator (2.1196) (although it is not a trace class operator), the equality
of matrix and integral traces is also true [150]. Thus, one cannot count on the
fact that operators of the more general form (2.1193) (from the same family of
operators as the Volterra integral operator (2.1196)) are operators of the trace
class. Nevertheless, the proof of the equalities of matrix and integral traces
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for Volterra–type integral operators (2.1193) (which is obviously a problem)
provides a way to calculate the matrix traces of these operators.

Why do we talk so much in this section about matrix traces of operators
from the family (2.1193)? The point is that matrix traces of operators of the
form (2.1193) are of great importance for obtaining of expansions of iterated
Stratonovich stochastic integrals.

Throughout the Chapter 2, we have already calculated the matrix traces
mentioned above many times (see the formulas (2.10), (2.37), (2.125), (2.316),
(2.317), (2.318), (2.529), (2.530), (2.535), (2.566), (2.567), (2.570), (2.683),
(2.692), (2.833)–(2.847), (2.903), (2.999)–(2.1001), (2.1027)–(2.1029), (2.1183)–
(2.1188)).

Let us consider some illustrative examples. We have
∞∑
j1=0

⟨Kϕj1, ϕj1⟩L2([t,T ])
= (2.1198)

=
∞∑
j1=0

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =
∞∑
j1=0

Cj1j1, (2.1199)

∞∑
j1,j2=0

⟨KΨj1j2,Ψj1j2⟩L2([t,T ]2)
= (2.1200)

=
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
∞∑

j1,j2=0

Cj2j2j1j1, (2.1201)

where {Ψj1j2(x, y)}
∞
j1,j2=0 = {ϕj1(x)ϕj2(y)}

∞
j1,j2=0 , {ϕj(x)}

∞
j=0 is an arbitrary com-

plete orthonormal system of functions in L2([t, T ]), (Kf) (t2) in (2.1198) is de-
fined by (2.1195), and (Kf) (t2, t3) in (2.1200) has the following form

(Kf) (t2, t3) =
∫

[t,T ]2

K(t1, . . . , t4)f(t1, t4)dt1dt4 =

= ψ2(t2)ψ3(t3)1{t2<t3}

t2∫
t

ψ1(t1)

T∫
t3

ψ4(t4)f(t1, t4)dt4dt1,
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where K(t1, . . . , t4) is defined by (2.1194).

The expressions on the right-hand sides of (2.1199) and (2.1201) were con-
sidered earlier in Chapter 2 under various assumptions on {ϕj(x)}∞j=0 and
ψ1(τ), . . . , ψ4(τ) (see the formulas (2.10), (2.37), (2.125), (2.316), (2.529),
(2.535), (2.566), (2.999), (2.1027), (2.1183)).

2.27.2 Approach Based on Generalized Parseval’s Equality and
(2.125). Symmetrical Case When ψ1(τ) = ψk(τ), ψ2(τ) =
ψk−1(τ), . . . , ψr(τ) = ψr+1(τ) (k = 2r, r = 2, 3, 4, . . .) and ψ1(τ),
. . . , ψk(τ) ∈ L2([t, T ])

Let us consider one of the possible ways to calculate matix traces of Volterra-
type integral operators (2.1193) based Fubini’s Theorem, Parseval’s equality
and generalized Parseval’s equality.

Recall the equalities (2.848) and (2.1008)

Cj6j5j4j3j2j1 + Cj1j2j3j4j5j6 = Cj6Cj5j4j3j2j1 − Cj5j6Cj4j3j2j1+

+Cj4j5j6Cj3j2j1 − Cj3j4j5j6Cj2j1 + Cj2j3j4j5j6Cj1, (2.1202)

Cj4j3j2j1 + Cj1j2j3j4 = Cj4Cj3j2j1 − Cj3j4Cj2j1 + Cj2j3j4Cj1, (2.1203)

where Cjk...j1 is defined by the formula

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (k ∈ N)

for the case ψ1(τ), . . . , ψk(τ) ≡ 1.

It is easy to see (see the derivation of (2.848) and (2.1008)) that ana-
logues of the relations (2.1202), (2.1203) (with appropriate changes) hold for
ψ1(τ), . . . , ψ6(τ) ∈ L2([t, T ]).

By analogy with (2.1202), (2.1203) (see the derivation of (2.848) and
(2.1008)) we obtain for k = 2r (r = 2, 3, 4, . . .)

C
ψkψk−1...ψ1

jkjk−1...j1
+ Cψ1ψ2...ψk

j1j2...jk
= Cψk

jk
· Cψk−1ψk−2...ψ1

jk−1jk−2...j1
− C

ψk−1ψk

jk−1jk
· Cψk−2ψk−3...ψ1

jk−2jk−3...j1
+

+C
ψk−2ψk−1ψk

jk−2jk−1jk
·Cψk−3ψk−4...ψ1

jk−3jk−4...j1
− . . .−Cψ3ψ4...ψk

j3j4...jk
·Cψ2ψ1

j2j1
+Cψ2ψ3...ψk

j2j3...jk
·Cψ1

j1
, (2.1204)
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where

Cψk...ψ1

jk...j1
=

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (k ∈ N). (2.1205)

When proving Theorems 2.46 and 2.48, using (2.1204) (the case k = 4,
ψ1(τ), . . . , ψ4(τ) ≡ 1), we obtained the following formulas

lim
p→∞

p∑
j1,j3=0

Cj3j3j1j1 =
1

8
(T − t)2,

lim
p→∞

p∑
j1,j3=0

Cj1j3j3j1 = 0,

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = 0,

where {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in

the space L2([t, T ]) and we use the notation Cjk...j1 instead of Cψk...ψ1

jk...j1
for the

case ψ1(τ), . . . , ψk(τ) ≡ 1.

In principle, using (2.1204), we can calculate any matrix traces for which
the following symmetry condition

ψ1(τ) = ψk(τ), ψ2(τ) = ψk−1(τ), . . . , ψr(τ) = ψr+1(τ) (k = 2r, r = 2, 3, 4, . . .)
(2.1206)

is satisfied. Obviously, the case ψ1(τ), . . . , ψk(τ) ≡ 1 is possible since it is a spe-
cial case of (2.1206). This case is important because it covers the mean-square
approximation of iterated Stratonovich stochastic integrals from the classical
Taylor–Stratonovich expansions (see Chapter 4).

Consider the case k = 4 of (2.1204)

Cψ4ψ3ψ2ψ1

j4j3j2j1
+Cψ1ψ2ψ3ψ4

j1j2j3j4
= Cψ4

j4
Cψ3ψ2ψ1

j3j2j1
−Cψ3ψ4

j3j4
Cψ2ψ1

j2j1
+Cψ2ψ3ψ4

j2j3j4
Cψ1

j1
, (2.1207)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Substitute j4 = j3, j2 = j1 into (2.1207)

Cψ4ψ3ψ2ψ1

j3j3j1j1
+Cψ1ψ2ψ3ψ4

j1j1j3j3
= Cψ4

j3
Cψ3ψ2ψ1

j3j1j1
−Cψ3ψ4

j3j3
Cψ2ψ1

j1j1
+Cψ2ψ3ψ4

j1j3j3
Cψ1

j1
. (2.1208)
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Applying (2.1208), we get

lim
p→∞

p∑
j1,j3=0

(
Cψ4ψ3ψ2ψ1

j3j3j1j1
+ Cψ1ψ2ψ3ψ4

j1j1j3j3

)
= lim

p→∞

p∑
j1,j3=0

Cψ4

j3
Cψ3ψ2ψ1

j3j1j1
−

− lim
p→∞

p∑
j1,j3=0

Cψ3ψ4

j3j3
Cψ2ψ1

j1j1
+ lim

p→∞

p∑
j1,j3=0

Cψ2ψ3ψ4

j1j3j3
Cψ1

j1
. (2.1209)

From (2.721) we have

lim
p→∞

p∑
j3=0

Cψ3ψ4

j3j3

p∑
j1=0

Cψ2ψ1

j1j1
= lim

p→∞

p∑
j3=0

Cψ3ψ4

j3j3
lim
p→∞

p∑
j1=0

Cψ2ψ1

j1j1
=

=
1

4

T∫
t

ψ4(s)ψ3(s)ds

T∫
t

ψ2(s)ψ1(s)ds. (2.1210)

Further, we obtain

lim
p→∞

p∑
j3=0

Cψ4

j3

p∑
j1=0

Cψ3ψ2ψ1

j3j1j1
=

1

2
lim
p→∞

p∑
j3=0

Cψ4

j3
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−

− lim
p→∞

p∑
j3=0

Cψ4

j3

(
1

2
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cψ3ψ2ψ1

j3j1j1

)
. (2.1211)

Applying the generalized Parseval equality, we have

lim
p→∞

p∑
j3=0

Cψ4

j3
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

=

= lim
p→∞

p∑
j3=0

T∫
t

ψ4(s)ϕj3(s)ds

T∫
t

ψ3(s)ϕj3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds =

=

T∫
t

ψ4(s)ψ3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds. (2.1212)

From (2.1211) and (2.1212) we obtain

lim
p→∞

p∑
j3=0

Cψ4

j3

p∑
j1=0

Cψ3ψ2ψ1

j3j1j1
=

1

2

T∫
t

ψ4(s)ψ3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds−
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− lim
p→∞

p∑
j3=0

Cψ4

j3

(
1

2
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cψ3ψ2ψ1

j3j1j1

)
. (2.1213)

Due to Cauchy–Bunyakovsky’s inequality, Parseval’s equality and (2.1173),
we get

lim
p→∞

(
p∑

j3=0

Cψ4

j3

(
1

2
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cψ3ψ2ψ1

j3j1j1

))2

≤

≤ lim
p→∞

p∑
j3=0

(
Cψ4

j3

)2 p∑
j3=0

(
1

2
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cψ3ψ2ψ1

j3j1j1

)2

≤

≤ lim
p→∞

∞∑
j3=0

(
Cψ4

j3

)2 p∑
j3=0

(
1

2
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cψ3ψ2ψ1

j3j1j1

)2

=

=

T∫
t

ψ2
4(s)ds lim

p→∞

p∑
j3=0

(
1

2
Cψ3ψ2ψ1

j3j1j1

∣∣∣∣
(j1j1)↷(·)

−
p∑

j1=0

Cψ3ψ2ψ1

j3j1j1

)2

= 0. (2.1214)

Combining (2.1213) and (2.1214), we obtain

lim
p→∞

p∑
j3=0

Cψ4

j3

p∑
j1=0

Cψ3ψ2ψ1

j3j1j1
=

1

2

T∫
t

ψ4(s)ψ3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds. (2.1215)

Absolutely similarly to (2.1215) we get

lim
p→∞

p∑
j1=0

Cψ1

j1

p∑
j3=0

Cψ2ψ3ψ4

j1j3j3
=

1

2

T∫
t

ψ2(s)ψ1(s)

s∫
t

ψ3(τ)ψ4(τ)dτds. (2.1216)

Combining (2.1209), (2.1210), (2.1215), (2.1216) and applying Fubini’s The-
orem, we have

lim
p→∞

p∑
j1,j3=0

(
Cψ4ψ3ψ2ψ1

j3j3j1j1
+ Cψ1ψ2ψ3ψ4

j1j1j3j3

)
=

1

2

T∫
t

ψ4(s)ψ3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds+

+
1

2

T∫
t

ψ2(s)ψ1(s)

s∫
t

ψ3(τ)ψ4(τ)dτds−
1

4

T∫
t

ψ4(s)ψ3(s)ds

T∫
t

ψ2(s)ψ1(s)ds =
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=
1

4

T∫
t

ψ4(s)ψ3(s)ds

T∫
t

ψ2(s)ψ1(s)ds =

=
1

4

T∫
t

ψ4(s)ψ3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds+
1

4

T∫
t

ψ2(s)ψ1(s)

s∫
t

ψ3(τ)ψ4(τ)dτds.

(2.1217)

Let us rewrite (2.1217) in the form

lim
p→∞

p∑
j1,j3=0

(
Cψ4ψ3ψ2ψ1

j3j3j1j1
+ Cψ1ψ2ψ3ψ4

j3j3j1j1

)
=

=
1

4

T∫
t

ψ4(s)ψ3(s)

s∫
t

ψ2(τ)ψ1(τ)dτds+
1

4

T∫
t

ψ2(s)ψ1(s)

s∫
t

ψ3(τ)ψ4(τ)dτds.

(2.1218)

It is easy to see that the left-hand side of (2.1218) does not depend on the
simultaneous rearrangement of ψ4 with ψ1 and ψ3 with ψ2.

Using the above arguments and using derivation method of (2.1028) and
(2.1029), we get

lim
p→∞

p∑
j1,j3=0

(
Cψ4ψ3ψ2ψ1

j3j1j3j1
+ Cψ1ψ2ψ3ψ4

j3j1j3j1

)
= 0, (2.1219)

lim
p→∞

p∑
j1,j3=0

(
Cψ4ψ3ψ2ψ1

j1j3j3j1
+ Cψ1ψ2ψ3ψ4

j1j3j3j1

)
= 0. (2.1220)

Using (2.1218)–(2.1220) under the conditions ψ1(τ) = ψ4(τ), ψ2(τ) = ψ3(τ),
we obtain

lim
p→∞

p∑
j1,j3=0

Cψ1ψ2ψ2ψ1

j3j3j1j1
=

1

4

T∫
t

ψ2(s)ψ1(s)

s∫
t

ψ2(τ)ψ1(τ)dτds,

lim
p→∞

p∑
j1,j3=0

Cψ1ψ2ψ2ψ1

j3j1j3j1
= 0,

lim
p→∞

p∑
j1,j3=0

Cψ1ψ2ψ2ψ1

j1j3j3j1
= 0.
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2.27.3 Approach Based on Trace Class Operators

An efficient method for calculating of matrix traces of Volterra–type integral
operators of the form (2.1193) was proposed in [118]. This method is based on
Theorem 3.1 from [150]. Theorem 3.1 [150] implies the following statement.

Theorem D. Let K : L2([t, T ]
k) → L2([t, T ]

k) (k = 2r, r = 1, 2, . . .) be
a trace class operator. Then K̃(t1, . . . , tr, t1, . . . , tr) exists almost everywhere
[dt1 . . . dtr] and

trK =

∫
[t,T ]r

K̃(t1, . . . , tr, t1, . . . , tr)dt1 . . . dtr, (2.1221)

where K(t1, . . . , t2r) ∈ L2([t, T ]
2r) is defined by (2.1194),

F̃ (x1, . . . , xm)
def
= lim

u→0
AuF (x1, . . . , xm),

AuF (x1, . . . , xm)
def
=

1

(2u)m

∫
[−u,u]m

F (x1 + τ1, . . . , xm + τm)dτ1 . . . dτm (m ∈ N).

Let us prove the equality (2.1183) using the method from [118] in our in-
terpretation. Consider two symmetric functions of the form (2.48) which we
introduced in Sect. 2.1.2

K ′(t1, t2) = ψ1(t1)f2(t2)1{t1≤t2} + ψ1(t2)f2(t1)1{t1≥t2}, (2.1222)

K ′′(t3, t4) = f3(t3)ψ4(t4)1{t3≤t4} + f3(t4)ψ4(t3)1{t3≥t4}, (2.1223)

where we suppose that ψ1(τ), ψ4(τ) are continuously differentiable functions
on [t, T ] (the case ψ1(τ), ψ4(τ) ∈ L2([t, T ]) will be considered further) and
f2(τ), f3(τ) are polynomials of finite degrees.

By Theorem B (see Sect. 2.1.5) and (2.133) we have that the kernels
K ′(t1, t2) and K ′′(t3, t4) (see (2.1222), (2.1223)) correspond to the trace class
integral operators.

It is known [150] that the integral operator A is a trace class operator if
and only if the kernel K(x, y) of A has the following representation

K(x, y) =

∫
[t,T ]2n

K1(x, τ)K2(τ, y)dτ (2.1224)
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almost everywhere [dxdy], where K1(x, y), K2(x, y) are kernels of Hilbert–
Schmidt operators, x, y ∈ Rn (n ≥ 1).

Since K ′(t1, t2) and K
′′(t3, t4) are kernels of the trace class integral opera-

tors, then (see (2.1224))

K ′(t1, t2) =

∫
[t,T ]

K ′
1(t1, τ)K

′
2(τ, t2)dτ, K ′′(t1, t2) =

∫
[t,T ]

K ′′
1 (t1, τ)K

′′
2 (τ, t2)dτ

(2.1225)
almost everywhere [dt1dt2], where K

′
1, K

′
2, K

′′
1 , K

′′
2 ∈ L2([t, T ]

2). Then, we have

K ′(t1, t2)K
′′(t3, t4) =

∫
[t,T ]

K ′
1(t1, τ1)K

′
2(τ1, t2)dτ1

∫
[t,T ]

K ′′
1 (t3, τ2)K

′′
2 (τ2, t4)dτ2 =

=

∫
[t,T ]2

K ′
1(t1, τ1)K

′′
1 (t3, τ2)K

′
2(τ1, t2)K

′′
2 (τ2, t4)dτ1dτ2. (2.1226)

The equality (2.1226) can be written as follows

F (t1, t3, t2, t4) =

∫
[t,T ]2

F1(t1, t3, τ1, τ2)F2(τ1, τ2, t2, t4)dτ1dτ2

almost everywhere [dt1dt2dt3dt4], where F (t1, t3, t2, t4) = K ′(t1, t2)K
′′(t3, t4),

F1(t1, t3, τ1, τ2) = K ′
1(t1, τ1)K

′′
1 (t3, τ2), and F2(τ1, τ2, t2, t4) = K ′

2(τ1, t2)K
′′
2 (τ2, t4).

As a result, the product K ′(t1, t2)K
′′(t3, t4) is also the kernel of the trace

class operator (see (2.1224)). Let us denote it by K′.

Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in L2([t, T ]). Then {Ψj1j2(x, y)}

∞
j1,j2=0 = {ϕj1(x)ϕj2(y)}

∞
j1,j2=0 is an or-

thonormal basis in L2([t, T ]
2).

Consider matrix trace of K′. Using Fubini’s Theorem, we obtain
∞∑

j1,j2=0

⟨Ψj1j2,K′Ψj1j2⟩L2([t,T ]2)
=

=
∞∑

j1,j2=0

∫
[t,T ]2

ϕj2(t4)ϕj1(t1)

∫
[t,T ]2

K ′(t1, t2)K
′′(t3, t4)ϕj2(t3)ϕj1(t2)dt2dt3dt1dt4 =

=
∞∑

j1,j2=0

( T∫
t

ψ4(t4)ϕj2(t4)

T∫
t

ψ1(t1)ϕj1(t1)

t4∫
t

f3(t3)ϕj2(t3)

T∫
t1

f2(t2)ϕj1(t2)×
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×dt2dt3dt1dt4+

+

T∫
t

f3(t4)ϕj2(t4)

T∫
t

ψ1(t1)ϕj1(t1)

T∫
t4

ψ4(t3)ϕj2(t3)

T∫
t1

f2(t2)ϕj1(t2)×

×dt2dt3dt1dt4+

+

T∫
t

ψ4(t4)ϕj2(t4)

T∫
t

f2(t1)ϕj1(t1)

t4∫
t

f3(t3)ϕj2(t3)

t1∫
t

ψ1(t2)ϕj1(t2)×

×dt2dt3dt1dt4+

+

T∫
t

f2(t1)ϕj1(t1)

T∫
t

ψ4(t3)ϕj2(t3)

t3∫
t

f3(t4)ϕj2(t4)

t1∫
t

ψ1(t2)ϕj1(t2)×

×dt2dt4dt3dt1

)
=

=
∞∑

j1,j2=0

( T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

f3(t3)ϕj2(t3)

T∫
t

f2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4+

+

T∫
t

ψ4(t3)ϕj2(t3)

t3∫
t

f3(t4)ϕj2(t4)

T∫
t

f2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt4dt3+

+

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

f3(t3)ϕj2(t3)

T∫
t

f2(t1)ϕj1(t1)

t1∫
t

ψ1(t2)ϕj1(t2)×

×dt2dt1dt3dt4+
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+

T∫
t

ψ4(t3)ϕj2(t3)

t3∫
t

f3(t4)ϕj2(t4)

T∫
t

f2(t1)ϕj1(t1)

t1∫
t

ψ1(t2)ϕj1(t2)×

×dt2dt1dt4dt3

)
=

= 4
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

f3(t3)ϕj2(t3)

T∫
t

f2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4. (2.1227)

According to (2.1227) and (2.1221), we get

∞∑
j1,j2=0

⟨Ψj1j2,K′Ψj1j2⟩L2([t,T ]2)
=

= 4
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

f3(t3)ϕj2(t3)

T∫
t

f2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
∫

[t,T ]2

lim
u→0

AuK
′(t2, t2)K

′′(t4, t4)dt2dt4 =

=

∫
[t,T ]2

lim
u→0

AuK
′(t2, t2) lim

u→0
AuK

′′(t4, t4)dt2dt4 =

∫
[t,T ]2

K ′(t2, t2)K
′′(t4, t4)dt2dt4 =

=

∫
[t,T ]2

ψ4(t4)f3(t4)f2(t2)ψ1(t2)dt2dt4. (2.1228)

Recall that f2(τ) and f3(τ) are polynomials of finite degrees. For example,
f2(τ) and f3(τ) can be Legendre polynomials that form a complete orthonormal
system of functions in L2([t, T ]).

Denote

sq(t2, t3) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t2)ϕ̄l2(t3), (2.1229)
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where
{
ϕ̄j(x)

}∞
j=0

is a complete orthonormal system of Legendre polynomials in

L2([t, T ]) and Cl2l1 are Fourier–Legendre coefficients for the function g(t2, t3) =
ψ2(t2)ψ3(t3)1{t2<t3} (ψ2(τ), ψ3(τ) ∈ L2([t, T ])), i.e.

Cl2l1 =

T∫
t

ψ3(t3)ϕ̄l2(t3)

t3∫
t

ψ2(t2)ϕ̄l1(t2)dt2dt3.

Further, we have

lim
q→∞

∫
[t,T ]2

(sq(t2, t3)− g(t2, t3))
2 dt2dt3 = 0 or lim

q→∞
∥sq − g∥2L2([t,T ]2)

= 0.

From (2.1228) we obtain (the sum on the right-hand side of (2.1229) is
finite)

∞∑
j1,j2=0

⟨Ψj1j2,K′
qΨj1j2⟩L2([t,T ]2)

=

= 4
∞∑

j1,j2=0

∫
[t,T ]4

1{t1<t2}1{t3<t4}ψ4(t4)ϕj2(t4)sq(t2, t3)ϕj2(t3)ϕj1(t2)ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
∫

[t,T ]2

ψ4(t4)sq(t2, t4)ψ1(t2)dt2dt4, (2.1230)

where the operator K′
q (more precisely, its kernel) is obtained from the operator

K′ (more precisely, from its kernel) by replacing f2f3 with sq.

Note that the equality (2.1230) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

2), i.e. the equality holds
on a dense subset in L2([t, T ]

2).

Trace class operators form a linear space. Therefore, on the left-hand side
of (2.1230) there is a matrix trace of a trace class operator K′

q. The mentioned
matrix trace is a linear bounded (and therefore continuous) functional in the
space of trace class operators [127], [128] (this functional can be extended to
the space L2([t, T ]

2) by continuity [147]).

From the other hand, the right-hand side of (2.1230) defines (as a scalar
product of sq(t2, t4) and ψ4(t4)ψ1(t2) in L2([t, T ]

2)) a linear bounded (and
therefore continuous) functional in L2([t, T ]

2), which is given by the func-
tion ψ4(t4)ψ1(t2). On the left-hand side of (2.1230) (by virtue of the equality
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(2.1230)) there is a linear continuous functional on a dense subset in L2([t, T ]
2).

This functional can be uniquely extended to a linear continuous functional in
L2([t, T ]

2) (see [116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in the equality (2.1230) (at

that we suppose that sq is defined by (2.1229))

∞∑
j1,j2=0

⟨Ψj1j2,K′′Ψj1j2⟩L2([t,T ]2)
=

= 4
∞∑

j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ4(t4)ψ3(t3)ψ2(t2)ψ1(t1)ϕj2(t4)ϕj2(t3)ϕj1(t2)ϕj1(t1)×

×dt1dt2dt3dt4 =
T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4, (2.1231)

where the operator K′′ (more precisely, its kernel) is obtained from the oper-
ator K′

q (more precisely, from its kernel) by replacing sq with lim
q→∞

sq = g ∈

L2([t, T ]
2), ψ2(τ), ψ3(τ) ∈ L2([t, T ]) and ψ1(τ), ψ4(τ) are continuously differen-

tiable functions on [t, T ].

Further, the formula (2.1231) will remain valid if we choose

ψ1(τ) = ψ̄
(p)
1 (τ), ψ4(τ) = ψ̄

(p)
4 (τ),

where

ψ̄
(p)
1 (τ) =

p∑
j=0

ϕ̄j(τ)

T∫
t

ψ̄1(s)ϕ̄j(s)ds, ψ̄
(p)
4 (τ) =

p∑
j=0

ϕ̄j(τ)

T∫
t

ψ̄4(s)ϕ̄j(s)ds,

(2.1232)
where p ∈ N, ψ̄1(τ), ψ̄4(τ) ∈ L2([t, T ]), and

{
ϕ̄j(x)

}∞
j=0

is a complete orthonor-

mal system of Legendre polynomials in L2([t, T ]).

Substitute (2.1232) into (2.1231)

∞∑
j1,j2=0

⟨Ψj1j2,K′′
pΨj1j2⟩L2([t,T ]2)

=

= 4
∞∑

j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ̄
(p)
4 (t4)ψ3(t3)ψ2(t2)ψ̄

(p)
1 (t1)ϕj2(t4)ϕj2(t3)ϕj1(t2)ϕj1(t1)×
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×dt1dt2dt3dt4 =
T∫
t

ψ̄
(p)
4 (t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ̄
(p)
1 (t2)dt2dt4. (2.1233)

where the operator K′′
p (more precisely, its kernel) is obtained from the operator

K′′ (more precisely, from its kernel) by replacing ψ4 and ψ1 with ψ̄
(p)
4 and ψ̄

(p)
1 ,

respectively.

Note that the equality (2.1233) will also remain true if ψ̄
(p)
4 ψ̄

(p)
1 is replaced

by sp (sp is the partial sum of the Fourier–Legendre series of any function from
L2([t, T ]

2)), i.e. the modified equality (2.1233) is true on a dense subset of
L2([t, T ]

2). Next, we can apply the reasoning below the formula (2.1230) and
obtain the equality of two linear continuous functionals in L2([t, T ]

2). Let us
implement the passage to the limit lim

p→∞
in the mentioned equality under the

condition sp = ψ̄
(p)
4 ψ̄

(p)
1

4
∞∑

j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ̄4(t4)ψ3(t3)ψ2(t2)ψ̄1(t1)ϕj2(t4)ϕj2(t3)ϕj1(t2)ϕj1(t1)×

×dt1dt2dt3dt4 =
T∫
t

ψ̄4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ̄1(t2)dt2dt4, (2.1234)

where ψ̄1(τ), ψ2(τ), ψ3(τ), ψ̄4(τ) ∈ L2([t, T ]).

Rewrite the equality (2.1234) in the form

lim
p→∞

p∑
j1,j2=0

Cj2j2j1j1 =

=
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
1

4

T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4, (2.1235)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Note that the series on the left-hand side of (2.1235) converges absolutly
since its sum does not depend on permutations of basis functions (here the basis
in L2([t, T ]

2) is {ϕj1(x)ϕj2(y)}
∞
j1,j2=0). The equality (2.1183) is proved.
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In [118], the equality (2.1235) is generalized as follows

lim
p→∞

p∑
jk,jk−2,...,j2=0

Cjkjkjk−2jk−2...j2j2 =

=
1

2r

T∫
t

ψk(tk)ψk−1(tk)

tk∫
t

ψk−2(tk−2)ψk−3(tk−2) . . .

. . .

t4∫
t

ψ2(t2)ψ1(t2)dt2 . . . dtk−2dtk, (2.1236)

where k = 2r (r = 2, 3, . . .), ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

The equalities (2.1184), (2.1185) can also be obtained [119] using the ap-
proach from [118] and the series on the left-hand sides of (2.1184), (2.1185)
converge absolutely.

In the notations of Theorem 2.49, the equality (2.1236) can be written in
the form

lim
p→∞

p∑
j1,j3,...,j2r−1=0

Cjk...j1

∣∣∣∣
j1=j2,...,j2r−1=j2r

=

=
1

2r
Cjk...j1

∣∣∣∣
(j2j1)↷(·)(j4j3)↷(·)...(j2rj2r−1)↷(·),j1=j2,j3=j4,...,j2r−1=j2r

, (2.1237)

where k = 2r (r = 2, 3, . . .) and Cjk...j1 is defined by (2.1061).

In principle, using the method from [118] the following equality can be
obtained [119]

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)), where k = 2r (r = 2, 3, . . .),
Cjk...j1 is defined by (2.1061), another notations are the same as in Theorem 2.49.
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2.27.4 Approach Based on Generalized Parseval’s Equality and
(2.125). General Case When ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) (k =
2r, r = 2, 3, 4, . . .)

Let us prove the equalities (2.1183)–(2.1185) using a method based on general-
ized Parseval’s equality and (2.125).

Consider (2.1183). Using (2.125), we have

lim
p→∞

p∑
j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj2(t3)

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =

= lim
p→∞

p∑
j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj2(t3)dt3dt4×

×
T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =

= lim
p→∞

p∑
j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj2(t3)dt3dt4×

× lim
p→∞

p∑
j1=0

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =

=
1

4

T∫
t

ψ4(t4)ψ3(t4)dt4

T∫
t

ψ2(t2)ψ1(t2)dt2 =

=
1

4

∫
[t,T ]2

ψ4(t4)ψ3(t4)ψ2(t2)ψ1(t2)dt2dt4, (2.1238)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Suppose that ψ2(τ) and ψ3(τ) are polynomials of finite degrees. For ex-
ample, ψ2(τ) and ψ3(τ) can be Legendre polynomials that form a complete
orthonormal system of functions in L2([t, T ]).
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Denote

sq(t2, t3) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t2)ϕ̄l2(t3), (2.1239)

where
{
ϕ̄j(x)

}∞
j=0

is a complete orthonormal system of Legendre polynomials in

L2([t, T ]) and Cl2l1 are Fourier–Legendre coefficients for the function g(t2, t3) =
ψ̄2(t2)ψ̄3(t3)1{t2<t3} (ψ̄2(τ), ψ̄3(τ) ∈ L2([t, T ])), i.e.

Cl2l1 =

T∫
t

ψ̄3(t3)ϕ̄l2(t3)

t3∫
t

ψ̄2(t2)ϕ̄l1(t2)dt2dt3

and lim
q→∞

∥sq − g∥2L2([t,T ]2)
= 0.

From (2.1238) we obtain (the sum on the right-hand side of (2.1239) is
finite)

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2}1{t3<t4}ψ4(t4)ϕj2(t4)sq(t2, t3)ϕj2(t3)ϕj1(t2)ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
1

4

∫
[t,T ]2

ψ4(t4)sq(t2, t4)ψ1(t2)dt2dt4. (2.1240)

Note that the equality (2.1240) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

2), i.e. the equality holds
on a dense subset in L2([t, T ]

2).

The right-hand side of (2.1240) defines (as a scalar product of sq(t2, t4)
and 1

4ψ4(t4)ψ1(t2) in L2([t, T ]
2)) a linear bounded (and therefore continuous)

functional in L2([t, T ]
2), which is given by the function 1

4ψ4(t4)ψ1(t2). On the
left-hand side of (2.1240) (by virtue of the equality (2.1240)) there is a linear
continuous functional on a dense subset in L2([t, T ]

2). This functional can be
uniquely extended to a linear continuous functional in L2([t, T ]

2) (see [116],
Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.1240) (at that we

suppose that sq is defined by (2.1239))

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ4(t4)ψ̄3(t3)ψ̄2(t2)ψ1(t1)ϕj2(t4)ϕj2(t3)ϕj1(t2)ϕj1(t1)×
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×dt1dt2dt3dt4 =
1

4

T∫
t

ψ4(t4)ψ̄3(t4)

t4∫
t

ψ̄2(t2)ψ1(t2)dt2dt4, (2.1241)

where ψ1(τ), ψ̄2(τ), ψ̄3(τ), ψ4(τ) ∈ L2([t, T ]).

Rewrite the equality (2.1241) in the form

lim
p→∞

p∑
j1,j2=0

Cj2j2j1j1 =

=
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
1

4

T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4, (2.1242)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Note that the series on the left-hand side of (2.1242) converges absolutly
since its sum does not depend on permutations of basis functions (here the basis
in L2([t, T ]

2) is {ϕj1(x)ϕj2(y)}
∞
j1,j2=0). The equality (2.1183) is proved.

Let us prove (2.1185). Using the generalized Parseval equality, we obtain

lim
p→∞

p∑
j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj1(t3)

T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =

=
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj1(t3)dt3dt4×

×
T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =

=
∞∑

j1,j2=0

∫
[t,T ]2

1{t3<t4}ψ3(t3)ψ4(t4)ϕj1(t3)ϕj2(t4)dt3dt4×
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×
∫

[t,T ]2

1{t3<t4}ψ1(t3)ψ2(t4)ϕj1(t3)ϕj2(t4)dt3dt4 =

=

∫
[t,T ]2

1{t3<t4}ψ3(t3)ψ2(t4)ψ4(t4)ψ1(t3)dt3dt4 =

=

∫
[t,T ]2

1{t3<t2}ψ3(t3)ψ2(t2)ψ4(t2)ψ1(t3)dt3dt2, (2.1243)

where ψ1(τ), ψ2(τ), ψ3(τ), ψ4(τ) ∈ L2([t, T ]).

Suppose that ψ2(τ) and ψ3(τ) are Legendre polynomials of finite degrees.
Denote

sq(t2, t3) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t2)ϕ̄l2(t3), (2.1244)

where
{
ϕ̄j(x)

}∞
j=0

is a complete orthonormal system of Legendre polynomials in

L2([t, T ]) and Cl2l1 are Fourier–Legendre coefficients for the function g(t2, t3) =
ψ̄2(t2)ψ̄3(t3)1{t2<t3} (ψ̄2(τ), ψ̄3(τ) ∈ L2([t, T ])), i.e.

Cl2l1 =

T∫
t

ψ̄3(t3)ϕ̄l2(t3)

t3∫
t

ψ̄2(t2)ϕ̄l1(t2)dt2dt3

and lim
q→∞

∥sq − g∥2L2([t,T ]2)
= 0.

From (2.1243) we obtain (the sum on the right-hand side of (2.1244) is
finite)

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2}1{t3<t4}ψ4(t4)sq(t2, t3)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)×

×dt1dt2dt3dt4 =
∫

[t,T ]2

1{t3<t2}sq(t2, t3)ψ1(t3)ψ4(t2)dt3dt2. (2.1245)

Note that the equality (2.1245) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

2), i.e. the equality holds
on a dense subset in L2([t, T ]

2).

The right-hand side of (2.1245) defines (as a scalar product of sq(t2, t3) and
1{t3<t2}ψ1(t3)ψ4(t2) in L2([t, T ]

2)) a linear bounded (and therefore continuous)
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functional in L2([t, T ]
2), which is given by the function 1{t3<t2}ψ1(t3)ψ4(t2). On

the left-hand side of (2.1245) (by virtue of the equality (2.1245)) there is a
linear continuous functional on a dense subset in L2([t, T ]

2). This functional
can be uniquely extended to a linear continuous functional in L2([t, T ]

2) (see
[116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.1245) (at that we

suppose that sq is defined by (2.1244))

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ4(t4)ψ̄3(t3)ψ̄2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)×

×dt1dt2dt3dt4 =
∫

[t,T ]2

1{t2>t3}1{t2<t3}ψ̄3(t3)ψ̄2(t2)ψ1(t3)ψ4(t2)dt3dt2 = 0.

(2.1246)

Rewrite the equality (2.1246) in the form

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 =

=
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

t4∫
t

ψ3(t3)ϕj1(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 = 0, (2.1247)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Note that the series on the left-hand side of (2.1247) converges absolutly
since its sum does not depend on permutations of basis functions (here the basis
in L2([t, T ]

2) is {ϕj1(x)ϕj2(y)}
∞
j1,j2=0). The equality (2.1185) is proved.

Let us prove (2.1184). Using Fubini’s Theorem and generalized Parseval’s
equality, we get

lim
p→∞

p∑
j1,j2=0

T∫
t

ψ4(t4)ϕj1(t4)

T∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =

= lim
p→∞

p∑
j1,j2=0

Cψ4

j1
Cψ3ψ2ψ1

j2j2j1
=

1

2
lim
p→∞

p∑
j1=0

Cψ4

j1
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
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− lim
p→∞

p∑
j1=0

Cψ4

j1

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)
=

=
1

2
lim
p→∞

p∑
j1=0

T∫
t

ψ4(s)ϕj1(s)ds

T∫
t

ψ3(τ)ψ2(τ)

τ∫
t

ϕj1(s)ψ1(s)dsdτ−

− lim
p→∞

p∑
j1=0

Cψ4

j1

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)
=

=
1

2
lim
p→∞

p∑
j1=0

T∫
t

ψ4(s)ϕj1(s)ds

T∫
t

ϕj1(s)ψ1(s)

T∫
s

ψ3(τ)ψ2(τ)dτds−

− lim
p→∞

p∑
j1=0

Cψ4

j1

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)
=

=
1

2

T∫
t

ψ4(s)ψ1(s)

T∫
s

ψ3(τ)ψ2(τ)dτds−

− lim
p→∞

p∑
j1=0

Cψ4

j1

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)
, (2.1248)

where Cψ4

j1
and Cψ3ψ2ψ1

j2j2j1
are defined by (2.1205).

Due to Cauchy–Bunyakovsky’s inequality, Parseval’s equality and (2.1174),
we get

lim
p→∞

(
p∑

j1=0

Cψ4

j1

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

))2

≤

≤ lim
p→∞

p∑
j1=0

(
Cψ4

j1

)2 p∑
j1=0

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)2

≤

≤ lim
p→∞

∞∑
j1=0

(
Cψ4

j1

)2 p∑
j2=0

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)2

=

=

T∫
t

ψ2
4(s)ds lim

p→∞

p∑
j2=0

(
1

2
Cψ3ψ2ψ1

j2j2j1

∣∣∣∣
(j2j2)↷(·)

−
p∑

j2=0

Cψ3ψ2ψ1

j2j2j1

)2

= 0. (2.1249)



758D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Combining (2.1248) and (2.1249), we obtain

lim
p→∞

p∑
j1,j2=0

T∫
t

ψ4(t4)ϕj1(t4)

T∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
1

2

T∫
t

ψ4(s)ψ1(s)

T∫
s

ψ3(τ)ψ2(τ)dτds =

=
1

2

∫
[t,T ]2

ψ3(t3)ψ4(t4)1{t4<t3}ψ1(t4)ψ2(t3)dt4dt3, (2.1250)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Suppose that ψ3(τ) and ψ4(τ) are Legendre polynomials of finite degrees.
Denote

sq(t3, t4) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t3)ϕ̄l2(t4), (2.1251)

where
{
ϕ̄j(x)

}∞
j=0

is a complete orthonormal system of Legendre polynomials in

L2([t, T ]) and Cl2l1 are Fourier–Legendre coefficients for the function g(t3, t4) =
ψ̄3(t3)ψ̄4(t4)1{t3<t4} (ψ̄3(τ), ψ̄4(τ) ∈ L2([t, T ])), i.e.

Cl2l1 =

T∫
t

ψ̄4(t4)ϕ̄l2(t4)

t4∫
t

ψ̄3(t3)ϕ̄l1(t3)dt3dt4

and lim
q→∞

∥sq − g∥2L2([t,T ]2)
= 0.

From (2.1250) we obtain (the sum on the right-hand side of (2.1251) is
finite)

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3}ϕj1(t4)ϕj2(t3)sq(t3, t4)ψ2(t2)ψ1(t1)ϕj2(t2)ϕj1(t1)×

×dt1dt2dt3dt4 =
1

2

∫
[t,T ]2

sq(t3, t4)1{t4<t3}ψ1(t4)ψ2(t3)dt4dt3. (2.1252)

Note that the equality (2.1252) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

2), i.e. the equality holds
on a dense subset in L2([t, T ]

2).
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The right-hand side of (2.1252) defines (as a scalar product of sq(t3, t4) and
1
21{t4<t3}ψ1(t4)ψ2(t3) in L2([t, T ]

2)) a linear bounded (and therefore continuous)
functional in L2([t, T ]

2), which is given by the function 1
21{t4<t3}ψ1(t4)ψ2(t3).

On the left-hand side of (2.1252) (by virtue of the equality (2.1252)) there is
a linear continuous functional on a dense subset in L2([t, T ]

2). This functional
can be uniquely extended to a linear continuous functional in L2([t, T ]

2) (see
[116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.1252) (at that we

suppose that sq is defined by (2.1251))

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ̄4(t4)ϕj1(t4)ψ̄3(t3)ϕj2(t3)ψ2(t2)ϕj2(t2)ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 =
1

2

∫
[t,T ]2

ψ̄3(t3)ψ̄4(t4)1{t3<t4}1{t4<t3}ψ1(t4)ψ2(t3)dt4dt3 = 0.

(2.1253)

Rewrite the equality (2.1253) in the form

lim
p→∞

p∑
j1,j2=0

Cj1j2j2j1 =

=
∞∑

j1,j2=0

T∫
t

ψ4(t4)ϕj1(t4)

t4∫
t

ψ3(t3)ϕj2(t3)

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 = 0, (2.1254)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Note that the series on the left-hand side of (2.1254) converges absolutly
since its sum does not depend on permutations of basis functions (here the
basis in L2([t, T ]

2) is {ϕj1(x)ϕj2(y)}
∞
j1,j2=0). The equality (2.1184) is proved.

The equalities (2.1183)–(2.1185) are proved.

By induction we prove the following equality (i.e. by a different method
compared with [118])

lim
p→∞

p∑
j2r,j2r−2,...,j2=0

Cj2rj2rj2r−2j2r−2...j2j2 =
1

2r

T∫
t

ψ2r(t2r)ψ2r−1(t2r)×
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×
t2r∫
t

ψ2r−2(t2r−2)ψ2r−3(t2r−2) . . .

t4∫
t

ψ2(t2)ψ1(t2)dt2 . . . dt2r−2dt2r, (2.1255)

where r ∈ N, Cj2rj2rj2r−2j2r−2...j2j2 is defined by

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (k ∈ N),

{ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in the
space L2([t, T ]), and ψ1(τ), . . . , ψ2r(τ) ∈ L2([t, T ]).

Note that the equality (2.1183) is a particular case of (2.1255) for r = 2
and the equality (2.125) is a particular case of (2.1255) for r = 1. Thus, the
equality (2.1255) is true for r = 1, 2. Suppose that the equality (2.1255) is true
for some r > 2. Then, using (2.125), we get

lim
p→∞

p∑
j2r+2,j2r,...,j2=0

T∫
t

ψ2r+2(t2r+2)ϕj2r+2
(t2r+2)

t2r+2∫
t

ψ2r+1(t2r+1)ϕj2r+2
(t2r+1)×

×
T∫
t

ψ2r(t2r)ϕj2r(t2r)

t2r∫
t

ψ2r−1(t2r−1)ϕj2r(t2r−1) . . .

. . .

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj2(t1)dt1dt2 . . . dt2r−1dt2rdt2r+1dt2r+2 =

=
∞∑

j2r+2=0

T∫
t

ψ2r+2(t2r+2)ϕj2r+2
(t2r+2)

t2r+2∫
t

ψ2r+1(t2r+1)ϕj2r+2
(t2r+1)dt2r+1dt2r+2×

×
∞∑

j2r,j2r−2,...,j2=0

T∫
t

ψ2r(t2r)ϕj2r(t2r)

t2r∫
t

ψ2r−1(t2r−1)ϕj2r(t2r−1)×

×
t2r−1∫
t

ψ2r−2(t2r−2)ϕj2r−2
(t2r−2)

t2r−2∫
t

ψ2r−3(t2r−3)ϕj2r−2
(t2r−3) . . .

. . .

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj2(t1)dt1dt2 . . . dt2r−3dt2r−2dt2r−1dt2r =
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=
1

2

T∫
t

ψ2r+2(t2r+2)ψ2r+1(t2r+2)dt2r+2 ·
1

2r

T∫
t

ψ2r(t2r)ψ2r−1(t2r)×

×
t2r∫
t

ψ2r−2(t2r−2)ψ2r−3(t2r−2) . . .

t4∫
t

ψ2(t2)ψ1(t2)dt2 . . . dt2r−2dt2r. (2.1256)

Let us rewrite the equality (2.1256) in the form

lim
p→∞

p∑
j2r+2,j2r,...,j2=0

T∫
t

ψ2r+2(t2r+2)ϕj2r+2
(t2r+2)

t2r+2∫
t

ψ2r+1(t2r+1)ϕj2r+2
(t2r+1)×

×
T∫
t

ψ2r(t2r)ϕj2r(t2r)

t2r∫
t

ψ2r−1(t2r−1)ϕj2r(t2r−1) . . .

. . .

t3∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj2(t1)dt1dt2 . . . dt2r−1dt2rdt2r+1dt2r+2 =

=
1

2r+1

T∫
t

ψ2r+2(t2r+2)ψ2r+1(t2r+2)

T∫
t

ψ2r(t2r)ψ2r−1(t2r)×

×
t2r∫
t

ψ2r−2(t2r−2)ψ2r−3(t2r−2) . . .

t4∫
t

ψ2(t2)ψ1(t2)dt2 . . . dt2r−2dt2rdt2r+2,

(2.1257)
where ψ1(τ), . . . , ψ2r+2(τ) ∈ L2([t, T ]).

Suppose that ψ1(τ), ψ3(τ), . . . , ψ2r−3(τ), ψ2r(τ), ψ2r+1(τ) in (2.1257) are Leg-
endre polynomials of finite degrees. Denote

h(t2, t4, . . . , t2r−2, t2r−1, t2r+2) =

= ψ2(t2)ψ4(t4) . . . ψ2r−2(t2r−2)ψ2r−1(t2r−1)ψ2r+2(t2r+2),

g(t1, t3, . . . , t2r−3, t2r, t2r+1) =

= ψ̄1(t1)ψ̄3(t3) . . . ψ̄2r−3(t2r−3)ψ̄2r(t2r)ψ̄2r+1(t2r+1)1{t2r<t2r+1}, (2.1258)

sq(t1, t3, . . . , t2r−3, t2r, t2r+1) =
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=

q∑
l1,...,lr+1=0

Clr+1...l1ϕ̄l1(t1)ϕ̄l2(t3) . . . ϕ̄lr−1
(t2r−3)ϕ̄lr(t2r)ϕ̄lr+1

(t2r+1), (2.1259)

where
{
ϕ̄j(x)

}∞
j=0

is a complete orthonormal system of Legendre polynomials

in L2([t, T ]), Clr+1...l1 are Fourier–Legendre coefficients for the function (2.1258),
and ψ̄1(τ), ψ̄3(τ), . . . , ψ̄2r−3(τ), ψ̄2r(τ), ψ̄2r+1(τ) ∈ L2([t, T ]). Then we have

lim
q→∞

∥sq − g∥2L2([t,T ]r+1) = 0.

From (2.1257) we obtain (the sum on the right-hand side of (2.1259) is
finite)

lim
p→∞

p∑
j2r+2,j2r,...,j2=0

∫
[t,T ]2r+2

1{t1<t2<...<t2r}1{t2r+1<t2r+2}sq(t1, t3, . . . , t2r−3, t2r, t2r+1)×

×h(t2, t4, . . . , t2r−2, t2r−1, t2r+2)×

×
r+1∏
d=1

ϕj2d(t2d−1)ϕj2d(t2d)dt1dt2 . . . dt2r−1dt2rdt2r+1dt2r+2 =

=
1

2r+1

∫
[t,T ]r+1

1{t2<t4<...<t2r}sq(t2, t4, . . . , t2r−2, t2r, t2r+2)×

×h(t2, t4, . . . , t2r−2, t2r, t2r+2)dt2dt4 . . . dt2r−2dt2rdt2r+2. (2.1260)

The right-hand side of the equality (2.1260) defines (as a scalar product
of sq(t2, t4, . . . , t2r−2, t2r, t2r+2) and 1

2r+11{t2<t4<...<t2r}h(t2, t4, . . . , t2r−2, t2r, t2r+2)
in the space L2([t, T ]

r+1)) a linear bounded (and therefore continuous) func-
tional in L2([t, T ]

r+1). The mentioned functional is given by the function
1

2r+11{t2<t4<...<t2r}h(t2, t4, . . . , t2r−2, t2r, t2r+2).

Note that the equality (2.1260) will also remain true if sq is replaced by
s̄q (s̄q is the partial sum of the Fourier–Legendre series of any function from
L2([t, T ]

r+1)), i.e. the modified equality (2.1260) is true on a dense subset
in L2([t, T ]

r+1). On the left-hand side of (2.1260) (by virtue of the equal-
ity (2.1260)) there is a linear continuous functional on a dense subset in
L2([t, T ]

r+1). This functional can be uniquely extended to a linear continuous
functional in L2([t, T ]

r+1) (see [116], Theorem I.7, P. 9). Thus, we have the
equality of two linear continuous functionals in L2([t, T ]

r+1). Let us implement
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the passage to the limit lim
q→∞

in the mentioned equality if instead of s̄q we choose

sq of the form (2.1259) (i.e. passage to the limit lim
q→∞

in (2.1260))

lim
p→∞

p∑
j2r+2,j2r,...,j2=0

∫
[t,T ]2r+2

1{t1<t2<...<t2r}1{t2r+1<t2r+2}g(t1, t3, . . . , t2r−3, t2r, t2r+1)×

×h(t2, t4, . . . , t2r−2, t2r−1, t2r+2)×

×
r+1∏
d=1

ϕj2d(t2d−1)ϕj2d(t2d)dt1dt2 . . . dt2r−1dt2rdt2r+1dt2r+2 =

=
1

2r+1

∫
[t,T ]r+1

1{t2<t4<...<t2r}g(t2, t4, . . . , t2r−2, t2r, t2r+2)×

×h(t2, t4, . . . , t2r−2, t2r, t2r+2)dt2dt4 . . . dt2r−2dt2rdt2r+2, (2.1261)

where ψ̄1(τ), ψ̄3(τ), . . . , ψ̄2r−3(τ)ψ̄2r(τ), ψ̄2r+1(τ) ∈ L2([t, T ]).

It is easy to see that the equality (2.1261) (up to notations) is the equality
(2.1255) in which r is replaced by r+1. So, we proved the equality (2.1255) by
induction.

Note that the series on the left-hand side of (2.1255) converges absolutly
since its sum does not depend on permutations of basis functions (here the basis
in L2([t, T ]

r) is {ϕj1(x1) . . . ϕjr(xr)}
∞
j1,...,jr=0).

Further, let us show that

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

(2.1262)

for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)), where k = 2r (r = 2, 3, . . .),
Cjk...j1 is defined by (2.1061), another notations are the same as in Theorem 2.49.

The case
r∏
l=1

1{g2l=g2l−1+1} = 1
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corresponds to (2.1255).

Thus, it remains to prove that

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

= 0 (2.1263)

for the case
r∏
l=1

1{g2l=g2l−1+1} = 0.

Below we consider two examples that clearly explain the algorithm for the
proof of equality (2.1263). After this we will formulate the algorithm.

First, let us prove that

lim
p→∞

p∑
j1,j3,j4=0

Cj3j4j4j3j1j1 =

= lim
p→∞

p∑
j1,j3,j4=0

T∫
t

ψ6(t6)ϕj3(t6)

t6∫
t

ψ5(t5)ϕj4(t5)

t5∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)×

×
t3∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4dt5dt6 = 0, (2.1264)

where {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in
the space L2([t, T ]) and ψ1(τ), . . . , ψ6(τ) ∈ L2([t, T ]).

Step 1. Using (2.1255) (r = 1) and generalized Parseval’s equality, we
obtain

lim
p→∞

p∑
j1,j3,j4=0

T∫
t

ψ6(t6)ϕj3(t6)

T∫
t

ψ5(t5)ϕj4(t5)

t5∫
t

ψ4(t4)ϕj4(t4)

T∫
t

ψ3(t3)ϕj3(t3)×

×
T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4dt5dt6 = (2.1265)

= lim
p→∞

p∑
j3=0

T∫
t

ψ6(t6)ϕj3(t6)dt6

T∫
t

ψ3(t3)ϕj3(t3)dt3×
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× lim
p→∞

p∑
j4=0

T∫
t

ψ5(t5)ϕj4(t5)

t5∫
t

ψ4(t4)ϕj4(t4)dt4dt5×

× lim
p→∞

p∑
j1=0

T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2 =

=

T∫
t

ψ6(t6)ψ3(t6)dt6 ·
1

2

T∫
t

ψ5(t4)ψ4(t4)dt4 ·
1

2

T∫
t

ψ2(t2)ψ1(t2)dt2. (2.1266)

Let us rewrite (2.1266) in the form

∞∑
j1,j3,j4=0

T∫
t

ψ6(t6)ϕj3(t6)

T∫
t

ψ5(t5)ϕj4(t5)

t5∫
t

ψ4(t4)ϕj4(t4)

T∫
t

ψ3(t3)ϕj3(t3)×

×
T∫
t

ψ2(t2)ϕj1(t2)

t2∫
t

ψ1(t1)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

T∫
t

ψ6(t6)ψ3(t6)

T∫
t

ψ5(t4)ψ4(t4)

T∫
t

ψ2(t2)ψ1(t2)dt2dt4dt6. (2.1267)

Step 2. Suppose that ψ2(τ), ψ3(τ), ψ4(τ) are Legendre polynomials of finite
degrees. Denote

sq(t2, t3, t4) =

q∑
l1,l2.l3=0

Cl3l2l1ϕ̄l1(t2)ϕ̄l2(t3)ϕ̄l3(t4), (2.1268)

where
{
ϕ̄j(x)

}∞
j=0

is a complete orthonormal system of Legendre polynomi-

als in L2([t, T ]) and Cl3l2l1 are Fourier–Legendre coefficients for the function
g(t2, t3, t4) = ψ̄2(t2)ψ̄3(t3)ψ̄4(t4)1{t2<t3} (ψ̄2(τ), ψ̄3(τ), ψ̄4(τ) ∈ L2([t, T ])), i.e.

lim
q→∞

∥sq − g∥2L2([t,T ]3)
= 0.

From (2.1267) we obtain (the sum on the right-hand side of (2.1268) is
finite)

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2}1{t4<t5}sq(t2, t3, t4)ψ6(t6)ψ5(t5)ψ1(t1)ϕj3(t6)ϕj3(t3)ϕj4(t5)×
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×ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

sq(t2, t6, t4)ψ6(t6)ψ5(t4)ψ1(t2)dt2dt4dt6. (2.1269)

Note that the equality (2.1269) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

3), i.e. the equality holds
on a dense subset in L2([t, T ]

3).

The right-hand side of (2.1269) defines (as a scalar product of sq(t2, t6, t4)
and 1

4ψ6(t6)ψ5(t4)ψ1(t2) in L2([t, T ]
3)) a linear bounded (and therefore continu-

ous) functional in L2([t, T ]
3), which is given by the function 1

4ψ6(t6)ψ5(t4)ψ1(t2).
On the left-hand side of (2.1269) (by virtue of the equality (2.1269)) there is
a linear continuous functional on a dense subset in L2([t, T ]

3). This functional
can be uniquely extended to a linear continuous functional in L2([t, T ]

3) (see
[116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.1269) (at that we

suppose that sq is defined by (2.1268))

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3}1{t4<t5}ψ6(t6)ψ5(t5)ψ̄4(t4)ψ̄3(t3)ψ̄2(t2)ψ1(t1)ϕj3(t6)ϕj3(t3)×

×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}ψ6(t6)ψ̄3(t6)ψ5(t4)ψ̄4(t4)ψ̄2(t2)ψ1(t2)dt2dt4dt6. (2.1270)

Rewrite the equality (2.1270) in the form

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3}1{t4<t5}ψ6(t6)ψ5(t5)ψ4(t4)ψ3(t3)ψ2(t2)ψ1(t1)ϕj3(t6)ϕj3(t3)×

×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}ψ6(t6)ψ3(t6)ψ5(t4)ψ4(t4)ψ2(t2)ψ1(t2)dt2dt4dt6, (2.1271)
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where ψ1(τ), . . . , ψ6(τ) ∈ L2([t, T ]).

Step 3. Suppose that ψ3(τ), ψ4(τ), ψ1(τ) are Legendre polynomials of finite
degrees. Denote

sq(t3, t4, t1) =

q∑
l1,l2.l3=0

Cl3l2l1ϕ̄l1(t3)ϕ̄l2(t4)ϕ̄l3(t1), (2.1272)

where
{
ϕ̄j(x)

}∞
j=0

as in (2.1268) and Cl3l2l1 are Fourier–Legendre coefficients

for the function g(t3, t4, t1) = ψ̄3(t3)ψ̄4(t4)ψ̄1(t1)1{t3<t4} (ψ̄3(τ), ψ̄4(τ), ψ̄1(τ) ∈
L2([t, T ])), i.e. lim

q→∞
∥sq − g∥2L2([t,T ]3)

= 0.

From (2.1271) we obtain (the sum on the right-hand side of (2.1272) is
finite)

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3}1{t4<t5}sq(t3, t4, t1)ψ6(t6)ψ5(t5)ψ2(t2)ϕj3(t6)ϕj3(t3)×

×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}sq(t6, t4, t2)ψ6(t6)ψ5(t4)ψ2(t2)dt2dt4dt6. (2.1273)

Note that the equality (2.1273) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

3), i.e. the equality holds
on a dense subset in L2([t, T ]

3).

The right-hand side of (2.1273) defines (as a scalar product of sq(t6, t4, t2)
and 1

41{t2<t6}ψ6(t6)ψ5(t4)ψ2(t2) in L2([t, T ]
3)) a linear bounded (and there-

fore continuous) functional in L2([t, T ]
3), which is given by the function

1
41{t2<t6}ψ6(t6)ψ5(t4)ψ2(t2). On the left-hand side of (2.1273) (by virtue of the
equality (2.1273)) there is a linear continuous functional on a dense subset in
L2([t, T ]

3). This functional can be uniquely extended to a linear continuous
functional in L2([t, T ]

3) (see [116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.1273) (at that we

suppose that sq is defined by (2.1272))

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3<t4<t5}ψ6(t6)ψ5(t5)ψ̄4(t4)ψ̄3(t3)ψ2(t2)ψ̄1(t1)ϕj3(t6)ϕj3(t3)×
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×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}1{t6<t4}ψ6(t6)ψ̄3(t6)ψ5(t4)ψ̄4(t4)ψ2(t2)ψ̄1(t2)dt2dt4dt6.

(2.1274)

Rewrite (2.1274) in the form

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3<t4<t5}ψ6(t6)ψ5(t5)ψ4(t4)ψ3(t3)ψ2(t2)ψ1(t1)ϕj3(t6)ϕj3(t3)×

×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}1{t6<t4}ψ6(t6)ψ3(t6)ψ5(t4)ψ4(t4)ψ2(t2)ψ1(t2)dt2dt4dt6,

(2.1275)

where ψ1(τ), . . . , ψ6(τ) ∈ L2([t, T ]).

Step 4. Suppose that ψ5(τ), ψ6(τ), ψ2(τ) are Legendre polynomials of finite
degrees. Denote

sq(t5, t6, t2) =

q∑
l1,l2.l3=0

Cl3l2l1ϕ̄l1(t5)ϕ̄l2(t6)ϕ̄l3(t2), (2.1276)

where
{
ϕ̄j(x)

}∞
j=0

as in (2.1268) and Cl3l2l1 are Fourier–Legendre coefficients

for the function g(t5, t6, t2) = ψ̄5(t5)ψ̄6(t6)ψ̄2(t2)1{t5<t6} (ψ̄5(τ), ψ̄6(τ), ψ̄2(τ) ∈
L2([t, T ])), i.e. lim

q→∞
∥sq − g∥2L2([t,T ]3)

= 0.

From (2.1275) we obtain (the sum on the right-hand side of (2.1276) is
finite)

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3<t4<t5}sq(t5, t6, t2)ψ4(t4)ψ3(t3)ψ1(t1)ϕj3(t6)ϕj3(t3)×

×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}1{t6<t4}sq(t4, t6, t2)ψ3(t6)ψ4(t4)ψ1(t2)dt2dt4dt6. (2.1277)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series769

Note that the equality (2.1277) remains true when sq is a partial sum of the
Fourier–Legendre series of any function from L2([t, T ]

3), i.e. the equality holds
on a dense subset in L2([t, T ]

3).

The right-hand side of (2.1277) defines (as a scalar product of sq(t4, t6, t2)
and 1

41{t2<t6}1{t6<t4}ψ3(t6)ψ4(t4)ψ1(t2) in L2([t, T ]
3)) a linear bounded (and

therefore continuous) functional in L2([t, T ]
3), which is given by the function

1
41{t2<t6}1{t6<t4}ψ3(t6)ψ4(t4)ψ1(t2). On the left-hand side of (2.1277) (by virtue
of the equality (2.1277)) there is a linear continuous functional on a dense subset
in L2([t, T ]

3). This functional can be uniquely extended to a linear continuous
functional in L2([t, T ]

3) (see [116], Theorem I.7, P. 9).

Let us implement the passage to the limit lim
q→∞

in (2.1277) (at that we

suppose that sq is defined by (2.1276))

∞∑
j1,j3,j4=0

∫
[t,T ]6

1{t1<t2<t3<t4<t5<t6}ψ̄6(t6)ψ̄5(t5)ψ4(t4)ψ3(t3)ψ̄2(t2)ψ1(t1)ϕj3(t6)ϕj3(t3)×

×ϕj4(t5)ϕj4(t4)ϕj1(t2)ϕj1(t1)dt1dt2dt3dt4dt5dt6 =

=
1

4

∫
[t,T ]3

1{t2<t6}1{t6<t4}1{t4<t6}ψ̄6(t6)ψ3(t6)ψ̄5(t4)ψ4(t4)ψ̄2(t2)ψ1(t2)dt2dt4dt6 = 0.

(2.1278)

It is obvious that the equality (2.1278) (up to notations) is (2.1264). The
equality (2.1264) is proved.

As a second example, we will prove the equality (2.1185). In this case, we
will use the same approach as in the proof of equality (2.1264). Thus, we prove
that

lim
p→∞

p∑
j1,j2=0

Cj2j1j2j1 = 0. (2.1279)

Step 1. Using generalized Parseval’s equality, we obtain

lim
p→∞

p∑
j1,j2=0

T∫
t

ψ4(t4)ϕj2(t4)

T∫
t

ψ3(t3)ϕj1(t3)

T∫
t

ψ2(t2)ϕj2(t2)

T∫
t

ψ1(t1)ϕj1(t1)×

×dt1dt2dt3dt4 = (2.1280)
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= lim
p→∞

p∑
j2=0

T∫
t

ψ4(t4)ϕj2(t4)dt4

T∫
t

ψ2(t2)ϕj2(t2)dt2×

× lim
p→∞

p∑
j1=0

T∫
t

ψ3(t3)ϕj1(t3)dt3

T∫
t

ψ1(t1)ϕj1(t1)dt1 =

=

T∫
t

ψ4(t4)ψ2(t4)dt4

T∫
t

ψ3(t3)ψ1(t3)dt3. (2.1281)

Rewrite the equality (2.1281) in the form

∞∑
j1,j2=0

∫
[t,T ]4

ψ4(t4)ψ3(t3)ψ2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)dt1dt2dt3dt4 =

=

∫
[t,T ]2

ψ4(t4)ψ2(t4)ψ3(t2)ψ1(t2)dt2dt4. (2.1282)

Step 2. Suppose that ψ1(τ), ψ2(τ) are Legendre polynomials of finite de-
grees. Denote

sq(t1, t2) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t1)ϕ̄l2(t2),

where
{
ϕ̄j(x)

}∞
j=0

as in (2.1268), Cl2l1 are Fourier–Legendre coefficients for the

function g(t1, t2) = ψ̄1(t1)ψ̄2(t2)1{t1<t2} (ψ̄1(τ), ψ̄2(τ) ∈ L2([t, T ])).

From (2.1282) we obtain

∞∑
j1,j2=0

∫
[t,T ]4

sq(t1, t2)ψ4(t4)ψ3(t3)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)dt1dt2dt3dt4 =

=

∫
[t,T ]2

sq(t2, t4)ψ4(t4)ψ3(t2)dt2dt4. (2.1283)

The left-hand and right-hand sides of (2.1283) define linear continuous func-
tionals in L2([t, T ]

2) (see explanation earlier in this section). Let us implement
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the passage to the limit lim
q→∞

in (2.1283)

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2}ψ4(t4)ψ3(t3)ψ̄2(t2)ψ̄1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)dt1dt2dt3dt4=

=

∫
[t,T ]2

1{t2<t4}ψ4(t4)ψ̄2(t4)ψ3(t2)ψ̄1(t2)dt2dt4. (2.1284)

Rewrite the equality (2.1284) in the form

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2}ψ4(t4)ψ3(t3)ψ2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)dt1dt2dt3dt4=

=

∫
[t,T ]2

1{t2<t4}ψ4(t4)ψ2(t4)ψ3(t2)ψ1(t2)dt2dt4, (2.1285)

where ψ1(τ), . . . , ψ4(τ) ∈ L2([t, T ]).

Step 3. Suppose that ψ2(τ), ψ3(τ) are Legendre polynomials of finite de-
grees. Denote

sq(t2, t3) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t2)ϕ̄l2(t3),

where
{
ϕ̄j(x)

}∞
j=0

as in (2.1268), Cl2l1 are Fourier–Legendre coefficients for the

function g(t2, t3) = ψ̄2(t2)ψ̄3(t3)1{t2<t3} (ψ̄2(τ), ψ̄3(τ) ∈ L2([t, T ])).

From (2.1285) we obtain

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2}sq(t2, t3)ψ4(t4)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)dt1dt2dt3dt4 =

=

∫
[t,T ]2

1{t2<t4}sq(t4, t2)ψ4(t4)ψ1(t2)dt2dt4. (2.1286)

The left-hand and right-hand sides of (2.1286) define linear continuous func-
tionals in L2([t, T ]

2). Let us implement the passage to the limit lim
q→∞

in (2.1286)

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3}ψ4(t4)ψ̄3(t3)ψ̄2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)×
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×dt1dt2dt3dt4 =

=

∫
[t,T ]2

1{t2<t4}1{t4<t2}ψ4(t4)ψ̄2(t4)ψ̄3(t2)ψ1(t2)dt2dt4 = 0. (2.1287)

Rewrite the equality (2.1287) in the form

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3}ψ4(t4)ψ3(t3)ψ2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)×

×dt1dt2dt3dt4 = 0. (2.1288)

Step 4. Suppose that ψ3(τ), ψ4(τ) are Legendre polynomials of finite de-
grees. Denote

sq(t3, t4) =

q∑
l1,l2=0

Cl2l1ϕ̄l1(t3)ϕ̄l2(t4),

where
{
ϕ̄j(x)

}∞
j=0

as in (2.1268), Cl2l1 are Fourier–Legendre coefficients for the

function g(t3, t4) = ψ̄3(t3)ψ̄4(t4)1{t3<t4} (ψ̄3(τ), ψ̄4(τ) ∈ L2([t, T ])).

From (2.1288) we obtain

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3}sq(t3, t4)ψ2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)×

×dt1dt2dt3dt4 = 0. (2.1289)

The left-hand and right-hand sides of (2.1289) define linear continuous func-
tionals in L2([t, T ]

2) (we interpret the right-hand side of (2.1289) as the zero
functional in L2([t, T ]

2)). Let us implement the passage to the limit lim
q→∞

in

(2.1289)

∞∑
j1,j2=0

∫
[t,T ]4

1{t1<t2<t3<t4}ψ̄4(t4)ψ̄3(t3)ψ2(t2)ψ1(t1)ϕj2(t4)ϕj1(t3)ϕj2(t2)ϕj1(t1)×

×dt1dt2dt3dt4 = 0. (2.1290)

It is easy to see that the equality (2.1290) (up to notations) is the equality
(2.1185). The equality (2.1185) is proved.
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Let us formulate the ideas used when considering the two above examples
in the form of an algorithm.

Step 1. Suppose k = 2r (r = 2, 3, 4, . . .), where r is the number of pairs
{g1, g2}, . . . , {g2r−1, g2r} (see (2.652)). Let us select blocks in the multi-index
jk . . . j1 that correspond to the fulfillment of the condition

rd∏
l=1

1{g2l=g2l−1+1} = 1,

where rd is the number of pairs (see (2.652)) in the block with number d.

Step 2. Let us write the Volterra–type kernel (2.1194) in the form

K(t1, . . . , tk) = ψ1(t1) . . . ψk(tk)1{t1<t2}1{t2<t3} . . .1{tk−1<tk}, (2.1291)

where ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]), t1, . . . , tk ∈ [t, T ], k ≥ 4.

Let us save multipliers of the form 1{tn<tn+1} in the expression (2.1291) that
correspond to the above blocks. At that, we remove the remaining multipliers of
the form 1{tn<tn+1} from the expression (2.1291). As a result, we get a modified
kernel K̄(t1, . . . , tk). Let us write an analogue of the left-hand side of equal-
ity (2.1263) for the modified kernel K̄(t1, . . . , tk) (see (2.1265) and (2.1280) as
examples). For definiteness, let us denote this expression by (−).

Step 3. Using generalized Parseval’s equality and (2.1255), we represent
the expression (−) as an integral over the hypercube [t, T ]r (see the right-hand
sides of (2.1267) and (2.1282) as examples). For definiteness, let us denote the
obtained equality by (K̄) ((2.1267) and (2.1282) are examples of (K̄)).

Step 4. Further, transformations and passages to the limit in the equality
(K̄) are performed iteratively in such a way as to restore the removed multipliers
1{tn<tn+1} on the left-hand side of (K̄) (for more details, see the proof of formulas
(2.1264), (2.1279)). As a result, we obtain the equality (2.1263). More precisely,
we can move from left to right along a multi-index corresponding to the left-
hand side of (K̄). Let us assume that at the n-th step we need to restore the
multiplier 1{tn<tn+1}. Then the function g (see the proof of formulas (2.1264),
(2.1279)) will be the product of 1{tn<tn+1}ψn(tn)ψn+1(tn+1) and r − 2 weight
functions that are chosen so that on the right-hand side of the equality (K̄)
there is a scalar product in L2([t, T ]

r) involving sq (sq is an approximation of
g).

Using the above algorithm, we prove the equality (2.1262) for the case
k = 2r (r = 2, 3, . . .). The equality (2.1262) is proved.
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Note that the series on the left-hand side of (2.1262) converges absolutly
since its sum does not depend on permutations of basis functions (here the basis
in L2([t, T ]

r) is {ϕj1(x1) . . . ϕjr(xr)}
∞
j1,...,jr=0).

2.28 Revision of Hypotheses on Expansion of Iterated

Stratonovich Stochastic Integrals of Multiplicity k

(k ∈ N)

In Sect. 2.5, we formulated three hypotheses on expansion of iterated Strato-
novich stochastic integrals based on the results obtained by the author in the
2010s. In light of recent results (Theorems 2.3, 2.42–2.57), a new vision of the
above problem has appeared. In particular, it became clear that it is possible
to methodically obtain results related to the expansion of iterated Stratonovich
stochastic integrals for the case of an arbitrary complete orthonormal system
of functions in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

Definition (2.3) of the Stratonovich stochastic integral, which we mainly use
in this book, imposes its own limitations. In particular, this definition assumes
that ψ1(τ), . . . , ψk(τ) are continuous functions at the interval [t, T ].

Based on Theorems 2.3, 2.42–2.57, we formulate the following hypothesis
on expansion of the sum J̄∗[ψ(k)]

(i1...ik)
T,t of iterated Itô stochastic integrals (see

(2.962)).

Hypothesis 2.4. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete or-
thonormal system of functions in L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

Then, for the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô stochastic integrals

J̄∗[ψ(k)]
(i1...ik)
T,t = J [ψ(k)]

(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t

the following expansion

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.1292)

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk
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is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ ; another notations

are the same as in Theorem 2.12.

Using Theorem 2.12, we obtain the following hypothesis.

Hypothesis 2.5. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete or-
thonormal system of functions in L2([t, T ]) and ψ1(τ), . . . , ψk(τ) are continuous
functions at the interval [t, T ]. Then, for the iterated Stratonovich stochastic in-
tegral of arbitrary multiplicity k

J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following expansion

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.
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2.29 Proof of Hypotheses 2.4, 2.5 Under the Condition

(2.1293) for the Case k ≥ 2r, p1 = . . . = pk = p and

Under Some Additional Assumptions

Suppose that the equality

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

(2.1293)

is satisfied for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)) and for any fixed
j1, . . . , jq, . . . , jk (q ̸= g1, g2, . . . , g2r−1, g2r), where k ≥ 2r, r = 1, 2, . . . , [k/2],
Cjk...j1 is defined by (2.1061), another notations are the same as in Theorem 2.49.
Recall that the case k = 2r is considered in Sect. 2.27.4.

Moreover, suppose that the series

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

converges absolutly for any fixed j1, . . . , jq, . . . , jk, where q ̸= g1, g2, . . . , g2r−1,
g2r and k > 2r.

It should be noted that the above assumptions will be proved further (see
Sect. 2.30).

Hypotheses 2.4 and 2.5 will be proved for the case p1 = . . . = pk = p if we
prove that (see Theorem 2.49 for the case p1 = . . . = pk = p)

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0

(2.1294)

for all r = 1, 2, . . . , [k/2], where notations are the same as in (2.1293).
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We have
p∑

j1,...,jq,...,jk=0
q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

≤

≤
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

,

(2.1295)

where
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2,...,g2r−1,g2r

def
= lim

q→∞

q∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

. (2.1296)

Consider the following analogue of Monotone Convergence Theorem for
infinite series.

Proposition 2.5. Suppose that xm,n ≥ 0 for all m,n ∈ N,

lim
m→∞

xm,n = yn (for any fixed n ∈ N),

and xm,n ≤ xm+1,n for all m ∈ N and for any fixed n ∈ N. Then

lim
m→∞

∞∑
n=1

xm,n =
∞∑
n=1

lim
m→∞

xm,n =
∞∑
n=1

yn. (2.1297)

Proof. Proposition 2.5 can be easily proved using the following version of
Fatou’s Lemma for infinite series

∞∑
n=1

lim inf
m→∞

xm,n ≤ lim inf
m→∞

∞∑
n=1

xm,n, (2.1298)

where it is assumed that the conditions of Proposition 2.5 are fulfilled. Indeed,
we have

0 ≤ xm,n ≤ yn.
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Then
∞∑
n=1

xm,n ≤
∞∑
n=1

yn

and (see (2.1298))

lim sup
m→∞

∞∑
n=1

xm,n ≤
∞∑
n=1

yn =
∞∑
n=1

lim inf
m→∞

xm,n ≤ lim inf
m→∞

∞∑
n=1

xm,n. (2.1299)

From (2.1299) we get

∞∑
n=1

yn = lim inf
m→∞

∞∑
n=1

xm,n = lim sup
m→∞

∞∑
n=1

xm,n = lim
m→∞

∞∑
n=1

xm,n,

i.e. the equality (2.1297) is proved.

To prove (2.1298) we note that

inf
j≥m

xj,n ≤ xk,n (∀k ≥ m).

Then
N∑
n=1

inf
j≥m

xj,n ≤
N∑
n=1

xk,n (∀k ≥ m)

and
N∑
n=1

inf
j≥m

xj,n ≤ inf
k≥m

N∑
n=1

xk,n ≤ inf
k≥m

∞∑
n=1

xk,n. (2.1300)

Passing to the limit lim
m→∞

in (2.1300), we obtain

N∑
n=1

lim
m→∞

inf
j≥m

xj,n ≤ lim
m→∞

inf
k≥m

∞∑
n=1

xk,n. (2.1301)

Passing to the limit lim
N→∞

in (2.1301), we get

∞∑
n=1

lim
m→∞

inf
j≥m

xj,n ≤ lim
m→∞

inf
k≥m

∞∑
n=1

xk,n,

i.e. the equality (2.1298) is satisfied. Proposition 2.5 is proved.
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Proposition 2.6. Suppose that

∞∑
j=1

gj,n = 0, (2.1302)

the series (2.1302) converges absolutely for any fixed n ∈ N and

∞∑
n=1

( ∞∑
j=1

|gj,n|

)2

<∞.

Then

lim
m→∞

∞∑
n=1

(
m∑
j=1

gj,n

)2

=
∞∑
n=1

lim
m→∞

(
m∑
j=1

gj,n

)2

= 0. (2.1303)

Proof. We have gj,n = g+j,n − g−j,n, |gj,n| = g+j,n + g−j,n, where

g+j,n = max{gj,n, 0} =
1

2
(|gj,n|+ gj,n) ≥ 0,

g−j,n = −min{gj,n, 0} =
1

2
(|gj,n| − gj,n) ≥ 0.

Moreover,
∞∑
j=1

gj,n =
∞∑
j=1

g+j,n −
∞∑
j=1

g−j,n = 0, (2.1304)

∞∑
j=1

|gj,n| =
∞∑
j=1

g+j,n +
∞∑
j=1

g−j,n = 2
∞∑
j=1

g+j,n = 2
∞∑
j=1

g−j,n. (2.1305)

Since the series (2.1302) converges absolutely, then by virtue of the equality
(2.1305) the series (with non-negative terms) on the right-hand side of (2.1305)
and on the right-hand side of (2.1304) converge.

Further, using Proposition 2.5 and (2.1304), (2.1305), we obtain

lim
m→∞

∞∑
n=1

(
m∑
j=1

gj,n

)2

= lim
m→∞

∞∑
n=1

(
m∑
j=1

g+j,n −
m∑
j=1

g−j,n

)2

=

= lim
m→∞

∞∑
n=1

(
m∑
j=1

g+j,n

)2

− lim
m→∞

∞∑
n=1

(
2

m∑
j=1

g+j,n

m∑
j=1

g−j,n

)
+
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+ lim
m→∞

∞∑
n=1

(
m∑
j=1

g−j,n

)2

=

=
∞∑
n=1

lim
m→∞

(
m∑
j=1

g+j,n

)2

−
∞∑
n=1

lim
m→∞

(
2

m∑
j=1

g+j,n

m∑
j=1

g−j,n

)
+

+
∞∑
n=1

lim
m→∞

(
m∑
j=1

g−j,n

)2

=

=
∞∑
n=1

( ∞∑
j=1

g+j,n

)2

− 2
∞∑
n=1

( ∞∑
j=1

g+j,n

∞∑
j=1

g−j,n

)
+

+
∞∑
n=1

( ∞∑
j=1

g−j,n

)2

=

=
1

4

∞∑
n=1

( ∞∑
j=1

|gj,n|

)2

− 1

2

∞∑
n=1

( ∞∑
j=1

|gj,n|

)2

+

+
1

4

∞∑
n=1

( ∞∑
j=1

|gj,n|

)2

= 0.

Proposition 2.6 is proved.

It is easy to see that by analogy with Propositions 2.5, 2.6 the following
statements can be proved.

Proposition 2.7. Suppose that hp,k1,...,kd ≥ 0 for all p ∈ N and for any
fixed k1, . . . , kd ∈ N,

lim
p→∞

hp,k1,...,kd = uk1,...,kd (for any fixed k1, . . . , kd ∈ N),

and hp,k1,...,kd ≤ hp+1,k1,...,kd for all p ∈ N and for any fixed k1, . . . , kd ∈ N. Then

lim
p→∞

∞∑
k1,...,kd=1

hp,k1,...,kd =
∞∑

k1,...,kd=1

lim
p→∞

hp,k1,...,kd =
∞∑

k1,...,kd=1

uk1,...,kd, (2.1306)

where hp,k1,...,kd, uk1,...,kd ∈ R, d ∈ N, the series on the left-hand side of (2.1306)
is understood in the same sense as in (2.1296).
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Proposition 2.8. Suppose that

lim
p→∞

p∑
j1,...,jq=1

hj1,...,jq,k1,...,kd
def
=

∞∑
j1,...,jq=1

hj1,...,jq,k1,...,kd = 0, (2.1307)

the series (2.1307) converges absolutely for any fixed k1, . . . , kd ∈ N and

∞∑
k1,...,kd=1

 ∞∑
j1,...,jq=1

∣∣hj1,...,jq,k1,...,kd∣∣
2

<∞.

Then

lim
p→∞

∞∑
k1,...,kd=1

 p∑
j1,...,jq=1

hj1,...,jq,k1,...,kd

2

=

=
∞∑

k1,...,kd=1

lim
p→∞

 p∑
j1,...,jq=1

hj1,...,jq,k1,...,kd

2

= 0,

where

lim
n→∞

n∑
k1,...,kd=1

def
=

∞∑
k1,...,kd=1

,

hj1,...,jq,k1,...,kd ∈ R and d, q ∈ N.

Obviously, Proposition 2.8 follows from Proposition 2.7 in the same way as
Proposition 2.6 follows from Proposition 2.5. Applying Proposition 2.8 to the
right-hand side of (2.1295) (using (2.1293) and the absolute convergence of the
series on the left-hand side of (2.1293)), we obtain (2.1294). At that, we used
the conditions

∞∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

 lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

∣∣∣∣∣Cjk...j1
∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

∣∣∣∣∣
2

<∞,

(2.1308)
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2,...,g2r−1,g2r

(
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

<∞.

(2.1309)
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Note that (2.1309) follows from the Parseval equality since the expression

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

def
= Hjq1 ...jqk−2r

is a finite linear combination of the Fourier coefficients of L2([t, T ]
k−2r)–functi-

ons after iteratively applying transformations (2.1315), (2.1316) (see Sect. 2.30)
to Hjq1 ...jqk−2r

for integrations not involving the basis functions ϕjq1 , . . . , ϕjqk−2r
.

Let us consider another sufficient condition under which the equality
(2.1294) is satisfied. Suppose that k > 2r and

∃ lim
p,q→∞

q∑
j1,...,jm,...,jk=0

m̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

<∞

(2.1310)

for all r = 1, 2, . . . , [k/2], where notations are the same as in (2.1293). Then,
by Proposition 1.1 (see Sect. 1.7.2) and (2.1293) we obtain

lim
p,q→∞

q∑
j1,...,jm,...,jk=0

m̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

=

= lim
q→∞

q∑
j1,...,jm,...,jk=0

m̸=g1,g2,...,g2r−1,g2r

lim
p→∞

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0.
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Thus, we get

lim
p,q→∞

q∑
j1,...,jm,...,jk=0

m̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0.

(2.1311)

Substituting p = q in (2.1311), we obtain (2.1294) (recall that the case k = 2r
is proved in Sect. 2.27.4).

As a result, Hypotheses 2.4 and 2.5 are proved under the conditions formu-
lated above in this section.

2.30 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Arbitrary Multiplicity k (k ∈ N). The Case

of an Arbitrary Complete Orthonormal System

of Functions in L2([t, T ]), ψ1(τ ), . . . , ψk(τ ) ∈ L2([t, T ]).

Proof of Hypotheses 2.4, 2.5 for the Case p1 = . . . =

pk = p and Under the Condition (2.1310)

This section is devoted to the following two theorems.

Theorem 2.58. Suppose that the condition (2.1310) is fulfilled, {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in L2([t, T ]) and

ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]). Then, for the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô

stochastic integrals

J̄∗[ψ(k)]
(i1...ik)
T,t = J [ψ(k)]

(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t

the following expansion

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl



784D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (2.1312)

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ ; another notations

are the same as in Theorem 2.12.

Using Theorem 2.12, we obtain the following corollary of Theorem 2.58.

Theorem 2.59. Suppose that the condition (2.1310) is satisfied, {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in L2([t, T ]) and
ψ1(τ), . . . , ψk(τ) are continuous functions at the interval [t, T ]. Then, for the
iterated Stratonovich stochastic integral of multiplicity k (k ∈ N)

J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following expansion

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.1313)

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ
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are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof of Theorem 2.58. According to the results of Sect. 2.29, Theo-
rem 2.58 will be proved if we prove (see (2.1293)) that the equality

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

(2.1314)

is satisfied for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)), where k ≥ 2r, r =
1, 2, . . . , [k/2], Cjk...j1 is defined by (2.1312), another notations are the same as
in Theorem 2.49.

Moreover (assuming that (2.1314) is proved), the series on the left-hand
side of (2.1314) converges absolutly (the case k = 2r (see Sect. 2.27.4)) and
converges absolutly for any fixed j1, . . . , jq, . . . , jk and q ̸= g1, g2, . . . , g2r−1, g2r
(the case k > 2r) since its sum does not depend on permutations of basis
functions (here the basis in L2([t, T ]

r) is {ϕj1(x1) . . . ϕjr(xr)}
∞
j1,...,jr=0). Recall

that any permutation of basis functions in a Hilbert space forms a basis in this
Hilbert space [127].

The case k = 2r of (2.1314) is considered in Sect. 2.27.4. Consider the case
k > 2r of (2.1314).

Using Fubini’s Theorem, we obtain

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

hl(tl)

tl∫
t

hl−1(tl−1) . . .

t2∫
t

h1(t1)dt1 . . .

. . . dtl−1dtldtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−2

hl−1(tl−1)

tl+1∫
tl−1

hl(tl)dtl×

×dtl−1 . . . dt2dt1dtl+1 . . . dtk =
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=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

 tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−2

hl−1(tl−1)×

×dtl−1 . . . dt2dt1dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

h1(t1)

tl+1∫
t1

h2(t2) . . .

tl+1∫
tl−2

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

×

×dtl−1 . . . dt2dt1dtl+1 . . . dtk =

=

T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

 tl+1∫
t

hl(tl)dtl

 tl+1∫
t

hl−1(tl−1) . . .

. . .

t2∫
t

h1(t1)dt1 . . . dtl−1dtl+1 . . . dtk−

−
T∫
t

hk(tk) . . .

tl+2∫
t

hl+1(tl+1)

tl+1∫
t

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

 tl−1∫
t

hl−2(tl−2) . . .

. . .

t2∫
t

h1(t1)dt1 . . . dtl−2dtl−1dtl+1 . . . dtk, (2.1315)

where 2 < l < k − 1 and h1(τ), . . . , hk(τ) ∈ L2([t, T ]).

By analogy with (2.1315) we have for l = k

T∫
t

hl(tl)

tl∫
t

hl−1(tl−1) . . .

t2∫
t

h1(t1)dt1 . . . dtl−1dtl =

=

T∫
t

h1(t1)

T∫
t1

h2(t2) . . .

T∫
tl−2

hl−1(tl−1)

T∫
tl−1

hl(tl)dtldtl−1 . . . dt2dt1 =

=

 T∫
t

hl(tl)dtl

 T∫
t

h1(t1)

T∫
t1

h2(t2) . . .

T∫
tl−2

hl−1(tl−1)dtl−1 . . . dt2dt1−
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−
T∫
t

h1(t1)

T∫
t1

h2(t2) . . .

T∫
tl−2

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

 dtl−1 . . . dt2dt1 =

=

 T∫
t

hl(tl)dtl

 T∫
t

hl−1(tl−1) . . .

t2∫
t

h1(t1)dt1 . . . dtl−1−

−
T∫
t

hl−1(tl−1)

 tl−1∫
t

hl(tl)dtl

 tl−1∫
t

hl−2(tl−2) . . .

t2∫
t

h1(t1)dt1 . . . dtl−1. (2.1316)

We will assume that for l = 1 the transformation (2.1315) is not carried out
since

t2∫
t

h1(t1)dt1

is the innermost integral on the left-hand side of (2.1315). The formulas
(2.1315), (2.1316) will be used further.

Let us carry out the transformations (2.1315), (2.1316) for

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

iteratively for j1, . . . , jq, . . . , jk (q ̸= g1, g2, . . . , g2r−1, g2r). As a result, we obtain

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
2k−2r∑
d=1

(−1)d−1

(
Ĉ

(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

− C̄
(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

)
, (2.1317)

where some terms in the sum
2k−2r∑
d=1

can be identically equal to zero due to the remark to (2.1315), (2.1316).
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Using (2.1317), we get

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

= lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

2k−2r∑
d=1

(−1)d−1

(
Ĉ

(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− C̄
(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

)
=

=
2k−2r∑
d=1

(−1)d−1 lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
Ĉ

(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− C̄
(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

)
. (2.1318)

Further, consider 3 possible cases.

Case 1. The quantities

Ĉ
(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

, C̄
(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

(2.1319)

are such that
r∏
l=1

1{g2l=g2l−1+1} = 1 (2.1320)

for d = 1, 2, . . . , 2k−2r and

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

(2.1321)

is such that the condition (2.1320) is fulfilled for (2.1321).

Case 2. The quantities (2.1319) are such that the condition (2.1320) is
satisfied for d = 1, 2, . . . , 2k−2r and (2.1321) is such that the condition

r∏
l=1

1{g2l=g2l−1+1} = 0 (2.1322)
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is fulfilled for (2.1321).

Case 3. The quantities (2.1319) are such that the condition (2.1322) is
satisfied for d = 1, 2, . . . , 2k−2r and (2.1321) is such that the condition (2.1322)
is fulfilled for (2.1321).

For Case 1, applying (2.1314) for the case k = 2r and (2.1318), we get for
any fixed j1, . . . , jq, . . . , jk (q ̸= g1, g2, . . . , g2r−1, g2r)

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
2k−2r∑
d=1

(−1)d−1 lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
Ĉ

(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− C̄
(d)
jk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

)
=

=
2k−2r∑
d=1

(−1)d−1 1

2r

r∏
l=1

1{g2l=g2l−1+1}×

×

(
Ĉ

(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

−

− C̄
(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
= (2.1323)

=
2k−2r∑
d=1

(−1)d−1 1

2r

(
Ĉ

(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

−

− C̄
(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
, (2.1324)

where g1, g2, . . . , g2r−1, g2r as in (2.652), k > 2r, r = 1, 2, . . . , [k/2].

It is not difficult to see that the left-hand side of (2.1320) is a constant for
the quantities (2.1319) for all d = 1, 2, . . . , 2k−2r.
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Using (2.1315), (2.1316), we obtain

2k−2r∑
d=1

(−1)d−1 1

2r

(
Ĉ

(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

−

− C̄
(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
=

=
1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

. (2.1325)

Combining (2.1324) and (2.1325), we have for any fixed j1, . . . , jq, . . . , jk
(q ̸= g1, g2, . . . , g2r−1, g2r)

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
1

2r
Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

, (2.1326)

where g1, g2, . . . , g2r−1, g2r as in (2.652), k > 2r, r = 1, 2, . . . , [k/2].

From (2.1314) for the case k = 2r and (2.1326) (k > 2r) we obtain (2.1314)
for the case k ≥ 2r. The equality (2.1314) is proved for Case 1.

For Case 2, applying (2.1314) for the case k = 2r and (2.1318), we get
(2.1324) for any fixed j1, . . . , jq, . . . , jk (q ̸= g1, g2, . . . , g2r−1, g2r). Further, note
that

Ĉ
(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

=

= C̄
(d)
jk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

(2.1327)

for Case 2. Combining (2.1324) and (2.1327), we obtain (Case 2) for any fixed
j1, . . . , jq, . . . , jk (q ̸= g1, g2, . . . , g2r−1, g2r)

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

= 0. (2.1328)
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From (2.1314) for the case k = 2r and (2.1328) (k > 2r) we obtain (2.1328)
for the case k ≥ 2r. The equality (2.1314) is proved for Case 2.

For Case 3, applying (2.1314) for the case k = 2r and (2.1318), we get
(2.1323) for any fixed j1, . . . , jq, . . . , jk (q ̸= g1, g2, . . . , g2r−1, g2r).

Since
r∏
l=1

1{g2l=g2l−1+1} = 0 (2.1329)

for Case 3, then from (2.1323) we get (2.1328) for k > 2r (recall that the
left-hand side of (2.1329) is a constant for the quantities (2.1319) for all d =
1, 2, . . . , 2k−2r).

From (2.1314) for k = 2r and (2.1328) for k > 2r (Case 3) we obtain
(2.1328) for k ≥ 2r (Case 3). The equality (2.1314) is proved for Case 3. The
equality (2.1314) is proved. Thus, Theorem 2.58 is proved. Theorem 2.59 is
also proved.

2.31 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Arbitrary Multiplicity k (k ∈ N). The Case

of an Arbitrary Complete Orthonormal System

of Functions in L2([t, T ]), ψ1(τ ), . . . , ψk(τ ) ∈ L2([t, T ]).

Proof of Hypotheses 2.4, 2.5 for the Case p1 = . . . =

pk = p and Under the Condition (2.1341)

We will start this section with an example. Let us assume that h1(τ), . . . ,
h12(τ) ∈ L2([t, T ]) and consider the following integral

I
def
=

T∫
t

h12(t12)

t12∫
t

h11(t11) . . .

t2∫
t

h1(t1)dt1 . . . dt11dt12.

We want to transform the integral I in such a way that

I =

T∫
t

h10(t10)

t10∫
t

h6(t6)

t6∫
t

h4(t4)

t4∫
t

h3(t3) (. . .) dt3dt4dt6dt10,

where (. . .) is some expression.
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Using Fubini’s Theorem, we obtain

I =

T∫
t

h12(t12)

t12∫
t

h11(t11)

t11∫
t

h10(t10)

t10∫
t

h9(t9)

t9∫
t

h8(t8)

t8∫
t

h7(t7)

t7∫
t

h6(t6)×

×
t6∫
t

h5(t5)

t5∫
t

h4(t4)

t4∫
t

h3(t3)

t3∫
t

h2(t2)

t2∫
t

h1(t1)dt1dt2dt3dt4dt5dt6dt7dt8×

×dt9dt10dt11dt12 =

=

T∫
t

h10(t10)

t10∫
t

h9(t9)

t9∫
t

h8(t8)

t8∫
t

h7(t7)

t7∫
t

h6(t6)

t6∫
t

h5(t5)×

×
t5∫
t

h4(t4)

t4∫
t

h3(t3)

t3∫
t

h2(t2)

t2∫
t

h1(t1)dt1dt2dt3dt4dt5dt6dt7dt8dt9×

×

 T∫
t10

h11(t11)

T∫
t11

h12(t12)dt12dt11

 dt10 =

=

T∫
t

h10(t10)

t10∫
t

h6(t6)

t6∫
t

h5(t5)

t5∫
t

h4(t4)

t4∫
t

h3(t3)

t3∫
t

h2(t2)

t2∫
t

h1(t1)×

×dt1dt2dt3dt4dt5

 t10∫
t6

h7(t7)

t10∫
t7

h8(t8)

t10∫
t8

h9(t9)dt9dt8dt7

 dt6×

×

 T∫
t10

h11(t11)

T∫
t11

h12(t12)dt12dt11

 dt10 =

=

T∫
t

h10(t10)

t10∫
t

h6(t6)

t6∫
t

h4(t4)

t4∫
t

h3(t3)

 t3∫
t

h2(t2)

t2∫
t

h1(t1)dt1dt2

 dt3×

×

 t6∫
t4

h5(t5)dt5

 dt4

 t10∫
t6

h7(t7)

t10∫
t7

h8(t8)

t10∫
t8

h9(t9)dt9dt8dt7

 dt6×
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×

 T∫
t10

h11(t11)

T∫
t11

h12(t12)dt12dt11

 dt10 =

=

T∫
t

h10(t10)

t10∫
t

h6(t6)

t6∫
t

h4(t4)

t4∫
t

h3(t3)

 t3∫
t

h2(t2)

t2∫
t

h1(t1)dt1dt2

×

×

 t6∫
t4

h5(t5)dt5

 t10∫
t6

h9(t9)

t9∫
t6

h8(t8)

t8∫
t6

h7(t7)dt7dt8dt9

×

×

 T∫
t10

h12(t12)

t12∫
t10

h11(t11)dt11dt12

 dt3dt4dt6dt10. (2.1330)

Further, suppose that hl(τ) = ψl(τ)ϕjl(τ) (l = 1, . . . , 12) in (2.1330) (here
{ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in the
space L2([t, T ]) and ψ1(τ), . . . , ψ12(τ) ∈ L2([t, T ])). Thus, we get

Cj12j11j10j9j8j7j6j5j4j3j2j1 =

T∫
t

ψ10(t10)ϕj10(t10)

t10∫
t

ψ6(t6)ϕj6(t6)

t6∫
t

ψ4(t4)ϕj4(t4)×

×
t4∫
t

ψ3(t3)ϕj3(t3)C
ψ12ψ11

j12j11
(T, t10)C

ψ9ψ8ψ7

j9j8j7
(t10, t6)C

ψ5

j5
(t6, t4)C

ψ2ψ1

j2j1
(t3, t)×

×dt3dt4dt6dt10, (2.1331)

where

Cψk...ψ1

jk...j1
(s, τ) =

s∫
τ

ψk(tk)ϕjk(tk) . . .

t2∫
τ

ψ1(t1)ϕj1(t1)dt1 . . . dtk (t ≤ τ < s ≤ T ).

Suppose that g1, g2, . . . , g2r−1, g2r as in (2.652) and k > 2r, r ≥ 1 (the case
k = 2r see in Sect. 2.27.4). Consider d1, e1, . . . , df , ef , f ∈ N such that

1 ≤ d1− e1+1 < . . . < d1−1 < d1 < . . . < df − ef +1 < . . . < df −1 < df ≤ k,

{g1, g2, . . . , g2r−1, g2r} =

= {d1 − e1 + 1, . . . , d1 − 1, d1} ∪ . . . ∪ {df − ef + 1, . . . , df − 1, df} ,
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e1 + e2 + . . .+ ef = 2r, {1, . . . , k} \ {g1, g2, . . . , g2r−1, g2r} = {q1, . . . , qk−2r} .

We will say that the condition (A) is satisfied if ∀ {g2l−1, g2l} (l = 1, . . . , r)
∃ h ∈ {1, . . . , f} such that

{g2l−1, g2l} ⊂ {dh − eh + 1, . . . , dh − 1, dh} . (2.1332)

Moreover, ∀ h ∈ {1, . . . , f} ∃ {g2l−1, g2l} (l = 1, . . . , r) such that (2.1332) is
fulfilled.

If the condition (A) is satisfied, then e1, . . . , ef are even and we can write

{d1 − e1 + 1, . . . , d1} =
{
g
(1)
1 , g

(1)
2 , . . . , g

(1)
2r1−1, g

(1)
2r1

}
,

. . .

{df − ef + 1, . . . , df} =
{
g
(f)
1 , g

(f)
2 , . . . , g

(f)
2rf−1, g

(f)
2rf

}
,

{
g1, g2, . . . , g2r−1, g2r

}
=

=
{
g
(1)
1 , g

(1)
2 , . . . , g

(1)
2r1−1, g

(1)
2r1
, . . . , g

(f)
1 , g

(f)
2 , . . . , g

(f)
2rf−1, g

(f)
2rf

}
.

If the condition (A) is not fulfilled, then some of e1, . . . , ef can be uneven.

Using (2.1262) and a modification of the algorithm from Sect. 2.27.4 (see
below for details) it can be proved that

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=

f∏
h=1

1

2rh

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1}×

×Cψdh
...ψdh−eh+1

jdh ...jdh−eh+1
(tdh+1, tdh−eh)

∣∣∣∣
(j

g
(h)
2

j
g
(h)
1

)↷(·)...(j
g
(h)
2rh

j
g
(h)
2rh−1

)↷(·),j
g
(h)
1

=j
g
(h)
2

,...,j
g
(h)
2rh−1

=j
g
(h)
2rh

(2.1333)

if the condition (A) is satisfied, and
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lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

= 0 (2.1334)

if the condition (A) is not fulfilled, where tk+1
def
= T, t0

def
= t, e1 + . . . + ef = 2r

in (2.1333), (2.1334) and eh = 2rh (h = 1, . . . , f), r1 + . . .+ rf = r in (2.1333).

Note that the series on the left-hand sides of (2.1333) and (2.1334) converge
absolutly since their sums do not depend on permutations of basis functions
(here the basis in L2([t, T ]

r) is {ϕj1(x1) . . . ϕjr(xr)}
∞
j1,...,jr=0). Recall that any

permutation of basis functions in a Hilbert space forms a basis in this Hilbert
space [127].

Let us prove the formulas (2.1333) and (2.1334).

1. Suppose that the condition (A) is satisfied and
rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1} = 1 (2.1335)

for all h = 1, . . . , f. In this case we can use the results from Sect. 2.27.4. We
have (see (2.1262))

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

= lim
p→∞

p∑
j
g
(1)
1

,j
g
(1)
3

,...,j
g
(1)
2r1−1

=0

C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

∣∣∣∣
j
g
(1)
1

=j
g
(1)
2

,...,j
g
(1)
2r1−1

=j
g
(1)
2r1

×

. . .

× lim
p→∞

p∑
j
g
(f)
1

,j
g
(f)
3

,...,j
g
(f)
2rf−1

=0

C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef )

∣∣∣∣
j
g
(f)
1

=j
g
(f)
2

,...,j
g
(f)
2rf−1

=j
g
(f)
2rf

=
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=

f∏
h=1

1

2rh

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1}×

×Cψdh
...ψdh−eh+1

jdh ...jdh−eh+1
(tdh+1, tdh−eh)

∣∣∣∣
(j

g
(h)
2

j
g
(h)
1

)↷(·)...(j
g
(h)
2rh

j
g
(h)
2rh−1

)↷(·),j
g
(h)
1

=j
g
(h)
2

,...,j
g
(h)
2rh−1

=j
g
(h)
2rh

.

Thus, we get the formula (2.1333).

2. Suppose that the condition (A) is satisfied and for some h = 1, . . . , f

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1} = 0. (2.1336)

In this case, we act the same as in the previous case. Applying (2.1262),
we obtain

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

= lim
p→∞

p∑
j
g
(1)
1

,j
g
(1)
3

,...,j
g
(1)
2r1−1

=0

C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

∣∣∣∣
j
g
(1)
1

=j
g
(1)
2

,...,j
g
(1)
2r1−1

=j
g
(1)
2r1

×

. . .

× lim
p→∞

p∑
j
g
(f)
1

,j
g
(f)
3

,...,j
g
(f)
2rf−1

=0

C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef )

∣∣∣∣
j
g
(f)
1

=j
g
(f)
2

,...,j
g
(f)
2rf−1

=j
g
(f)
2rf

= 0

(2.1337)

(al least one of the multipliers is equal to zero on the right-hand side of (2.1337)).

The equality (2.1333) is proved in our case (the right-hand side of (2.1333)
is equal to zero for the considered case (see (2.1336))).
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3. Suppose that the condition (A) is not satisfied. In this case, we act ac-
cording to the algorithm from Sect. 2.27.4. More precisely, let us select blocks in
the multi-index jdh . . . jdh−eh+1 (h = 1, . . . , f) that correspond to the fulfillment
of the condition

rm,h∏
l=1

1{g(h)2l =g
(h)
2l−1+1} = 1,

where rm,h is the number of pairs {g(h)2l−1, g
(h)
2l } (from the set {g1, g2, . . . ,

g2r−1, g2r}) in the block with number m that corresponds to the multi-index
jdh . . . jdh−eh+1.

Let us save multipliers of the form 1{tn<tn+1} in the Volterra–type kernels
corresponding to the Fourier coefficients

C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1), . . . , C

ψdf
...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) (2.1338)

and corresponding to the above blocks.

At that, we remove the remaining multipliers of the form 1{tn<tn+1} in the
Volterra–type kernels corresponding to the Fourier coefficients (2.1338).

As a result, we get a modified left-hand side of the equality (2.1334). For
definiteness, let us denote this expression by (−).

Using generalized Parseval’s equality (Parseval’s equality for two functions)
and (2.1255), we represent the expression (−) as an integral over the hypercube
[t, T ]r.

It is not difficult to see that the indicated integral over the hypercube [t, T ]r

is represented as a product of integrals over hypercubes of smaller dimentions.
At that, at least one of these integrals is equal to zero due to the generalized
Parseval equality (Parseval’s equality for two functions) and the fulfillment of
the condition t ≤ td1−e1 ≤ td1+1 ≤ . . . ≤ tdf−ef ≤ tdf+1 ≤ T (see the above
example and (2.1330) and (2.1331)). For definiteness, let us denote the equality
of (−) to zero by (K̄). We interpret the above zero as the zero functional in
L2([t, T ]

r). Further, transformations and passages to the limit in the equality
(K̄) are performed iteratively in such a way as to restore the removed multipliers
1{tn<tn+1} on the left-hand side of (K̄) (for more details, see Sect. 2.27.4). As
a result, we obtain the equality (2.1334). The equalities (2.1333) and (2.1334)
are proved.

For definiteness, suppose that q1 < . . . < qk−2r, k > 2r, r ≥ 1 (recall that
the case k = 2r is proved in Sect. 2.27.4). Using Fubini’s Theorem (as in the
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above example (see (2.1330)), we obtain

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=

T∫
t

ψqk−2r
(tqk−2r

)ϕjqk−2r
(tqk−2r

) . . .

tq1+1∫
t

ψq1(tq1)ϕjq1(tq1)×

×
p∑

jg1 ,jg3 ,...,jg2r−1
=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

×

×dtq1 . . . dtqk−2r
, (2.1339)

1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

=

=

T∫
t

ψqk−2r
(tqk−2r

)ϕjqk−2r
(tqk−2r

) . . .

tq1+1∫
t

ψq1(tq1)ϕjq1(tq1)×

×1{the condition (A) is satisfied}

f∏
h=1

1

2rh

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1}×

×Cψdh
...ψdh−eh+1

jdh ...jdh−eh+1
(tdh+1, tdh−eh)

∣∣∣∣
(j

g
(h)
2

j
g
(h)
1

)↷(·)...(j
g
(h)
2rh

j
g
(h)
2rh−1

)↷(·),j
g
(h)
1

=j
g
(h)
2

,...,j
g
(h)
2rh−1

=j
g
(h)
2rh

×

×dtq1 . . . dtqk−2r
. (2.1340)
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Suppose that∣∣∣∣∣
p∑

jg1 ,jg3 ,...,jg2r−1
=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

∣∣∣∣∣ ≤ K <∞, (2.1341)

where constant K does not depend on p and td1+1, td1−e1, . . . , tdf+1, tdf−ef (here

d1 − e1 ≥ 1 and df + 1 ≤ k). In (2.1341): tk+1
def
= T, t0

def
= t, e1 + . . .+ ef = 2r;

another notations as above in this section.

Applying (2.1333), (2.1334), (2.1339), (2.1340), we obtain (k > 2r, r ≥ 1)

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

≤

≤ lim
p→∞

∞∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

=

= lim
p→∞

∞∑
jq1 ,...,jqk−2r

=0

( T∫
t

ψqk−2r
(tqk−2r

)ϕjqk−2r
(tqk−2r

) . . .

tq1+1∫
t

ψq1(tq1)ϕjq1(tq1)×

×

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .
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. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

−1{the condition (A) is satisfied}

f∏
h=1

1

2rh

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1}×

×Cψdh
...ψdh−eh+1

jdh ...jdh−eh+1
(tdh+1, tdh−eh)

∣∣∣∣
(j

g
(h)
2

j
g
(h)
1

)↷(·)...(j
g
(h)
2rh

j
g
(h)
2rh−1

)↷(·),j
g
(h)
1

=j
g
(h)
2

,...,j
g
(h)
2rh−1

=j
g
(h)
2rh

)
×

×dtq1 . . . dtqk−2r

)2

= (2.1342)

= lim
p→∞

T∫
t

ψ2
qk−2r

(tqk−2r
) . . .

tq1+1∫
t

ψ2
q1
(tq1)×

×

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

−1{the condition (A) is satisfied}

f∏
h=1

1

2rh

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1}×

×Cψdh
...ψdh−eh+1

jdh ...jdh−eh+1
(tdh+1, tdh−eh)

∣∣∣∣
(j

g
(h)
2

j
g
(h)
1

)↷(·)...(j
g
(h)
2rh

j
g
(h)
2rh−1

)↷(·),j
g
(h)
1

=j
g
(h)
2

,...,j
g
(h)
2rh−1

=j
g
(h)
2rh

)2

×

×dtq1 . . . dtqk−2r
= (2.1343)
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=

T∫
t

ψ2
qk−2r

(tqk−2r
) . . .

tq1+1∫
t

ψ2
q1
(tq1)×

× lim
p→∞

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

−1{the condition (A) is satisfied}

f∏
h=1

1

2rh

rh∏
l=1

1{g(h)2l =g
(h)
2l−1+1}×

×Cψdh
...ψdh−eh+1

jdh ...jdh−eh+1
(tdh+1, tdh−eh)

∣∣∣∣
(j

g
(h)
2

j
g
(h)
1

)↷(·)...(j
g
(h)
2rh

j
g
(h)
2rh−1

)↷(·),j
g
(h)
1

=j
g
(h)
2

,...,j
g
(h)
2rh−1

=j
g
(h)
2rh

)2

×

×dtq1 . . . dtqk−2r
= 0, (2.1344)

where the transition from (2.1342) to (2.1343) is based on the Parseval equality
and the transition from (2.1343) to (2.1344) is based on Lebesgue’s Dominated
Convergence Theorem (see (2.1169), (2.1172), (2.1333), (2.1334), (2.1341)) and
also on convergence to zero (almost everywhere on

X = {(tq1, . . . , tqk−2r
) : t ≤ tq1 ≤ . . . ≤ tqk−2r

≤ T}

with respect to Lebesgue’s measure) of the integrand function in (2.1343).

Thus, the equality (2.1060) and Hypotheses 2.4, 2.5 are proved for the case
p1 = . . . = pk = p under the condition (2.1341) and we have the following
theorem.

Theorem 2.60. Suppose that the condition (2.1341) is fulfilled, {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in L2([t, T ]) and

ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]). Then, for the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô



802D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

stochastic integrals

J̄∗[ψ(k)]
(i1...ik)
T,t = J [ψ(k)]

(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t

the following expansion

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

that converges in the mean-square sense is valid, where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (2.1345)

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1, . . . , ik =
0, 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ ; another notations

are the same as in Theorem 2.12.

Using Theorem 2.12, we obtain the following corollary of Theorem 2.60.

Theorem 2.61. Suppose that the condition (2.1341) is fulfilled, {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in L2([t, T ]) and
ψ1(τ), . . . , ψk(τ) are continuous functions at the interval [t, T ]. Then, for the
iterated Stratonovich stochastic integral of multiplicity k (k ∈ N)

J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following expansion

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

(2.1346)
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that converges in the mean-square sense is valid; another notations are the same
as in Theorem 2.60.

Note that the condition (2.1341) can be weakened. Namely, the constant
K2 can be replaced by the function F such that ψ2

q1
. . . ψ2

qk−2r
F ∈ L1([t, T ]

k−2r)
(integrable majorant). More precisely, the condition (2.1341) can be replaced
by the following condition(

p∑
jg1 ,jg3 ,...,jg2r−1

=0

(
C
ψdf

...ψdf−ef+1

jdf ...jdf−ef+1
(tdf+1, tdf−ef ) . . .

. . . C
ψd1

...ψd1−e1+1

jd1 ...jd1−e1+1
(td1+1, td1−e1)

) ∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

)2

≤ F (tq1, . . . , tqk−2r
)

(2.1347)

almost everywhere on

X = {(tq1, . . . , tqk−2r
) : t ≤ tq1 ≤ . . . ≤ tqk−2r

≤ T}

with respect to Lebesgue’s measure, where the function F (tq1, . . . , tqk−2r
) is such

that
ψ2
q1
(tq1) . . . ψ

2
qk−2r

(tqk−2r
)F (tq1, . . . , tqk−2r

) ∈ L1([t, T ]
k−2r),

where F (tq1, . . . , tqk−2r
) does not depend on p. In (2.1347): tk+1

def
= T, t0

def
= t,

e1 + . . .+ ef = 2r; another notations as above in this section.

2.32 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 6. The Case of an Arbitrary

Complete Orthonormal System of Functions in the

Space L2([t, T ]) and ψ1(τ ), . . . , ψ6(τ ) ≡ 1

This section is devoted to the following theorem.

Theorem 2.62. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonor-
mal system of functions in the space L2([t, T ]). Then, for the iterated Stratono-
vich stochastic integral of sixth multiplicity

J∗[ψ(6)]T,t =

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(i6)
t6
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the following expansion

J∗[ψ(6)]T,t = l.i.m.
p→∞

p∑
j1,...,j6=0

Cj6...j1ζ
(i1)
j1

. . . ζ
(i6)
j6

that converges in the mean-square sense is valid, where i1, . . . , i6 = 0, 1, . . . ,m,

Cj6...j1 =

T∫
t

ϕj6(t6) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt6 (2.1348)

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. Our proof will be based on Theorem 2.61 and verification of the
equality (2.1341) under the conditions of Theorem 2.62 (the case k = 6 > 2r,
where r = 1, 2). Recall that the case k = 2r is considered in Sect. 2.27.4 (see
(2.1262)). Under the conditions of Theorem 2.62, this means that k = 6 = 2r,
where r = 3.

Let throughout this proof

Cjk...j1(s, τ) =

s∫
τ

ϕjk(tk) . . .

t2∫
τ

ϕj1(t1)dt1 . . . dtk,

where k = 1, . . . , 4, t ≤ τ < s ≤ T, and Cj6...j1 is defined by (2.1348).

Using Fubini’s Theorem and the technique that leads to the formulas
(2.1330), (2.1331), we obtain (note that we find all possible combinations of
pairs using the equality (2.682)):

1. r = 1 (15 combinations)

Cj1j5j4j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj1(T, t5)dt2dt3dt4dt5,

Cj2j5j4j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj2(T, t5)dt1dt3dt4dt5,
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Cj3j5j4j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj3(t4, t2)Cj3(T, t5)dt1dt2dt4dt5,

Cj4j5j4j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj4(t5, t3)Cj4(T, t5)dt1dt2dt3dt5,

Cj5j5j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj5j5(T, t4)dt1dt2dt3dt4,

Cj6j5j4j3j1j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)Cj1j1(t3, t)dt3dt4dt5dt6,

Cj6j5j4j1j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)Cj1(t2, t)Cj1(t4, t2)dt2dt4dt5dt6,

Cj6j5j1j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj1(t5, t3)dt2dt3dt5dt6,

Cj6j1j4j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj1(t6, t4)dt2dt3dt4dt6,

Cj6j5j4j2j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)Cj2j2(t4, t1)dt1dt4dt5dt6,

Cj6j5j2j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj2(t5, t3)dt1dt3dt5dt6,

Cj6j2j4j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj2(t6, t4)dt1dt3dt4dt6,

Cj6j5j3j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)

t5∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj3j3(t5, t2)dt1dt2dt5dt6,
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Cj6j3j4j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj3(t4, t2)Cj3(t6, t4)dt1dt2dt4dt6,

Cj6j4j4j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj4j4(t6, t3)dt1dt2dt3dt6,

2. r = 2 (45 combinations)

Cj6j5j3j3j1j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)Cj3j3j1j1(t5, t)dt5dt6,

Cj6j3j4j3j1j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj4(t4)Cj3j1j1(t4, t)Cj3(t6, t4)dt4dt6,

Cj6j4j4j3j1j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj3(t3)Cj1j1(t3, t)Cj4j4(t6, t3)dt3dt6,

Cj6j5j2j1j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)Cj2j1j2j1(t5, t)dt5dt6,

Cj6j2j4j1j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj4(t4)Cj1j2j1(t4, t)Cj2(t6, t4)dt4dt6,

Cj6j4j4j1j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj2(t2)Cj1(t2, t)Cj4j4j1(t6, t2)dt2dt6,

Cj6j5j1j2j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj5(t5)Cj1j2j2j1(t5, t)dt5dt6,

Cj6j2j1j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj3(t3)Cj2j1(t3, t)Cj2j1(t6, t3)dt3dt6,

Cj6j3j1j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj2(t2)Cj1(t2, t)Cj3j1j3(t6, t2)dt2dt6,
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Cj6j1j4j2j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj4(t4)Cj2j2j1(t4, t)Cj1(t6, t4)dt4dt6,

Cj6j1j2j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj3(t3)Cj2j1(t3, t)Cj1j2(t6, t3)dt3dt6,

Cj6j1j3j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj2(t2)Cj1(t2, t)Cj1j3j3(t6, t2)dt2dt6,

Cj6j4j4j2j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj1(t1)Cj4j4j2j2(t6, t1)dt1dt6,

Cj6j3j2j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj1(t1)Cj3j2j3j2(t6, t1)dt1dt6,

Cj6j2j3j3j2j1 =

T∫
t

ϕj6(t6)

t6∫
t

ϕj1(t1)Cj2j3j3j2(t6, t1)dt1dt6,

Cj1j5j3j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj2(t2)Cj1(t2, t)Cj3j3(t5, t2)Cj1(T, t5)dt2dt5,

Cj1j3j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)Cj1(t2, t)Cj3(t4, t2)Cj1j3(T, t4)dt2dt4,

Cj1j2j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)Cj2j1(t3, t)Cj1j2(T, t4)dt3dt4,

Cj1j5j2j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)Cj2j1(t3, t)Cj2(t5, t3)Cj1(T, t5)dt3dt5,

Cj1j4j4j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj1j4j4(T, t3)dt2dt3,



808D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Cj1j5j4j2j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)Cj2j2j1(t4, t)Cj1(T, t5)dt4dt5,

Cj2j3j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)Cj2j3(t4, t1)Cj2j3(T, t4)dt1dt4,

Cj2j4j4j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj2j4j4(T, t3)dt1dt3,

Cj2j5j3j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)Cj2j3j3(t5, t1)Cj2(T, t5)dt1dt5,

Cj2j1j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)Cj2j1(t3, t)Cj2j1(T, t4)dt3dt4,

Cj2j5j1j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)Cj2j1(t3, t)Cj1(t5, t3)Cj2(T, t5)dt3dt5,

Cj2j5j4j1j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)Cj1j2j1(t4, t)Cj2(T, t5)dt4dt5,

Cj3j2j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)Cj3j2(t4, t1)Cj3j2(T, t4)dt1dt4,

Cj3j4j4j3j2j1 =

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj3j4j4j3(T, t2)dt1dt2,

Cj3j5j2j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)Cj2j3j2(t5, t1)Cj3(T, t5)dt1dt5,

Cj3j1j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)Cj1(t2, t)Cj3(t4, t2)Cj3j1(T, t4)dt2dt4,
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Cj3j5j1j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj2(t2)Cj1(t2, t)Cj1j3(t5, t2)Cj3(T, t5)dt2dt5,

Cj3j5j4j3j1j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)Cj3j1j1(t4, t)Cj3(T, t5)dt4dt5,

Cj4j3j4j3j2j1 =

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj4j3j4j3(T, t2)dt1dt2,

Cj4j2j4j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj4j2j4(T, t3)dt1dt3,

Cj4j5j4j2j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj1(t1)Cj4j2j2(t5, t1)Cj4(T, t5)dt1dt5,

Cj4j1j4j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj4j1j4(T, t3)dt2dt3,

Cj4j5j4j1j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj2(t2)Cj1(t2, t)Cj4j1(t5, t2)Cj4(T, t5)dt2dt5,

Cj4j5j4j3j1j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)Cj1j1(t3, t)Cj4(t5, t3)Cj4(T, t5)dt3dt5,

Cj5j5j3j3j2j1 =

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj5j5j3j3(T, t2)dt1dt2,

Cj5j5j2j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj5j5j2(T, t3)dt1dt3,

Cj5j5j4j2j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)Cj2j2(t4, t1)Cj5j5(T, t4)dt1dt4,
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Cj5j5j1j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj5j5j1(T, t3)dt2dt3,

Cj5j5j4j1j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)Cj1(t2, t)Cj1(t4, t2)Cj5j5(T, t4)dt2dt4,

Cj5j5j4j3j1j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)Cj1j1(t3, t)Cj5j5(T, t4)dt3dt4.

It is not difficult to see (based on the above equalities) that the condition
(2.1341) will be satisfied under the conditions of Theorem 2.62 if∣∣∣∣∣

p∑
j1=0

Cj1j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1349)

∣∣∣∣∣
p∑

j1=0

Cj1(s, τ)Cj1(θ, u)

∣∣∣∣∣ ≤ K, (2.1350)∣∣∣∣∣
p∑

j1,j2=0

Cj2j2j1j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1351)∣∣∣∣∣
p∑

j1,j2=0

Cj2j1j2j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1352)∣∣∣∣∣
p∑

j1,j2=0

Cj1j2j2j1(s, τ)

∣∣∣∣∣ ≤ K, (2.1353)∣∣∣∣∣
p∑

j1,j2=0

Cj2j1j1(s, τ)Cj2(θ, u)

∣∣∣∣∣ ≤ K, (2.1354)∣∣∣∣∣
p∑

j1,j2=0

Cj1j2j1(s, τ)Cj2(θ, u)

∣∣∣∣∣ ≤ K, (2.1355)∣∣∣∣∣
p∑

j1,j2=0

Cj2j2j1(s, τ)Cj1(θ, u)

∣∣∣∣∣ ≤ K, (2.1356)∣∣∣∣∣
p∑

j1,j2=0

Cj1j1(s, τ)Cj2j2(θ, u)

∣∣∣∣∣ ≤ K, (2.1357)
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p∑

j1,j2=0

Cj2j1(s, τ)Cj2j1(θ, u)

∣∣∣∣∣ ≤ K, (2.1358)

∣∣∣∣∣
p∑

j1,j2=0

Cj2j1(s, τ)Cj1j2(θ, u)

∣∣∣∣∣ ≤ K, (2.1359)

∣∣∣∣∣
p∑

j1,j2=0

Cj1(s, τ)Cj1(ρ, v)Cj2j2(θ, u)

∣∣∣∣∣ ≤ K, (2.1360)

∣∣∣∣∣
p∑

j1,j2=0

Cj1(s, τ)Cj2(ρ, v)Cj1j2(θ, u)

∣∣∣∣∣ ≤ K, (2.1361)

where p ∈ N, t ≤ τ < s ≤ T, t ≤ u < θ ≤ T, t ≤ v < ρ ≤ T, constant K
does not depend on p, s, τ, u, θ, v, ρ (but only on t, T ) and may differ from line
to line.

The equalities (2.1351)–(2.1353) have been proved earlier (see (2.1108)–
(2.1110)).

Using Fubini’s Theorem and Parseval’s equality, we get∣∣∣∣∣
p∑

j1=0

Cj1j1(s, τ)

∣∣∣∣∣ = 1

2

p∑
j1=0

C2
j1
(s, τ) ≤

≤ 1

2

∞∑
j1=0

C2
j1
(s, τ) =

1

2
(s− τ) ≤

≤ 1

2
(T − t) ≤ K.

The equality (2.1349) is proved. Moreover, (2.1357) follows from (2.1349).

Using the inequality of Cauchy–Bunyakovsky and Parseval’s equality, we
obtain (

p∑
j1=0

Cj1(s, τ)Cj1(θ, u)

)2

≤

≤
p∑

j1=0

C2
j1
(s, τ)

p∑
j1=0

C2
j1
(θ, u) ≤

≤
∞∑
j1=0

C2
j1
(s, τ)

∞∑
j1=0

C2
j1
(θ, u) =
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= (s− τ)(θ − u) ≤ (T − t)2 ≤ K2,(
p∑

j1,j2=0

Cj2j1(s, τ)Cj2j1(θ, u)

)2

≤
p∑

j1,j2=0

C2
j2j1

(s, τ)

p∑
j1,j2=0

C2
j2j1

(θ, u) ≤

≤
∞∑

j1,j2=0

C2
j2j1

(s, τ)
∞∑

j1,j2=0

C2
j2j1

(θ, u) =

=

s∫
τ

v∫
τ

dxdv

θ∫
u

v∫
u

dxdv ≤ 1

4
(T − t)4 ≤ K2.

Thus, the inequalities (2.1350), (2.1358) are proved. The inequalities
(2.1359), (2.1361) are proved similarly to (2.1358). Moreover, (2.1360) follows
from (2.1349), (2.1350).

Further, let us prove the equalities (2.1354)–(2.1356). Applying the Cau-
chy–Bunyakovsky inequality as well as Parseval’s equality and (2.1349), we have(

p∑
j1,j2=0

Cj2j1j1(s, τ)Cj2(θ, u)

)2

≤
p∑

j2=0

(
p∑

j1=0

Cj2j1j1(s, τ)

)2 p∑
j2=0

C2
j2
(θ, u) ≤

≤
∞∑
j2=0

(
p∑

j1=0

Cj2j1j1(s, τ)

)2 ∞∑
j2=0

C2
j2
(θ, u) =

=
∞∑
j2=0

 s∫
τ

ϕj2(v)

p∑
j1=0

Cj1j1(v, τ)dv

2

· (θ − u) =

= (θ − u)

s∫
τ

(
p∑

j1=0

Cj1j1(v, τ)

)2

dv ≤

≤ K2(θ − u)(s− τ) ≤ K2(T − t)2 = K1.

The equality (2.1354) is proved.

Using the Cauchy–Bunyakovsky inequality as well as Fubini’s Theorem,
Parseval’s equality and (2.1350), we have(

p∑
j1,j2=0

Cj1j2j1(s, τ)Cj2(θ, u)

)2

≤
p∑

j2=0

(
p∑

j1=0

Cj1j2j1(s, τ)

)2 p∑
j2=0

C2
j2
(θ, u) ≤
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≤
∞∑
j2=0

 p∑
j1=0

s∫
τ

ϕj1(z)

z∫
τ

ϕj2(y)

y∫
τ

ϕj1(x)dxdydz

2
∞∑
j2=0

C2
j2
(θ, u) =

=
∞∑
j2=0

 p∑
j1=0

s∫
τ

ϕj2(y)

y∫
τ

ϕj1(x)dx

s∫
y

ϕj1(z)dzdy

2

· (θ − u) =

= (θ − u)
∞∑
j2=0

 s∫
τ

ϕj2(y)

p∑
j1=0

Cj1(y, τ)Cj1(s, y)dy

2

=

= (θ − u)

s∫
τ

(
p∑

j1=0

Cj1(y, τ)Cj1(s, y)

)2

dy ≤

≤ K2(θ − u)(s− τ) ≤ K2(T − t)2 = K1.

The equality (2.1355) is proved.

Using the Cauchy–Bunyakovsky inequality as well as Fubini’s Theorem,
Parseval’s equality and (2.1349), we have(

p∑
j1,j2=0

Cj2j2j1(s, τ)Cj1(θ, u)

)2

≤
p∑

j1=0

(
p∑

j2=0

Cj2j2j1(s, τ)

)2 p∑
j1=0

C2
j1
(θ, u) ≤

≤
∞∑
j1=0

 p∑
j2=0

s∫
τ

ϕj2(z)

z∫
τ

ϕj2(y)

y∫
τ

ϕj1(x)dxdydz

2
∞∑
j1=0

C2
j1
(θ, u) =

=
∞∑
j1=0

 p∑
j2=0

s∫
τ

ϕj1(x)

s∫
x

ϕj2(y)

s∫
y

ϕj2(z)dzdydx

2

· (θ − u) =

= (θ − u)
∞∑
j1=0

 p∑
j2=0

s∫
τ

ϕj1(x)

s∫
x

ϕj2(z)

z∫
x

ϕj2(y)dydzdx

2

=

= (θ − u)
∞∑
j1=0

 s∫
τ

ϕj1(x)

p∑
j2=0

Cj2j2(s, x)dx

2

=
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= (θ − u)

s∫
τ

(
p∑

j2=0

Cj2j2(s, x)

)2

dx ≤

≤ K2(θ − u)(s− τ) ≤ K2(T − t)2 = K1.

The equality (2.1356) is proved. The equalities (2.1349)–(2.1361) are proved.

Thus, the condition (2.1341) of Theorem 2.61 is satisfied under the con-
ditions of Theorem 2.62. The assertion of Theorem 2.62 now follows from
Theorem 2.61. Theorem 2.62 is proved.

2.33 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity 4. The Case of an Arbitrary

Complete Orthonormal System of Functions in the

Space L2([t, T ]) and Binomial Weight Functions

Let us prove the following theorem.

Theorem 2.63. Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonor-
mal system of functions in the space L2([t, T ]). Then, for the iterated Stratono-
vich stochastic integral of fourth multiplicity

I
∗(i1i2i3i4)
l1l2l3l4T,t

=

∗∫
t

T

(t4 − t)l4

∗∫
t

t4

(t3 − t)l3

∗∫
t

t3

(t2 − t)l2

∗∫
t

t2

(t1 − t)l1×

×dw(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

the following expansion

I
∗(i1i2i3i4)
l1l2l3l4T,t

= l.i.m.
p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

that converges in the mean-square sense is valid, where i1, i2, i3, i4 = 0, 1, . . . ,m;
l1, l2, l3, l4 = 0, 1, 2, . . . ,

Cj4j3j2j1 =

T∫
t

(t4−t)l4ϕj4(t4)
t4∫
t

(t3−t)l3ϕj3(t3)
t3∫
t

(t2−t)l2ϕj2(t2)
t2∫
t

(t1−t)l1ϕj1(t1)×
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×dt1dt2dt3dt4 (2.1362)

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. The following proof will be based on Theorem 2.61 and verification
of the equality (2.1341) under the conditions of Theorem 2.63 (the case k =
4 > 2r, where r = 1). Note that the case k = 2r is proved in Sect. 2.27.4 (see
(2.1262)). Under the conditions of Theorem 2.63, the equality k = 2r means
that k = 4 and r = 2.

Let throughout this proof

C
ψi+1ψi

j1j1
(s, τ) =

s∫
τ

ψi+1(y)ϕj1(y)

y∫
τ

ψi(x)ϕj1(x)dxdy, C
ψq

j1
(s, τ) =

s∫
τ

ψq(x)ϕj1(x)dx,

where i = 1, 2, 3, t ≤ τ < s ≤ T, ψq(x) = (x− t)lq , lq = 0, 1, 2, . . . , q = 1, . . . , 4,
x ∈ [t, T ], and Cj4j3j2j1 is defined by (2.1362).

Using Fubini’s Theorem and the technique that leads to the formulas
(2.1330), (2.1331), we obtain (note that we find all possible combinations of
pairs using the equality (2.680)):

Cj4j3j1j1 =

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ3(t3)ϕj3(t3)C
ψ2ψ1

j1j1
(t3, t)dt3dt4,

Cj4j1j2j1 =

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ2(t2)ϕj2(t2)C
ψ1

j1
(t2, t)C

ψ3

j1
(t4, t2)dt2dt4,

Cj1j3j2j1 =

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ2(t2)ϕj2(t2)C
ψ1

j1
(t2, t)C

ψ4

j1
(T, t3)dt2dt3,

Cj4j2j2j1 =

T∫
t

ψ4(t4)ϕj4(t4)

t4∫
t

ψ1(t1)ϕj1(t1)C
ψ3ψ2

j2j2
(t4, t1)dt1dt4,
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Cj2j3j2j1 =

T∫
t

ψ3(t3)ϕj3(t3)

t3∫
t

ψ1(t1)ϕj1(t1)C
ψ2

j2
(t3, t1)C

ψ4

j2
(T, t3)dt1dt3,

Cj3j3j1j1 =

T∫
t

ψ2(t2)ϕj2(t2)

t2∫
t

ψ1(t1)ϕj1(t1)C
ψ4ψ3

j3j3
(T, t2)dt1dt2.

It is easy to see (based on the above equalities) that the condition (2.1341)
will be satisfied under the conditions of Theorem 2.63 if∣∣∣∣∣

p∑
j1=0

C
ψi+1ψi

j1j1
(s, τ)

∣∣∣∣∣ ≤ K, (2.1363)

∣∣∣∣∣
p∑

j1=0

Cψk

j1
(s, τ)C

ψq

j1
(θ, u)

∣∣∣∣∣ ≤ K, (2.1364)

where p ∈ N, i = 1, 2, 3, k, q = 1, . . . , 4, t ≤ τ < s ≤ T, t ≤ u < θ ≤ T,

constant K does not depend on p, s, τ, u, θ (but only on t, T ).

The equality (2.1363) has been proved earlier (see (2.1152)). Obviously, the
relation (2.1364) is proved in complete analogy with (2.1155).

Thus, the condition (2.1341) of Theorem 2.61 is fulfilled under the condi-
tions of Theorem 2.63. Then Theorem 2.63 follows from Theorem 2.61. Theo-
rem 2.63 is proved.

2.34 Another Proof of Theorem 2.50 Based on Theo-

rem 2.61

The following proof will be based on Theorem 2.61 and verification of the equal-
ity (2.1341) under the conditions of Theorem 2.50 (the case k = 5 > 2r, where
r = 1 or r = 2).

Further, suppose that

Cjk...j1(s, τ) =

s∫
τ

ϕjk(tk) . . .

t2∫
τ

ϕj1(t1)dt1 . . . dtk,
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where k = 1, . . . , 4, t ≤ τ < s ≤ T , and

Cj5...j1 =

T∫
t

ϕj5(t5) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt5.

Applying the technique that leads to (2.1330), we obtain (note that we find
all possible combinations of pairs using the equality (2.681))

Cj5j4j3j1j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)Cj1j1(t3, t)dt3dt4dt5,

Cj5j4j1j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)Cj1(t2, t)Cj1(t4, t2)dt2dt4dt5,

Cj5j1j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj1(t5, t3)dt2dt3dt5,

Cj1j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)Cj1(t2, t)Cj1(T, t4)dt2dt3dt4,

Cj5j4j2j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)Cj2j2(t4, t1)dt1dt4dt5,

Cj5j2j3j2j1 =

T∫
t

ϕj5(t5)

t5∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj2(t5, t3)dt1dt3dt5,

Cj2j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)

t3∫
t

ϕj1(t1)Cj2(t3, t1)Cj2(T, t4)dt1dt3dt4,

Cj5j3j3j2j1

T∫
t

ϕj5(t5)

t5∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj3j3(t5, t2)dt1dt2dt5,

Cj3j4j3j2j1 =

T∫
t

ϕj4(t4)

t4∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj3(t4, t2)Cj3(T, t4)dt1dt2dt4,
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Cj4j4j3j2j1 =

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)Cj4j4(T, t3)dt1dt2dt3,

Cj5j3j3j1j1 =

T∫
t

ϕj5(t5)Cj3j3j1j1(t5, t)dt5,

Cj5j2j1j2j1 =

T∫
t

ϕj5(t5)Cj2j1j2j1(t5, t)dt5,

Cj5j1j2j2j1 =

T∫
t

ϕj5(t5)Cj1j2j2j1(t5, t)dt5,

Cj4j4j2j2j1 =

T∫
t

ϕj1(t1)Cj4j4j2j2(T, t1)dt1,

Cj3j2j3j2j1 =

T∫
t

ϕj1(t1)Cj3j2j3j2(T, t1)dt1,

Cj2j3j3j2j1 =

T∫
t

ϕj1(t1)Cj2j3j3j2(T, t1)dt1,

Cj4j4j3j1j1 =

T∫
t

ϕj3(t3)Cj1j1(t3, t)Cj4j4(T, t3)dt3,

Cj2j4j1j2j1 =

T∫
t

ϕj4(t4)Cj1j2j1(t4, t)Cj2(T, t4)dt4,

Cj2j1j3j2j1 =

T∫
t

ϕj3(t3)Cj2j1(t3, t)Cj2j1(T, t3)dt3,

Cj3j1j3j2j1 =

T∫
t

ϕj2(t2)Cj1(t2, t)Cj3j1j3(T, t2)dt2,
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Cj1j2j3j2j1 =

T∫
t

ϕj3(t3)Cj2j1(t3, t)Cj1j2(T, t3)dt3,

Cj3j4j3j1j1 =

T∫
t

ϕj4(t4)Cj3j1j1(t4, t)Cj3(T, t4)dt4,

Cj4j4j1j2j1 =

T∫
t

ϕj2(t2)Cj1(t2, t)Cj4j4j1(T, t2)dt2,

Cj1j4j2j2j1 =

T∫
t

ϕj4(t4)Cj2j2j1(t4, t)Cj1(T, t4)dt4,

Cj1j3j3j2j1 =

T∫
t

ϕj2(t2)Cj1(t2, t)Cj1j3j3(T, t2)dt2.

It is easy to see (based on the above relations) that (2.1341) will be satisfied
(under the conditions of Theorem 2.50) if (2.1349)–(2.1359) are fulfilled. The
equalities (2.1349)–(2.1359) are proved in Sect. 2.32. The assertion of Theo-
rem 2.50 now follows from Theorem 2.61. Theorem 2.50 is proved.

Recall that for the case k = 6, together with (2.1349)–(2.1359), the condi-
tions (2.1360), (2.1361) and the equality (2.1262) (k = 2r, k = 6, r = 3) must
be satisfied (see the proof of Theorem 2.62).

2.35 Partial Proof of the Condition (2.1341)

In this section, we will prove (2.1341) for the case when the condition (A) and
the relation (2.1335) are satisfied (see Sect. 2.31).

Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ≡ 1.

It is easy to see that (2.1341) will be proved for the above case if we prove
that ∣∣∣∣∣∣

p∑
jr,jr−2,...,j2=0

Cjrjrjr−2jr−2...j2j2(s, τ)

∣∣∣∣∣∣ ≤ K <∞, (2.1365)

where p ∈ N, r = 2, 4, 6, . . . , constant K does not depend on p, s, τ (but only
on t, T ),
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Cjk...j1(s, τ) =

s∫
τ

ϕjk(tk) . . .

t2∫
τ

ϕj1(t1)dt1 . . . dtk, (2.1366)

where k ∈ N, t ≤ τ < s ≤ T .

By analogy with (2.1204) we obtain

Cjrjrjr−2jr−2...j2j2(s, τ) + Cj2j2...jr−2jr−2jrjr(s, τ) =

= Cjr(s, τ) · Cjrjr−2jr−2...j4j4j2j2(s, τ)− Cjrjr(s, τ) · Cjr−2jr−2...j4j4j2j2(s, τ)+

+Cjr−2jrjr(s, τ) · Cjr−2jr−4jr−4...j4j4j2j2(s, τ)− . . .

−Cj4j4...jr−2jr−2jrjr(s, τ) · Cj2j2(s, τ) + Cj2j4j4...jr−2jr−2jrjr(s, τ) · Cj2(s, τ). (2.1367)

Applying (2.1367), we get

2

p∑
jr,jr−2,...,j4,j2=0

Cjrjrjr−2jr−2...j4j4j2j2(s, τ) =

=

p∑
jr=0

Cjr(s, τ)

p∑
jr−2,...,j4,j2=0

Cjrjr−2jr−2...j4j4j2j2(s, τ)−

−
p∑

jr=0

Cjrjr(s, τ)

p∑
jr−2,...,j4,j2=0

Cjr−2jr−2...j4j4j2j2(s, τ)+

+

p∑
jr−2=0

p∑
jr=0

Cjr−2jrjr(s, τ)

p∑
jr−4,...,j4,j2=0

Cjr−2jr−4jr−4...j4j4j2j2(s, τ)− . . .

−
p∑

jr,jr−2,...,j4=0

Cj4j4...jr−2jr−2jrjr(s, τ)

p∑
j2=0

Cj2j2(s, τ)+

+

p∑
j2=0

p∑
jr,jr−2,...,j4=0

Cj2j4j4...jr−2jr−2jrjr(s, τ) · Cj2(s, τ). (2.1368)
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Let us prove (2.1365) by induction. The equality (2.1365) is proved for
r = 2, 4 (see (1.60), (2.1106), (2.1108)). Suppose that∣∣∣∣∣

p∑
j6,j4,j2=0

Cj6j6j4j4j2j2(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1369)

∣∣∣∣∣
p∑

j8,j6,j4,j2=0

Cj8j8j6j6j4j4j2j2(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1370)

. . .∣∣∣∣∣∣
p∑

jr−2,jr−4,...,j2=0

Cjr−2jr−2jr−4jr−4...j2j2(s, τ)

∣∣∣∣∣∣ ≤ K <∞ (2.1371)

and prove (2.1365).

Using the induction hypothesis (see (2.1369)–(2.1371)), we obtain∣∣∣∣∣∣
p∑

jr=0

Cjrjr(s, τ)

p∑
jr−2,...,j4,j2=0

Cjr−2jr−2...j4j4j2j2(s, τ)

∣∣∣∣∣∣ ≤ K2 <∞, (2.1372)

∣∣∣∣∣∣
p∑

jr,jr−2=0

Cjr−2jr−2jrjr(s, τ)

p∑
jr−4,...,j4,j2=0

Cjr−4jr−4...j4j4j2j2(s, τ)

∣∣∣∣∣∣ ≤ K2 <∞,

(2.1373)
. . .∣∣∣∣∣∣

p∑
jr,jr−2,...,j4=0

Cj4j4...jr−2jr−2jrjr(s, τ)

p∑
j2=0

Cj2j2(s, τ)

∣∣∣∣∣∣ ≤ K2 <∞. (2.1374)

Applying the inequality of Cauchy–Bunyakovsky, Parseval’s equality and
the induction hypothesis, we obtain p∑

jr=0

Cjr(s, τ)

p∑
jr−2,...,j4,j2=0

Cjrjr−2jr−2...j4j4j2j2(s, τ)

2

≤

≤
p∑

jr=0

(Cjr(s, τ))
2

p∑
jr=0

 p∑
jr−2,...,j4,j2=0

Cjrjr−2jr−2...j4j4j2j2(s, τ)

2

≤
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≤
∞∑
jr=0

(Cjr(s, τ))
2

∞∑
jr=0

 p∑
jr−2,...,j4,j2=0

Cjrjr−2jr−2...j4j4j2j2(s, τ)

2

≤

≤ K1

∞∑
jr=0

 p∑
jr−2,...,j4,j2=0

Cjrjr−2jr−2...j4j4j2j2(s, τ)

2

=

= K1

∞∑
jr=0

 s∫
τ

ϕjr(u)

p∑
jr−2,...,j4,j2=0

Cjr−2jr−2...j4j4j2j2(u, τ)du

2

=

= K1

s∫
τ

 p∑
jr−2,...,j4,j2=0

Cjr−2jr−2...j4j4j2j2(u, τ)

2

du ≤

≤ K1K
2

s∫
τ

du ≤ (T − t)K1K
2 = K2 <∞, (2.1375)

where constant K2 does not depend on p, s, τ ; p∑
jr−2=0

p∑
jr=0

Cjr−2jrjr(s, τ)

p∑
jr−4,...,j4,j2=0

Cjr−2jr−4jr−4...j4j4j2j2(s, τ)

2

≤

≤
p∑

jr−2=0

(
p∑

jr=0

Cjr−2jrjr(s, τ)

)2 p∑
jr−2=0

 p∑
jr−4,...,j4,j2=0

Cjr−2jr−4jr−4...j4j4j2j2(s, τ)

2

≤

≤
∞∑

jr−2=0

(
p∑

jr=0

Cjr−2jrjr(s, τ)

)2 ∞∑
jr−2=0

 p∑
jr−4,...,j4,j2=0

Cjr−2jr−4jr−4...j4j4j2j2(s, τ)

2

=

=
∞∑

jr−2=0

 s∫
τ

ϕjr−2
(u)

p∑
jr=0

Cjrjr(u, τ)du

2

×

×
∞∑

jr−2=0

 s∫
τ

ϕjr−2
(u)

p∑
jr−4,...,j4,j2=0

Cjr−4jr−4...j4j4j2j2(u, τ)du

2

=

=

s∫
τ

(
p∑

jr=0

Cjrjr(u, τ)

)2

du×
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×
s∫

τ

 p∑
jr−4,...,j4,j2=0

Cjr−4jr−4...j4j4j2j2(u, τ)

2

du ≤ K4(T − t)2 = K3 <∞.

(2.1376)

Similarly, we get p∑
jr−4=0

p∑
jr,jr−2=0

Cjr−4jr−2jr−2jrjr(s, τ)

p∑
jr−6,...,j4,j2=0

Cjr−4jr−6jr−6...j4j4j2j2(s, τ)

2

≤

≤ K4 <∞, (2.1377)

. . . p∑
j4=0

p∑
jr,jr−2,...,j6=0

Cj4j6j6...jr−2jr−2jrjr(s, τ)

p∑
j2=0

Cj4j2j2(s, τ)

2

≤ K4 <∞,

(2.1378) p∑
j2=0

p∑
jr,jr−2,...,j4=0

Cj2j4j4...jr−2jr−2jrjr(s, τ) · Cj2(s, τ)

2

≤ K4 <∞, (2.1379)

where constant K4 does not depend on p, s, τ.

Combining (2.1368), (2.1372)–(2.1374), (2.1375), (2.1376), (2.1377)–
(2.1379), we obtain (2.1365). The equality (2.1341) is proved for the case when
the condition (A) and the relation (2.1335) are satisfied.

2.36 Further Development of the Approach Based on

Theorem 2.61 for the Case ψ1(τ ), . . . , ψ7(τ ) ≡ 1. Ex-

pansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 7 (The Cases of Legendre Poly-

nomials and Trigonometric Functions)

Unfortunately, the approach from the previous section can be generalized only
partially to the case when the condition (A) and the relation (2.1336) are sat-
isfied (see Sect. 2.31). In particular, the mentioned approach is applicable to
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the proof of inequality∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j2j1j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞,

but is not applicable to the proof of inequality∣∣∣∣∣
p∑

j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞,

where Cjk...j1(s, τ) is defined by (2.1366), constant K does not depend on p, s, τ
(p ∈ N, t ≤ τ < s ≤ T ).

In this section, we will restrict ourselves to the case k = 7, r = 1, 2, 3 and we
will also assume that {ϕj(x)}∞j=0 is a complete orthonormal system of Legendre
polynomials or trigonometric functions in the space L2([t, T ]).

Note that the condition (2.1341) can be weakened. Namely, the constant
K2 can be replaced by the function F such that ψ2

q1
. . . ψ2

qk−2r
F ∈ L1([t, T ]

k−2r)
(see (2.1347)). For the trigonometric case, we will prove (2.1341) for k = 7,
r = 1, 2, 3. For the polynomial case, we will prove a weakened version of (2.1341)
for k = 7, r = 1, 2, 3 (the constant K and the above function F will be used in
the weakened version of (2.1341)).

Obviously, that the conditions (2.1349)–(2.1361) together with the following
condition ∣∣∣∣∣

p∑
j1,j2=0

Cj1(s, τ)Cj2(ρ, v)Cj1(θ, u)Cj2(µ,w)

∣∣∣∣∣ ≤ K (2.1380)

cover the case k = 7, r = 1, 2 (see (2.1341)), where p ∈ N, t ≤ τ < s ≤ T,
t ≤ u < θ ≤ T, t ≤ v < ρ ≤ T, t ≤ w < µ ≤ T, constant K does not depend on
p, s, τ, u, θ, v, ρ, w, µ (but only on t, T ). The inequality (2.1380) is easily verified
using (2.969).

Now let us focus on the proof of (2.1341) for the case k = 7 and r = 3. So,
we need to prove that∣∣∣∣∣∣

p∑
jg1 ,jg3 ,jg5=0

Cjd1jd1−1jd1−2jd1−3jd1−4jd1−5
(s, τ)

∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤ K <∞,

(2.1381)
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p∑

jg1 ,jg3 ,jg5=0

(
Cjd2jd2−1jd2−2jd2−3jd2−4

(s, τ)Cjd1(θ, u)
)∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤ K <∞,

(2.1382)∣∣∣∣∣∣
p∑

jg1 ,jg3 ,jg5=0

(
Cjd2jd2−1jd2−2jd2−3

(s, τ)Cjd1jd1−1
(θ, u)

) ∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤ K <∞,

(2.1383)∣∣∣∣∣∣
p∑

jg1 ,jg3 ,jg5=0

(
Cjd2jd2−1jd2−2

(s, τ)Cjd1jd1−1jd1−2
(θ, u)

) ∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤ K <∞,

(2.1384)
where p ∈ N, t ≤ τ < s ≤ T, t ≤ u < θ ≤ T, constant K does not depend on
p, s, τ, u, θ (but only on t, T ) and may differ from line to line; another notations
are the same as in Sect. 2.31.

The inequalities (2.1382)–(2.1384) are proved using the same technique as
inequalities (2.1349)–(2.1361) (see Sect. 2.32). Here we will only prove as an
example the following special case of the inequality (2.1383)∣∣∣∣∣

p∑
j1,j2,j3=0

Cj2j3j2j1(s, τ)Cj3j1(θ, u)

∣∣∣∣∣ ≤ K <∞. (2.1385)

Using the Cauchy–Bunyakovsky inequality as well as Fubini’s Theorem,
Parseval’s equality and (2.1350), we have(

p∑
j1,j2,j3=0

Cj2j3j2j1(s, τ)Cj3j1(θ, u)

)2

≤

≤
p∑

j1,j3=0

(
p∑

j2=0

Cj2j3j2j1(s, τ)

)2 p∑
j1,j3=0

C2
j3j1

(θ, u) ≤

≤
∞∑

j1,j3=0

 p∑
j2=0

s∫
τ

ϕj2(u)

u∫
τ

ϕj3(z)

z∫
τ

ϕj2(y)

y∫
τ

ϕj1(x)dxdydzdu

2

×

×
∞∑

j1,j3=0

C2
j3j1

(θ, u) =

=
∞∑

j1,j3=0

 p∑
j2=0

s∫
τ

ϕj3(z)

z∫
τ

ϕj2(y)

y∫
τ

ϕj1(x)dxdy

s∫
z

ϕj2(u)dudz

2

· (θ − u)2

2
=
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=
(θ − u)2

2

∞∑
j1,j3=0

 p∑
j2=0

s∫
τ

ϕj3(z)

z∫
τ

ϕj1(x)

z∫
x

ϕj2(y)dydx

s∫
z

ϕj2(u)dudz

2

=

=
(θ − u)2

2

∞∑
j1,j3=0

 s∫
τ

ϕj3(z)

z∫
τ

ϕj1(x)

p∑
j2=0

Cj2(z, x)Cj2(s, z)dxdz

2

=

=
(θ − u)2

2

s∫
τ

z∫
τ

(
p∑

j2=0

Cj2(z, x)Cj2(s, z)

)2

dxdz ≤

≤ K2 (θ − u)2

2

(s− τ)2

2
≤ K2 (T − t)4

4
= K1. (2.1386)

The equality (2.1385) is proved.

The main difficulty is related to the proof of the inequality (2.1381).
Further, we prove (2.1381) for all 15 possible cases under the assumption
that {ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials
or trigonometric functions in the space L2([t, T ]). As we noted above, in some
situations we will need a function F ∈ L1([t, T ]) instead of a constant K2 for
the polynomial case.

It is easy to see that (2.1381) reduces to the following 15 inequalities∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j2j1j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1387)

∣∣∣∣∣
p∑

j1,j2,j3=0

Cj1j3j2j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1388)

∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j2j3j1j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1389)

∣∣∣∣∣
p∑

j1,j2,j3=0

Cj1j2j3j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1390)

∣∣∣∣∣
p∑

j1,j2,j3=0

Cj1j2j2j3j3j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1391)
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p∑

j1,j2,j3=0

Cj3j3j2j2j1j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1392)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj2j3j3j2j1j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1393)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j2j3j2j1j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1394)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j3j2j1j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1395)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1396)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj2j1j3j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1397)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j1j2j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1398)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj2j3j1j3j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1399)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j1j3j2j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1400)∣∣∣∣∣
p∑

j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1401)

where p ∈ N, t ≤ τ < s ≤ T, constant K does not depend on p, s, τ (but only
on t, T ) and may differ from line to line.

More precisely, the conditions (2.1387)–(2.1401) need to be proved in two
cases: 1. τ = t, 2. s = T. Further, we will not carry out such a refinement
if some estimate from (2.1387)–(2.1401) is true for all τ, s ∈ [t, T ] (τ < s).
Looking ahead, we note that consideration of Cases 1 and 2 will be required
only for some inequalities from (2.1387)–(2.1401) for the polynomial case.

The relation (2.1392) is a particular case of (2.1365). Let us prove (2.1387)–
(2.1391), (2.1393)–(2.1401) using ideas from Sect. 2.11, 2.14, 2.32.
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Step 1. First, we prove (2.1387)–(2.1391), (2.1397) using special symmetry
properties of the Fourier coefficients.

By analogy with (2.848) we obtain

Cj6j5j4j3j2j1(s, τ) + Cj1j2j3j4j5j6(s, τ) =

= Cj6(s, τ)Cj5j4j3j2j1(s, τ)− Cj5j6(s, τ)Cj4j3j2j1(s, τ)+

+Cj4j5j6(s, τ)Cj3j2j1(s, τ)− Cj3j4j5j6(s, τ)Cj2j1(s, τ)+

+Cj2j3j4j5j6(s, τ)Cj1(s, τ). (2.1402)

Using (2.1402), we get

p∑
j1,j2,j3=0

Cj3j2j1j3j2j1(s, τ) =
1

2

p∑
j1,j2,j3=0

(
Cj3(s, τ)Cj2j1j3j2j1(s, τ)−

−Cj2j3(s, τ)Cj1j3j2j1(s, τ) + Cj1j2j3(s, τ)Cj3j2j1(s, τ)−

−Cj3j1j2j3(s, τ)Cj2j1(s, τ) + Cj2j3j1j2j3(s, τ)Cj1(s, τ)

)
, (2.1403)

p∑
j1,j2,j3=0

Cj1j3j2j3j2j1(s, τ) =
1

2

p∑
j1,j2,j3=0

(
Cj1(s, τ)Cj3j2j3j2j1(s, τ)−

−Cj3j1(s, τ)Cj2j3j2j1(s, τ) + Cj2j3j1(s, τ)Cj3j2j1(s, τ)−

−Cj3j2j3j1(s, τ)Cj2j1(s, τ) + Cj2j3j2j3j1(s, τ)Cj1(s, τ)

)
, (2.1404)

p∑
j1,j2,j3=0

Cj3j2j3j1j2j1(s, τ) =
1

2

p∑
j1,j2,j3=0

(
Cj3(s, τ)Cj2j3j1j2j1(s, τ)−

−Cj2j3(s, τ)Cj3j1j2j1(s, τ) + Cj3j2j3(s, τ)Cj1j2j1(s, τ)−

−Cj1j3j2j3(s, τ)Cj2j1(s, τ) + Cj2j1j3j2j3(s, τ)Cj1(s, τ)

)
, (2.1405)

p∑
j1,j2,j3=0

Cj1j2j3j3j2j1(s, τ) =
1

2

p∑
j1,j2,j3=0

(
Cj1(s, τ)Cj2j3j3j2j1(s, τ)−

−Cj2j1(s, τ)Cj3j3j2j1(s, τ) + (Cj3j2j1(s, τ))
2−
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−Cj3j3j2j1(s, τ)Cj2j1(s, τ) + Cj2j3j3j2j1(s, τ)Cj1(s, τ)

)
, (2.1406)

p∑
j1,j2,j3=0

Cj1j3j3j2j2j1(s, τ) =
1

2

p∑
j1,j2,j3=0

(
Cj1(s, τ)Cj3j3j2j2j1(s, τ)−

−Cj3j1(s, τ)Cj3j2j2j1(s, τ) + Cj3j3j1(s, τ)Cj2j2j1(s, τ)−

−Cj2j3j3j1(s, τ)Cj2j1(s, τ) + Cj2j2j3j3j1(s, τ)Cj1(s, τ)

)
, (2.1407)

p∑
j1,j2,j3=0

Cj2j1j3j3j2j1(s, τ) =
1

2

p∑
j1,j2,j3=0

(
Cj2(s, τ)Cj1j3j3j2j1(s, τ)−

−Cj1j2(s, τ)Cj3j3j2j1(s, τ) + Cj3j1j2(s, τ)Cj3j2j1(s, τ)−

−Cj3j3j1j2(s, τ)Cj2j1(s, τ) + Cj2j3j3j1j2(s, τ)Cj1(s, τ)

)
. (2.1408)

Applying to the right-hand sides of (2.1403)–(2.1408) the technique that led
to the estimate (2.1386), we obtain the inequalities (2.1387)–(2.1391), (2.1397).

Step 2. It is not difficult to see that

p∑
j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ) =

p∑
j1,j2,j3=0

Cj1j1j2j3j3j2(s, τ), (2.1409)

p∑
j1,j2,j3=0

Cj3j3j2j1j2j1(s, τ) =

p∑
j1,j2,j3=0

Cj1j1j2j3j2j3(s, τ), (2.1410)

p∑
j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ) =

p∑
j1,j2,j3=0

Cj1j2j2j3j1j3(s, τ). (2.1411)

Further, using (2.1409)–(2.1411) and (2.1402), we get

p∑
j1,j2,j3=0

Cj2j3j3j2j1j1(s, τ) +

p∑
j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ) =

=

p∑
j1,j2,j3=0

Cj2j3j3j2j1j1(s, τ) +

p∑
j1,j2,j3=0

Cj1j1j2j3j3j2(s, τ) =
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=

p∑
j1,j2,j3=0

(
Cj2(s, τ)Cj3j3j2j1j1(s, τ)−

−Cj3j2(s, τ)Cj3j2j1j1(s, τ) + Cj3j3j2(s, τ)Cj2j1j1(s, τ)−

−Cj2j3j3j2(s, τ)Cj1j1(s, τ) + Cj1j2j3j3j2(s, τ)Cj1(s, τ)

)
, (2.1412)

p∑
j1,j2,j3=0

Cj3j2j3j2j1j1(s, τ) +

p∑
j1,j2,j3=0

Cj3j3j2j1j2j1(s, τ) =

=

p∑
j1,j2,j3=0

Cj3j2j3j2j1j1(s, τ) +

p∑
j1,j2,j3=0

Cj1j1j2j3j2j3(s, τ) =

=

p∑
j1,j2,j3=0

(
Cj3(s, τ)Cj2j3j2j1j1(s, τ)−

−Cj2j3(s, τ)Cj3j2j1j1(s, τ) + Cj3j2j3(s, τ)Cj2j1j1(s, τ)−

−Cj2j3j2j3(s, τ)Cj1j1(s, τ) + Cj1j2j3j2j3(s, τ)Cj1(s, τ)

)
, (2.1413)

p∑
j1,j2,j3=0

Cj3j1j3j2j2j1(s, τ) +

p∑
j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ) =

=

p∑
j1,j2,j3=0

Cj3j1j3j2j2j1(s, τ) +

p∑
j1,j2,j3=0

Cj1j2j2j3j1j3(s, τ) =

=

p∑
j1,j2,j3=0

(
Cj3(s, τ)Cj1j3j2j2j1(s, τ)−

−Cj1j3(s, τ)Cj3j2j2j1(s, τ) + Cj3j1j3(s, τ)Cj2j2j1(s, τ)−

−Cj2j3j1j3(s, τ)Cj2j1(s, τ) + Cj2j2j3j1j3(s, τ)Cj1(s, τ)

)
. (2.1414)

Applying to the right-hand sides of (2.1412)–(2.1414) the technique that
led to the estimate (2.1386), we obtain the inequalities∣∣∣∣∣

p∑
j1,j2,j3=0

Cj2j3j3j2j1j1(s, τ) +

p∑
j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1415)
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p∑

j1,j2,j3=0

Cj3j2j3j2j1j1(s, τ) +

p∑
j1,j2,j3=0

Cj3j3j2j1j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1416)

∣∣∣∣∣
p∑

j1,j2,j3=0

Cj3j1j3j2j2j1(s, τ) +

p∑
j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ)

∣∣∣∣∣ ≤ K <∞, (2.1417)

where p ∈ N, t ≤ τ < s ≤ T, constant K does not depend on p, s, τ (but only
on t, T ) and may differ from line to line.

Note that |a| ≤ K1 + K follows from |b| ≤ K and |a+ b| ≤ K1, where
a, b,K,K1 ∈ R. Indeed, we have |a| = |a+ b− b| ≤ |a+ b|+|b| ≤ K1+K. Then
from (2.1415)–(2.1417) it follows that if we prove (2.1395), (2.1396), (2.1401),
then (2.1394), (2.1393), (2.1400) will be proved. Thus, it remains to prove
(2.1395), (2.1396), (2.1398), (2.1399), (2.1401).

Step 3. Let us prove (2.1395), (2.1396), (2.1398), (2.1399), (2.1401). Con-
sider (2.1399). Using the Cauchy–Bunyakovsky inequality as well as Fubini’s
Theorem, Parseval’s equality, (2.684), (2.969) and Lebesgue’s Dominated Con-
vergence Theorem, we have(

p∑
j1,j2,j3=0

Cj2j3j1j3j2j1(s, τ)

)2

=

(
p∑

j2=0

1 ·
p∑

j1,j3=0

Cj2j3j1j3j2j1(s, τ)

)2

≤

≤
p∑

j2=0

12 ·
p∑

j2=0

(
p∑

j1,j3=0

Cj2j3j1j3j2j1(s, τ)

)2

=

= (p+ 1)

p∑
j2=0

(
p∑

j1,j3=0

Cj2j3j1j3j2j1(s, τ)

)2

=

= (p+ 1)

p∑
j2=0

 p∑
j1,j3=0

s∫
τ

ϕj2(t6)

t6∫
τ

ϕj2(t2)Cj1(t2, τ)Cj3j1j3(t6, t2)dt2dt6

2

≤

≤ (p+ 1)

p∑
j2,j′2=0

 p∑
j1,j3=0

s∫
τ

ϕj2(t6)

t6∫
τ

ϕj′2(t2)Cj1(t2, τ)Cj3j1j3(t6, t2)dt2dt6

2

≤

≤ (p+ 1)
∞∑

j2,j′2=0

 s∫
τ

ϕj2(t6)

t6∫
τ

ϕj′2(t2)

p∑
j1,j3=0

Cj1(t2, τ)Cj3j1j3(t6, t2)dt2dt6

2

=



832D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

= (p+ 1)

s∫
τ

t6∫
τ

(
p∑

j1=0

Cj1(t2, τ)

p∑
j3=0

Cj3j1j3(t6, t2)

)2

dt2dt6 =

= (p+ 1)

s∫
τ

t6∫
τ

(
p∑

j1=0

Cj1(t2, τ)
∞∑

j3=p+1

Cj3j1j3(t6, t2)

)2

dt2dt6 ≤

≤ (p+ 1)

s∫
τ

t6∫
τ

p∑
j1=0

C2
j1
(t2, τ)

p∑
j1=0

( ∞∑
j3=p+1

Cj3j1j3(t6, t2)

)2

dt2dt6 ≤

≤ (p+ 1)

s∫
τ

t6∫
τ

∞∑
j1=0

C2
j1
(t2, τ)

p∑
j1=0

( ∞∑
j3=p+1

Cj3j1j3(t6, t2)

)2

dt2dt6 =

≤ (p+ 1)

s∫
τ

t6∫
τ

(t2 − τ)

p∑
j1=0

( ∞∑
j3=p+1

Cj3j1j3(t6, t2)

)2

dt2dt6 =

= (p+ 1)

s∫
τ

t6∫
τ

(t2 − τ)

p∑
j1=0

 ∞∑
j3=p+1

t6∫
t2

ϕj1(θ)Cj3(θ, t2)Cj3(t6, θ)dθ

2

dt2dt6 =

= (p+ 1)

s∫
τ

t6∫
τ

(t2 − τ)

p∑
j1=0

 t6∫
t2

ϕj1(θ)
∞∑

j3=p+1

Cj3(θ, t2)Cj3(t6, θ)dθ

2

dt2dt6 ≤

≤ (p+ 1)

s∫
τ

t6∫
τ

(t2 − τ)
∞∑
j1=0

 t6∫
t2

ϕj1(θ)
∞∑

j3=p+1

Cj3(θ, t2)Cj3(t6, θ)dθ

2

dt2dt6 =

= (p+1)

s∫
τ

t6∫
τ

(t2 − τ)

t6∫
t2

( ∞∑
j3=p+1

Cj3(θ, t2)Cj3(t6, θ)

)2

dθdt2dt6. (2.1418)

For the trigonometric case (see (1.69)), we have the following obvious esti-
mate

|Cj(x, v)| =

∣∣∣∣∣∣
x∫
v

ϕj(τ)dτ

∣∣∣∣∣∣ < C

j
(j > 0), (2.1419)

where constant C does not depend on j, x, v.
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Recall that (see (2.25))

∞∑
j=p+1

1

j2
≤

∞∫
p

dx

x2
=

1

p
. (2.1420)

Combining (2.1418)–(2.1420), we get(
p∑

j1,j2,j3=0

Cj2j3j1j3j2j1(s, τ)

)2

≤ K1(p+ 1)

p2
≤ K2,

where constants K,K1 depend only on t, T. The inequality (2.1399) is proved
for the trigonometric case.

For the polynomial case (see (2.65)), by analogy with (1.211) and (2.740)
we have

|Cj(x, v)| =

∣∣∣∣∣∣
x∫
v

ϕj(τ)dτ

∣∣∣∣∣∣ < C

j1−ε/2

(
1

(1− z2(x))1/4−ε/4
+

1

(1− z2(v))1/4−ε/4

)
,

(2.1421)
where j ∈ N, z(x), z(v) ∈ (−1, 1) (z(x) is defined by (2.20)), x, v ∈ (t, T ),
ε ∈ (0, 1) is an arbitrary small positive real number, constant C does not
depend on j.

Recall that (see (2.743))

∞∑
j=p+1

1

j2−ε
≤

∞∫
p

dx

x2−ε
=

1

(1− ε)p1−ε
. (2.1422)

Combining (2.1418), (2.1421), (2.1422) (ε = 1/4), we obtain(
p∑

j1,j2,j3=0

Cj2j3j1j3j2j1(s, τ)

)2

≤ K1(p+ 1)

p3/2
≤ K2,

where constants K,K1 depend only on t, T. The inequality (2.1399) is proved
for the polynomial case.

Let us prove (2.1398). In complete analogy with the proof of (2.1399) we
have (

p∑
j1,j2,j3=0

Cj3j1j2j3j2j1(s, τ)

)2

≤
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≤ (p+ 1)

s∫
τ

(s− t5)

t5∫
τ

t5∫
t1

( ∞∑
j2=p+1

Cj2(θ, t1)Cj2(t5, θ)

)2

dθdt1dt5.

The further proof is the same as in the case of (2.1399). The inequality
(2.1398) is proved.

Let us prove (2.1401). By analogy with the proof of (2.1399) (see (2.1418))
we get (

p∑
j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ)

)2

≤

≤ (p+ 1)

s∫
τ

(s− t5)

t5∫
τ

t4∫
τ

( ∞∑
j1=p+1

Cj1(θ, τ)Cj1(t4, θ)

)2

dθdt4dt5. (2.1423)

The further proof for the trigonometric case is the same as for the inequality
(2.1399).

Consider the polynomial case. In this case, we note that it is actually
necessary to consider the following two cases of (2.1423)

1. τ = t, 2. s = T. (2.1424)

For Case 1, the estimate (2.1421) is simplified as follows (see (2.293), (2.739)
and (2.740))

|Cj(x, t)| =

∣∣∣∣∣∣
x∫
t

ϕj(τ)dτ

∣∣∣∣∣∣ < C

j1−ε/2
1

(1− z2(x))1/4−ε/4
, (2.1425)

where notations are the same as in (2.1421).

Combining (2.1423), (2.1421), (2.1422), (2.1425) (ε = 1/4), we obtain(
p∑

j1,j2,j3=0

Cj2j3j3j1j2j1(s, t)

)2

≤ K1(p+ 1)

p3/2
≤ K2, (2.1426)

where constants K,K1 depend only on t, T. The inequality (2.1401) is proved
for the polynomial case (Case 1).

Consider Case 2. Combining (2.1423), (2.1421), (2.1422) (ε = 1/4), we
obtain (

p∑
j1,j2,j3=0

Cj2j3j3j1j2j1(T, τ)

)2

≤ K1(p+ 1)

p3/2
1

(1− z2(τ))3/8
≤
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≤ K2

(1− z2(τ))3/8
def
= F (τ),

where constants K,K1 depend only on t, T and F (τ) ∈ L1([t, T ]) (integrable
majorant (see above in this section)). The following weakened version of the
inequality (2.1401) (

p∑
j1,j2,j3=0

Cj2j3j3j1j2j1(T, τ)

)2

≤ F (τ) (2.1427)

is proved for the polynomial case (Case 2), where

F (τ) =
K2

(1− z2(τ))3/8
.

Let us prove (2.1396). Using the Cauchy–Bunyakovsky inequality as well
as Fubini’s Theorem and Parseval’s equality, we have(

p∑
j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ)

)2

=

(
p∑

j3=0

1 ·
p∑

j1,j2=0

Cj3j3j1j2j2j1(s, τ)

)2

≤

≤
p∑

j3=0

12 ·
p∑

j3=0

(
p∑

j1,j2=0

Cj3j3j1j2j2j1(s, τ)

)2

=

= (p+ 1)

p∑
j3=0

(
p∑

j1,j2=0

Cj3j3j1j2j2j1(s, τ)

)2

=

= (p+ 1)

p∑
j3=0

 p∑
j1,j2=0

s∫
τ

ϕj3(t6)

t6∫
τ

ϕj3(t5)Cj1j2j2j1(t5, τ)dt5dt6

2

≤

≤ (p+ 1)

p∑
j3,j′3=0

 s∫
τ

ϕj3(t6)

t6∫
τ

ϕj′3(t5)

p∑
j1,j2=0

Cj1j2j2j1(t5, τ)dt5dt6

2

≤

≤ (p+ 1)
∞∑

j3,j′3=0

 s∫
τ

ϕj3(t6)

t6∫
τ

ϕj′3(t5)

p∑
j1,j2=0

Cj1j2j2j1(t5, τ)dt5dt6

2

=

= (p+ 1)

s∫
τ

t6∫
τ

(
p∑

j1,j2=0

Cj1j2j2j1(t5, τ)

)2

dt5dt6 =
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= (p+ 1)

s∫
τ

t6∫
τ

(
p∑

j2=0

1 ·
p∑

j1=0

Cj1j2j2j1(t5, τ)

)2

dt5dt6 ≤

≤ (p+ 1)2
s∫

τ

t6∫
τ

p∑
j2=0

(
p∑

j1=0

Cj1j2j2j1(t5, τ)

)2

dt5dt6 =

= (p+1)2
s∫

τ

t6∫
τ

p∑
j2=0

 p∑
j1=0

t5∫
τ

ϕj2(t3)

t3∫
τ

ϕj2(t2)Cj1(t2, τ)Cj1(t5, t3)dt2dt3

2

dt5dt6 ≤

≤ (p+ 1)2
s∫

τ

t6∫
τ

p∑
j2,j′2=0

 t5∫
τ

ϕj2(t3)×

×
t3∫
τ

ϕj′2(t2)

p∑
j1=0

Cj1(t2, τ)Cj1(t5, t3)dt2dt3

2

dt5dt6 ≤

≤ (p+ 1)2
s∫

τ

t6∫
τ

∞∑
j2,j′2=0

 t5∫
τ

ϕj2(t3)×

×
t3∫
τ

ϕj′2(t2)

( ∞∑
j1=0

−
∞∑

j1=p+1

)
Cj1(t2, τ)Cj1(t5, t3)dt2dt3

2

dt5dt6 =

= (p+1)2
s∫

τ

t6∫
τ

t5∫
τ

t3∫
τ

( ∞∑
j1=p+1

Cj1(t2, τ)Cj1(t5, t3)

)2

dt2dt3dt5dt6. (2.1428)

Consider the trigonometric case. Combining (2.1428), (2.1419), (2.1420),
we obtain (

p∑
j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ)

)2

≤ K1(p+ 1)2

p2
≤ K2,

where constants K,K1 depend only on t, T. The inequality (2.1396) is proved
for the trigonometric case.

Consider the polynomial case for two cases (2.1424). Let τ = t. The modifi-
cation of the estimate (2.1421) for ε = 0 is as follows (see also (1.210), (1.211))

|Cj(x, v)| =

∣∣∣∣∣∣
x∫
v

ϕj(τ)dτ

∣∣∣∣∣∣ < C

j

(
1

(1− z2(x))1/4
+

1

(1− z2(v))1/4

)
, (2.1429)
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where j ∈ N, z(x), z(v) ∈ (−1, 1) (z(x) is defined by (2.20)), x, v ∈ (t, T ),
constant C does not depend on j.

For v = t, the estimate (2.1429) is simplified as follows (see (2.293), (2.294))

|Cj(x, t)| =

∣∣∣∣∣∣
x∫
t

ϕj(τ)dτ

∣∣∣∣∣∣ < C

j(1− z2(x))1/4
, (2.1430)

where notations are the same as in (2.1429).

Combining (2.1428), (2.1429), (2.1430), we get(
p∑

j1,j2,j3=0

Cj3j3j1j2j2j1(s, t)

)2

≤ K1(p+ 1)2

p2
≤ K2,

where constants K,K1 depend only on t, T. The inequality (2.1396) is proved
for the polynomial case (τ = t).

Now let s = T. Combining (2.1428) and (2.1429), we obtain(
p∑

j1,j2,j3=0

Cj3j3j1j2j2j1(T, τ)

)2

≤ K1(p+ 1)2

p2
1

(1− z2(τ))1/2
≤

≤ K2

(1− z2(τ))1/2
def
= F (τ),

where constants K,K1 depend only on t, T and F (τ) ∈ L1([t, T ]) (integrable
majorant (see above in this section)). The following weakened version of the
inequality (2.1396) (

p∑
j1,j2,j3=0

Cj3j3j1j2j2j1(T, τ)

)2

≤ F (τ) (2.1431)

is proved for the polynomial case (s = T ), where

F (τ) =
K2

(1− z2(τ))1/2
.

Finally, we prove the inequality (2.1395). By analogy with (2.1428) we get(
p∑

j1,j2,j3=0

Cj3j3j2j1j2j1(s, τ)

)2

≤
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≤ (p+ 1)

p∑
j3=0

(
p∑

j1,j2=0

Cj3j3j2j1j2j1(s, τ)

)2

=

= (p+ 1)

p∑
j3=0

 p∑
j1,j2=0

s∫
τ

ϕj3(t6)

t6∫
τ

ϕj3(t5)Cj2j1j2j1(t5, τ)dt5dt6

2

≤

≤ (p+ 1)
∞∑

j3,j′3=0

 s∫
τ

ϕj3(t6)

t6∫
τ

ϕj′3(t5)

p∑
j1,j2=0

Cj2j1j2j1(t5, τ)dt5dt6

2

=

= (p+ 1)

s∫
τ

t6∫
τ

(
p∑

j1,j2=0

Cj2j1j2j1(t5, τ)

)2

dt5dt6 =

≤ (p+ 1)2
s∫

τ

t6∫
τ

p∑
j2=0

(
p∑

j1=0

Cj2j1j2j1(t5, τ)

)2

dt5dt6 =

= (p+1)2
s∫

τ

t6∫
τ

p∑
j2=0

 p∑
j1=0

t5∫
τ

ϕj2(t4)

t4∫
τ

ϕj2(t2)Cj1(t2, τ)Cj1(t4, t2)dt2dt4

2

dt5dt6 ≤

≤ (p+ 1)2
s∫

τ

t6∫
τ

∞∑
j2,j′2=0

 t5∫
τ

ϕj2(t4)×

×
t4∫
τ

ϕj′2(t2)

( ∞∑
j1=0

−
∞∑

j1=p+1

)
Cj1(t2, τ)Cj1(t4, t2)dt2dt4

2

dt5dt6 =

= (p+1)2
s∫

τ

t6∫
τ

t5∫
τ

t4∫
τ

( ∞∑
j1=p+1

Cj1(t2, τ)Cj1(t4, t2)

)2

dt2dt4dt5dt6. (2.1432)

The further proof of inequality (2.1395) for the trigonometric case and the
weakened analogue of inequality (2.1395) for the polynomial case is completely
analogous to the proof of (2.1401) and its weakened analogue (see (2.1423),
(2.1426), (2.1427)).

Thus, the following theorem is proved.

Theorem 2.64. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal system
of Legendre polynomials or trigonometric functions in the space L2([t, T ]). Then,
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for the iterated Stratonovich stochastic integral of seventh multiplicity

J∗[ψ(7)]T,t =

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(i7)
t7

the following expansion

J∗[ψ(7)]T,t = l.i.m.
p→∞

p∑
j1,...,j7=0

Cj7...j1ζ
(i1)
j1

. . . ζ
(i7)
j7

that converges in the mean-square sense is valid, where i1, . . . , i7 = 0, 1, . . . ,m,

Cj7...j1 =

T∫
t

ϕj7(t7) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt7

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

2.37 Expansion of Iterated Stratonovich Stochastic Inte-

grals of Multiplicity 8 for the Case ψ1(τ ), . . . , ψ8(τ ) ≡
1 (The Cases of Legendre Polynomials and Trigono-

metric Functions)

This section is devoted to the following theorem.

Theorem 2.65. Suppose that {ϕj(x)}∞j=0 is a complete orthonormal system
of Legendre polynomials or trigonometric functions in the space L2([t, T ]). Then,
for the iterated Stratonovich stochastic integral of eighth multiplicity

J∗[ψ(8)]T,t =

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(i8)
t8

the following expansion

J∗[ψ(8)]T,t = l.i.m.
p→∞

p∑
j1,...,j8=0

Cj8...j1ζ
(i1)
j1

. . . ζ
(i8)
j8



840D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

that converges in the mean-square sense is valid, where i1, . . . , i8 = 0, 1, . . . ,m,

Cj8...j1 =

T∫
t

ϕj8(t8) . . .

t2∫
t

ϕj1(t1)dt1 . . . dt8

and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ.

Proof. To prove the theorem, we need to check the condition (2.1341)
(or the condition (2.1347)) for the case k = 8 > 2r, where r = 1, 2, 3 (see
Theorem 2.61). Recall that the case k = 2r is considered in Sect. 2.27.4 (see
(2.1262)). Under the conditions of Theorem 2.65, this means that k = 8 = 2r,
where r = 4.

The relations (2.1349)–(2.1361), (2.1380) cover the case k = 8, r = 1, 2 (see
(2.1341)).

Thus, it remains to consider the case k = 8, r = 3. The case k = 7, r = 3
was considered in the previous section. Here we will focus on the differences
between these two cases.

Since now k = 8, then along with inequalities (2.1381)–(2.1384), it is nec-
essary to prove the following inequalities∣∣∣∣∣∣

p∑
jg1 ,jg3 .jg5=0

(
Cjd3jd3−1jd3−2jd3−3

(s, τ)Cjd2(θ, u)Cjd1(ρ, v)
)∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤
≤ K <∞, (2.1433)∣∣∣∣∣∣

p∑
jg1 ,jg3 .jg5=0

(
Cjd3jd3−1jd3−2

(s, τ)Cjd2jd2−1
(θ, u)Cjd1(ρ, v)

)∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤
≤ K <∞, (2.1434)∣∣∣∣∣∣

p∑
jg1 ,jg3 .jg5=0

(
Cjd3jd3−1

(s, τ)Cjd2jd2−1
(θ, u)Cjd1jd1−1

(ρ, v)
)∣∣∣∣
jg1=jg2 ,jg3=jg4 ,jg5=jg6

∣∣∣∣∣∣ ≤
≤ K <∞, (2.1435)
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where p ∈ N, t ≤ τ < s ≤ T, t ≤ u < θ ≤ T, t ≤ v < ρ ≤ T, constant K
does not depend on p, s, τ, θ, u, ρ, v (but only on t, T ) and may differ from line
to line; another notations are the same as in Sect. 2.31.

The inequalities (2.1433)–(2.1435) are proved using the same technique as
inequalities (2.1349)–(2.1361) (see Sect. 2.32). Here we will only prove as an
example the following special case of the inequality (2.1435)∣∣∣∣∣

p∑
j1,j2,j3=0

Cj2j1(s, τ)Cj3j1(θ, u)Cj2j3(ρ, v)

∣∣∣∣∣ ≤ K <∞. (2.1436)

Using the Cauchy–Bunyakovsky inequality as well as Fubini’s Theorem,
Parseval’s equality and (2.1350), we have(

p∑
j1,j2,j3=0

Cj2j1(s, τ)Cj3j1(θ, u)Cj2j3(ρ, v)

)2

=

=

(
p∑

j2,j3=0

Cj2j3(ρ, v)

p∑
j1=0

Cj2j1(s, τ)Cj3j1(θ, u)

)2

≤

≤
p∑

j2,j3=0

C2
j2j3

(ρ, v)

p∑
j2,j3=0

(
p∑

j1=0

Cj2j1(s, τ)Cj3j1(θ, u)

)2

≤

≤
∞∑

j2,j3=0

C2
j2j3

(ρ, v)
∞∑

j2,j3=0

(
p∑

j1=0

Cj2j1(s, τ)Cj3j1(θ, u)

)2

=

=
(ρ− v)2

2

∞∑
j2,j3=0

 p∑
j1=0

s∫
τ

ϕj2(t2)

t2∫
τ

ϕj1(t1)dt1dt2

θ∫
u

ϕj3(t4)

t4∫
u

ϕj1(t3)dt3dt4

2

=

=
(ρ− v)2

2

∞∑
j2,j3=0

 s∫
τ

θ∫
u

ϕj2(t2)ϕj3(t4)×

×
p∑

j1=0

t2∫
τ

ϕj1(t1)dt1

t4∫
u

ϕj1(t3)dt1dt3dt4dt2

2

=

=
(ρ− v)2

2

s∫
τ

θ∫
u

(
p∑

j1=0

Cj1(t2, τ)Cj1(t4, u)

)2

dt4dt2 ≤
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≤ K2
1

(ρ− v)2

2
(s− τ)(θ − u) ≤ K2

1

(T − t)4

2
= K.

The inequality (2.1436) is proved.

The inequalities (2.1381)–(2.1384) for the case k = 8 are proved similarly to
the inequalities (2.1381)–(2.1384) for the case k = 7 (see Sect. 2.36). There will
be minor differences only when proving (2.1381) for the case k = 8 (polynomial
case). The above differences will be due to the fact that along with the two
cases (2.1424) the following third case

τ, s ∈ (t, T )

will now appear when proving (2.1395), (2.1396), (2.1401).

Using the technique that led to the estimates (2.1427), (2.1431), we obtain
for Case 3(

p∑
j1,j2,j3=0

Cj3j3j2j1j2j1(s, τ)

)2

≤ K2

(1− z2(τ))3/8
def
= F (τ) (for (2.1395)),

(
p∑

j1,j2,j3=0

Cj3j3j1j2j2j1(s, τ)

)2

≤ K2

(1− z2(τ))1/2
def
= F (τ) (for (2.1396)),

(
p∑

j1,j2,j3=0

Cj2j3j3j1j2j1(s, τ)

)2

≤ K2

(1− z2(τ))3/8
def
= F (τ) (for (2.1401)),

where constant K depends only on t, T and F (τ) ∈ L1([t, T ]) (integrable ma-
jorant (see (2.1347)). Theorem 2.65 is proved.

2.38 Verification of the Conditions of Theorems 2.52–

2.57 for the Case ψ1(τ ), . . . , ψ5(τ ) ≡ ψ(τ ) and Gener-

alization of Theorems 2.62, 2.64, 2.65 to the Case

ψ1(τ ), . . . , ψ8(τ ) ≡ ψ(τ )

It is easy to see that Theorems 2.52–2.57 will be true if ψ1(τ), . . . , ψ5(τ) ≡ ψ(τ),
where ψ(τ) ∈ L2([t, T ]) or ψ(τ) is a continuous function on [t, T ]. Furthermore,
Theorems 2.62, 2.64, 2.65 can be generalized to the case ψ1(τ), . . . , ψ8(τ) ≡
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ψ(τ), where ψ(τ) is a continuous or continuously differentiable function on
[t, T ]. Let us provide the corresponding explanations.

Using Fubini’s Theorem and Parseval’s equality, we obtain for the case
ψ1(τ), ψ2(τ), ψ3(τ) ≡ ψ(τ) ∈ L2([t, T ])

p∑
j1=0

s∫
t

ψ2(τ)ϕj1(τ)

τ∫
t

ψ1(θ)ϕj1(θ)dθdτ =

=

p∑
j1=0

s∫
t

ψ(τ)ϕj1(τ)

τ∫
t

ψ(θ)ϕj1(θ)dθdτ =
1

2

p∑
j1=0

 s∫
t

ψ(τ)ϕj1(τ)dτ

2

≤

≤ 1

2

∞∑
j1=0

 s∫
t

ψ(τ)ϕj1(τ)dτ

2

=

s∫
t

ψ2(τ)dτ ≤

≤
T∫
t

ψ2(τ)dτ = K <∞, (2.1437)

p∑
j3=0

T∫
s

ψ2(τ)ϕj3(τ)

T∫
τ

ψ3(θ)ϕj3(θ)dθdτ =

=

p∑
j3=0

T∫
s

ψ(τ)ϕj3(τ)

T∫
τ

ψ(θ)ϕj3(θ)dθdτ =
1

2

p∑
j3=0

 T∫
s

ψ(τ)ϕj3(τ)dτ

2

≤

≤ 1

2

∞∑
j3=0

 T∫
s

ψ(τ)ϕj3(τ)dτ

2

=

T∫
s

ψ2(τ)dτ ≤

≤
T∫
t

ψ2(τ)dτ = K <∞

∀p ∈ N, where constant K does not depend on p and s (t ≤ s ≤ T ).

Thus, the conditions (2.1166), (2.1167) are fulfilled and Theorem 2.52 is true
for the case ψ1(τ), ψ2(τ), ψ3(τ) ≡ ψ(τ) ∈ L2([t, T ]). Therefore, Theorem 2.53
is also true for the case ψ1(τ), ψ2(τ), ψ3(τ) ≡ ψ(τ), where ψ(τ) is a continuous
function on [t, T ].
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By analogy with (2.1437) and (2.1108)–(2.1110) we obtain the inequalities
(2.1189)–(2.1192) for the case ψ1(τ), . . . , ψ5(τ) ≡ ψ(τ) ∈ L2([t, T ]). Thus,
Theorems 2.54, 2.56 are true for the above case. Moreover, Theorems 2.55,
2.57 are true for the case ψ1(τ), . . . , ψ5(τ) ≡ ψ(τ), where ψ(τ) is a continuous
function on [t, T ].

Generalizations (for the case ψ1(τ), . . . , ψ6(τ) ≡ ψ(τ) ∈ L2([t, T ])) of the
relations (2.1349)–(2.1361) (those that were not mentioned earlier in this sec-
tion) are proved similarly to (2.1349)–(2.1361) (see Sect. 2.32). This means
that Theorem 2.62 is generalized to the case ψ1(τ), . . . , ψ6(τ) ≡ ψ(τ), where
ψ(τ) is a continuous function on [t, T ].

In addition to all that has been said, we note that the proofs of Theo-
rems 2.64, 2.65 can be easily modified to the case ψ1(τ), . . . , ψ8(τ) ≡ ψ(τ),
where ψ(τ) is a continuously differentiable function on [t, T ]. In this case, it is
necessary to use (1.211), (2.294), (2.740) as well as the following estimate for
the case of Legendre polynomials∣∣∣∣∣∣

x∫
v

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣ < C

j1−ε/2

(
1

(1− z2(x))1/4−ε/4
+

1

(1− z2(v))1/4−ε/4

)
,

where j ∈ N, z(x), z(v) ∈ (−1, 1) (z(x) is defined by (2.20)), x, v ∈ (t, T ),
ε ∈ (0, 1) is an arbitrary small positive real number, ψ(τ) is a continuously
differentiable function on [t, T ], constant C does not depend on j.

2.39 Convergence of the Expansion (2.1346) to the Iter-

ated Stratonovich Stochastic Integrals in the Sense

of Mathematical Expectation

In the previous sections, we actually proved that the value

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

converges if p → ∞ (under suitable conditions) to the iterated Stratonovich
stochastic integrals (2.6) in the sense of mathematical expectation. Let us
explain this fact in more detail.
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Suppose that ψ1(τ), . . . , ψk(τ) (k ∈ N) are continuous functions on [t, T ]
and consider Theorem 2.12.

First, let k = 2q + 1, q ∈ N. We represent (w. p. 1) each stochastic inte-
gral J [ψ(k)]sr,...,s1T,t from the right-hand side of (2.389) using the transformation
(2.1063) as a finite linear combination of the iterated Itô stochastic integrals.
Thus, we have (see (2.389))

M
{
J∗[ψ(k)]T,t

}
= 0, (2.1438)

where J∗[ψ(k)]T,t is defined by (2.6). On the other hand,

M

{
p∑

j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

}
= 0, (2.1439)

since ζ
(il)
jl

has Gaussian distribution and k = 2q + 1, q ∈ N.

Combining (2.1438) and (2.1439), we obtain

lim
p→∞

∣∣∣∣∣M
{
J∗[ψ(k)]T,t −

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

}∣∣∣∣∣ = 0. (2.1440)

Now let k = 2q, q ∈ N. In this case, using the above reasoning, we get (see
(2.389))

M
{
J∗[ψ(k)]T,t

}
=

=
1

2q
1{i1=i2 ̸=0}1{i3=i4 ̸=0} . . .1{i2q−1=i2q ̸=0}×

×
T∫
t

ψ2q(t2q)ψ2q−1(t2q) . . .

t6∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4 . . . dt2q.

(2.1441)

Recall that the multiple Wiener stochastic integral (1.304) has zero expec-
tation (see (1.305)). Then, using (2.965), (2.1255) and (2.1441), we have

lim
p→∞

M

{
p∑

j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

}
=

= 1{i1=i2 ̸=0}1{i3=i4 ̸=0} . . .1{i2q−1=i2q ̸=0}×
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× lim
p→∞

p∑
jq,jq−2,...,j2=0

Cjqjqjq−2jq−2...j2j2 =

=
1

2q
1{i1=i2 ̸=0}1{i3=i4 ̸=0} . . .1{i2q−1=i2q ̸=0}×

×
T∫
t

ψ2q(t2q)ψ2q−1(t2q) . . .

t6∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4 . . . dt2q =

= M
{
J∗[ψ(k)]T,t

}
. (2.1442)

Applying (2.1442), we obtain

lim
p→∞

∣∣∣∣∣M
{
J∗[ψ(k)]T,t −

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

}∣∣∣∣∣ =
=

∣∣∣∣∣M{J∗[ψ(k)]T,t

}
− lim

p→∞
M

{
p∑

j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

}∣∣∣∣∣ =
= 0.

The equality (2.1440) is proved.

2.40 Algorithm of the Proof of Hypothesis 2.2

Sect. 2.27–2.38 were written recently, namely in 2024-2025. At the same time,
this section (Sect. 2.40) reflects the author’s vision of the problem under con-
sideration in 2021-2022.

Let us make some remarks about the development of the approach based
on Theorem 2.30 and describe the algorithm of the proof of Hypothesis 2.2 (see
Sect. 2.5). First, consider the case k = 2n+1, n = 3, 4, . . . (k is the multiplicity
of the iterated Stratonovich stochastic integral (2.661)). Let Condition 2 of
Theorem 2.30 be satisfied (Condition 1 of this theorem is satisfied automatically
(see the proof of Theorem 2.18)). Consider the equality (2.717). The right-hand
side of (2.717) has the form
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p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

.

Iterated application of the formulas (2.790), (2.791), (2.804) separately to
the values

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

and

1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

(g1, g2, . . . , g2r−1, g2r as in (2.652), r = 1, 2, . . . , [k/2], 2r < k) gives the following
representation (see (2.718))

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

≤

≤
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

=

=
∞∑

j1,...,jq,...,jk=0
q ̸=g1,g2,...,g2r−1,g2r

 ∫
[t,T ]k−2r

Rp(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk)×
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×
k∏

q=1
q ̸=g1,g2,...,g2r−1,g2r

ψq(tq)ϕjq(tq) dt1 . . . dtg1−1dtg1+1 . . . dtg2r−1dtg2r+1 . . . dtk


2

,

(2.1443)

where ∫
[t,T ]k−2r

Rp(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk)×

×
k∏

q=1
q ̸=g1,g2,...,g2r−1,g2r

ψq(tq)ϕjq(tq) dt1 . . . dtg1−1dtg1+1 . . . dtg2r−1dtg2r+1 . . . dtk

is the Fourier coefficient of

R̂p(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk) =

= Rp(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk)
k∏

q=1
q ̸=g1,g2,...,g2r−1,g2r

ψq(tq),

where

Rp(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk) =

=
4r∑
d=1

R̄(d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk)−

−
2r∑
d=1

R̃(d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk) ∈ L2([t, T ]

k−2r)

and some of the functions R̄
(d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk) and

R̃
(d)
p (t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk) can be identically equal to zero.

Obviously, we could use another representation for the function

Rp(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk) (2.1444)

based on the left-hand side of the equality (2.717) and (2.790), (2.791), (2.804)
(see Sect. 2.13 for details). In Sect. 2.13, we considered the function (2.1444)
in detail for the case k ≥ 5, r = 1.
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Parseval’s equality gives

∞∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

 ∫
[t,T ]k−2r

Rp(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk)×

×
k∏

q=1
q ̸=g1,g2,...,g2r−1,g2r

ψq(tq)ϕjq(tq) dt1 . . . dtg1−1dtg1+1 . . . dtg2r−1dtg2r+1 . . . dtk


2

=

=

∫
[t,T ]k−2r

(
R̂p(t1, . . . , tg1−1, tg1+1, . . . , tg2r−1, tg2r+1, . . . , tk)

)2
dt1 . . . dtg1−1dtg1+1 . . .

. . . dtg2r−1dtg2r+1 . . . dtk =
∥∥R̂p

∥∥2
L2([t,T ]k−2r)

. (2.1445)

Combining (2.1443) and (2.1445), we obtain

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

≤

≤
∥∥R̂p

∥∥2
L2([t,T ]k−2r)

. (2.1446)

Assume that we have succeeded in proving the following equality

lim
p→∞

∥∥R̂p

∥∥2
L2([t,T ]k−2r)

= 0. (2.1447)

Applying (2.1446) and (2.1447), we get (compare with (2.718))

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−
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− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0.

(2.1448)

As noted in Sect. 2.10, Condition 3 of Theorem 2.30 can be replaced by a
weaker condition (2.718) (or (2.1448)). Also Condition 3 of Theorem 2.30 can
be replaced by (2.1447). From (2.1448) we obviously obtain for 2r < k

lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=

=
1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

.

(2.1449)

According to (2.717), the equality (2.1449) will be satisfied if

lim
p→∞

Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
= 0, (2.1450)

where g1, g2, . . . , g2r−1, g2r as in (2.652), l1, l2, . . . , ld such that l1, l2, . . . , ld ∈
{1, 2, . . . , r}, l1 > l2 > . . . > ld, d = 0, 1, 2, . . . , r − 1, r = 1, 2, . . . , [k/2],

Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
= C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

for d = 0, where

C̄
(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

, Sl

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}

are defined by (2.656), (2.657), l = 1, 2, . . . , r (see Sect. 2.10 for details).

Let us make some remarks about the function (2.1444) for the case k >
5, r = 2. In this case, using the left-hand side of the equality (2.717) and
(2.790), (2.791), (2.804), we represent the function (2.1444) as the sum of several
functions. In particular, among these functions will be the following functions
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Qp(t1, . . . , ts−1, ts+1, . . . , tl−1, tl+1, . . . , tq−1, tq+1, . . . , tg−1, tg+1, . . . , tk) =

= 1{t1<...<ts−1<ts+1<...<tl−1<tl+1<...<tq−1<tq+1<...<tg−1<tg+1<...<tk}×

×
∞∑

jl=p+1

ts+1∫
t

ψs(τ)ϕjl(τ)dτ

tl−1∫
t

ψl(τ)ϕjl(τ)dτ×

×
∞∑

jq=p+1

tq+1∫
t

ψq(τ)ϕjq(τ)dτ

tg−1∫
t

ψg(τ)ϕjq(τ)dτ, (2.1451)

Q̄p(t1, . . . , tl−2, tl+3, . . . , tk) =

= 1{t1<...<tl−2<tl+3<...<tk}×

×
∞∑

jl=p+1

 tl−2∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

×

×
∞∑

jq=p+1

 tl−2∫
t

ψl+1(θ)ϕjq(θ)

θ∫
t

ψl+2(u)ϕjq(u)dudθ

 , (2.1452)

Q̃p(t1, . . . , tl−2, tl+3, . . . , tk) =

= 1{t1<...<tl−2<tl+3<...<tk}×

×
∞∑

jl=p+1

∞∑
jq=p+1

tl+3∫
t

ψl+1(τ)ϕjq(τ)

 τ∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

×

×
τ∫
t

ψl+2(u)ϕjq(u)dudτ, (2.1453)

Q̂p(t1, . . . , tl−1, tl+2, . . . , tq−1, tq+2, . . . , tk) =

= 1{t1<...<tl−1<tl+2<...<tq−1<tq+2<...<tk}×
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×
∞∑

jl=p+1

∞∑
jl+1=p+1

 tl+2∫
t

ψl+1(θ)ϕjl+1
(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

×

×

 tq+2∫
t

ψq+1(θ)ϕjl+1
(θ)

θ∫
t

ψq(u)ϕjl(u)dudθ

 . (2.1454)

Note that the pairs (g1, g2), (g3, g4) for the functions (2.1452) and (2.1453)
have the property: g2 = g1 + 1, g4 = g3 + 1, g3 = g2 + 1. At the same time,
the pairs (g1, g2), (g3, g4) for the function (2.1451) have the following property:
g2 > g1+1, g4 > g3+1, g3 ≥ g2+1. For the function (2.1454), the pairs (g1, g2),
(g3, g4) chosen as follows: g2 > g1 + 1, g4 > g3 + 1, g4 = g2 + 1, g3 = g1 + 1.
Generally speaking, all possible pairs (g1, g2), (g3, g4) must be considered. We
consider the functions (2.1451)–(2.1454) only as an example.

Suppose that s + 1 = l − 1, l + 1 = q − 1, q + 1 = g − 1 in (2.1451). Let
us show that (we consider the case of Legendre polynomials; the trigonometric
case is simpler and can be considered similarly)

lim
p→∞

∥∥Qp

∥∥2
L2([t,T ]k−4)

= 0, (2.1455)

lim
p→∞

∥∥Q̄p

∥∥2
L2([t,T ]k−4)

= 0, (2.1456)

lim
p→∞

∥∥Q̃p

∥∥2
L2([t,T ]k−4)

= 0, (2.1457)

lim
p→∞

∥∥Q̂p

∥∥2
L2([t,T ]k−4)

= 0. (2.1458)

First consider the proof of (2.1455). We have (s+ 1 = l − 1, l + 1 = q − 1,
q + 1 = g − 1)

(Qp(t1, . . . , tl−3, tl−1, tl+1, tl+3, tl+5, . . . , tk))
2 =

= 1{t1<...<tl−3<tl−1<tl+1<tl+3<tl+5<...<tk}×

×

 ∞∑
jl=p+1

tl−1∫
t

ψl−2(τ)ϕjl(τ)dτ

tl−1∫
t

ψl(τ)ϕjl(τ)dτ×
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×
∞∑

jq=p+1

tl+3∫
t

ψl+2(τ)ϕjq(τ)dτ

tl+3∫
t

ψl+4(τ)ϕjq(τ)dτ

2

. (2.1459)

Using the estimate (2.740), we obtain∣∣∣∣∣∣
s∫
t

ψ(τ)ϕj(τ)dτ

∣∣∣∣∣∣ < K

j1−ε/2(1− z2(s))1/4−ε/4
, (2.1460)

where j ∈ N, s ∈ (t, T ), z(s) is defined by (2.20), ε ∈ (0, 1), constant K does
not depend on j, {ϕj(x)}∞j=0 is a complete orthonormal system of Legendre poly-
nomials in the space L2([t, T ]), ψ(τ) is a continuously differentiable nonrandom
function on [t, T ].

Applying (2.1460) and (2.743) (we take ε instead of ε/2 in (2.743)), we get ∞∑
jl=p+1

tl−1∫
t

ψl−2(τ)ϕjl(τ)dτ

tl−1∫
t

ψl(τ)ϕjl(τ)dτ×

×
∞∑

jq=p+1

tl+3∫
t

ψl+2(τ)ϕjq(τ)dτ

tl+3∫
t

ψl+4(τ)ϕjq(τ)dτ

2

≤

≤ K1

p4(1−ε)(1− z2(tl−1))1−ε(1− z2(tl+3))1−ε
, (2.1461)

where tl−1, tl+3 ∈ (t, T ), constant K1 is independent of p. Combining (2.1459)
and (2.1461), we have (2.1455).

Let us prove (2.1456). Applying the estimate (2.739) in (2.647) and taking
into account the boundedness of the functions ψ1(τ), ψ2(τ) and their derivatives,
we obtain ∣∣∣∣∣

n∑
j=m+1

Cjj(s)

∣∣∣∣∣ ≤ C1

(
1

n1−ε
+

1

m1−ε

) z(s)∫
−1

dx

(1− x2)1/2−ε/2
+

+C2

n∑
j=m+1

1

j2−ε

 z(s)∫
−1

dy

(1− y2)1/2−ε/2
+

1

(1− z2(s))1/4−ε/4

z(s)∫
−1

dy

(1− y2)1/4−ε/4
+
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+

z(s)∫
−1

1

(1− y2)1/4−ε/4

z(s)∫
y

dx

(1− x2)1/4−ε/4
dy

 , (2.1462)

where

Cjj(s) =

s∫
t

ψ2(τ)ϕj(τ)

τ∫
t

ψ1(θ)ϕj(θ)dθdτ,

s ∈ (t, T ), constants C1, C2 do not depend on n and m.

From (2.1462) we have∣∣∣∣∣
∞∑

j=m+1

Cjj(s)

∣∣∣∣∣ ≤ K1

m1−ε+K2

∞∑
j=m+1

1

j2−ε

(
1 +

1

(1− z2(s))1/4−ε/4

)
, (2.1463)

where s ∈ (t, T ), constants K1, K2 do not depend on m.

Applying (2.743) (we take ε instead of ε/2 in (2.743)) in (2.1463), we get∣∣∣∣∣
∞∑

j=m+1

Cjj(s)

∣∣∣∣∣ ≤ K

m1−ε (1− z2(s))1/4−ε/4
, (2.1464)

where s ∈ (t, T ), constant K is independent of m.

Using the estimate (2.1464), we obtain (see (2.1452))(
Q̄p(t1, . . . , tl−2, tl+3, . . . , tk)

)2
= 1{t1<...<tl−2<tl+3<...<tk}×

×

 ∞∑
jl=p+1

 tl−2∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

×

×
∞∑

jq=p+1

 tl−2∫
t

ψl+1(θ)ϕjq(θ)

θ∫
t

ψl+2(u)ϕjq(u)dudθ

2

≤

≤ K1

p4(1−ε)(1− z2(tl−2))1−ε
, (2.1465)

where tl−2 ∈ (t, T ), constant K1 is independent of p. The inequality (2.1465)
completes the proof of (2.1456).
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Let us prove (2.1457). Applying (2.646) in (2.1453), we get(
Q̃p(t1, . . . , tl−2, tl+3, . . . , tk)

)2
≤

≤

 ∞∑
jl=p+1

∞∑
jq=p+1

tl+3∫
t

ψl+1(τ)ϕjq(τ)

 τ∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

×

×
τ∫
t

ψl+2(u)ϕjq(u)dudτ

2

=

=

1

2

∞∑
jl=p+1

tl+3∫
t

ψl+1(τ)

 τ∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

ψl+2(τ)dτ−

−
p∑

jq=0

tl+3∫
t

ψl+1(τ)ϕjq(τ)
∞∑

jl=p+1

 τ∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

×

×
τ∫
t

ψl+2(u)ϕjq(u)dudτ

2

= (a− b)2 ≤ 2(|a|2 + |b|2). (2.1466)

Further, we have

|a| ≤ 1

2

tl+3∫
t

|ψl+1(τ)|

∣∣∣∣∣∣
∞∑

jl=p+1

τ∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

∣∣∣∣∣∣ |ψl+2(τ)| dτ,

(2.1467)

|b| ≤
p∑

jq=0

tl+3∫
t

∣∣ψl+1(τ)ϕjq(τ)
∣∣ ∣∣∣∣∣∣

∞∑
jl=p+1

τ∫
t

ψl−1(θ)ϕjl(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

∣∣∣∣∣∣×
×

∣∣∣∣∣∣
τ∫
t

ψl+2(u)ϕjq(u)du

∣∣∣∣∣∣ dτ. (2.1468)

Combining (2.1464) and (2.1467), we obtain

|a| ≤ C

p1−ε
, (2.1469)
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where constant C is independent of p.

Separating in (2.1468) the term with the number jq = 0 and then applying
(2.158), (2.294), (2.1464), we obtain

|b| ≤ K

p1−ε

 tl+3∫
t

dτ

(1− z2(τ))1/2−ε/4
+

p∑
jq=1

1

jq

tl+3∫
t

dτ

(1− z2(τ))3/4−ε/4

 ≤

≤ K1

p1−ε

1 +

p∑
jq=1

1

jq

 ≤ K1

p1−ε

2 +

p∫
1

dx

x

 =

=
K1 (2 + lnp)

p1−ε
→ 0 (2.1470)

if p → ∞. The estimates (2.1466), (2.1469), (2.1470) complete the proof of
(2.1457).

Finally, consider the proof of (2.1458). Using the elementary inequality
|ab| ≤ (a2 + b2)/2 and Parseval’s equality, we have(

Q̂p(t1, . . . , tl−1, tl+2, . . . , tq−1, tq+2, . . . , tk)
)2

≤

≤

 ∞∑
jl=p+1

∞∑
jl+1=p+1

∣∣∣∣∣∣
tl+2∫
t

ψl+1(θ)ϕjl+1
(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

∣∣∣∣∣∣×

×

∣∣∣∣∣∣
tq+2∫
t

ψq+1(θ)ϕjl+1
(θ)

θ∫
t

ψq(u)ϕjl(u)dudθ

∣∣∣∣∣∣
2

≤

≤ 1

4

 ∞∑
jl=p+1

∞∑
jl+1=p+1

 tl+2∫
t

ψl+1(θ)ϕjl+1
(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

2

+

+
∞∑

jl=p+1

∞∑
jl+1=p+1

 tq+2∫
t

ψq+1(θ)ϕjl+1
(θ)

θ∫
t

ψq(u)ϕjl(u)dudθ

2


2

≤
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≤ 1

4

 ∞∑
jl=p+1

∞∑
jl+1=0

 tl+2∫
t

ψl+1(θ)ϕjl+1
(θ)

θ∫
t

ψl(u)ϕjl(u)dudθ

2

+

+
∞∑

jl=p+1

∞∑
jl+1=0

 tq+2∫
t

ψq+1(θ)ϕjl+1
(θ)

θ∫
t

ψq(u)ϕjl(u)dudθ

2


2

≤

≤ 1

4

 ∞∑
jl=p+1

tl+2∫
t

ψ2
l+1(θ)

 θ∫
t

ψl(u)ϕjl(u)du

2

dθ+

+
∞∑

jl=p+1

tq+2∫
t

ψ2
q+1(θ)

 θ∫
t

ψq(u)ϕjl(u)du

2

dθ


2

. (2.1471)

From (2.1471) and (2.25), (2.294) we obtain(
Q̂p(t1, . . . , tl−1, tl+2, . . . , tq−1, tq+2, . . . , tk)

)2
≤ K

p2
→ 0

if p→ ∞, where constantK does not depend on p. Thus the equalities (2.1455)–
(2.1458) are proved.

Recall that the function (2.1444) (this function is defined using the left-
hand side of the equality (2.717)) for the case k > 5, r = 2 is represented as the
sum of several functions. Four of them, namely Qp, Q̄p, Q̃p, Q̂p (these functions
correspond to the particular case of choosing the pairs (g1, g2), (g3, g4); generally
speaking, all possible pairs (g1, g2), (g3, g4) must be considered), have been
studied above. Absolutely similarly, we can consider the remaining functions
(for all possible pairs (g1, g2), (g3, g4)) whose sum is the function (2.1444) for
the case k > 5, r = 2. As a result, we will have

lim
p→∞

∥∥R̂p

∥∥2
L2([t,T ]k−2r)

= 0 (k > 5, r = 2).

After that, we can go to the function (2.1444) for the case k > 5, r = 3,
2r < k (this function is defined using the left-hand side of the equality (2.717))
and follow the same steps as above. This will lead us to the following equality

lim
p→∞

∥∥R̂p

∥∥2
L2([t,T ]k−2r)

= 0 (k > 5, r = 3, 2r < k).
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Then we can move on to the next step and so on. As a result, we get the
equality (2.1447) (r = 1, 2, . . . , [k/2]) and thus prove Hypothesis 2.2 for the
case k = 2n+ 1, n = 3, 4, . . . (see Sect. 2.5).

For the case k = 2n, n = 3, 4, . . . we follow the above steps for r =
1, 2, . . . , [k/2] − 1 (2r ≤ k − 2). For 2r = k we use the same technique as
in the proof of the equalities (2.752)–(2.754). Recall that we used (2.684),
(2.691) and Parseval’s equality in the proof of (2.752)–(2.754). For 2r = k we
can also use the equality (2.1237).

The obvious disadvantage of the proposed algorithm is the drastic increase
of complexity of the proof when moving from r = 1 to r = 2, r = 2 to r = 3
and so on.

The proofs of Theorems 2.34 and 2.35 contain a rather simple trick of pass-
ing from r = 1 to r = 2. Unfortunately, this procedure cannot be applied
already at the transition from r = 2 to r = 3. Note that the case k = 6, r = 3
was successfully considered in Theorem 2.36 under the following simplifying
assumption: ψ1(τ), . . . , ψ6(τ) ≡ 1.

Nevertheless, the results obtained in the previous sections of Chapter 2 are
quite sufficient for practical needs (see Chapters 4 and 5 for details).

2.41 Theorems 2.1–2.9, 2.33–2.36, 2.41, 2.45–2.48, 2.50,

2.51, 2.53, 2.55, 2.57, 2.59, 2.61–2.65 on Expansion

of Iterated Stratonovich Stochastic Integrals from

Point of View of the Wong–Zakai Approximation

The iterated Itô stochastic integrals and solutions of Itô SDEs are complex
and important functionals from the independent components f

(i)
s , i = 1, . . . ,m

of the multidimensional Wiener process fs, s ∈ [0, T ]. Let f
(i)p
s , p ∈ N be

some approximation of f
(i)
s , i = 1, . . . ,m. Suppose that f

(i)p
s converges to f

(i)
s ,

i = 1, . . . ,m if p→ ∞ in some sense and has differentiable sample trajectories.

A natural question arises: if we replace f
(i)
s by f

(i)p
s , i = 1, . . . ,m in the func-

tionals mentioned above, will the resulting functionals converge to the original
functionals from the components f

(i)
s , i = 1, . . . ,m of the multidimentional

Wiener process fs?

The answere to this question is negative in the general case. However, in the
pioneering works of Wong E. and Zakai M. [73], [74], it was shown that under the
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special conditions and for some types of approximations of the Wiener process
the answere is affirmative with one peculiarity: the convergence takes place
to the iterated Stratonovich stochastic integrals and solutions of Stratonovich
SDEs and not to the iterated Itô stochastic integrals and solutions of Itô SDEs.

The piecewise linear approximation as well as the regularization by convo-
lution [73]-[75] relate to the mentioned types of approximations of the Wiener
process. The above approximation of stochastic integrals and solutions of SDEs
is often called the Wong–Zakai approximation.

Let fs, s ∈ [0, T ] be an m-dimensional standard Wiener process with in-

dependent components f
(i)
s , i = 1, . . . ,m. It is well known that the following

representation takes place [129], [130] (also see Sect. 6.1 of this book for detail)

f (i)τ − f
(i)
t =

∞∑
j=0

τ∫
t

ϕj(s)ds ζ
(i)
j , ζ

(i)
j =

T∫
t

ϕj(s)df
(i)
s , (2.1472)

where τ ∈ [t, T ], t ≥ 0, {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system

of functions in the space L2([t, T ]), and ζ
(i)
j are independent standard Gaussian

random variables for various i or j. Moreover, the series (2.1472) converges for
any τ ∈ [t, T ] in the mean-square sense.

Let f
(i)p
τ − f

(i)p
t be the mean-square approximation of the process f

(i)
τ − f

(i)
t ,

which has the following form

f (i)pτ − f
(i)p
t =

p∑
j=0

τ∫
t

ϕj(s)ds ζ
(i)
j . (2.1473)

From (2.1473) we obtain

df (i)pτ =

p∑
j=0

ϕj(τ)ζ
(i)
j dτ. (2.1474)

Consider the following iterated Riemann–Stieltjes integral

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p1
t1 . . . dw

(ik)pk
tk , (2.1475)

where p1, . . . , pk ∈ N, i1, . . . , ik = 0, 1, . . . ,m,
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dw(i)p
τ =


df

(i)p
τ for i = 1, . . . ,m

dτ for i = 0

, p ∈ N, (2.1476)

and df
(i)p
τ in defined by the relation (2.1474).

Let us substitute (2.1476) into (2.1475)

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p1
t1 . . . dw

(ik)pk
tk =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl
, (2.1477)

where p1, . . . , pk ∈ N,

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s

are independent standard Gaussian random variables for various i or j (in the

case when i ̸= 0), w
(i)
s = f

(i)
s for i = 1, . . . ,m and w

(0)
s = s,

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient.

To best of our knowledge [73]-[75] the approximations of the Wiener process
in the Wong–Zakai approximation must satisfy fairly strong restrictions [75] (see
Definition 7.1, pp. 480–481). Moreover, approximations of the Wiener process
that are similar to (2.1473) were not considered in [73], [74] (also see [75], The-
orems 7.1, 7.2). Therefore, the proof of analogs of Theorems 7.1 and 7.2 [75]
for approximations of the Wiener process based on its series expansion (2.1472)
(also see (6.16)) should be carried out separately. Thus, the mean-square con-
vergence of the right-hand side of (2.1477) to the iterated Stratonovich stochas-
tic integral (2.6) does not follow from the results of the papers [73], [74] (also
see [75], Theorems 7.1, 7.2) even for the case p1 = . . . = pk = p.

From the other hand, Theorems 1.1, 1.16, 2.1–2.9, 2.33–2.36, 2.41, 2.45–
2.48, 2.50, 2.51, 2.53, 2.55, 2.57, 2.59, 2.61–2.65 from this monograph can be
considered as the proof of the Wong–Zakai approximation based on the iter-
ated Riemann–Stieltjes integrals (2.1475) as well as the Wiener process approx-
imation (2.1473) on the base of its series expansion. At that, the mentioned
Riemann–Stieltjes integrals converge (according to Theorems 1.1, 1.16, 2.1–2.9,
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2.33–2.36, 2.41, 2.45–2.48, 2.50, 2.51, 2.53, 2.55, 2.57, 2.59, 2.61–2.65) to the
appropriate Stratonovich stochastic integrals (2.6). Recall that {ϕj(x)}∞j=0 (see
(2.1472), (2.1473), and Theorems 1.1, 2.1, 2.2, 2.4–2.9, 2.33–2.36, 2.41, 2.64,
2.65) is a complete orthonormal system of Legendre polynomials or trigono-
metric functions in the space L2([t, T ]). In Theorems 1.16, 2.3, 2.47, 2.48, 2.50,
2.51, 2.53, 2.55, 2.57, 2.59, 2.61–2.63 the system {ϕj(x)}∞j=0 can be arbitrary.

To illustrate the above reasoning, consider two examples for the case k = 2,
ψ1(s), ψ2(s) ≡ 1; i1, i2 = 1, . . . ,m.

The first example relates to the piecewise linear approximation of the multi-
dimensional Wiener process (these approximations were considered in [73]-[75]).

Let b
(i)
∆ (t), t ∈ [0, T ] be the piecewise linear approximation of the ith com-

ponent f
(i)
t of the multidimensional standard Wiener process ft, t ∈ [0, T ] with

independent components f
(i)
t , i = 1, . . . ,m, i.e.

b
(i)
∆ (t) = f

(i)
k∆ +

t− k∆

∆
∆f

(i)
k∆,

where ∆f
(i)
k∆ = f

(i)
(k+1)∆ − f

(i)
k∆, t ∈ [k∆, (k + 1)∆), k = 0, 1, . . . , N − 1.

Note that w. p. 1

db
(i)
∆

dt
(t) =

∆f
(i)
k∆

∆
, t ∈ [k∆, (k + 1)∆), k = 0, 1, . . . , N − 1. (2.1478)

Consider the following iterated Riemann–Stieltjes integral

T∫
0

s∫
0

db
(i1)
∆ (τ)db

(i2)
∆ (s), i1, i2 = 1, . . . ,m.

Using (2.1478) and additive property of Riemann–Stieltjes integrals, we can
write w. p. 1

T∫
0

s∫
0

db
(i1)
∆ (τ)db

(i2)
∆ (s) =

T∫
0

s∫
0

db
(i1)
∆

dτ
(τ)dτ

db
(i2)
∆

ds
(s)ds =

=
N−1∑
l=0

(l+1)∆∫
l∆

 l−1∑
q=0

(q+1)∆∫
q∆

∆f
(i1)
q∆

∆
dτ +

s∫
l∆

∆f
(i1)
l∆

∆
dτ

 ∆f
(i2)
l∆

∆
ds =
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=
N−1∑
l=0

l−1∑
q=0

∆f
(i1)
q∆ ∆f

(i2)
l∆ +

1

∆2

N−1∑
l=0

∆f
(i1)
l∆ ∆f

(i2)
l∆

(l+1)∆∫
l∆

s∫
l∆

dτds =

=
N−1∑
l=0

l−1∑
q=0

∆f
(i1)
q∆ ∆f

(i2)
l∆ +

1

2

N−1∑
l=0

∆f
(i1)
l∆ ∆f

(i2)
l∆ . (2.1479)

Using (2.1479), it is not difficult to show (see Lemma 1.1, Remark 1.2, and
(2.8)) that

l.i.m.
N→∞

T∫
0

s∫
0

db
(i1)
∆ (τ)db

(i2)
∆ (s) =

T∫
0

s∫
0

df (i1)τ df (i2)s +

+
1

2
1{i1=i2}

T∫
0

ds =

∗∫
0

T ∗∫
0

s

df (i1)τ df (i2)s , (2.1480)

where ∆ → 0 if N → ∞ (N∆ = T ).

Obviously, (2.1480) agrees with Theorem 7.1 (see [75], p. 486).

The next example relates to the approximation (2.1473) of the Wiener pro-
cess based on its series expansion (2.1472), where t = 0 and {ϕj(x)}∞j=0 is an
arbitrary complete orthonormal system of functions in the space L2([0, T ]).

Consider the following iterated Riemann–Stieltjes integral

T∫
0

s∫
0

df (i1)pτ df (i2)ps , i1, i2 = 1, . . . ,m, (2.1481)

where df
(i)p
τ is defined by the relation (2.1474).

Let us substitute (2.1474) into (2.1481)

T∫
0

s∫
0

df (i1)pτ df (i2)ps =

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2
, (2.1482)

where

Cj2j1 =

T∫
0

ϕj2(s)

s∫
0

ϕj1(τ)dτds
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is the Fourier coefficient; another notations are the same as in (2.1477).

As we noted above, approximations of the Wiener process that are similar
to (2.1473) were not considered in [73], [74] (also see Theorems 7.1, 7.2 in [75]).
Furthermore, the extension of the results of Theorems 7.1 and 7.2 [75] to the
case under consideration is not obvious.

On the other hand, we can apply the theory built in Chapters 1 and 2 of this
book. More precisely, using Theorem 2.3, we obtain from (2.1482) the desired
result

l.i.m.
p→∞

T∫
0

s∫
0

df (i1)pτ df (i2)ps = l.i.m.
p→∞

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

=

=

∗∫
0

T ∗∫
0

s

df (i1)τ df (i2)s . (2.1483)

From the other hand, by Theorem 1.16 (see (1.321)) for the case k = 2 we
obtain from (2.1482) the following relation

l.i.m.
p→∞

T∫
0

s∫
0

df (i1)pτ df (i2)ps = l.i.m.
p→∞

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i2)
j2

=

= l.i.m.
p→∞

p∑
j1,j2=0

Cj2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
+ 1{i1=i2}

∞∑
j1=0

Cj1j1 =

=

T∫
0

s∫
0

df (i1)τ df (i2)s + 1{i1=i2}

∞∑
j1=0

Cj1j1. (2.1484)

Since

∞∑
j1=0

Cj1j1 =
1

2

∞∑
j1=0

 T∫
0

ϕj(τ)dτ

2

=
1

2

 T∫
0

ϕ0(τ)dτ

2

=
1

2

T∫
0

ds,

then from (2.8) and (2.1484) we obtain (2.1483).
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2.42 Wong–Zakai Type Theorems for Iterated Stratono-

vich Stochastic Integrals. The Case of Approxima-

tion of the Multidimensional Wiener Process Based

on its Series Expansion Using Legendre Polynomi-

als and Trigonometric Functions

As we mentioned above, there exists a lot of publications on the subject of
Wong–Zakai approximation of stochastic integrals and SDEs [73]-[75] (also see
[131]-[138]). However, these works did not consider the approximation of iter-
ated stochastic integrals and SDEs for the case of approximation of the mul-
tidimensional Wiener process based on its series expansions. Usually, as an
approximation of the Wiener process in the theorems of the Wong–Zakai type,
the authors [73]-[75] (also see [131]-[138]) choose a piecewise linear approxima-
tion or an approximation based on the regularization by convolution.

The Wong–Zakai approximation is widely used to approximate stochastic
integrals and SDEs. In particular, the Wong–Zakai approximation can be used
to approximate the iterated Stratonovich stochastic integrals in the context of
numerical integration of Itô SDEs in the framework of the approach based on
the Taylor–Stratonovich expansion [84], [85] (see Chapter 4). It should be noted
that the authors of the works [83] (pp. 438-439), [84] (Sect. 5.8, pp. 202–204),
[85] (pp. 82-84), [93] (pp. 263-264) mention the Wong–Zakai approximation
[73]-[75] within the frames of approximation of iterated Stratonovich stochas-
tic integrals based on the Karhunen–Loeve expansion of the Brownian bridge
process (see Sect. 6.2). However, in these works there is no rigorous proof of
convergence for approximations of the mentioned stochastic integrals of milti-
plicity 3 and higher (see discussion in Sect. 6.2).

From the other hand, the theory constructed in Chapters 1 and 2 of this
monograph (also see [14]-[17]) can be considered as the proof of the Wong–
Zakai approximation for iterated Stratonovich stochastic integrals. At that,
this approximation is based on the Wiener process series expansion using an
arbitrary complete orthonormal system of functions in L2([t, T ]).

The subject of this section is to reformulate the main results of Chapter 2 of
this book in the form of theorems on convergence of iterated Riemann–Stiltjes
integrals to iterated Stratonovich stochastic integrals.

Let us reformulate Theorems 2.3–2.6, 2.8, 2.9, 2.30, 2.32–2.36, 2.41, 2.49–
2.51, 2.60–2.65 of this monograph as statements on the convergence of the iter-
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ated Riemann–Stiltjes integrals (2.1475) to the iterated Stratonovich stochastic
integrals (2.6).

Theorem 2.66 [17] (reformulation of Theorem 2.3). Let {ϕj(x)}∞j=0 be an
arbitrary complete orthonormal system of functions in the space L2([t, T ]) and
ψ1(τ), ψ2(τ) are continuous functions at the interval [t, T ]. Then, for the iterated
Stratonovich stochastic integral of second multiplicity

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m)

the following formula

J∗[ψ(2)]T,t = l.i.m.
p1,p2→∞

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p1
t1 df

(i2)p2
t2

is valid.

Theorem 2.67 [39] (reformulation of Theorems 2.4 and 2.6). Suppose that
{ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials or trigo-
nometric functions in the space L2([t, T ]). Then, for the iterated Stratonovich
stochastic integral of third multiplicity

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m)

the following formula

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 = l.i.m.

p1,p2,p3→∞

T∫
t

t3∫
t

t2∫
t

df
(i1)p1
t1 df

(i2)p2
t2 df

(i3)p3
t3

is valid.

Theorem 2.68 [39] (reformulation of Theorem 2.5). Let {ϕj(x)}∞j=0 be a
complete orthonormal system of Legendre polynomials in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of third multiplicity

I
∗(i1i2i3)
l1l2l3T,t

=

∗∫
t

T

(t− t3)
l3

∗∫
t

t3

(t− t2)
l2

∗∫
t

t2

(t− t1)
l1df

(i1)
t1 df

(i2)
t2 df

(i3)
t3
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the following formula

I
∗(i1i2i3)
l1l2l3T,t

= l.i.m.
p1,p2,p3→∞

T∫
t

(t− t3)
l3

t3∫
t

(t− t2)
l2

t2∫
t

(t− t1)
l1df

(i1)p1
t1 df

(i2)p2
t2 df

(i3)p3
t3 ,

where i1, i2, i3 = 1, . . . ,m, is valid for each of the following cases

1. i1 ̸= i2, i2 ̸= i3, i1 ̸= i3 and l1, l2, l3 = 0, 1, 2, . . .
2. i1 = i2 ̸= i3 and l1 = l2 ̸= l3 and l1, l2, l3 = 0, 1, 2, . . .
3. i1 ̸= i2 = i3 and l1 ̸= l2 = l3 and l1, l2, l3 = 0, 1, 2, . . .
4. i1, i2, i3 = 1, . . . ,m; l1 = l2 = l3 = l and l = 0, 1, 2, . . .

Theorem 2.69 [39] (reformulation of Theorem 2.8). Let {ϕj(x)}∞j=0 be a
complete orthonormal system of Legendre polynomials or trigonomertic func-
tions in the space L2([t, T ]). Furthermore, let the function ψ2(τ) is continuously
differentiable at the interval [t, T ] and the functions ψ1(τ), ψ3(τ) are twice con-
tinuously differentiable at the interval [t, T ]. Then, for the iterated Stratonovich
stochastic integral of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i2)
t2 df

(i3)
t3

the following formula

J∗[ψ(3)]T,t = l.i.m.
p→∞

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)p
t1 df

(i2)p
t2 df

(i3)p
t3

is valid, where i1, i2, i3 = 1, . . . ,m.

Theorem 2.70 [39] (reformulation of Theorem 2.9). Let {ϕj(x)}∞j=0 be a
complete orthonormal system of Legendre polynomials or trigonometric func-
tions in the space L2([t, T ]). Then, for the iterated Stratonovich stochastic in-
tegral of fourth multiplicity

I
∗(i1i2i3i4)
T,t =

∗∫
t

T ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

the following formula
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I
∗(i1i2i3i4)
T,t = l.i.m.

p→∞

T∫
t

t4∫
t

t3∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4

is valid, where i1, i2, i3, i4 = 0, 1, . . . ,m.

Theorem 2.71 (reformulation of the modified Theorem 2.30 (see Sect.
2.22)). Assume that the continuously differentiable functions ψl(τ) (l = 1, . . . , k)
at the interval [t, T ] and the complete orthonormal system {ϕj(x)}∞j=0 of con-
tinuous functions in the space L2([t, T ]) are such that the following conditions
are satisfied:

1. The equality

1

2

s∫
t

Φ1(t1)Φ2(t1)dt1 =
∞∑
j=0

s∫
t

Φ2(t2)ϕj(t2)

t2∫
t

Φ1(t1)ϕj(t1)dt1dt2

holds for all s ∈ (t, T ], where the nonrandom functions Φ1(τ), Φ2(τ) are contin-
uously differentiable on [t, T ] and the series on the right-hand side of the above
equality converges absolutely.

2. The estimates∣∣∣∣∣∣
s∫
t

ϕj(τ)Φ1(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)

j1/2+α
,

∣∣∣∣∣∣
T∫
s

ϕj(τ)Φ2(τ)dτ

∣∣∣∣∣∣ ≤ Ψ1(s)

j1/2+α
,

∣∣∣∣∣∣
∞∑

j=p+1

s∫
t

Φ2(τ)ϕj(τ)

τ∫
t

Φ1(θ)ϕj(θ)dθdτ

∣∣∣∣∣∣ ≤ Ψ2(s)

pβ

hold for all s ∈ (t, T ) and for some α, β > 0, where Φ1(τ), Φ2(τ) are continu-
ously differentiable nonrandom functions on [t, T ], j, p ∈ N, and

T∫
t

Ψ2
1(τ)dτ <∞,

T∫
t

|Ψ2(τ)| dτ <∞.

3. The condition

lim
p→∞

p∑
j1,...,jq,...,jk=0

q ̸=g1,g2,...,g2r−1,g2r

(
Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

})2

= 0
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holds for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)) and l1, l2, . . . , ld such that
l1, l2, . . . , ld ∈ {1, 2, . . . , r}, l1 > l2 > . . . > ld, d = 0, 1, 2, . . . , r − 1, where
r = 1, 2, . . . , [k/2] and

Sl1Sl2 . . . Sld

{
C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

}
def
= C̄

(p)
jk...jq...j1

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

for d = 0.

Then, for the iterated Stratonovich stochastic integral of arbitrary multiplic-
ity k

J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following formula

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p
t1 . . . dw

(ik)p
tk

is valid, where i1, . . . , ik = 0, 1, . . . ,m.

Theorem 2.72 (reformulation of the modified Theorem 2.32 (see Sect.
2.22)). Assume that the continuous functions ψ1(τ), . . . , ψk(τ) at the interval
[t, T ] and the complete orthonormal system {ϕj(x)}∞j=0 of functions in the space
L2([t, T ]) are such that the following condition

lim
p1,...,pk→∞

p1∑
j1=0

. . .

pq∑
jq=0

. . .

pk∑
jk=0

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

×

×

( min{pg1 ,pg2}∑
jg1=0

min{pg3 ,pg4}∑
jg3=0

. . .

min{pg2r−1
,pg2r}∑

jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0

is satisfied for all r = 1, 2, . . . , [k/2]. Then, for the iterated Stratonovich stochas-
tic integral of arbitrary multiplicity k
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J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following formula

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p1
t1 . . . dw

(ik)pk
tk

is valid, where i1, . . . , ik = 0, 1, . . . ,m.

Theorem 2.73 (reformulation of Theorem 2.33). Suppose that {ϕj(x)}∞j=0

is a complete orthonormal system of Legendre polynomials or trigonometric
functions in the space L2([t, T ]). Furthermore, let ψ1(s), ψ2(s), ψ3(s) are con-
tinuously differentiable nonrandom functions on [t, T ]. Then, for the iterated
Stratonovich stochastic integral of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3

the following formula

J∗[ψ(3)]T,t = l.i.m.
p→∞

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3

is valid, where i1, i3, i3 = 0, 1, . . . ,m.

Theorem 2.74 (reformulation of Theorem 2.34). Suppose that {ϕj(x)}∞j=0 is
a complete orthonormal system of Legendre polynomials or trigonometric func-
tions in the space L2([t, T ]). Furthermore, let ψ1(s), . . . , ψ4(s) are continuously
differentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
stochastic integral of fourth multiplicity

J∗[ψ(4)]T,t =

∗∫
t

T

ψ4(t4)

∗∫
t

t4

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

the following formula

J∗[ψ(4)]T,t = l.i.m.
p→∞

T∫
t

ψ4(t4)

t4∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)p
t1 ×
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×dw(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4

is valid, where i1, . . . , i4 = 0, 1, . . . ,m.

Theorem 2.75 (reformulation of Theorem 2.35). Suppose that {ϕj(x)}∞j=0 is
a complete orthonormal system of Legendre polynomials or trigonometric func-
tions in the space L2([t, T ]). Furthermore, let ψ1(s), . . . , ψ5(s) are continuously
differentiable nonrandom functions on [t, T ]. Then, for the iterated Stratonovich
stochastic integral of fifth multiplicity

J∗[ψ(5)]T,t =

∗∫
t

T

ψ5(t5)

∗∫
t

t5

ψ4(t4)

∗∫
t

t4

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 ×

×dw(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 dw

(i5)
t5

the following formula

J∗[ψ(5)]T,t = l.i.m.
p→∞

T∫
t

ψ5(t5)

t5∫
t

ψ4(t4)

t4∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)p
t1 ×

×dw(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4 dw

(i5)p
t5

is valid, where i1, . . . , i5 = 0, 1, . . . ,m.

Theorem 2.76 (reformulation of Theorems 2.36, 2.64, 2.65). Suppose
that {ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials or
trigonometric functions in the space L2([t, T ]). Then, for the iterated Stratono-
vich stochastic integral

J
∗(i1...ik)
T,t =

∗∫
t

T ∗∫
t

tk

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(ik−1)
tk−1

dw
(ik)
tk (k = 6, 7, 8)

the following formula

J
∗(i1...ik)
T,t = l.i.m.

p→∞

T∫
t

tk∫
t

. . .

t2∫
t

dw
(i1)p
t1 . . . dw

(ik−1)p
tk−1

dw
(ik)p
tk (k = 6, 7, 8)

is valid, where i1, . . . , i8 = 0, 1, . . . ,m.
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Theorem 2.77 (reformulation of Theorem 2.41). Suppose that {ϕj(x)}∞j=0

is a complete orthonormal system of Legendre polynomials or trigonometric
functions in the space L2([t, T ]). Furthermore, let ψ1(s), ψ2(s), ψ3(s) are con-
tinuously differentiable nonrandom functions on [t, T ]. Then, for the iterated
Stratonovich stochastic integral of third multiplicity

J∗[ψ(3)]T,t =

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3

the following formula

J∗[ψ(3)]T,t = l.i.m.
p1,p2,p3→∞

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)p1
t1 dw

(i2)p2
t2 dw

(i3)p3
t3

is valid, where i1, i2, i3 = 0, 1, . . . ,m.

Theorem 2.78 (reformulation of Theorem 2.49). Assume that the complete
orthonormal system {ϕj(x)}∞j=0 in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈
L2([t, T ]) are such that

lim
p1,...,pk→∞

p1∑
j1=0

. . .

pq∑
jq=0

. . .

pk∑
jk=0

∣∣∣∣
q ̸=g1,g2,...,g2r−1,g2r

×

×

( min{pg1 ,pg2}∑
jg1=0

min{pg3 ,pg4}∑
jg3=0

. . .

min{pg2r−1
,pg2r}∑

jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

= 0

for all r = 1, 2, . . . , [k/2]. Then, for the sum of iterated Itô stochastic integrals
of the form

J [ψ(k)]
(i1...ik)
T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t
def
= J̄∗[ψ(k)]

(i1...ik)
T,t (2.1485)

the following formula
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J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p1,...,pk→∞

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p1
t1 . . . dw

(ik)pk
tk

is valid, where i1, . . . , ik = 0, 1, . . . ,m.

Theorem 2.79 (reformulation of Theorem 2.51). Suppose that {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of third multiplicity

I
∗(i1i2i3)
l1l2l3T,t

=

∗∫
t

T

(t3 − t)l3

∗∫
t

t3

(t2 − t)l2

∗∫
t

t2

(t1 − t)l1dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3

the following formula

I
∗(i1i2i3)
l1l2l3T,t

= l.i.m.
p→∞

T∫
t

(t3 − t)l3

t3∫
t

(t2 − t)l2

t2∫
t

(t1 − t)l1dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3

is valid, where i1, i2, i3 = 0, 1, . . . ,m; l1, l2, l3 = 0, 1, 2, . . .

Theorem 2.80 (reformulation of Theorem 2.63). Suppose that {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of fourth multiplicity

I
∗(i1i2i3i4)
l1l2l3l4T,t

=

∗∫
t

T

(t4 − t)l4

∗∫
t

t4

(t3 − t)l3

∗∫
t

t3

(t2 − t)l2

∗∫
t

t2

(t1 − t)l1×

×dw(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4

the following formula

I
∗(i1i2i3i4)
l1l2l3l4T,t

= l.i.m.
p→∞

T∫
t

(t4 − t)l4

t4∫
t

(t3 − t)l3

t3∫
t

(t2 − t)l2

t2∫
t

(t1 − t)l1×

×dw(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4

is valid, where i1, . . . , i4 = 0, 1, . . . ,m; l1, . . . , l4 = 0, 1, 2, . . .
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Theorem 2.81 (reformulation of Theorem 2.50). Suppose that {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of fifth multiplicity

J
∗(i1...i5)
T,t =

∗∫
t

T ∗∫
t

t5 ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 dw

(i5)
t5

the following formula

J
∗(i1...i5)
T,t = l.i.m.

p→∞

T∫
t

t5∫
t

t4∫
t

t3∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4 dw

(i5)p
t5

is valid, where i1, . . . , i5 = 0, 1, . . . ,m.

Theorem 2.82 (reformulation of Theorem 2.60). Suppose that the condition
(2.1341) is fulfilled, {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]). Then, for

the sum J̄∗[ψ(k)]
(i1...ik)
T,t of iterated Itô stochastic integrals defined by (2.1485), we

have

J̄∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p
t1 . . . dw

(ik)p
tk ,

where i1, . . . , ik = 0, 1, . . . ,m.

Theorem 2.83 (reformulation of Theorem 2.61). Suppose that the condition
(2.1341) is fulfilled, {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of
functions in the space L2([t, T ]) and ψ1(τ), . . . , ψk(τ) are continuous functions
at the interval [t, T ]. Then, for the iterated Stratonovich stochastic integral of
arbitrary multiplicity k

J∗[ψ(k)]
(i1...ik)
T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

the following formula

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)p
t1 . . . dw

(ik)p
tk
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is valid, where i1, . . . , ik = 0, 1, . . . ,m.

Theorem 2.84 (reformulation of Theorem 2.62). Suppose that {ϕj(x)}∞j=0

is an arbitrary complete orthonormal system of functions in the space L2([t, T ]).
Then, for the iterated Stratonovich stochastic integral of sixth multiplicity

J
∗(i1...i6)
T,t =

∗∫
t

T ∗∫
t

t6 ∗∫
t

t5 ∗∫
t

t4 ∗∫
t

t3 ∗∫
t

t2

dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 dw

(i4)
t4 dw

(i5)
t5 dw

(i6)
t6

the following formula

J
∗(i1...i6)
T,t = l.i.m.

p→∞

T∫
t

t6∫
t

t5∫
t

t4∫
t

t3∫
t

t2∫
t

dw
(i1)p
t1 dw

(i2)p
t2 dw

(i3)p
t3 dw

(i4)p
t4 dw

(i5)p
t5 dw

(i6)p
t6

is valid, where i1, . . . , i6 = 0, 1, . . . ,m.

2.43 Expansion of Iterated Stratonovich Stochastic In-

tegrals of Multiplicity k. The Case i1 = . . . = ik ̸= 0

and Different Continuously Differentiable Weight

Functions ψ1(τ ), . . . , ψk(τ )

This section was written several years earlier than Sect. 2.30–2.38. The results
of Sect. 2.30–2.38 somewhat depreciate the results of Sect. 2.43, but we still
included it in this version of the book.

In this section, we generalize the approach considered in Sect. 2.1.2 to the
case i1 = . . . = ik ̸= 0 and different weight functions ψ1(τ), . . . , ψk(τ) (k > 2).
Let us formulate the following theorem.

Theorem 2.85 [34]. Suppose that {ϕj(x)}∞j=0 is a complete orthonor-
mal system of Legendre polynomials or trigonometric functions in the space
L2([t, T ]). Moreover, ψ1(τ), . . . , ψk(τ) (k ≥ 2) are continuously differentiable
nonrandom functions on [t, T ]. Then, for the iterated Stratonovich stochastic
integral

J∗[ψ(k)]T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)df
(i1)
t1 . . . df

(i1)
tk (i1 = 1, . . . ,m)
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the following equality

lim
p→∞

M


(
J∗[ψ(k)]T,t −

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(i1)
jk

)2n
 = 0

is valid, where n ∈ N,

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk

is the Fourier coefficient and

ζ
(i1)
j =

T∫
t

ϕj(τ)df
(i1)
τ (i1 = 1, . . . ,m)

are independent standard Gaussian random variables for various j.

Proof. The case k = 2 is proved in Theorem 2.16. Consider the case k > 2.
First, consider the case k = 3 in detail. Define the auxiliary function

K ′(t1, t2, t3) =
1

6



ψ1(t1)ψ2(t2)ψ3(t3), t1 ≤ t2 ≤ t3

ψ1(t1)ψ2(t3)ψ3(t2), t1 ≤ t3 ≤ t2

ψ1(t2)ψ2(t1)ψ3(t3), t2 ≤ t1 ≤ t3

ψ1(t2)ψ2(t3)ψ3(t1), t2 ≤ t3 ≤ t1

ψ1(t3)ψ2(t2)ψ3(t1), t3 ≤ t2 ≤ t1

ψ1(t3)ψ2(t1)ψ3(t2), t3 ≤ t1 ≤ t2

, t1, t2, t3 ∈ [t, T ].

Using Lemma 1.1, Remark 1.1 (see Sect. 1.1.3), and (2.399), we obtain
w. p. 1

J [K ′]
(3)
T,t = l.i.m.

N→∞

N−1∑
l3=0

N−1∑
l2=0

N−1∑
l1=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
=
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= l.i.m.
N→∞

(
N−1∑
l3=0

l3−1∑
l2=0

l2−1∑
l1=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
+

+
N−1∑
l3=0

l3−1∑
l1=0

l1−1∑
l2=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
+

+
N−1∑
l2=0

l2−1∑
l1=0

l1−1∑
l3=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
+

+
N−1∑
l2=0

l2−1∑
l3=0

l3−1∑
l1=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
+

+
N−1∑
l1=0

l1−1∑
l2=0

l2−1∑
l3=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
+

+
N−1∑
l1=0

l1−1∑
l3=0

l3−1∑
l2=0

K ′(τl1, τl2, τl3)∆f (i1)τl1
∆f (i1)τl2

∆f (i1)τl3
+

+
N−1∑
l2=0

l2−1∑
l1=0

K ′(τl1, τl2, τl1)
(
∆f (i1)τl1

)2
∆f (i1)τl2

+

+
N−1∑
l3=0

l3−1∑
l1=0

K ′(τl1, τl3, τl3)
(
∆f (i1)τl3

)2
∆f (i1)τl1

+

+
N−1∑
l1=0

l1−1∑
l2=0

K ′(τl1, τl2, τl2)
(
∆f (i1)τl2

)2
∆f (i1)τl1

+

+
N−1∑
l3=0

l3−1∑
l2=0

K ′(τl3, τl2, τl3)
(
∆f (i1)τl3

)2
∆f (i1)τl2

+

+
N−1∑
l3=0

l3−1∑
l2=0

K ′(τl2, τl2, τl3)
(
∆f (i1)τl2

)2
∆f (i1)τl3

+

+
N−1∑
l2=0

l2−1∑
l3=0

K ′(τl2, τl2, τl3)
(
∆f (i1)τl2

)2
∆f (i1)τl3

)
=

=
1

6

 T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)
t1 df

(i1)
t2 df

(i1)
t3 +
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+

T∫
t

ψ3(t2)

t2∫
t

ψ2(t1)

t1∫
t

ψ1(t3)df
(i1)
t3 df

(i1)
t1 df

(i1)
t2 +

+

T∫
t

ψ3(t2)

t2∫
t

ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 df

(i1)
t3 df

(i1)
t2 +

+

T∫
t

ψ3(t3)

t3∫
t

ψ2(t1)

t1∫
t

ψ1(t2)df
(i1)
t2 df

(i1)
t1 df

(i1)
t3 +

+

T∫
t

ψ3(t1)

t1∫
t

ψ2(t2)

t2∫
t

ψ1(t3)df
(i1)
t3 df

(i1)
t2 df

(i1)
t1 +

+

T∫
t

ψ3(t1)

t1∫
t

ψ2(t3)

t3∫
t

ψ1(t2)df
(i1)
t2 df

(i1)
t3 df

(i1)
t1 +

+

T∫
t

ψ3(t2)

t2∫
t

ψ2(t1)ψ1(t1)dt1df
(i1)
t2 +

T∫
t

ψ3(t1)

t1∫
t

ψ2(t2)ψ1(t2)dt2df
(i1)
t1 +

+

T∫
t

ψ3(t3)

t3∫
t

ψ2(t1)ψ1(t1)dt1df
(i1)
t3 +

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 dt3+

+

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t2)df
(i1)
t2 dt3 +

T∫
t

ψ3(t2)ψ2(t2)

t2∫
t

ψ1(t3)df
(i1)
t3 dt2

 =

=

T∫
t

ψ3(t3)

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)
t1 df

(i1)
t2 df

(i1)
t3 +

+
1

2

T∫
t

ψ3(t3)

t3∫
t

ψ2(t1)ψ1(t1)dt1df
(i1)
t3 +

1

2

T∫
t

ψ3(t3)ψ2(t3)

t3∫
t

ψ1(t1)df
(i1)
t1 dt3 =

=

∗∫
t

T

ψ3(t3)

∗∫
t

t3

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i1)
t2 df

(i1)
t3

def
=

def
= J∗[ψ(3)]T,t, (2.1486)



878D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

where the multiple stochastic integral J [K ′]
(3)
T,t is defined by (1.16) and {τj}Nj=0

is a partition of [t, T ], which satisfies the condition (1.9).

Using Proposition 2.2 for n = 3 (see Sect. 2.1.2) and generalizing the Fou-
rier–Legendre expansion (2.57) for the function K ′(t1, t2, t3), we obtain

K ′(t1, t2, t3) = lim
p→∞

p∑
j1=0

p∑
j2=0

p∑
j3=0

1

6

(
Cj3j2j1 + Cj3j1j2 + Cj2j1j3+

+Cj2j3j1 + Cj1j2j3 + Cj1j3j2

)
ϕj1(t1)ϕj2(t2)ϕj3(t3), (2.1487)

where the multiple Fourier series (2.1487) converges to the function K ′(t1, t2, t3)
in (t, T )3 and the partial sums of the series (2.1487) have an integrable majorant
on [t, T ]3 that does not depend on p. For the trigonomertic case, the above
statement follows from Proposition 2.2 (the proof that the function K ′(t1, t2, t3)
belongs to the Hölder class with parameter 1 in [t, T ]3 is omitted and can be
carried out in the same way as for the function K ′(t1, t2) in the two-dimensional
case (see Sect. 2.1.2)). The proof of generalization of the Fourier–Legendre
expansion (2.57) to the three-dimensional case (see (2.1487)) is omitted. The
proof that the partial sums of the series (2.1487) have an integrable majorant
on [t, T ]3 is also omitted.

Denote

R′
ppp(t1, t2, t3) = K ′(t1, t2, t3)−

p∑
j1=0

p∑
j2=0

p∑
j3=0

1

6

(
Cj3j2j1 + Cj3j1j2 + Cj2j1j3+

+Cj2j3j1 + Cj1j2j3 + Cj1j3j2

)
ϕj1(t1)ϕj2(t2)ϕj3(t3).

Using Lemma 1.3 and (2.1486), we get w. p. 1

J∗[ψ(3)]T,t = J [K ′]
(3)
T,t =

p∑
j1=0

p∑
j2=0

p∑
j3=0

1

6

(
Cj3j2j1 + Cj3j1j2 + Cj2j1j3+

+Cj2j3j1 + Cj1j2j3 + Cj1j3j2

)
ζ
(i1)
j1
ζ
(i1)
j2
ζ
(i1)
j3

+ J [R′
ppp]

(3)
T,t =

=

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i1)
j2
ζ
(i1)
j3

+ J [R′
ppp]

(3)
T,t.
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Then

M

{(
J [R′

ppp]
(3)
T,t

)2n}
= M


(
J∗[ψ(3)]T,t −

p∑
j1=0

p∑
j2=0

p∑
j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i1)
j2
ζ
(i1)
j3

)2n
 ,

where n ∈ N.

Applying (we mean here the passage to the limit lim
p→∞

) the Lebesgue’s Dom-

inated Convergence Theorem to the integrals on the right-hand side of (2.451)
for k = 3 and R′

ppp(t1, t2, t3) instead of Rp1p2p3(t1, t2, t3), we obtain

lim
p→∞

M

{(
J [R′

ppp]
(3)
T,t

)2n}
= 0.

Theorem 2.85 is proved for the case k = 3.

To prove Theorem 2.85 for the case k > 3, consider the auxiliary function

K ′(t1, . . . , tk) =
1

k!



ψ1(t1) . . . ψk(tk), t1 ≤ . . . ≤ tk

. . .

ψ1(tg1) . . . ψk(tgk), tg1 ≤ . . . ≤ tgk

. . .

ψ1(tk) . . . ψk(t1), tk ≤ . . . ≤ t1

, t1, . . . , tk ∈ [t, T ],

(2.1488)
where {g1, . . . , gk} = {1, . . . , k} and we take into account all possible permuta-
tions (g1, . . . , gk) on the right-hand side of the formula (2.1488).

Further, we have w. p. 1

J [K ′]
(k)
T,t = J [ψ(k)]T,t +

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t , (2.1489)

where the function K ′(t1, . . . , tk) is defined by (2.1488); another notations are
the same as in (2.387) and Theorem 2.12 (i1 = . . . = ik ̸= 0 in (2.387)).

From (2.1489) and Theorem 2.12 we obtain w. p. 1

J∗[ψ(k)]T,t = J [K ′]
(k)
T,t. (2.1490)
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Generalizing the above reasoning to the case k > 3 and taking into account
(2.1490), we get w. p. 1

J∗[ψ(k)]T,t =

p∑
j1=0

. . .

p∑
jk=0

1

k!

 ∑
(j1,...,jk)

Cjk...j1

 ζ
(i1)
j1

. . . ζ
(i1)
jk

+ J [R′
p...p]

(k)
T,t =

=

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(i1)
jk

+ J [R′
p...p]

(k)
T,t,

where

R′
p...p(t1, . . . , tk)

def
= K ′(t1, . . . , tk)−

−
p∑

j1=0

. . .

p∑
jk=0

1

k!

 ∑
(j1,...,jk)

Cjk...j1

ϕj1(t1) . . . ϕjk(tk),

the expression ∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk).

Further,

M

{(
J [R′

p...p]
(k)
T,t

)2n}
= M


(
J∗[ψ(k)]T,t −

p∑
j1=0

. . .

p∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(i1)
jk

)2n
 ,

where n ∈ N.

Applying (we mean here the passage to the limit lim
p→∞

) the Lebesgue’s Dom-

inated Convergence Theorem to the integrals on the right-hand side of (2.451)
for R′

p...p(t1, . . . , tk) instead of Rp1...,pk(t1, . . . , tk), we obtain

lim
p→∞

M

{(
J [R′

p...p]
(k)
T,t

)2n}
= 0.

Theorem 2.85 is proved.
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2.44 Comparison of Theorems 2.2 and 2.7 with the

Representations of Iterated Stratonovich Stochas-

tic Integrals With Respect to the Scalar Standard

Wiener Process

Note that the correctness of the formulas (2.35) and (2.261) can be verified in
the following way. If i1 = i2 = i3 = i = 1, . . . ,m and ψ1(τ), ψ2(τ), ψ3(τ) ≡
ψ(τ), then we can derive from (2.35) and (2.261) the well known equalities (see
Sect. 6.7)

∗∫
t

T

ψ(t2)

∗∫
t

t2

ψ(t1)df
(i)
t1 df

(i)
t2 =

1

2!

 T∫
t

ψ(τ)df (i)τ

2

,

∗∫
t

T

ψ(t3)

∗∫
t

t3

ψ(t2)

∗∫
t

t2

ψ(t1)df
(i)
t1 df

(i)
t2 df

(i)
t3 =

1

3!

 T∫
t

ψ(τ)df (i)τ

3

w. p. 1, where ψ(τ) is a continuous nonrandom function at the interval [t, T ].

From (2.35) (under the above assumptions and p1 = p2 = p) we have (see
(2.442) and (1.60))

J∗[ψ(2)]T,t = l.i.m.
p→∞

p∑
j1,j2=0

Cj2j1ζ
(i)
j1
ζ
(i)
j2

=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

(
Cj2j1 + Cj1j2

)
ζ
(i)
j1
ζ
(i)
j2

+

p∑
j1=0

Cj1j1

(
ζ
(i)
j1

)2)
=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

Cj1Cj2ζ
(i)
j1
ζ
(i)
j2

+
1

2

p∑
j1=0

C2
j1

(
ζ
(i)
j1

)2)
=

= l.i.m.
p→∞

1

2

p∑
j1,j2=0
j1 ̸=j2

Cj1Cj2ζ
(i)
j1
ζ
(i)
j2

+
1

2

p∑
j1=0

C2
j1

(
ζ
(i)
j1

)2 =

= l.i.m.
p→∞

1

2

(
p∑

j1=0

Cj1ζ
(i)
j1

)2

=
1

2!

 T∫
t

ψ(τ)df (i)τ

2

(2.1491)

w. p. 1. Note that the last step in (2.1491) is performed by analogy with (1.56).
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From (2.261) (under the above assumptions) we obtain (see (2.443) and
(1.61)–(1.63))

J∗[ψ(3)]T,t = l.i.m.
p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3

=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

j2−1∑
j3=0

(
Cj3j2j1 + Cj3j1j2 + Cj2j1j3 + Cj2j3j1 + Cj1j2j3 + Cj1j3j2

)
×

×ζ(i)j1 ζ
(i)
j2
ζ
(i)
j3
+

+

p∑
j1=0

j1−1∑
j3=0

(
Cj3j1j3 + Cj1j3j3 + Cj3j3j1

)(
ζ
(i)
j3

)2
ζ
(i)
j1
+

+

p∑
j1=0

j1−1∑
j3=0

(
Cj3j1j1 + Cj1j1j3 + Cj1j3j1

)(
ζ
(i)
j1

)2
ζ
(i)
j3

+

p∑
j1=0

Cj1j1j1

(
ζ
(i)
j1

)3)
=

= l.i.m.
p→∞

(
p∑

j1=0

j1−1∑
j2=0

j2−1∑
j3=0

Cj1Cj2Cj3ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
+

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+
1

6

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3)
=

= l.i.m.
p→∞

(
1

6

p∑
j1,j2,j3=0

j1 ̸=j2,j2 ̸=j3,j1 ̸=j3

Cj1Cj2Cj3ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
+

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+
1

6

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3)
=

= l.i.m.
p→∞

(
1

6

p∑
j1,j2,j3=0

Cj1Cj2Cj3ζ
(i)
j1
ζ
(i)
j2
ζ
(i)
j3
−
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−1

6

(
3

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+ 3

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3)
+

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j3
Cj1

(
ζ
(i)
j3

)2
ζ
(i)
j1

+
1

2

p∑
j1=0

j1−1∑
j3=0

C2
j1
Cj3

(
ζ
(i)
j1

)2
ζ
(i)
j3
+

+
1

6

p∑
j1=0

C3
j1

(
ζ
(i)
j1

)3)
=

= l.i.m.
p→∞

1

6

(
p∑

j1=0

Cj1ζ
(i)
j1

)3

=
1

3!

 T∫
t

ψ(τ)df (i)τ

3

(2.1492)

w. p. 1. Note that the last step in (2.1492) is performed by analogy with (1.59).

2.45 One Result on the Expansion of Multiple Strato-

novich Stochastic Integrals of Multiplicity k. The

Case i1 = . . . = ik = 1, . . . ,m

Let us consider the multiple stochastic integral (1.16)

l.i.m.
N→∞

N−1∑
j1,...,jk=0

Φ (τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl

def
= J [Φ]

(i1...ik)
T,t , (2.1493)

where we assume that Φ(t1, . . . , tk) : [t, T ]k → R is a continuous nonrandom
function on [t, T ]k. Moreover, {τj}Nj=0 is a partition of [t, T ] which satisfies the
condition (1.9) and i1, . . . , ik = 0, 1, . . . ,m.

The stochastic integral with respect to the scalar standard Wiener process
(i1 = . . . = ik ̸= 0) and similar to (2.1493) (the function Φ(t1, . . . , tk) is assumed
to be symmetric on the hypercube [t, T ]k) has been considered in literature (see,
for example, Remark 1.5.7 [139]). The integral (2.1493) is sometimes called
the multiple Stratonovich stochastic integral. This is due to the fact that the
following rule of the classical integral calculus holds for this integral (see Lemma
1.3)

J [Φ]
(i1...ik)
T,t = J [φ1]

(i1)
T,t . . . J [φk]

(ik)
T,t w. p. 1,
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where Φ(t1, . . . , tk) = φ1(t1) . . . φk(tk) and

J [φl]
(il)
T,t =

T∫
t

φl(s)dw
(il)
s (l = 1, . . . , k).

It is not difficult to see that for the case i1 = . . . = ik ̸= 0 we have w. p. 1

l.i.m.
N→∞

N−1∑
j1,...,jk=0

Φ (τj1, . . . , τjk)∆w(i1)
τj1

. . .∆w(i1)
τjk

=

= l.i.m.
N→∞

N−1∑
j1,...,jk=0

1

k!

 ∑
(j1,...,jk)

Φ (τj1, . . . , τjk)

∆w(i1)
τj1

. . .∆w(i1)
τjk
,

i.e.

J [Φ]
(

k︷︸︸︷
i1...i1 )

T,t = J [Φ̃]
(

k︷︸︸︷
i1...i1 )

T,t w. p. 1, (2.1494)

where

Φ̃(t1, . . . , tk) =
1

k!

 ∑
(t1,...,tk)

Φ(t1, . . . , tk)


is the symmetrization of the function Φ(t1, . . . , tk); the expression∑

(a1,...,ak)

means the sum with respect to all possible permutations (a1, . . . , ak).

Due to (2.1494) the condition of symmetry of the function Φ(t1, . . . , tk) need
not be required in the case i1 = . . . = ik ̸= 0.

Definition 2.1 [140]. Let Φ(t1, . . . , tk) ∈ L2([t, T ]
k) is a symmetric function

and q = 1, 2, . . . , [k/2] (q is fixed). Suppose that for every complete orthonormal
system of functions {ϕj(x)}∞j=0 in the space L2([t, T ]) the following sum

p∑
j1,...,jq=0

p∑
j2q+1,...,jk=0

∫
[t,T ]k

Φ(t1, . . . , tk)ϕj1(t1)ϕj1(t2) . . . ϕjq(t2q−1)ϕjq(t2q)×

×ϕj2q+1
(t2q+1) . . . ϕjk(tk)dt1 . . . dtk · ϕj2q+1

(t2q+1) . . . ϕjk(tk) (2.1495)
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converges in L2([t, T ]
k−2q) if p → ∞ to a limit, which is independent of the

choice of the complete orthonormal system of functions {ϕj(x)}∞j=0 in the space
L2([t, T ]). Then we say that the qth limiting trace for Φ(t1, . . . , tk) exists, which

by definition is the limit of the sum (2.1495) and is denoted as
−→
Tr

q

Φ. Moreover,
−→
Tr

0

Φ
def
= Φ.

Consider the following Theorem using our notations.

Theorem 2.86 [140]. Let Φ(t1, . . . , tk) ∈ L2([t, T ]
k) is a symmetric non-

random function. Furthermore, let all limiting traces for Φ(t1, . . . , tk) (see De-
finition 2.1) exist. Then the following expansion

J◦[Φ]
(

k︷︸︸︷
i1...i1 )

T,t = l.i.m.
p→∞

p∑
j1,...jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(i1)
jk

that converges in the mean-square sense is valid, where

J◦[Φ]
(

k︷︸︸︷
i1...i1 )

T,t

is the multiple Stratonovich stochastic integral defined as in [141] (1993) (also
see [140], pp. 910–911),

Cjk...j1 =

∫
[t,T ]k

Φ(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk

is the Fourier coefficient, l.i.m. is a limit in the mean-square sense, i1 =
1, . . . ,m,

ζ
(i1)
j =

T∫
t

ϕj(s)df
(i1)
s

are independent standard Gaussian random variables for various j.

In addition to the conditions of Theorem 2.86, we assume that the function
Φ(t1, . . . , tk) is continuous on [t, T ]k. Then [139]

J◦[Φ]
(

k︷︸︸︷
i1...i1 )

T,t = J [Φ]
(

k︷︸︸︷
i1...i1 )

T,t w. p. 1, (2.1496)

where the multiple Stratonovich stochastic integral

J [Φ]
(

k︷︸︸︷
i1...i1 )

T,t
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is defined by (2.1493). As a result, we get the following expansion

J [Φ]
(

k︷︸︸︷
i1...i1 )

T,t = l.i.m.
p→∞

p∑
j1,...jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(i1)
jk
. (2.1497)

It should be noted that the expansion (2.1497) is valid provided that for the
function Φ(t1, . . . , tk) there exist all limiting traces that do not depend on the
choice of the complete orthonormal system of functions {ϕj(x)}∞j=0 in the space
L2([t, T ]). The last condition is essential for the proof of the equality (2.1496)
(this proof follows from Theorem 1.5.3, Remark 1.5.7, and Propositions 2.2.3,
2.2.5, 4.1.2 [139]). More precisely, in [139], to prove Proposition 4.1.2 (p. 65) a
special basis {ϕj(x)}∞j=0 was used. This means that the existence of a limit of
the sum (2.1495) for the function Φ(t1, . . . , tk) in the case when {ϕj(x)}∞j=0 is
an arbitrary complete orthonormal system of functions in the space L2([t, T ])
requires a separate proof.

It is not difficult to show that (see (2.1490))

J∗[ψ(k)]
(

k︷︸︸︷
i1...i1 )

T,t = J [K ′]
(

k︷︸︸︷
i1...i1 )

T,t w. p. 1, (2.1498)

where

J∗[ψ(k)]
(

k︷︸︸︷
i1...i1 )

T,t

is the iterated Stratonovich stochastic integral (2.373) (i1 = . . . = ik ̸= 0),

J [K ′]
(

k︷︸︸︷
i1...i1 )

T,t

is the multiple Stratonovich stochastic integral (2.1493) (i1 = . . . = ik ̸= 0) for
the continuous function K ′(t1, . . . , tk) defined by (2.1488).

If we assume that the limiting traces from Theorem 2.86 exist, then we can
write (see (2.1498))

J∗[ψ(k)]
(

k︷︸︸︷
i1...i1 )

T,t = J [K ′]
(

k︷︸︸︷
i1...i1 )

T,t =

= l.i.m.
p→∞

p∑
j1,...jk=0

 1

k!

∑
(j1,...,jk)

Cjk...j1

 ζ
(i1)
j1

. . . ζ
(i1)
jk

=
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= l.i.m.
p→∞

p∑
j1,...jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(i1)
jk
, (2.1499)

where

Cjk...j1 =

T∫
t

ψk(tk)ϕjk(tk) . . .

t2∫
t

ψ1(t1)ϕj1(t1)dt1 . . . dtk (2.1500)

is the Fourier coefficient, ∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk); another
notations are the same as in Theorem 2.86.

The equality (2.1499) agrees with Theorems 2.49, 2.59, 2.61 for the partic-
ular case i1 = . . . = ik ̸= 0.

From the other hand, the following expansion (see Theorem 2.49)

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

(2.1501)

is valid, where Cjk...j1 has the form (2.1500), i1, . . . , ik = 0, 1, . . . ,m; another
notations are the same as in Theorem 2.49.

2.46 About Hypotheses 2.4 and 2.5

In the previous section, we saw that in a number of papers (see, for example,
[139]-[141]) the conditions of theorems related to multiple stochastic integrals
(see Theorem 2.86 in Sect. 2.45) are formulated in terms of limiting traces (see
Definition 2.1). In addition to limiting traces, the concept of Hilbert space
valued traces (integral traces) is introduced in [139]. The concepts of traces
considered in [139]-[141] are close to some expressions that we used in this
chapter. For example, the following integral (see (2.10))

1

2

T∫
t

ψ1(t1)ψ2(t1)dt1 =

T∫
t

K∗(t1, t1)dt1
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is an example of a trace introduced in [139] (Definition 2.2.1). However, the
function K∗(t1, t2) defined by (2.95) is not symmetric compared with [139] (De-
finition 2.2.1). In addition, the expression (see (2.10))

∞∑
j1=0

Cj1j1 =
∞∑
j1=0

∫
[t,T ]2

K(t1, t2)ϕj1(t1)ϕj1(t2)dt1dt2

is an example of a limiting trace (see Definition 2.1) for the function K(t1, t2),
which is not symmetric (see (2.96)).

In this section, we will talk about Hypotheses 2.4 and 2.5 again. It should
be noted that a significant part of Chapter 2 is devoted to the proof of Hypoth-
esis 2.5 for various special cases (Theorems 2.1–2.9, 2.33–2.36, 2.41, 2.45–2.48,
2.50, 2.51, 2.59, 2.61–2.65). In order to prove these theorems, we developed
a number of approaches for expansion of iterated Stratonovich stochastic inte-
grals.

More precisely, in Theorems 2.1, 2.2, 2.4–2.9, 2.33–2.36, 2.41, 2.64, 2.65 we
assume that {ϕj(x)}∞j=0 is a complete orthonormal system of Legendre poly-
nomials or trigonometric functions in the space L2([t, T ]). The above systems
of functions are most suitable for the expansion of iterated stochastic integrals
from the Taylor–Itô and Taylor–Stratonovich expansions (see Chapter 5). In
Theorems 2.3, 2.47, 2.48, 2.50, 2.51, 2.59, 2.61–2.63 the system {ϕj(x)}∞j=0 can
be arbitrary.

Note that Theorems 2.1–2.3 are special cases of Hypothesis 2.5 for k = 2 and
p1, p2 → ∞. At that ψ2(τ) is a continuously differentiable nonrandom function
on [t, T ] and ψ1(τ) is twice continuously differentiable nonrandom function on
[t, T ] (Theorem 2.1). In Theorem 2.2, the functions ψ1(τ) and ψ2(τ) are assumed
to be continuously differentiable only one time on [t, T ]. Theorem 2.3 is a ge-
neralization of Theorems 2.1, 2.2. More precisely, in Theorem 2.3 we assume
that ψ1(τ) and ψ2(τ) are continuous functions on [t, T ].

Theorems 2.4–2.8, 2.33, 2.41, 2.47, 2.51 are special cases of Hypothesis 2.5
for k = 3. In Theorems 2.4 and 2.6, the case ψ1(τ), ψ2(τ), ψ3(τ) ≡ 1 and
p1, p2, p3 → ∞ is considered. Theorem 2.8 is a special case of Hypothesis 2.5
for the case when ψ2(τ) is a continuously differentiable nonrandom function on
[t, T ] and ψ1(τ), ψ3(τ) are twice continuously differentiable nonrandom func-
tions on [t, T ] (p1 = p2 = p3 = p → ∞). Theorem 2.33 is an analogue of
Theorem 2.8 for continuously differentiable functions ψ1(τ), ψ2(τ), ψ3(τ) and
p1 = p2 = p3 = p → ∞. Theorem 2.41 is a generalization of Theorem 2.33 for
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the case p1, p2, p3 → ∞. In Theorems 2.5, 2.7 and 2.51, we consider narrower
particular cases of the functions ψ1(τ), ψ2(τ), ψ3(τ). For example, the functions
ψ1(τ), ψ2(τ), ψ3(τ) have a binomial form (Theorems 2.5, 2.51).

Theorems 2.9, 2.34, 2.35, 2.48, 2.50, 2.63 are special cases of Hypothesis 2.5
for k = 4 and k = 5. The functions ψ1(τ), . . . , ψ5(τ) are continuously differen-
tiable on [t, T ] in Theorems 2.34, 2.35, ψ1(τ), . . . , ψ5(τ) ≡ 1 in Theorems 2.9,
2.48, 2.50, and ψ1(τ), . . . , ψ4(τ) have a binomial form in Theorem 2.63.

In Theorems 2.36, 2.62, 2.64, 2.65 the cases k = 6, 7, 8 of Hypothesis 2.5 is
considered. At that ψ1(τ), . . . , ψ8(τ) ≡ 1 in these Theorems.

Theorems 2.59, 2.61 prove Hypothesis 2.5 for k ∈ N but under one addi-
tional condition (see (2.1310) or (2.1341)).

Let us conclude this section with a few remarks.

Remark 2.5. The equalities (1.10) and (1.54) imply that the equality
(2.1292) is equivalent to the relation

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t = − l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

[k/2]∑
r=1

(−1)r×

×
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}1{jg2s−1

= jg2s}

k−2r∏
l=1

ζ
(iql)

jql

)

(2.1502)

w. p. 1, where notations are the same as in Theorems 1.2, 1.16 and 2.12.

Remark 2.6. Applying Theorems 1.14, 1.16, we can reformulate the equal-
ity (2.1502) as follows

[k/2]∑
r=1

1

2r

∑
(sr,...,s1)∈Ak,r

J [ψ(k)]sr,...,s1T,t = l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×

ζ(i1)j1
. . . ζ

(ik)
jk

−
k∏
l=1

1{ml=0} + 1{ml>0}



dl∏
s=1

Hns,l

(
ζ
(il)
jhs,l

)
, if il ̸= 0

dl∏
s=1

(
ζ
(0)
jhs,l

)ns,l
, if il = 0







890D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

w. p. 1, where notations are the same as in Theorems 1.14, 1.16 and 2.12 (Hn(x)
is the Hermite polynomial (1.267)).

Remark 2.7. Recently, in [142], an approach to the proof of expansion
similar to (2.1313) was proposed. In particular, this approach uses the repre-
sentation of the multiple Stratonovich stochastic integral (2.978) as the sum of
some constant value and multiple Wiener stochastic integrals of multiplicities
not exceeding k. Note that a similar representation in a different form is defined
by the formula (2.965).

It should be noted that an expansion similar to (2.1313) was considered in
[142] for an arbitrary k. The system of basis functions {ϕj(x)}∞j=0 in the space
L2([t, T ]) can also be arbitrary. However, in [142], the condition on convergence
of trace series is used as a sufficient condition for the validity of expansion
similar to (2.1313) (see [142] for details). Note that the verification of the above
condition for the kernel (1.6) is a separate problem.

In Theorems 2.24–2.29, 2.36–2.40 the rate of mean-square convergence of
expansions of iterated Stratonovich stochastic integrals is found. Determining
the rate of mean-square convergence in the approach [142] is an open problem.

2.47 The Connection of Condition (2.1294) with the

Concept of Limiting Traces from the Work of G.W.

Johnson and G. Kallianpur [141]

Assume that {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of func-
tions in L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

By analogy with Definition 2.1 (see Sect. 2.45), we define the rth limiting
trace of the function K(t1, . . . , tk) ∈ L2([t, T ]

k) of type (1.310) by the following
expression

T k−2r
g1,...,g2r

K(tq1, . . . , tqk−2r
)
def
= lim

p→∞
T k−2r,p
g1,...,g2r

K(tq1, . . . , tqk−2r
) (2.1503)

in L2([t, T ]
k−2r), where

T k−2r,p
g1,...,g2r

K(tq1, . . . , tqk−2r
) =

=

p∑
jq1 ,...,jqk−2r

=0

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

·ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

),
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where r = 1, 2, . . . , [k/2] and {g1, g2, . . . , g2r−1, g2r, q1, . . . , qk−2r} = {1, 2, . . . , k}
(see (2.652)), Cjk...j1 is the Fourier coefficient (2.1345). In addition we write
T k−2r
g1,...,g2r

K(tq1, . . . , tqk−2r
) = K(t1, . . . , tk) for r = 0.

Note that in [139]-[141] the Wiener process is scalar, while in this book the
Wiener process is a multidimensional process with independent components.
One of the main results of work [141] (Theorem 5.1) is obtained under the
condition of existence of limiting traces (see Definition 2.1 in Sect. 2.45).

Further, we will show that the condition (2.1294) implies the existence
of limiting traces (2.1503) (for all r = 1, 2, . . . , [k/2] and for all possible
g1, g2, . . . , g2r−1, g2r (see (2.652))) for the case of a multidimensional Wiener
process.

Here it is also appropriate to recall the formula (2.967)

l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1ζ
(i1)
j1

. . . ζ
(ik)
jk

= J [ψ(k)]
(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

× l.i.m.
p1,...,pk→∞

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

r∏
s=1

1{jg2s−1
= jg2s }

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t

(2.1504)

w. p. 1, where J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t is the multiple Wiener stochastic in-

tegral defined by (1.304), J [ψ(k)]
(i1...ik)
T,t is the iterated Itô stochastic integral

(2.963), {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in
L2([t, T ]) and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]) (see Theorem 2.49).

The equality (2.1504) is an analogue of the formula (5.1) (see [141], Theo-
rem 5.1) for the case of a multidimensional Wiener process.

We have

T k−2r,p
g1,...,g2r

K(tq1, . . . , tqk−2r
) =

=

p∑
jq1 ,...,jqk−2r

=0

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−
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− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
×

×ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

)+

+
1

2r

r∏
l=1

1{g2l=g2l−1+1}

p∑
jq1 ,...,jqk−2r

=0

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

×

×ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

)
def
=

def
= F (p)

g1,...,g2r
(tq1, . . . , tqk−2r

) +G(p)
g1,...,g2r

(tq1, . . . , tqk−2r
). (2.1505)

Denote

Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

def
= Cg1...g2r

jqk−2r
...jq1

.

Applying transformations (2.1315), (2.1316) (see Sect. 2.30) iteratively to
Cg1...g2r
jqk−2r

...jq1
for integrations not involving the basis functions ϕjq1 , . . . , ϕjqk−2r

, we

obtain

Cg1...g2r
jqk−2r

...jq1
=

2r∑
d=1

(−1)d−1
(
Ĉ

(d)g1...g2r
jqk−2r

...jq1
− C̄

(d)g1...g2r
jqk−2r

...jq1

)
, (2.1506)

where some terms in the sum
2r∑
d=1

can be identically equal to zero due to the remark to (2.1315), (2.1316).

Using (2.1506), we get

G(p)
g1,...,g2r

(tq1, . . . , tqk−2r
) =

1

2r

r∏
l=1

1{g2l=g2l−1+1}×

×
2r∑
d=1

(−1)d−1

(
p∑

jq1 ,...,jqk−2r
=0

Ĉ
(d)g1...g2r
jqk−2r

...jq1
· ϕjq1(tq1) . . . ϕjqk−2r

(tqk−2r
)−



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series893

−
p∑

jq1 ,...,jqk−2r
=0

C̄
(d)g1...g2r
jqk−2r

...jq1
· ϕjq1(tq1) . . . ϕjqk−2r

(tqk−2r
)

)
→

→ 1

2r

r∏
l=1

1{g2l=g2l−1+1}×

×
2r∑
d=1

(−1)d−1

(
F̂ (d)
g1,...,g2r

(tq1, . . . , tqk−2r
)− F̄ (d)

g1,...,g2r
(tq1, . . . , tqk−2r

)

)
def
=

def
= Gg1,...,g2r(tq1, . . . , tqk−2r

) if p→ ∞ (in L2([t, T ]
k−2r)), (2.1507)

where Gg1,...,g2r(tq1, . . . , tqk−2r
), F̂

(d)
g1,...,g2r(tq1, . . . , tqk−2r

), F̄
(d)
g1,...,g2r(tq1, . . . , tqk−2r

) ∈
L2([t, T ]

k−2r), d = 1, . . . , 2r.

Futhermore, ∥∥F (p)
g1,...,g2r

∥∥2
L2([t,T ]k−2r)

=

=

∫
[t,T ]k−2r

(
p∑

jq1 ,...,jqk−2r
=0

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)
×

×ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

)

)2

dtq1 . . . dtqk−2r
=

=

p∑
jq1 ,...,jqk−2r

=0

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−

− 1

2r

r∏
l=1

1{g2l=g2l−1+1}Cjk...j1

∣∣∣∣
(jg2jg1)↷(·)...(jg2rjg2r−1

)↷(·),jg1= jg2 ,...,jg2r−1
= jg2r

)2

.



894D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

This means that the condition (2.1294) is equivalent to

lim
p→∞

∥∥F (p)
g1,...,g2r

∥∥
L2([t,T ]k−2r)

= 0. (2.1508)

Suppose that the condition (2.1294) (or (2.1508)) is fulfilled. Applying
(2.1505), (2.1507) and (2.1508), we obtain∥∥T k−2r,p

g1,...,g2r
K −Gg1,...,g2r

∥∥
L2([t,T ]k−2r)

=

=
∥∥F (p)

g1,...,g2r
+G(p)

g1,...,g2r
−Gg1,...,g2r

∥∥
L2([t,T ]k−2r)

≤

≤
∥∥F (p)

g1,...,g2r

∥∥
L2([t,T ]k−2r)

+
∥∥G(p)

g1,...,g2r
−Gg1,...,g2r

∥∥
L2([t,T ]k−2r)

→ 0

if p→ ∞.

Thus, the limiting trace T k−2r
g1,...,g2r

K(tq1, . . . , tqk−2r
) exists under the condition

(2.1294), i.e.

T k−2r
g1,...,g2r

K(tq1, . . . , tqk−2r
) = lim

p→∞
T k−2r,p
g1,...,g2r

K(tq1, . . . , tqk−2r
) =

= Gg1,...,g2r(tq1, . . . , tqk−2r
)

in L2([t, T ]
k−2r), where Gg1,...,g2r(tq1, . . . , tqk−2r

) ∈ L2([t, T ]
k−2r), r = 1, 2, . . . ,

[k/2] and all possible g1, g2, . . . , g2r−1, g2r as in (2.652).

2.48 New Representations of the Hu–Meyer Formulas

for the Case of a Multidimensional Wiener Process

Suppose that {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of func-
tions in L2([t, T ]) and Φ(t1, . . . , tk) ∈ L2([t, T ]

k).

Let us generalize the definition of the limiting trace from the previous sec-
tion.

We define the rth limiting trace of the function Φ(t1, . . . , tk) ∈ L2([t, T ]
k)

by the following expression

T k−2r
g1,...,g2r

Φ(tq1, . . . , tqk−2r
)
def
= lim

p→∞
T k−2r,p
g1,...,g2r

Φ(tq1, . . . , tqk−2r
)
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in L2([t, T ]
k−2r), where

T k−2r,p
g1,...,g2r

Φ(tq1, . . . , tqk−2r
) =

=

p∑
jq1 ,...,jqk−2r

=0

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

·ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

),

where r = 1, 2, . . . , [k/2] and {g1, g2, . . . , g2r−1, g2r, q1, . . . , qk−2r} = {1, 2, . . . , k}
(see (2.652)),

Cjk...j1 =

∫
[t,T ]k

Φ(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (2.1509)

is the Fourier coefficient. Also we write T k−2r
g1,...,g2r

Φ(tq1, . . . , tqk−2r
) = Φ(t1, . . . , tk)

and T k−2r,p
g1,...,g2r

Φ(tq1, . . . , tqk−2r
) = Φp(t1, . . . , tk) for r = 0, where

Φp(t1, . . . , tk) =

p∑
j1,...,jk=0

Cjk...j1ϕj1(t1) . . . ϕjk(tk).

Let us consider a variant of the formula (2.965) for the case p1 = . . . = pk =
p and replace K(t1, . . . , tk) with Φ(t1, . . . , tk) in it. Thus, we have

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

=

p∑
j1,...,jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}

p∑
j1,...,jk=0

Cjk...j1×

×1{jg2s−1
= jg2s}

J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t w. p. 1, (2.1510)

where k ≥ 2, J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t , J ′[ϕjq1 . . . ϕjqk−2r

]
(iq1 ...iqk−2r

)

T,t are multiple Wiener

stochastic integrals (see (1.304)), J ′[ϕjq1 . . . ϕjqk−2r
]
(iq1 ...iqk−2r

)

T,t
def
= 1 for k = 2r and

Cjk...j1 is defined by (2.1509).
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Note that sometimes the multiple Stratonovich stochastic integral for
Φ(t1, . . . , tk) ∈ L2([t, T ]

k) is defined as the limit in probability as p → ∞ of
the following expression (the case of a scalar standard Wiener process)

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(i)
jl
,

where i1 = . . . = ik = i (see, for example, Definition 5.9 in [146]).

By analogy with [146], we define the multiple Stratonovich stochastic in-
tegral for Φ(t1, . . . , tk) ∈ L2([t, T ]

k) (the case of a multidimensional Wiener
process) as the following mean-square limit

ĴS[Φ]
(i1...ik)
T,t = l.i.m.

p→∞
ĴSp [Φ]

(i1...ik)
T,t ,

where

ĴSp [Φ]
(i1...ik)
T,t =

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl
,

Cjk...j1 is the Fourier coefficient defined by (2.1509).

Let us rewrite (2.1510) in the form

ĴSp [Φ]
(i1...ik)
T,t = J ′[Φp]

(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′[T k−2r,p
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t
w. p. 1, (2.1511)

where J ′[T k−2r,p
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

def
= T k−2r,p

g1,g2...,g2r−1,g2r
Φ for k = 2r.

Assume that all limiting traces T k−2r
g1,...,g2r

Φ(tq1, . . . , tqk−2r
) (for all r = 1, 2, . . . ,

[k/2] and for all possible g1, g2, . . . , g2r−1, g2r (see (2.652))) exist.

Recall the well-known property of the multiple Wiener stochastic integral
(1.304)

M

{(
J ′[Φ]

(i1...ik)
T,t

)2}
≤ Ck

∫
[t,T ]k

Φ2(t1, . . . , tk)dt1 . . . dtk, (2.1512)
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where Φ(t1, . . . , tk) ∈ L2([t, T ]
k) and Ck is a constant.

Using (2.1511), (2.1512) and the existence of limiting traces, we have

M

{(
ĴSp [Φ]

(i1...ik)
T,t − J ′[Φ]

(i1...ik)
T,t −

−
[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′[T k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

)2}
=

= M

{(
J ′[Φp − Φ]

(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′[T k−2r,p
g1,g2...,g2r−1,g2r

Φ− T k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

)2}
≤

≤ C ′
k

(∥∥Φp − Φ
∥∥
L2([t,T ]k)

+

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×
∥∥T k−2r,p

g1,g2...,g2r−1,g2r
Φ− T k−2r

g1,g2...,g2r−1,g2r
Φ
∥∥
L2([t,T ]k−2r)

)
→ 0 (2.1513)

if p→ ∞, where J ′[T k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

def
= T k−2r

g1,g2...,g2r−1,g2r
Φ for k = 2r, and

C ′
k is a constant.
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Applying (2.1513), we obtain the following new representation of the Hu–
Meyer formula for the case of a multidimensional Wiener process

ĴS[Φ]
(i1...ik)
T,t = J ′[Φ]

(i1...ik)
T,t +

+

[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′[T k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t
w. p. 1. (2.1514)

The equality (2.1514) is consistent with Theorem 5.1 [141] (the case of a
scalar Wiener process).

Further, let us obtain the inverse version of the Hu–Meyer formula (2.1514),
i.e. a formula expressing the multiple Wiener stochastic integral through the
sum of multiple Stratonovich stochastic integrals.

Let us give the following definition of the limiting trace. We define the
rth limiting trace of the function Φ(t1, . . . , tk) ∈ L2([t, T ]

k) by the following
expression

T̃ k−2r
g1,...,g2r

Φ(tq1, . . . , tqk−2r
)
def
= lim

p→∞
T̃ k−2r,p
g1,...,g2r

Φ(tq1, . . . , tqk−2r
)

in L2([t, T ]
k−2r), where

T̃ k−2r,p
g1,...,g2r

Φ(tq1, . . . , tqk−2r
) =

=

p∑
jq1 ,...,jqk−2r

=0

∞∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

·ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

) =

=

p∑
jq1 ,...,jqk−2r

=0

C̃jqk−2r
...jq1

· ϕjq1(tq1) . . . ϕjqk−2r
(tqk−2r

),

where

C̃jqk−2r
...jq1

=
∞∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

=
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= lim
p→∞

p∑
jg1 ,jg3 ,...,jg2r−1

=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

,

r = 1, 2, . . . , [k/2], {g1, g2, . . . , g2r−1, g2r, q1, . . . , qk−2r} = {1, 2, . . . , k} (see
(2.652)), Cjk...j1 has the form (2.1509). Also we write T̃ k−2r

g1,...,g2r
Φ(tq1, . . . , tqk−2r

) =

Φ(t1, . . . , tk) and T̃
k−2r,p
g1,...,g2r

Φ(tq1, . . . , tqk−2r
) = Φp(t1, . . . , tk) for r = 0, where

Φp(t1, . . . , tk) =

p∑
j1,...,jk=0

Cjk...j1ϕj1(t1) . . . ϕjk(tk).

Note that ∥∥∥T k−2r,p
g1,g2...,g2r−1,g2r

Φ− T̃ k−2r,p
g1,g2...,g2r−1,g2r

Φ
∥∥∥2
L2([t,T ]k−2r)

=

=

p∑
jq1 ,...,jqk−2r

=0

(
p∑

jg1 ,jg3 ,...,jg2r−1
=0

Cjk...j1

∣∣∣∣
jg1=jg2 ,...,jg2r−1

=jg2r

−C̃jqk−2r
...jq1

)2

, (2.1515)

and suppose that

lim
p→∞

∥∥∥T k−2r,p
g1,g2...,g2r−1,g2r

Φ− T̃ k−2r,p
g1,g2...,g2r−1,g2r

Φ
∥∥∥
L2([t,T ]k−2r)

= 0 (2.1516)

for all r = 1, 2, . . . , [k/2] and for all possible g1, g2, . . . , g2r−1, g2r (see (2.652)).

Next, we assume that all limiting traces T k−2r
g1,g2...,g2r−1,g2r

Φ and T̃ k−2r
g1,g2...,g2r−1,g2r

Φ
exist for all r = 1, 2, . . . , [k/2] and for all possible g1, g2, . . . , g2r−1, g2r.

Applying (2.1512), (2.1516), we obtain for k > 2r

M

{(
J ′[T k−2r

g1,g2...,g2r−1,g2r
Φ
](iq1 ...iqk−2r

)

T,t
− J ′

[
T̃ k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

)2
}

≤

≤ 3M

{(
J ′[T k−2r

g1,g2...,g2r−1,g2r
Φ− T k−2r,p

g1,g2...,g2r−1,g2r
Φ
](iq1 ...iqk−2r

)

T,t

)2}
+

+3M

{(
J ′
[
T k−2r,p
g1,g2...,g2r−1,g2r

Φ− T̃ k−2r,p
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

)2
}
+

+3M

{(
J ′
[
T̃ k−2r,p
g1,g2...,g2r−1,g2r

Φ− T̃ k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t

)2
}

≤



900D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

≤ Ck−2r

(∥∥T k−2r
g1,g2...,g2r−1,g2r

Φ− T k−2r,p
g1,g2...,g2r−1,g2r

Φ
∥∥2
L2([t,T ]k−2r)

+

+
∥∥∥T k−2r,p

g1,g2...,g2r−1,g2r
Φ− T̃ k−2r,p

g1,g2...,g2r−1,g2r
Φ
∥∥∥2
L2([t,T ]k−2r)

+

+
∥∥∥T̃ k−2r,p

g1,g2...,g2r−1,g2r
Φ− T̃ k−2r

g1,g2...,g2r−1,g2r
Φ
∥∥∥2
L2([t,T ]k−2r)

)
→ 0

if p → ∞, where Ck−2r is a constant. Thus, under the above conditions, we
have w. p. 1

J ′[T k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t
= J ′

[
T̃ k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t
. (2.1517)

Combining (2.1514) and (2.1517), we get

J ′[Φ]
(i1...ik)
T,t = ĴS[Φ]

(i1...ik)
T,t −

−
[k/2]∑
r=1

∑
({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})

{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×J ′
[
T̃ k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t
w. p. 1. (2.1518)

By iteratively applying the formula (2.1518), we obtain the following inverse
version of the Hu–Meyer formula (2.1514)

J ′[Φ]
(i1...ik)
T,t = ĴS[Φ]

(i1...ik)
T,t +

+

[k/2]∑
r=1

(−1)r
∑

({{g1,g2},...,{g2r−1,g2r}},{q1,...,qk−2r})
{g1,g2,...,g2r−1,g2r,q1,...,qk−2r}={1,2,...,k}

r∏
s=1

1{ig2s−1
= ig2s ̸=0}×

×ĴS
[
T̃ k−2r
g1,g2...,g2r−1,g2r

Φ
](iq1 ...iqk−2r

)

T,t
w. p. 1. (2.1519)

It is interesting to compare the formulas (2.1514) and (2.1519) with simi-
lar formulas (2.389) and (4.53) that connect the iterated Stratonovich and Itô
stochastic integrals.
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2.49 Invariance of Expansions of Iterated Itô and Stra-

tonovich Stochastic Integrals from Theorems 1.16

and 2.59

In this section, we consider the invariance of expansions of iterated Itô and
Stratonovich stochastic integrals from Theorems 1.16 and 2.59 (or 2.61).

Consider the multiple Wiener stochastic integral J ′[ϕj1 . . . ϕjk]
(i1...ik)
T,t defined

by (1.304) (Φ(t1, . . . , tk) = ϕj1(t1) . . . ϕjk(tk)), where {ϕj(x)}∞j=0 is an arbitrary
complete orthonormal system of functions in the space L2([t, T ]).

Taking into account (1.309) and (1.319), we obtain

J ′[K]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(i1...ik)
T,t w. p. 1, (2.1520)

where J ′[K]
(i1...ik)
T,t and J ′[ϕj1 . . . ϕjk]

(i1...ik)
T,t are multiple Wiener stochastic inte-

grals defined by (1.304), the function K(t1, . . . , tk) has the form (1.310).

On the other hand, the expansion (2.1313) can be written as follows

J̄S[K]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1J̄
S[ϕj1 . . . ϕjk]

(i1...ik)
T,t w. p. 1, (2.1521)

where J̄S[K]
(i1...ik)
T,t and J̄S[ϕj1 . . . ϕjk]

(i1...ik)
T,t are multiple Stratonovich stochastic

integrals defined by (2.978), the function K(t1, . . . , tk) has the form (2.979).

Therefore, the expansions (2.1520) and (2.1521) have the same form. At
that the expansion (2.1520) is formulated using multiple Wiener stochastic in-
tegrals and the expansion (2.1521) is formulated using multiple Stratonovich
stochastic integrals.

The expansions (2.1520) and (2.1521) can be written in a slightly different
way. Using (1.327), we obtain

J [ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1×

×
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (2.1522)
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where J [ψ(k)]
(i1...ik)
T,t is the iterated Itô stochastic integral (1.309),∑

(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the
same time if jr swapped with jq in the permutation (j1, . . . , jk), then ir swapped
with iq in the permutation (i1, . . . , ik); another notations are the same as in
Theorem 1.16.

The iterated Stratonovich stochastic integrals

∗∫
t

T

ϕjk(tk) . . .

∗∫
t

t2

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk

satisfy the following equality

J̄S[ϕj1 . . . ϕjk]
(i1...ik)
T,t = ζ

(i1)
j1

. . . ζ
(ik)
jk

=

=
∑

(j1,...,jk)

∗∫
t

T

ϕjk(tk) . . .

∗∫
t

t2

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (2.1523)

where ϕj(x) (j = 0, 1, 2, . . .) are continuous functions on [t, T ],

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ (i = 0, 1, . . . ,m, j = 0, 1, . . .)

are independent standard Gaussian random variables for various i or j (in the
case when i ̸= 0), the expression ∑

(j1,...,jk)

has the same meaning as in (2.1522).

For the case i1 = . . . = ik = 0 we obtain from (2.1523) the following well
known formula from the classical integral calculus (see (1.38))∫

[t,T ]k

ϕj1(t1) . . . ϕjk(tk)dt1 . . . dtk =
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dt1 . . . dtk =
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=
∑

(t1,...,tk)

T∫
t

. . .

t2∫
t

ϕj1(t1) . . . ϕjk(tk)dt1 . . . dtk, (2.1524)

where ∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk) and per-
mutations (t1, . . . , tk) when summing∑

(t1,...,tk)

(see (2.1524)) are performed only in the values dt1 . . . dtk (at the same time the
indices near upper limits of integration in the iterated integrals are changed
correspondently).

Let us check the formula (2.1523) for the cases k = 2 and k = 3. Using
(1.46), (2.398), and (2.1522) (k = 2), we have

∑
(j1,j2)

∗∫
t

T

ϕj2(t2)

∗∫
t

t2

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 =

=

∗∫
t

T

ϕj2(t2)

∗∫
t

t2

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 +

∗∫
t

T

ϕj1(t2)

∗∫
t

t2

ϕj2(t1)dw
(i2)
t1 dw

(i1)
t2 =

=

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 +

T∫
t

ϕj1(t2)

t2∫
t

ϕj2(t1)dw
(i2)
t1 dw

(i1)
t2 +

+1{i1=i2 ̸=0}

T∫
t

ϕj1(t1)ϕj2(t1)dt1 =

= ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2 ̸=0}1{j1=j2} + 1{i1=i2 ̸=0}1{j1=j2} =

= ζ
(i1)
j1
ζ
(i2)
j2

w. p. 1.
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Applying (1.47), (2.399), (2.1522) (k = 3), and Itô’s formula, we obtain
w. p. 1

∑
(j1,j2,j3)

∗∫
t

T

ϕj3(t3)

∗∫
t

t3

ϕj2(t2)

∗∫
t

t2

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 =

=
∑

(j1,j2,j3)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 +

+1{i1=i2 ̸=0}

 T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t1)ϕj1(t1)dt1dw
(i3)
t3 +

+

T∫
t

ϕj2(t1)ϕj1(t1)

t1∫
t

ϕj3(t3)dw
(i3)
t3 dt1

+

+1{i1=i3 ̸=0}

 T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)ϕj3(t1)dt1dw
(i2)
t2 +

+

T∫
t

ϕj3(t1)ϕj1(t1)

t1∫
t

ϕj2(t2)dw
(i2)
t2 dt1

+

+1{i2=i3 ̸=0}

 T∫
t

ϕj1(t1)

t1∫
t

ϕj2(t3)ϕj3(t3)dt3dw
(i1)
t1 +

+

T∫
t

ϕj3(t3)ϕj2(t3)

t3∫
t

ϕj1(t1)dw
(i1)
t1 dt3

 =

=
∑

(j1,j2,j3)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 +

+1{i1=i2 ̸=0}

 T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t1)ϕj1(t1)dt1dw
(i3)
t3 +
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+

T∫
t

ϕj3(t3)

T∫
t3

ϕj2(t1)ϕj1(t1)dt1dw
(i3)
t3

+

+1{i1=i3 ̸=0}

 T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)ϕj3(t1)dt1dw
(i2)
t2 +

+

T∫
t

ϕj2(t2)

T∫
t2

ϕj1(t1)ϕj3(t1)dt1dw
(i2)
t2

+

+1{i2=i3 ̸=0}

 T∫
t

ϕj1(t1)

t1∫
t

ϕj2(t3)ϕj3(t3)dt3dw
(i1)
t1 +

+

T∫
t

ϕj1(t1)

T∫
t1

ϕj2(t3)ϕj3(t3)dt3dw
(i1)
t1

 =

=
∑

(j1,j2,j3)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 +

+1{i1=i2 ̸=0}

T∫
t

ϕj3(t3)

T∫
t

ϕj2(t1)ϕj1(t1)dt1dw
(i3)
t3 +

+1{i1=i3 ̸=0}

T∫
t

ϕj2(t2)

T∫
t

ϕj1(t1)ϕj3(t1)dt1dw
(i2)
t2 +

+1{i2=i3 ̸=0}

T∫
t

ϕj1(t1)

T∫
t

ϕj2(t3)ϕj3(t3)dt3dw
(i1)
t1 =

=
∑

(j1,j2,j3)

T∫
t

ϕj3(t3)

t3∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dw
(i1)
t1 dw

(i2)
t2 dw

(i3)
t3 +

+1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3

+ 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2

+ 1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1

=

= ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

−
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−1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3

− 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2

− 1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1

+

+1{i1=i2 ̸=0}1{j1=j2}ζ
(i3)
j3

+ 1{i1=i3 ̸=0}1{j1=j3}ζ
(i2)
j2

+ 1{i2=i3 ̸=0}1{j2=j3}ζ
(i1)
j1

=

= ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
.

Using (2.1523), we can write the expansion (2.1521) as follows

J∗[ψ(k)]
(i1...ik)
T,t = l.i.m.

p→∞

p∑
j1,...,jk=0

Cjk...j1×

×
∑

(j1,...,jk)

∗∫
t

T

ϕjk(tk) . . .

∗∫
t

t2

ϕj1(t1)dw
(i1)
t1 . . . dw

(ik)
tk w. p. 1, (2.1525)

where J∗[ψ(k)]
(i1...ik)
T,t is the iterated Stratonovich stochastic integral; another

notations are the same as in (2.1522).

Obviously, the expansions (2.1522) and (2.1525) have the same form. At
that the expansion (2.1522) is formulated using iterated Itô stochastic integrals
and the expansion (2.1525) is formulated using iterated Stratonovich stochastic
integrals.

2.50 Expansion of Multiple Stratonovich Stochastic In-

tegrals of Arbitrary Multiplicity k. The case of

a multidimensional Wiener process and a smooth

function Φ(t1, . . . , tk)

As we have seen in this chapter, one of the main difficulties in obtaining expan-
sions of iterated Stratonovich stochastic integrals is related to the properties of
the kernel (1.6). The kernel (1.6) is discontinuous, which causes difficulties in
applying the theory of multiple Fourier series converging pointwise. Moreover,
the Volterra integral operator V : L2([0, 1]) → L2([0, 1]) of the form

(Vf) (x) =
x∫

0

f(τ)dτ (f(τ) ∈ L2([0, 1]))
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with the kernel

K(τ, x) =


1, τ < x

0, otherwise

(τ, x ∈ [0, 1])

is not a trace class operator [150] (see Sect. 2.27).

Thus, one cannot count on the fact that operators of the more general form
(2.1193) (from the same family of operators as the Volterra integral operator)
with the kernel (1.6) are operators of the trace class. It is well known [150]
that for trace class operators the equality of matrix and integral traces holds
(this equality is very useful for expansion of iterated Stratonovich stochastic
integrals (see Sect. 2.27)). As a result, the proof of the equalities of matrix and
integral traces for Volterra–type integral operators (2.1193) provides a way to
calculate the matrix traces of these operators however is obviously a problem.

Let us assume that the function Φ(t1, . . . , tk) : [t, T ]
k → R satisfies sufficient

conditions for its expansion into a multiple Fourier series

lim
p→∞

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ϕjl(tl) (2.1526)

converging pointwise in (t, T )k to the function Φ(t1, . . . , tk). Also we suppose
that the partial sums

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ϕjl(tl)

of the multiple Fourier series (2.1526) have an integrable majorant on [t, T ]k

that does not depend on p. Here {ϕj(x)}∞j=0 is a complete orthonormal system
of Legendre polynomials or trigonometric functions in the space L2([t, T ]) and

Cjk...j1 =

∫
[t,T ]k

Φ(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk (2.1527)

is the Fourier coefficient.

The mentioned conditions for k = 1 and k ≥ 2 (trigonometric case) are
given in Sect. 2.1.1, 2.1.2.
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Consider the multiple Stratonovich stochastic integral (1.16) (also see
(2.1493))

l.i.m.
N→∞

N−1∑
j1,...,jk=0

Φ (τj1, . . . , τjk)
k∏
l=1

∆w(il)
τjl

def
= J [Φ]

(i1...ik)
T,t ,

where we suppose that the function Φ(t1, . . . , tk) is the same as above, {τj}Nj=0

is a partition of [t, T ], which satisfies the condition (1.9) and i1, . . . , ik =
0, 1, . . . ,m.

Denote

Rp(t1, . . . , tk) = Φ(t1, . . . , tk)−
p∑

j1,...,jk=0

Cjk...j1

k∏
l=1

ϕjl(tl), (2.1528)

where Cjk...j1 has the form (2.1527).

Applying (we mean here the passage to the limit lim
p→∞

) the Lebesgue’s Dom-

inated Convergence Theorem to the integrals on the right-hand side of (2.451)
for Rp(t1, . . . , tk) (see (2.1528)) instead of Rp1...,pk(t1, . . . , tk) (see (2.453)), we
obtain

lim
p→∞

M


(
J [Φ]

(i1...ik)
T,t −

p∑
j1,...,jk=0

Cjk...j1

k∏
l=1

ζ
(il)
jl

)2n
 =

= lim
p→∞

M

{(
J [Rp]

(i1...ik)
T,t

)2n}
= 0, (2.1529)

where n ∈ N and

ζ
(i)
j =

T∫
t

ϕj(τ)dw
(i)
τ

are independent standard Gaussian random variables for various i or j (in the
case when i ̸= 0).

Note that the equality (2.1529) will also be satisfied if the multiple Fourier
series (2.1526) converges to the function Φ(t1, . . . , tk) almost everywhere (with
respect to Lebesgue’s measure) on the hypercubes [t, T ]k−r (r = 0, 1, . . . , [k/2])
that are domains of integration for the integrals on the right-hand side of the
inequality (2.451).



Chapter 3

Integration Order Replacement
Technique for Iterated Itô Stochastic
Integrals and Iterated Stochastic
Integrals with Respect to Martingales

This chapter is devoted to the integration order replacement technique for it-
erated Itô stochastic integrals and iterated stochastic integrals with respect to
martingales. We consider the class of iterated Itô stochastic integrals, for which
with probability 1 the formulas on integration order replacement corresponding
to the rules of classical integral calculus are correct. The theorems on inte-
gration order replacement for the class of iterated Itô stochastic integrals are
proved. Many examples of these theorems usage have been considered. The
mentioned results are generalized for the class of iterated stochastic integrals
with respect to martingales.

3.1 Introduction

In this chapter we performed rather laborious work connected with the theorems
on integration order replacement for iterated Itô stochastic integrals. However,
there may appear a question about a practical usefulness of this theory, since
the significant part of its conclusions directly follows from the Itô formula.

It is not difficult to see that to obtain various relations for iterated Itô
stochastic integrals (see, for example, Sect. 3.6) using the Itô formula, first

909
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of all these relations should be guessed. Then it is necessary to introduce
corresponding Itô processes and afterwards to use the Itô formula. It is clear
that this process requires intellectual expenses and it is not always trivial.

On the other hand, the technique on integration order replacement intro-
duced in this chapter is formally comply with the similar technique for Riemann
integrals, although it is related to Itô integrals, and it provides a possibility to
perform transformations naturally (as with Riemann integrals) with iterated
Itô stochastic integrals and to obtain various relations for them.

So, in order to implementation of transformations of the specific class of Itô
processes, which is represented by iterated Itô stochastic integrals, it is more
naturally and easier to use the theorems on integration order replacement, than
the Itô formula.

Many examples of these theorems usage are presented in Sect. 3.6.

Note that in Chapters 1, 2, and 4 the integration order replacement tech-
nique for iterated Itô stochastic integrals has been successfully applied for the
proof and development of the method of approximation of iterated Itô and
Stratonovich stochastic integrals based on generalized multiple Fourier series
(see Chapters 1 and 2) as well as for the construction of the so-called unified
Taylor–Itô and Taylor–Stratonovich expansions (see Chapter 4).

Let (Ω,F,P) be a complete probability space and let f(t, ω) : [0, T ]× Ω →
R1 be the standard Wiener process defined on the probability space (Ω,F,P).

Further, we will use the following notation: f(t, ω)
def
= ft.

Let us consider the family of σ-algebras {Ft, t ∈ [0, T ]} defined on the prob-
ability space (Ω,F,P) and connected with the Wiener process ft in such a way
that

1. Fs ⊂ Ft ⊂ F for s < t.

2. The Wiener process ft is Ft-measurable for all t ∈ [0, T ].

3. The process ft+∆− ft for all t ≥ 0, ∆ > 0 is independent with the events
of σ-algebra Ft.

Let us recall that the class M2([0, T ]) (see Sect. 1.1.2) consists of functions
ξ : [0, T ]× Ω → R1, which satisfy the conditions:

1. The function ξ(t, ω) is measurable with respect to the pair of variables
(t, ω).

2. The function ξ(t, ω) is Ft-measurable for all t ∈ [0, T ] and ξ(τ, ω) is
independent with increments ft+∆ − ft for t ≥ τ, ∆ > 0.
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3. The following relation is fulfilled

T∫
0

M
{
(ξ(t, ω))2

}
dt <∞.

4. M
{
(ξ(t, ω))2

}
<∞ for all t ∈ [0, T ].

Let us recall (see Sect. 1.1.2) that the stochastic integrals

T∫
0

ξτdfτ and

T∫
0

ξτdτ, (3.1)

where ξt ∈ M2([0, T ]) and the first integral in (3.1) is the Itô stochastic integral,
can be defined in the mean-square sense by the relations (1.2) and (1.4).

We will introduce the class S2([0, T ]) of functions ξ : [0, T ]×Ω → R1, which
satisfy the conditions:

1. ξ(τ, ω) ∈ M2([0, T ]).

2. ξ(τ, ω) is the mean-square continuous random process at the interval
[0, T ].

As we noted above, the Itô stochastic integral exists in the mean-square
sense (see (1.2)), if the random process ξ(τ, ω) ∈ M2([0, T ]), i.e., perhaps this
process does not satisfy the property of the mean-square continuity on the
interval [0, T ]. In this chapter we will formulate and prove the theorems on
integration order replacement for the special class of iterated Itô stochastic
integrals. At the same time, the condition of the mean-square continuity of
integrand in the innermost stochastic integral will be significant.

Let us introduce the following class of iterated stochastic integrals

J [ϕ, ψ(k)]T,t =

T∫
t

ψ1(t1) . . .

tk−1∫
t

ψk(tk)

tk∫
t

ϕτdw
(k+1)
τ dw

(k)
tk . . . dw

(1)
t1 ,

where ϕ(τ, ω)
def
= ϕτ , ϕτ ∈ S2([t, T ]), every ψl(τ) (l = 1, . . . , k) is a continous

nonrandom function at the interval [t, T ], here and further w
(l)
τ = fτ or w

(l)
τ = τ

for τ ∈ [t, T ] (l = 1, . . . , k + 1), (ψ1, . . . , ψk)
def
= ψ(k), ψ(1) def

= ψ1.

We will call the stochastic integral J [ϕ, ψ(k)]T,t as the iterated Itô stochastic
integral.
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It is well known that for the iterated Riemann integral in the case of specific
conditions the formula on integration order replacement is correct. In partic-
ular, if the nonrandom functions f(x) and g(x) are continuous at the interval
[a, b], then

b∫
a

f(x)

x∫
a

g(y)dydx =

b∫
a

g(y)

b∫
y

f(x)dxdy. (3.2)

If we suppose that for the Itô stochastic integral

J [ϕ, ψ1]T,t =

T∫
t

ψ1(s)

s∫
t

ϕτdw
(2)
τ dw(1)

s

the formula on integration order replacement, which is similar to (3.2), is valid,
then we will have

T∫
t

ψ1(s)

s∫
t

ϕτdw
(2)
τ dw(1)

s =

T∫
t

ϕτ

T∫
τ

ψ1(s)dw
(1)
s dw(2)

τ . (3.3)

If, in addition w
(1)
s , w

(2)
s = fs (s ∈ [t, T ]) in (3.3), then the stochastic process

ητ = ϕτ

T∫
τ

ψ1(s)dw
(1)
s

does not belong to the class M2([t, T ]), and, consequently, for the Itô stochastic
integral

T∫
t

ητdw
(2)
τ

on the right-hand side of (3.3) the conditions of its existence are not fulfilled.

At the same time

T∫
t

dfs

T∫
t

ds =

T∫
t

(s− t)dfs +

T∫
t

(fs − ft)ds w. p. 1, (3.4)

and we can obtain this equality, for example, using the Itô formula, but (3.4)
can be considered as a result of integration order replacement (see below).
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Actually, we can demonstrate that

T∫
t

(fs − ft)ds =

T∫
t

s∫
t

dfτds =

T∫
t

T∫
τ

dsdfτ w. p. 1.

Then

T∫
t

(s− t)dfs +

T∫
t

(fs − ft)ds =

T∫
t

τ∫
t

dsdfτ +

T∫
t

T∫
τ

dsdfτ =

T∫
t

dfs

T∫
t

ds w. p. 1.

The aim of this chapter is to establish the strict mathematical sense of
the formula (3.3) for the case w

(1)
s , w

(2)
s = fs (s ∈ [t, T ]) as well as its analogue

corresponding to the iterated Itô stochastic integral J [ϕ, ψ(k)]T,t, k ≥ 2. At that,
we will use the definition of the Itô stochastic integral which is more general
than (1.2).

Let us consider the partition τ
(N)
j , j = 0, 1, . . . , N of the interval [t, T ] such

that

t = τ
(N)
0 < τ

(N)
1 < . . . < τ

(N)
N = T, max

0≤j≤N−1

∣∣∣τ (N)
j+1 − τ

(N)
j

∣∣∣→ 0 if N → ∞.

(3.5)

In [114] Stratonovich R.L. introduced the definition of the so-called com-
bined stochastic integral for the specific class of integrated processes. Taking
this definition as a foundation, let us consider the following construction of
stochastic integral

l.i.m.
N→∞

N−1∑
j=0

ϕτj
(
fτj+1

− fτj
)
θτj+1

def
=

T∫
t

ϕτdfτθτ , (3.6)

where ϕτ , θτ ∈ S2([t, T ]), {τj}Nj=0 is the partition of the interval [t, T ], which
satisfies the condition (3.5) (here and sometimes further for simplicity we write

τj instead of τ
(N)
j ).

Further, we will prove existence of the integral (3.6) for ϕτ ∈ S2([t, T ]) and
θτ from a little bit narrower class of processes than S2([t, T ]). In addition, the
integral defined by (3.6) will be used for the formulation and proof of the the-
orem on integration order replacement for the iterated Itô stochastic integrals
J [ϕ, ψ(k)]T,t, k ≥ 1.
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Note that under the appropriate conditions the following properties of
stochastic integrals defined by the formula (3.6) can be proved

T∫
t

ϕτdfτg(τ) =

T∫
t

ϕτg(τ)dfτ w. p. 1,

where g(τ) is a continuous nonrandom function at the interval [t, T ],

T∫
t

(αϕτ + βψτ) dfτθτ = α

T∫
t

ϕτdfτθτ + β

T∫
t

ψτdfτθτ w. p. 1,

T∫
t

ϕτdfτ (αθτ + βψτ) = α

T∫
t

ϕτdfτθτ + β

T∫
t

ϕτdfτψτ w. p. 1,

where α, β ∈ R1.

At that, we suppose that the stochastic processes ϕτ , θτ , and ψτ are such
that the integrals included in the mentioned properties exist.

3.2 Formulation of the Theorem on Integration Order

Replacement for Iterated Itô Stochastic Integrals of

Multiplicity k (k ∈ N)

Let us define the stochastic integrals Î[ψ(k)]T,t, k ≥ 1 of the form

Î[ψ(k)]T,t =

T∫
t

ψk(tk)dw
(k)
tk

T∫
tk

ψk−1(tk−1)dw
(k−1)
tk−1

. . .

T∫
t2

ψ1(t1)dw
(1)
t1

in accordance with the definition (3.6) by the following recurrence relation

Î[ψ(k)]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ψk(τl)∆w
(k)
τl
Î[ψ(k−1)]T,τl+1

, (3.7)

where k ≥ 1, Î[ψ(0)]T,s
def
= 1, [s, T ] ⊆ [t, T ], here and further ∆w

(i)
τl = w

(i)
τl+1−w

(i)
τl ,

i = 1, . . . , k + 1, l = 0, 1, . . . , N − 1.

Then, we will define the iterated stochastic integral Ĵ [ϕ, ψ(k)]T,t, k ≥ 1

Ĵ [ϕ, ψ(k)]T,t =

T∫
t

ϕsdw
(k+1)
s Î[ψ(k)]T,s
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similarly in accordance with the definition (3.6)

Ĵ [ϕ, ψ(k)]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ϕτl∆w
(k+1)
τl

Î[ψ(k)]T,τl+1
.

Let us formulate the theorem on integration order replacement for iterated
Itô stochastic integrals.

Theorem 3.1 [123] (1997), (also see [1]-[17], [77], [124]). Suppose that ϕτ ∈
S2([t, T ]) and every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function at
the interval [t, T ]. Then, the stochastic integral Ĵ [ϕ, ψ(k)]T,t, k ≥ 1 exists and

J [ϕ, ψ(k)]T,t = Ĵ [ϕ, ψ(k)]T,t w. p. 1.

3.3 Proof of Theorem 3.1 for the Case of Iterated Itô

Stochastic Integrals of Multiplicity 2

At first, let us prove Theorem 3.1 for the case k = 1. We have

J [ϕ, ψ1]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ψ1(τl)∆w
(1)
τl

τl∫
t

ϕτdw
(2)
τ =

= l.i.m.
N→∞

N−1∑
l=0

ψ1(τl)∆w
(1)
τl

l−1∑
j=0

τj+1∫
τj

ϕτdw
(2)
τ , (3.8)

Ĵ [ϕ, ψ1]T,t
def
= l.i.m.

N→∞

N−1∑
j=0

ϕτj∆w
(2)
τj

T∫
τj+1

ψ1(s)dw
(1)
s =

= l.i.m.
N→∞

N−1∑
j=0

ϕτj∆w
(2)
τj

N−1∑
l=j+1

τl+1∫
τl

ψ1(s)dw
(1)
s =

= l.i.m.
N→∞

N−1∑
l=0

τl+1∫
τl

ψ1(s)dw
(1)
s

l−1∑
j=0

ϕτj∆w
(2)
τj
. (3.9)

It is clear that if the difference εN of prelimit expressions on the right-hand
sides of (3.8) and (3.9) tends to zero when N → ∞ in the mean-square sense,
then the stochastic integral Ĵ [ϕ, ψ1]T,t exists and

J [ϕ, ψ1]T,t = Ĵ [ϕ, ψ1]T,t w. p. 1.
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The difference εN can be represented in the form εN = ε̃N + ε̂N , where

ε̃N =
N−1∑
l=0

ψ1(τl)∆w
(1)
τl

l−1∑
j=0

τj+1∫
τj

(
ϕτ − ϕτj

)
dw(2)

τ ;

ε̂N =
N−1∑
l=0

τl+1∫
τl

(ψ1(τl)− ψ1(s)) dw
(1)
s

l−1∑
j=0

ϕτj∆w
(2)
τj
.

We will demonstrate that w. p. 1

l.i.m.
N→∞

εN = 0.

In order to do it we will analyze four cases:

1. w
(2)
τ = fτ , ∆w

(1)
τl = ∆fτl.

2. w
(2)
τ = τ, ∆w

(1)
τl = ∆fτl.

3. w
(2)
τ = fτ , ∆w

(1)
τl = ∆τl.

4. w
(2)
τ = τ, ∆w

(1)
τl = ∆τl.

Let us recall the well known standard moment properties of stochastic in-
tegrals [100]

M


∣∣∣∣∣∣
T∫
t

ξτdfτ

∣∣∣∣∣∣
2
 =

T∫
t

M
{
|ξτ |2

}
dτ,

M


∣∣∣∣∣∣
T∫
t

ξτdτ

∣∣∣∣∣∣
2
 ≤ (T − t)

T∫
t

M
{
|ξτ |2

}
dτ, (3.10)

where ξτ ∈ M2([t, T ]).

For Case 1 using standard moment properties for the Itô stochastic integral
as well as mean-square continuity (which means uniform mean-square continu-
ity) of the process ϕτ on the interval [t, T ], we obtain

M
{
|ε̃N |2

}
=

N−1∑
k=0

ψ2
1(τk)∆τk

k−1∑
j=0

τj+1∫
τj

M
{∣∣ϕτ − ϕτj

∣∣2} dτ <
< C2ε

N−1∑
k=0

∆τk

k−1∑
j=0

∆τj < C2ε
(T − t)2

2
,



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series917

i.e. M
{
|ε̃N |2

}
→ 0 when N → ∞. Here ∆τj < δ(ε), j = 0, 1, . . . , N − 1

(δ(ε) > 0 exists for any ε > 0 and it does not depend on τ), |ψ1(τ)| < C.

Let us consider Case 2. Using the Minkowski inequality, uniform mean-
square continuity of the process ϕτ as well as the estimate (3.10) for the stochas-
tic integral, we have

M
{
|ε̃N |2

}
=

N−1∑
k=0

ψ2
1(τk)∆τkM


k−1∑

j=0

τj+1∫
τj

(ϕτ − ϕτj)dτ


2
 ≤

≤
N−1∑
k=0

ψ2
1(τk)∆τk


k−1∑
j=0

M


 τj+1∫

τj

(ϕτ − ϕτj)dτ


2



1/2


2

<

< C2ε

N−1∑
k=0

∆τk

(
k−1∑
j=0

∆τj

)2

< C2ε
(T − t)3

3
,

i.e. M
{
|ε̃N |2

}
→ 0 when N → ∞. Here ∆τj < δ(ε), j = 0, 1, . . . , N − 1

(δ(ε) > 0 exists for any ε > 0 and it does not depend on τ), |ψ1(τ)| < C.

For Case 3 using the Minkowski inequality, standard moment properties
for the Itô stochastic integral as well as uniform mean-square continuity of the
process ϕτ , we find

M
{
|ε̃N |2

}
≤


N−1∑
k=0

|ψ1(τk)|∆τk

M


k−1∑

j=0

τj+1∫
τj

(ϕτ − ϕτj)dfτ


2



1/2


2

=

=

N−1∑
k=0

|ψ1(τk)|∆τk

k−1∑
j=0

τj+1∫
τj

M
{
|ϕτ − ϕτj |2

}
dτ


1/2


2

<

< C2ε

N−1∑
k=0

∆τk

(
k−1∑
j=0

∆τj

)1/2
2

< C2ε
4(T − t)3

9
,
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i.e. M
{
|ε̃N |2

}
→ 0 when N → ∞. Here ∆τj < δ(ε), j = 0, 1, . . . , N − 1

(δ(ε) > 0 exists for any ε > 0 and it does not depend on τ), |ψ1(τ)| < C.

Finally, for Case 4 using the Minkowski inequality, uniform mean-square
continuity of the process ϕτ as well as the estimate (3.10) for the stochastic
integral, we obtain

M
{
|ε̃N |2

}
≤


N−1∑
k=0

k−1∑
j=0

|ψ1(τk)|∆τk

M


 τj+1∫

τj

(ϕτ − ϕτj)dτ


2



1/2


2

<

< C2ε

(
N−1∑
k=0

∆τk

k−1∑
j=0

∆τj

)2

< C2ε
(T − t)4

4
,

i.e. M
{
|ε̃N |2

}
→ 0 when N → ∞. Here ∆τj < δ(ε), j = 0, 1, . . . , N − 1

(δ(ε) > 0 exists for any ε > 0 and it does not depend on τ), |ψ1(τ)| < C.

Thus, we have proved that w. p. 1

l.i.m.
N→∞

ε̃N = 0.

Analogously, taking into account the uniform continuity of the function
ψ1(τ) on the interval [t, T ], we can demonstrate that w. p. 1

l.i.m.
N→∞

ε̂N = 0.

Consequently,

l.i.m.
N→∞

εN = 0 w. p. 1.

Theorem 3.1 is proved for the case k = 1.

Remark 3.1. Proving Theorem 3.1, we used the fact that if the stochastic
process ϕt is mean-square continuous at the interval [t, T ], then it is uniformly
mean-square continuous at this interval, i.e. ∀ ε > 0 ∃ δ(ε) > 0 such that for
all t1, t2 ∈ [t, T ] satisfying the condition |t1 − t2| < δ(ε) the inequality

M
{
|ϕt1 − ϕt2|

2
}
< ε

is fulfilled (here δ(ε) does not depend on t1 and t2).
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Proof. Suppose that the stochastic process ϕt is mean-square continuous at
the interval [t, T ], but not uniformly mean-square continuous at this interval.
Then for some ε > 0 and ∀ δ(ε) > 0 ∃ t1, t2 ∈ [t, T ] such that |t1 − t2| < δ(ε),
but

M
{
|ϕt1 − ϕt2|

2
}
≥ ε.

Consequently, for δ = δn = 1/n (n ∈ N) ∃ t(n)1 , t
(n)
2 ∈ [t, T ] such that∣∣∣t(n)1 − t

(n)
2

∣∣∣ < 1

n
,

but

M

{∣∣∣ϕt(n)1
− ϕ

t
(n)
2

∣∣∣2} ≥ ε.

The sequence t
(n)
1 (n ∈ N) is bounded, consequently, according to the Bolza-

no–Weierstrass Theorem, we can choose from it the subsequence t
(kn)
1 (n ∈ N)

that converges to a certain number t̃ (it is simple to demonstrate that t̃ ∈ [t, T ]).
Similarly to it and in virtue of the inequality∣∣∣t(n)1 − t

(n)
2

∣∣∣ < 1

n

we have t
(kn)
2 → t̃ when n→ ∞.

According to the mean-square continuity of the process ϕt at the moment t̃
and the elementary inequality (a+ b)2 ≤ 2(a2 + b2), we obtain

0 ≤ M

{∣∣∣ϕt(kn)
1

− ϕ
t
(kn)
2

∣∣∣2} ≤

≤ 2

(
M

{∣∣∣ϕt(kn)
1

− ϕt̃

∣∣∣2}+M

{∣∣∣ϕt(kn)
2

− ϕt̃

∣∣∣2})→ 0

when n→ ∞. Then

lim
n→∞

M

{∣∣∣ϕt(kn)
1

− ϕ
t
(kn)
2

∣∣∣2} = 0.

It is impossible by virtue of the fact that

M

{∣∣∣ϕt(kn)
1

− ϕ
t
(kn)
2

∣∣∣2} ≥ ε > 0.

The obtained contradiction proves the required statement.
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3.4 Proof of Theorem 3.1 for the Case of Iterated Itô

Stochastic Integrals of Multiplicity k (k ∈ N)

Let us prove Theorem 3.1 for the case k > 1. In order to do it we will introduce
the following notations

I[ψ(r+1)
q ]θ,s

def
=

θ∫
s

ψq(t1) . . .

tr∫
s

ψq+r(tr+1)dw
(q+r)
tr+1

. . . dw
(q)
t1 ,

J [ϕ, ψ(r+1)
q ]θ,s

def
=

θ∫
s

ψq(t1) . . .

tr∫
s

ψq+r(tr+1)

tr+1∫
s

ϕτdw
(q+r+1)
τ dw

(q+r)
tr+1

. . . dw
(q)
t1 ,

G[ψ(r+1)
q ]n,m =

n−1∑
jq=m

jq−1∑
jq+1=m

. . .

jq+r−1−1∑
jq+r=m

r+q∏
l=q

I[ψl]τjl+1,τjl
,

(ψq, . . . , ψq+r)
def
= ψ(r+1)

q , ψ(1)
q

def
= ψq,

(ψ1, . . . , ψr+1)
def
= ψ

(r+1)
1 , ψ

(r+1)
1

def
= ψ(r+1).

Note that according to notations introduced above, we have

I[ψl]s,θ =

s∫
θ

ψl(τ)dw
(l)
τ .

To prove Theorem 3.1 for k > 1 it is enough to show that

J [ϕ, ψ(k)]T,t = l.i.m.
N→∞

S[ϕ, ψ(k)]N = Ĵ [ϕ, ψ(k)]T,t w. p. 1, (3.11)

where

S[ϕ, ψ(k)]N = G[ψ(k)]N,0

jk−1∑
l=0

ϕτl∆w
(k+1)
τl

,

where ∆w
(k+1)
τl = w

(k+1)
τl+1 − w

(k+1)
τl .

At first, let us prove the right equality in (3.11). We have

Ĵ [ϕ, ψ(k)]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ϕτl∆w
(k+1)
τl

Î[ψ(k)]T,τl+1
. (3.12)
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On the basis of the inductive hypothesis we obtain that

I[ψ(k)]T,τl+1
= Î[ψ(k)]T,τl+1

w. p. 1, (3.13)

where Î[ψ(k)]T,s is defined in accordance with (3.7) and

I[ψ(k)]T,s =

T∫
s

ψ1(t1) . . .

tk−2∫
s

ψk−1(tk−1)

tk−1∫
s

ψk(tk)dw
(k)
tk dw

(k−1)
tk−1

. . . dw
(1)
t1 .

Let us note that when k ≥ 4 (for k = 2, 3 the arguments are similar) due
to additivity of the Itô stochastic integral the following equalities are correct

I[ψ(k)]T,τl+1
=

N−1∑
j1=l+1

τj1+1∫
τj1

ψ1(t1)

t1∫
τl+1

ψ2(t2)I[ψ
(k−2)
3 ]t2,τl+1

dw
(2)
t2 dw

(1)
t1 =

=
N−1∑
j1=l+1

τj1+1∫
τj1

ψ1(t1)

 j1−1∑
j2=l+1

τj2+1∫
τj2

+

t1∫
τj1

ψ2(t2)I[ψ
(k−2)
3 ]t2,τl+1

dw
(2)
t2 dw

(1)
t1 =

= . . . = G[ψ(k)]N,l+1 +H[ψ(k)]N,l+1 w. p. 1, (3.14)

where

H[ψ(k)]N,l+1 =
N−1∑
j1=l+1

τj1+1∫
τj1

ψ1(s)

s∫
τj1

ψ2(τ)I[ψ
(k−2)
3 ]τ,τl+1

dw(2)
τ dw(1)

s +

+
k−2∑
r=2

G[ψ(r−1)]N,l+1

jr−1−1∑
jr=l+1

τjr+1∫
τjr

ψr(s)

s∫
τjr

ψr+1(τ)I[ψ
(k−r−1)
r+2 ]τ,τl+1

dw(r+1)
τ dw(r)

s +

+G[ψ(k−2)]N,l+1

jk−2−1∑
jk−1=l+1

I[ψ
(2)
k−1]τjk−1+1,τjk−1

. (3.15)

Next, substitute (3.14) into (3.13) and (3.13) into (3.12). Then w. p. 1

Ĵ [ϕ, ψ(k)]T,t = l.i.m.
N→∞

N−1∑
l=0

ϕτl∆w
(k+1)
τl

(
G[ψ(k)]N,l+1 +H[ψ(k)]N,l+1

)
. (3.16)
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Since
N−1∑
j1=0

j1−1∑
j2=0

. . .

jk−1−1∑
jk=0

aj1...jk =
N−1∑
jk=0

N−1∑
jk−1=jk+1

. . .
N−1∑

j1=j2+1

aj1...jk, (3.17)

where aj1...jk are scalars, then

G[ψ(k)]N,l+1 =
N−1∑
jk=l+1

. . .
N−1∑

j1=j2+1

k∏
l=1

I[ψl]τjl+1,τjl
. (3.18)

Let us substitute (3.18) into

N−1∑
l=0

ϕτl∆w
(k+1)
τl

G[ψ(k)]N,l+1

and use again the formula (3.17). Then

N−1∑
l=0

ϕτl∆w
(k+1)
τl

G[ψ(k)]N,l+1 = S[ϕ, ψ(k)]N . (3.19)

Suppose that the limit
l.i.m.
N→∞

S[ϕ, ψ(k)]N (3.20)

exists (its existence will be proved further).

Then from (3.19) and (3.16) it follows that for proof of the right equality
in (3.11) we have to demonstrate that w. p. 1

l.i.m.
N→∞

N−1∑
l=0

ϕτl∆w
(k+1)
τl

H[ψ(k)]N,l+1 = 0. (3.21)

Analyzing the second moment of the prelimit expression on the left-hand
side of (3.21) and taking into account (3.15), the independence of ϕτl, ∆w

(k+1)
τl ,

and H[ψ(k)]N,l+1 as well as the standard estimates for second moments of
stochastic integrals and the Minkowski inequality, we find that (3.21) is cor-
rect. Thus, by the assumption of existence of the limit (3.20) we obtain that
the right equality in (3.11) is fulfilled.

Let us demonstrate that the left equality in (3.11) is also fulfilled.

We have

J [ϕ, ψ(k)]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ψ1(τl)∆w
(1)
τl
J [ϕ, ψ

(k−1)
2 ]τl,t. (3.22)
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Let us use for the integral J [ϕ, ψ
(k−1)
2 ]τl,t in (3.22) the same arguments,

which resulted to the relation (3.14) for the integral I[ψ(k)]T,τl+1
. After that let

us substitute the expression obtained for the integral J [ϕ, ψ
(k−1)
2 ]τl,t into (3.22).

Further, using the Minkowski inequality and standard estimates for second
moments of stochastic integrals it is easy to obtain that

J [ϕ, ψ(k)]T,t = l.i.m.
N→∞

R[ϕ, ψ(k)]N w. p. 1, (3.23)

where

R[ϕ, ψ(k)]N =
N−1∑
j1=0

ψ1(τj1)∆w
(1)
τj1
G[ψ

(k−1)
2 ]j1,0

jk−1∑
l=0

τl+1∫
τl

ϕτdw
(k+1)
τ .

We will demonstrate that

l.i.m.
N→∞

R[ϕ, ψ(k)]N = l.i.m.
N→∞

S[ϕ, ψ(k)]N w. p. 1. (3.24)

It is easy to see that

R[ϕ, ψ(k)]N = U [ϕ, ψ(k)]N + V [ϕ, ψ(k)]N + S[ϕ, ψ(k)]N w. p. 1, (3.25)

where

U [ϕ, ψ(k)]N =
N−1∑
j1=0

ψ1(τj1)∆w
(1)
τj1
G[ψ

(k−1)
2 ]j1,0

jk−1∑
l=0

I[∆ϕ]τl+1,τl,

V [ϕ, ψ(k)]N =
N−1∑
j1=0

I[∆ψ1]τj1+1,τj1
G[ψ

(k−1)
2 ]j1,0

jk−1∑
l=0

ϕτl∆w
(k+1)
τl

,

I[∆ψ1]τj1+1,τj1
=

τj1+1∫
τj1

(ψ1(τj1)− ψ1(τ))dw
(1)
τ ,

I[∆ϕ]τl+1,τl =

τl+1∫
τl

(ϕτ − ϕτl)dw
(k+1)
τ .

Using the Minkowski inequality, standard estimates for second moments
of stochastic integrals, the condition that the process ϕτ belongs to the class
S2([t, T ]) as well as continuity (which means uniform continuity) of the function
ψ1(τ), we obtain that

l.i.m.
N→∞

V [ϕ, ψ(k)]N = l.i.m.
N→∞

U [ϕ, ψ(k)]N = 0 w. p. 1.
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Then, considering (3.25), we obtain (3.24). From (3.24) and (3.23) it follows
that the left equality in (3.11) is fulfilled.

Note that the limit (3.20) exists because it is equal to the stochastic integral
J [ϕ, ψ(k)]T,t, which exists under the conditions of Theorem 3.1. So, the chain of
equalities (3.11) is proved. Theorem 3.1 is proved.

3.5 Corollaries and Generalizations of Theorem 3.1

Assume that Dk = {(t1, . . . , tk) : t ≤ t1 < . . . < tk ≤ T} and the following
conditions are fulfilled:

AI. ξτ ∈ S2([t, T ]).

AII. Φ(t1, . . . , tk−1) is a continuous nonrandom function in the closed domain
Dk−1 (recall that we use the same symbol Dk−1 to denote the open and closed
domains corresponding to the domain Dk−1).

Let us define the following stochastic integrals

Ĵ [ξ,Φ]
(k)
T,t =

T∫
t

ξtkdw
(ik)
tk . . .

T∫
t3

dw
(i2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dw
(i1)
t1

def
=

def
= l.i.m.

N→∞

N−1∑
l=0

ξτl∆w(ik)
τl

T∫
τl+1

dw
(ik−1)
tk−1

. . .

T∫
t3

dw
(i2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dw
(i1)
t1

for k ≥ 3 and

Ĵ [ξ,Φ]
(2)
T,t =

T∫
t

ξt2dw
(i2)
t2

T∫
t2

Φ(t1)dw
(i1)
t1

def
=

def
= l.i.m.

N→∞

N−1∑
l=0

ξτl∆w(i2)
τl

T∫
τl+1

Φ(t1)dw
(i1)
t1

for k = 2. Here w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ, f

(i)
τ (i = 1, . . . ,m)

are Fτ -measurable for all τ ∈ [0, T ] independent standard Wiener processes,
0 ≤ t < T, i1, . . . , ik = 0, 1, . . . ,m.
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Let us denote

J [ξ,Φ]
(k)
T,t =

T∫
t

. . .

tk−1∫
t

Φ(t1, . . . , tk−1)ξtkdw
(ik)
tk . . . dw

(i1)
t1 , k ≥ 2, (3.26)

where the right-hand side of (3.26) is the iterated Itô stochastic integral.

Let us introduce the following iterated stochastic integrals

J̃ [Φ]
(k−1)
T,t =

T∫
t

dw
(ik−1)
tk−1

. . .

T∫
t3

dw
(i2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dw
(i1)
t1

def
=

def
= l.i.m.

N→∞

N−1∑
l=0

∆w(ik−1)
τl

T∫
τl+1

dw
(ik−2)
tk−2

. . .

T∫
t3

dw
(i2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dw
(i1)
t1 ,

J ′[Φ]
(k−1)
T,t =

T∫
t

. . .

tk−2∫
t

Φ(t1, . . . , tk−1)dw
(ik−1)
tk−1

. . . dw
(i1)
t1 , k ≥ 2.

Similarly to the proof of Theorem 3.1 it is easy to demonstrate that under
the condition AII the stochastic integral J̃ [Φ]

(k−1)
T,t exists and

J ′[Φ]
(k−1)
T,t = J̃ [Φ]

(k−1)
T,t w. p. 1. (3.27)

Moreover, using (3.27) the following generalization of Theorem 3.1 can be
proved similarly to the proof of Theorem 3.1.

Theorem 3.2 [123] (1997) (also see [1]-[17], [77], [124]). Suppose that the
conditions AI, AII of this section are fulfilled. Then, the stochastic integral
Ĵ [ξ,Φ]

(k)
T,t exists and for k ≥ 2

J [ξ,Φ]
(k)
T,t = Ĵ [ξ,Φ]

(k)
T,t w. p. 1.

Let us consider the following stochastic integrals

I =

T∫
t

df
(i2)
t2

T∫
t2

Φ1(t1, t2)df
(i1)
t1 , J =

T∫
t

t2∫
t

Φ2(t1, t2)df
(i1)
t1 df

(i2)
t2 .
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If we consider
T∫

t2

Φ1(t1, t2)df
(i1)
t1

as the integrand of I and
t2∫
t

Φ2(t1, t2)df
(i1)
t1

as the integrand of J , then, due to independence of these integrands we may
mistakenly think that M{IJ} = 0. But it is not the fact. Actually, using the
integration order replacement technique in the stochastic integral I, we have
w. p. 1

I =

T∫
t

t1∫
t

Φ1(t1, t2)df
(i2)
t2 df

(i1)
t1 =

T∫
t

t2∫
t

Φ1(t2, t1)df
(i2)
t1 df

(i1)
t2 .

So, using the standard properties of the Itô stochastic integral [100], we get

M{IJ} = 1{i1=i2}

T∫
t

t2∫
t

Φ1(t2, t1)Φ2(t1, t2)dt1dt2,

where 1A is the indicator of the set A.

Let us consider the following statement.

Theorem 3.3 [123] (1997) (also see [1]-[17], [77], [124]). Let the conditions
of Theorem 3.1 are fulfilled and h(τ) is a continuous nonrandom function at
the interval [t, T ]. Then

T∫
t

ϕτdw
(k+1)
τ h(τ)Î[ψ(k)]T,τ =

T∫
t

ϕτh(τ)dw
(k+1)
τ Î[ψ(k)]T,τ w. p. 1, (3.28)

where stochastic integrals on the left-hand side of (3.28) as well as on the right-
hand side of (3.28) exist.

Proof. According to Theorem 3.1, the iterated stochastic integral on the
right-hand side of (3.28) exists. In addition

T∫
t

ϕτh(τ)dw
(k+1)
τ Î[ψ(k)]T,τ =

T∫
t

ϕτdw
(k+1)
τ h(τ)Î[ψ(k)]T,τ−
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−l.i.m.
N→∞

N−1∑
l=0

ϕτl∆h(τl)∆w
(k+1)
τl

Î[ψ(k)]T,τl+1
w. p. 1,

where ∆h(τl) = h(τl+1)− h(τl).

Using the arguments which resulted to the right equality in (3.11), we obtain

l.i.m.
N→∞

N−1∑
l=0

ϕτl∆h(τl)∆w
(k+1)
τl

Î[ψ(k)]T,τl+1
=

= l.i.m.
N→∞

G[ψ(k)]N,0

jk−1∑
l=0

ϕτl∆h(τl)∆w
(k+1)
τl

w. p. 1. (3.29)

Using the Minkowski inequality, standard estimates for second moments of
stochastic integrals as well as continuity of the function h(τ), we obtain that
the second moment of the prelimit expression on the right-hand side of (3.29)
tends to zero when N → ∞. Theorem 3.3 is proved.

Let us consider one corollary of Theorem 3.1.

Theorem 3.4 [123] (1997) (also see [1]-[17], [77], [124]). Under the condi-
tions of Theorem 3.3 the following equality

T∫
t

h(t1)

t1∫
t

ϕτdw
(k+2)
τ dw

(k+1)
t1 Î[ψ(k)]T,t1 =

=

T∫
t

ϕτdw
(k+2)
τ

T∫
τ

h(t1)dw
(k+1)
t1 Î[ψ(k)]T,t1 w. p. 1 (3.30)

is fulfilled. Moreover, the stochastic integrals in (3.30) exist.

Proof. Using Theorem 3.1 two times, we obtain

T∫
t

ϕτdw
(k+2)
τ

T∫
τ

h(t1)dw
(k+1)
t1 Î[ψ(k)]T,t1 =

=

T∫
t

ψ1(t1) . . .

tk−1∫
t

ψk(tk)

tk∫
t

ρτdw
(k+1)
τ dw

(k)
tk . . . dw

(1)
t1 =
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=

T∫
t

ρτdw
(k+1)
τ

T∫
τ

ψk(tk)dw
(k)
tk . . .

T∫
t2

ψ1(t1)dw
(1)
t1 w. p. 1,

where

ρτ
def
= h(τ)

τ∫
t

ϕsdw
(k+2)
s .

Theorem 3.4 is proved.

3.6 Examples of Integration Order Replacement Tech-

nique for the Concrete Iterated Itô Stochastic Inte-

grals

As we mentioned above, the formulas from this section could be obtained using
the Itô formula. However, the method based on Theorem 3.1 is more simple
and familiar, since it deals with usual rules of the integration order replacement
for Riemann integrals.

Using the integration order replacement technique for iterated Itô stochastic
integrals (Theorem 3.1), we obtain the following equalities which are fulfilled
w. p. 1

T∫
t

t2∫
t

dft1dt2 =

T∫
t

(T − t1)dft1, (3.31)

T∫
t

cos(t2 − T )

t2∫
t

dft1dt2 =

T∫
t

sin(T − t1)dft1,

T∫
t

sin(t2 − T )

t2∫
t

dft1dt2 =

T∫
t

(cos(T − t1)− 1) dft1,

T∫
t

eα(t2−T )
t2∫
t

dft1dt2 =
1

α

T∫
t

(
1− eα(t1−T )

)
dft1, α ̸= 0,

T∫
t

(t2 − T )α
t2∫
t

dft1dt2 = − 1

α + 1

T∫
t

(t1 − T )α+1dft1, α ̸= −1,
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J(100)T,t =
1

2

T∫
t

(T − t1)
2dft1, J(010)T,t =

T∫
t

(t1 − t)(T − t1)dft1,

J(110)T,t =

T∫
t

(T − t2)

t2∫
t

dft1dft2, (3.32)

J(101)T,t =

T∫
t

t2∫
t

(t2 − t1)dft1dft2, J(1011)T,t =

T∫
t

t3∫
t

t2∫
t

(t2 − t1)dft1dft2dft3,

J(1101)T,t =

T∫
t

t3∫
t

(t3 − t2)

t2∫
t

dft1dft2dft3,

J(1110)T,t =

T∫
t

(T − t3)

t3∫
t

t2∫
t

dft1dft2dft3, J(1100)T,t =
1

2

T∫
t

(T − t2)
2

t2∫
t

dft1dft2,

J(1010)T,t =

T∫
t

(T − t2)

t2∫
t

(t2 − t1)dft1dft2, (3.33)

J(1001)T,t =
1

2

T∫
t

t2∫
t

(t2 − t1)
2dft1dft2, J(0110)T,t =

T∫
t

(T − t2)

t2∫
t

(t1 − t)dft1dft2,

J(0101)T,t =

T∫
t

t2∫
t

(t2 − t1)(t1 − t)dft1dft2,

J(0010)T,t =
1

2

T∫
t

(T − t1)(t1 − t)2dft1, J(0100)T,t =
1

2

T∫
t

(T − t1)
2(t1 − t)dft1,

J(1000)T,t =
1

3!

T∫
t

(T − t1)
3dft1,

J(1 0...0︸︷︷︸
k−1

)T,t =
1

(k − 1)!

T∫
t

(T − t1)
k−1dft1,
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J(11 0...0︸︷︷︸
k−2

)T,t =
1

(k − 2)!

T∫
t

(T − t2)
k−2

t2∫
t

dft1dft2,

J( 1...1︸︷︷︸
k−1

0)T,t =

T∫
t

(T − t1)J( 1...1︸︷︷︸
k−2

)t1,tdft1,

J(1 0...0︸︷︷︸
k−2

1)T,t =
1

(k − 2)!

T∫
t

t2∫
t

(t2 − t1)
k−2dft1dft2,

J(10 1...1︸︷︷︸
k−2

)T,t =

T∫
t

. . .

t3∫
t

t2∫
t

(t2 − t1)dft1dft2 . . . dftk−1
,

J( 1...1︸︷︷︸
k−2

01)T,t =

T∫
t

tk−1∫
t

(tk−1 − tk−2)

tk−2∫
t

. . .

t2∫
t

dft1 . . . dftk−3
dftk−2

dftk−1
,

J(10)T,t + J(01)T,t = (T − t)J(1)T,t,

J(110)T,t + J(101)T,t + J(011)T,t = (T − t)J(11)T,t,

J(001)T,t + J(010)T,t + J(100)T,t =
(T − t)2

2
J(1)T,t,

J(1100)T,t + J(1010)T,t + J(1001)T,t + J(0110)T,t+

+J(0101)T,t + J(0011)T,t =
(T − t)2

2
J(11)T,t,

J(1000)T,t + J(0100)T,t + J(0010)T,t + J(0001)T,t =
(T − t)3

3!
J(1)T,t,

J(1110)T,t + J(1101)T,t + J(1011)T,t + J(0111)T,t = (T − t)J(111)T,t,

k∑
l=1

J( 0...0︸︷︷︸
l−1

1 0...0︸︷︷︸
k−l

)T,t =
1

(k − 1)!
(T − t)k−1J(1)T,t,
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k∑
l=1

J( 1...1︸︷︷︸
l−1

0 1...1︸︷︷︸
k−l

)T,t = (T − t)J( 1...1︸︷︷︸
k−1

)T,t,

∑
l1+...+lk=m

li∈{0, 1}, i=1,...,k

J(l1...lk)T,t =
(T − t)k−m

(k −m)!
J( 1...1︸︷︷︸

m

)T,t,

where

J(l1...lk)T,t =

T∫
t

. . .

t2∫
t

dw
(1)
t1 . . . dw

(k)
tk ,

li = 1 when w
(i)
ti = fti and li = 0 when w

(i)
ti = ti (i = 1, . . . , k), fτ is a standard

Wiener process.

Let us consider two examples and show explicitly the technique on integra-
tion order replacement for iterated Itô stochastic integrals.

Example 3.1. Let us prove the equality (3.32). Using Theorems 3.1 and
3.3, we obtain:

J(110)T,t
def
=

T∫
t

t3∫
t

t2∫
t

dft1dft2dt3 =

T∫
t

dft1

T∫
t1

dft2

T∫
t2

dt3 =

=

T∫
t

dft1

T∫
t1

dft2(T − t2) =

T∫
t

dft1

T∫
t1

(T − t2)dft2 =

=

T∫
t

(T − t2)

t2∫
t

dft1dft2 w. p. 1. (3.34)

Example 3.2. Let us prove the equality (3.33). Using Theorems 3.1 and
3.3, we obtain

J(1010)T,t
def
=

T∫
t

t4∫
t

t3∫
t

t2∫
t

dft1dt2dft3dt4 =

T∫
t

dft1

T∫
t1

dt2

T∫
t2

dft3

T∫
t3

dt4 =

=

T∫
t

dft1

T∫
t1

dt2

T∫
t2

dft3(T − t3) =

T∫
t

dft1

T∫
t1

dt2

T∫
t2

(T − t3)dft3 =
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=

T∫
t

(T − t3)

t3∫
t

t2∫
t

dft1dt2dft3 =

T∫
t

(T − t3)

 t3∫
t

t2∫
t

dft1dt2

 dft3 =

=

T∫
t

(T − t3)

 t3∫
t

dft1

t3∫
t1

dt2

 dft3 =

=

T∫
t

(T − t3)

 t3∫
t

dft1(t3 − t1)

 dft3 =

=

T∫
t

(T − t3)

 t3∫
t

(t3 − t1)dft1

 dft3 =

=

T∫
t

(T − t2)

t2∫
t

(t2 − t1)dft1dft2 w. p. 1.

3.7 Integration Order Replacement Technique for Iter-

ated Stochastic Integrals with Respect to Martingale

In this section, we will generalize the theorems on integration order replacement
for iterated Itô stochastic integrals to the class of iterated stochastic integrals
with respect to martingale.

Let (Ω,F,P) be a complete probability space and let {Ft, t ∈ [0, T ]} be a
nondecreasing family of σ-algebras defined on the probability space (Ω,F,P).
Suppose that Mt, t ∈ [0, T ] is an Ft-measurable martingale for all t ∈ [0, T ],
which satisfies the condition M {|Mt|} < ∞. Moreover, for all t ∈ [0, T ] there
exists an Ft- measurable and nonnegative w. p. 1 stochastic process ρt, t ∈ [0, T ]
such that

M
{
(Ms −Mt)

2 | Ft
}
= M


s∫
t

ρτdτ

∣∣∣∣Ft
 w. p. 1,

where 0 ≤ t < s ≤ T.
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Let us consider the class H2(ρ, [0, T ]) of stochastic processes φt, t ∈ [0, T ],
which are Ft-measurable for all t ∈ [0, T ] and satisfy the condition

M


T∫

0

φ2
tρtdt

 <∞.

For any partition τ
(N)
j , j = 0, 1, . . . , N of the interval [0, T ] such that

0 = τ
(N)
0 < τ

(N)
1 < . . . < τ

(N)
N = T, max

0≤j≤N−1

∣∣∣τ (N)
j+1 − τ

(N)
j

∣∣∣→ 0 if N → ∞
(3.35)

we will define the sequence of step functions

φ(N)(t, ω) = φj (ω) w. p. 1 for t ∈
[
τ
(N)
j , τ

(N)
j+1

)
,

where φ(N)(t, ω) ∈ H2(ρ, [0, T ]), j = 0, 1, . . . , N − 1, N = 1, 2, . . .

Let us define the stochastic integral with respect to martingale for φ(t, ω) ∈
H2(ρ, [0, T ]) as the following mean-square limit [100]

l.i.m.
N→∞

N−1∑
j=0

φ(N)
(
τ
(N)
j , ω

)(
M
(
τ
(N)
j+1 , ω

)
−M

(
τ
(N)
j , ω

))
def
=

T∫
0

φτdMτ ,

where φ(N)(t, ω) is any step function from the class H2(ρ, [0, T ]), which con-
verges to the function φ(t, ω) in the following sense

lim
N→∞

T∫
0

M

{∣∣∣φ(N)(t, ω)− φ(t, ω)
∣∣∣2} ρtdt = 0.

It is well known [100] that the stochastic integral

T∫
0

φτdMτ

exists and it does not depend on the selection of sequence φ(N)(t, ω).

Let H̃2(ρ, [0, T ]) be the class of stochastic processes φτ , τ ∈ [0, T ], which are
mean-square continuous for all τ ∈ [0, T ] and belong to the class H2(ρ, [0, T ]).
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Let us consider the following iterated stochastic integrals

S[ϕ, ψ(k)]T,t =

T∫
t

ψ1(t1) . . .

tk−1∫
t

ψk(tk)

tk∫
t

ϕτdM
(k+1)
τ dM

(k)
tk . . . dM

(1)
t1 , (3.36)

S[ψ(k)]T,t =

T∫
t

ψ1(t1) . . .

tk−1∫
t

ψk(tk)dM
(k)
tk . . . dM

(1)
t1 . (3.37)

Here ϕτ ∈ H̃2(ρ, [t, T ]) and ψ1(τ), . . . , ψk(τ) are continuous nonrandom func-

tions at the interval [t, T ], M
(l)
τ =Mτ or M

(l)
τ = τ if τ ∈ [t, T ], l = 1, . . . , k + 1,

Mτ is the martingale defined above.

Let us define the iterated stochastic integral Ŝ[ψ(k)]T,s, 0 ≤ t ≤ s ≤ T,
k ≥ 1 with respect to martingale

Ŝ[ψ(k)]T,s =

T∫
s

ψk(tk)dM
(k)
tk . . .

T∫
t2

ψ1(t1)dM
(1)
t1

by the following recurrence relation

Ŝ[ψ(k)]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ψk(τl)∆M
(k)
τl
Ŝ[ψ(k−1)]T,τl+1

, (3.38)

where k ≥ 1, Ŝ[ψ(0)]T,s
def
= 1, [s, T ] ⊆ [t, T ], here and further ∆M

(i)
τl = M

(i)
τl+1 −

M
(i)
τl , i = 1, . . . , k+1, l = 0, 1, . . . , N − 1, {τl}Nl=0 is the partition of the interval

[t, T ], which satisfies the condition similar to (3.35), another notations are the
same as in (3.36), (3.37).

Further, let us define the iterated stochastic integral Ŝ[ϕ, ψ(k)]T,t, k ≥ 1 of
the form

Ŝ[ϕ, ψ(k)]T,t =

T∫
t

ϕsdM
(k+1)
s Ŝ[ψ(k)]T,s

by the equality

Ŝ[ϕ, ψ(k)]T,t
def
= l.i.m.

N→∞

N−1∑
l=0

ϕτl∆M
(k+1)
τl

Ŝ[ψ(k)]T,τl+1
,

where the sense of notations included in (3.36)–(3.38) is saved.
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Let us formulate the theorem on integration order replacement for the iter-
ated stochastic integrals with respect to martingale, which is the generalization
of Theorem 3.1.

Theorem 3.5 [151] (1999) (also see [1]-[17], [124]). Let ϕτ ∈ H̃2(ρ, [t, T ]),
every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function at the interval
[t, T ], and |ρτ | ≤ K <∞ w. p. 1 for all τ ∈ [t, T ]. Then, the stochastic integral
Ŝ[ϕ, ψ(k)]T,t exists and

S[ϕ, ψ(k)]T,t = Ŝ[ϕ, ψ(k)]T,t w. p. 1.

The proof of Theorem 3.5 is similar to the proof of Theorem 3.1.

Remark 3.2. Let us note that we can propose another variant of the con-
ditions in Theorem 3.5. For example, if we not require the boundedness of the
process ρτ , then it is necessary to require the fulfillment of the following addi-
tional conditions:

1. M{|ρτ |} <∞ for all τ ∈ [t, T ].

2. The process ρτ is independent with the processes ϕτ and Mτ .

Remark 3.3. Note that it is well known the construction of stochastic in-
tegral with respect to the Wiener process with integrable process, which is not
an Fτ -measurable stochastic process — the so-called Stratonovich stochastic in-
tegral [114].

The stochastic integral Ŝ[ϕ, ψ(k)]T,t is also the stochastic integral with in-
tegrable process, which is not an Fτ -measurable stochastic process. However,
under the conditions of Theorem 3.5

S[ϕ, ψ(k)]T,t = Ŝ[ϕ, ψ(k)]T,t w. p. 1,

where S[ϕ, ψ(k)]T,t is a usual iterated stochastic integral with respect to martin-
gale. If, for example, Mτ , τ ∈ [t, T ] is the Wiener process, then the question on
connection between stochastic integral Ŝ[ϕ, ψ(k)]T,t and Stratonovich stochastic
integral is solving as a standard question on connection between Stratonovich
and Itô stochastic integrals [114].

Let us consider several statements, which are the generalizations of theorems
formulated in the previous sections.

Assume that Dk = {(t1, . . . , tk) : t ≤ t1 < . . . < tk ≤ T} and the following
conditions are fulfilled:

BI. ξτ ∈ H̃2(ρ, [t, T ]).
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BII. Φ(t1, . . . , tk−1) is a continuous nonrandom function in the closed domain
Dk−1 (recall that we use the same symbol Dk−1 to denote the open and closed
domains corresponding to the domain Dk−1).

Let us define the following stochastic integrals with respect to martingale

Ŝ[ξ,Φ]
(k)
T,t =

T∫
t

ξtkdM
(k)
tk . . .

T∫
t3

dM
(2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dM
(1)
t1

def
=

def
= l.i.m.

N→∞

N−1∑
l=0

ξτl∆M
(k)
τl

T∫
τl+1

dM
(k−1)
tk−1

. . .

T∫
t3

dM
(2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dM
(1)
t1

for k ≥ 3 and

Ŝ[ξ,Φ]
(2)
T,t =

T∫
t

ξt2dM
(2)
t2

T∫
t2

Φ(t1)dM
(1)
t1

def
=

def
= l.i.m.

N→∞

N−1∑
l=0

ξτl∆M
(2)
τl

T∫
τl+1

Φ(t1)dM
(1)
t1

for k = 2, where the sense of notations included in (3.36)–(3.38) is saved.
Moreover, the stochastic process ξτ , τ ∈ [t, T ] belongs to the class H̃2(ρ, [t, T ]).

In addition, let

S[ξ,Φ]
(k)
T,t =

T∫
t

. . .

tk−1∫
t

Φ(t1, . . . , tk−1)ξtkdM
(k)
tk . . . dM

(1)
t1 , k ≥ 2, (3.39)

where the right-hand side of (3.39) is the iterated stochastic integral with re-
spect to martingale.

Let us introduce the following iterated stochastic integrals with respect to
martingale

S̃[Φ]
(k−1)
T,t =

T∫
t

dM
(k−1)
tk−1

. . .

T∫
t3

dM
(2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dM
(1)
t1

def
=

def
= l.i.m.

N→∞

N−1∑
l=0

∆M (k−1)
τl

T∫
τl+1

dM
(k−2)
tk−2

. . .

T∫
t3

dM
(2)
t2

T∫
t2

Φ(t1, t2, . . . , tk−1)dM
(1)
t1 ,
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S ′[Φ]
(k−1)
T,t =

T∫
t

. . .

tk−2∫
t

Φ(t1, . . . , tk−1)dM
(k−1)
tk−1

. . . dM
(1)
t1 , k ≥ 2.

It is easy to demonstrate similarly to the proof of Theorem 3.5 that under
the condition BII the stochastic integral S̃[Φ]

(k−1)
T,t exists and

S ′[Φ]
(k−1)
T,t = S̃[Φ]

(k−1)
T,t w. p. 1.

In its turn, using this fact we can prove the following theorem similarly to
the proof of Theorem 3.5.

Theorem 3.6 [151] (1999) (also see [1]-[17], [124]). Let the conditions BI,
BII of this section are fulfilled and |ρτ | ≤ K < ∞ w. p. 1 for all τ ∈ [t, T ].

Then, the stochastic integral Ŝ[ξ,Φ]
(k)
T,t exists and for k ≥ 2

S[ξ,Φ]
(k)
T,t = Ŝ[ξ,Φ]

(k)
T,t w. p. 1.

Theorem 3.6 is the generalization of Theorem 3.2 for the case of iterated
stochastic integrals with respect to martingale.

Let us consider two statements.

Theorem 3.7 [151] (1999) (also see [1]-[17], [124]). Let the conditions of
Theorem 3.5 are fulfilled and h(τ) is a continuous nonrandom function at the
interval [t, T ]. Then

T∫
t

ϕτdM
(k+1)
τ h(τ)Ŝ[ψ(k)]T,τ =

T∫
t

ϕτh(τ)dM
(k+1)
τ Ŝ[ψ(k)]T,τ w. p. 1, (3.40)

where the stochastic integrals in (3.40) exist.

Theorem 3.8 [151] (1999) (also see [1]-[17], [124]). Under the conditions
of Theorem 3.5

T∫
t

h(t1)

t1∫
t

ϕτdM
(k+2)
τ dM

(k+1)
t1 Ŝ[ψ(k)]T,t1 =

=

T∫
t

ϕτdM
(k+2)
τ

T∫
τ

h(t1)dM
(k+1)
t1 Ŝ[ψ(k)]T,t1 w. p. 1, (3.41)
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where the stochastic integrals in (3.41) exist.

The proofs of Theorems 3.7 and 3.8 are similar to the proofs of Theorems
3.3 and 3.4 correspondingly.

Remark 3.4. The integration order replacement technique for iterated Itô
stochastic integrals (Theorems 3.1–3.4) has been successfully applied for con-
struction of the so-called unified Taylor–Itô and Taylor–Stratonovich expansions
(see Chapter 4) as well as for proof and development of the mean-square ap-
proximation method for iterated Itô and Stratonovich stochastic integrals based
on generalized multiple Fourier series (see Chapters 1 and 2).



Chapter 4

Four New Forms of the Taylor–Itô and
Taylor–Stratonovich Expansions and
its Application to the High-Order
Strong Numerical Methods for Itô
Stochastic Differential Equations

The problem of the Taylor–Itô and Taylor–Stratonovich expansions of the Itô
stochastic processes in a neighborhood of a fixed time moment is considered
in this chapter. The classical forms of the Taylor–Itô and Taylor–Stratonovich
expansions are transformed to four new representations, which include the min-
imal sets of different types of iterated Itô and Stratonovich stochastic integrals.
Therefore, these representations (the so-called unified Taylor–Itô and Taylor–
Stratonovich expansions) are more convenient for constructing of the high-order
strong numerical methods for Itô SDEs. Explicit one-step strong numerical
schemes with the convergence orders 1.0, 1.5, 2.0, 2.5, and 3.0 based on the
unified Taylor–Itô and Taylor–Stratonovich expansions are derived.

4.1 Introduction

Let (Ω, F, P) be a complete probability space, let {Ft, t ∈ [0, T ]} be a non-
decreasing right-continuous family of σ-algebras of F, and let ft be a standard
m-dimensional Wiener process, which is Ft-measurable for any t ∈ [0, T ]. We

assume that the components f
(i)
t (i = 1, . . . ,m) of this process are independent.

939
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Consider an Itô SDE in the integral form

xt = x0 +

t∫
0

a(xτ , τ)dτ +

t∫
0

B(xτ , τ)dfτ , x0 = x(0, ω). (4.1)

Here xt is some n-dimensional stochastic process satisfying to the Itô SDE
(4.1). The nonrandom functions a : Rn × [0, T ] → Rn, B : Rn × [0, T ] →
Rn×m guarantee the existence and uniqueness (up to stochastic equivalence)
of a strong solution to the equation (4.1) [100]. The second integral on the
right-hand side of (4.1) is interpreted as an Itô stochastic integral. Let x0 be
an n-dimensional random variable, which is F0-measurable and M

{
|x0|2

}
<∞.

Also we assume that x0 and ft − f0 are independent when t > 0.

It is well known [84], [85], [93], [152], [153] (also see [13]) that Itô SDEs are
adequate mathematical models of dynamic systems of different physical nature
that are affected by random perturbations. For example, Itô SDEs are used
as mathematical models in stochastic mathematical finance, hydrology, seis-
mology, geophysics, chemical kinetics, population dynamics, electrodynamics,
medicine and other fields [84], [85], [93], [152], [153] (also see [13]).

Numerical integration of Itô SDEs based on the strong convergence criterion
of approximations [84] is widely used for the numerical simulation of sample
trajectories of solutions to Itô SDEs (which is required for constructing new
mathematical models on the basis of such equations and for the numerical
solution of different mathematical problems connected with Itô SDEs). Among
these problems, we note the following: filtering of signals under influence of
random noises in various statements (linear Kalman–Bucy filtering, nonlinear
optimal filtering, filtering of continuous time Markov chains with a finite space
of states, etc.), optimal stochastic control (including incomplete data control),
testing estimation procedures of parameters of stochastic systems, stochastic
stability and bifurcations analysis [82], [84], [85], [92], [93], [129], [154]-[158].

Exact solutions of Itô SDEs are known in rather rare cases. For this reason
it is necessary to construct numerical procedures for solving these equations.

In this chapter, a promising approach [82], [84], [85], [92], [93] to the nu-
merical integration of Itô SDEs based on the stochastic analogues of the Taylor
formula (Taylor–Itô and Taylor–Stratonovich expansions) [159], [160] (also see
[52], [77], [161]-[165]) is used. This approach uses a finite discretization of the
time variable and the numerical simulation of the solution to the Itô SDE at
discrete time moments using the stochastic analogues of the Taylor formula
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mentioned above. A number of works (e.g., [82]-[85], [92], [93]) describe nu-
merical schemes with the strong convergence orders 1.5, 2.0, 2.5, and 3.0 for Itô
SDEs; however, they do not contain efficient procedures of the mean-square ap-
proximation of the iterated stochastic integrals for the case of multidimensional
nonadditive noise.

In this chapter, we consider the unified Taylor–Itô and Taylor–Stratonovich
expansions [161], [163] (also see [52], [77]) which makes it possible (in contrast
with its classical analogues [84], [159]) to use the minimal sets of iterated Itô and
Stratonovich stochastic integrals; this is a simplifying factor for the numerical
methods implementation. We prove the unified Taylor–Itô expansion [161] with
using of the slightly different approach (which is taken from [163]) in comparison
with the approach from [161]. Moreover, we obtain another (second) version
of the unified Taylor–Itô expansion [81], [164]. In addition we construct two
new forms of the Taylor–Stratonovich expansion (the so-called unified Taylor–
Stratonovich expansions [163]).

It should be noted that in Chapter 5 on the base of the results of Chap-
ters 1, 2 we study methods of numerical simulation of specific iterated Itô and
Stratonovich stochastic integrals of multiplicities 1, 2, 3, 4, 5, and 6 from the
Taylor–Itô and Taylor–Stratonovich expansions. These stochastic integrals are
used in the strong numerical methods for Itô SDEs [82], [84], [85], [92] (also
see [13]). To approximate the iterated Itô and Stratonovich stochastic inte-
grals appearing in the numerical schemes with the strong convergence orders
1.0, 1.5, 2.0, 2.5, and 3.0, the method of generalized multiple Fourier series (see
Chapter 1) and especially method of multiple Fourier–Legendre series will be
applied in Chapter 5. It is important that the method of generalized mul-
tiple Fourier series (Theorems 1.1, 1.16) does not lead to the partitioning of
the integration interval of the iterated Itô and Stratonovich stochastic integrals
under consideration; this interval length is the integration step of the numer-
ical methods used to solve Itô SDEs; therefore, it is already fairly small and
does not need to be partitioned. Computational experiments [1] show that the
numerical simulation for iterated stochastic integrals (in which the interval of
integration is partitioned) leads to unacceptably high computational cost and
accumulation of computation errors. Also note that the Legendre polynomials
have essential advantage (in a number of aspects) over the trigonomentric func-
tions (see Chapter 5) constructing the mean-square approximations of iterated
Itô and Stratonovich stochastic integrals in the framework of the method of
generalized multiple Fourier series (Theorems 1.1, 1.16).
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Let us consider the following iterated Itô and Stratonovich stochastic inte-
grals:

J [ψ(k)]s,t =

s∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (4.2)

J∗[ψ(k)]s,t =

∗∫
t

s

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (4.3)

where 0 ≤ t < s ≤ T , every ψl(τ) (l = 1, . . . , k) is a continuous nonran-

dom function at the interval [0, T ], w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ,

i1, . . . , ik = 0, 1, . . . ,m.

It should be noted that one of the main problems when constructing the
high-order strong numerical methods for Itô SDEs on the base of the Taylor–Itô
and Taylor–Stratonovich expansions is the mean-square approximation of the
iterated Itô and Stratonovich stochastic integrals (4.2) and (4.3). Obviously, in
the absence of procedures for the numerical simulation of stochastic integrals,
the mentioned numerical methods are unrealizable in practice. For this reason,
in Chapter 5 we give the extensive practical material on expansions and mean-
square approximations of iterated Itô and Stratonovich stochastic integrals of
multiplicities 1 to 6 from the Taylor–Itô and Taylor–Stratonovich expansions.
In Chapter 5, the main focus is on approximations based on multiple Fourier–
Legendre series. Such approximations is more effective in comparison with the
trigonometric approximations (see Sect. 5.2) at least for the numerical methods
with the strong convergence order 1.5 and higher [21], [40].

The rest of this Chapter is organized as follows. In Sect. 4.1 (below) we
consider a brief review of publications on the problem of construction of the
Taylor–Itô and Taylor–Stratonovich expansions for the solutions of Itô SDEs.
Sect. 4.2 is devoted to some auxiliary lemmas. In Sect. 4.3 we consider the
classical Taylor–Itô expansion while Sect. 4.4 and Sect. 4.5 are devoted to first
and second forms of the so-called unified Taylor–Itô expansion correspondingly.
The classical Taylor–Stratonovich expansion is considered in Sect. 4.6. First
and second forms of the unified Taylor–Stratonovich expansion are derived in
Sect. 4.7 and Sect. 4.8. In Sect. 4.9 we give a comparative analysis of the unified
Taylor–Itô and Taylor–Stratonovich expansions with the classical Taylor–Itô
and Taylor–Stratonovich expansions. Application of the first form of the unified
Taylor–Itô expansion to the high-order strong numerical methods for Itô SDEs
is considered in Sect. 4.10. In Sect. 4.11 we construct the high-order strong
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numerical methods for Itô SDEs on the base of the first form of the unified
Taylor–Stratonovich expansion.

Let us give a brief review of publications on the problem of construction
of the Taylor–Itô and Taylor–Stratonovich expansions for the solutions of Itô
SDEs. A few variants of a stochastic analog of the Taylor formula have been
obtained in [159], [160] (also see [82], [84]) for the stochastic processes in the
form R(xs, s), where xs is a solution of the Itô SDE (4.1) and R : Rn× [0, T ] →
R is a sufficiently smooth nonrandom function.

The first result in this direction called the Itô–Taylor expansion has been
obtained in [160] (also see [159]). This result gives an expansion of the process
R(xs, s) into a series such that every term (if k > 0) contains the iterated Itô
stochastic integral

s∫
t

. . .

t2∫
t

dw
(i1)
t1 . . . dw

(ik)
tk (4.4)

as a multiplier factor, where 0 ≤ t < s ≤ T, i1, . . . , ik = 0, 1, . . . ,m. Obvi-
ously, the iterated Itô stochastic integral (4.4) is a particular case of (4.2) for
ψ1(τ), . . . , ψk(τ) ≡ 1.

In [159] another expansion of the stochastic process R(xs, s) into a series
has been derived. The iterated Stratonovich stochastic integrals

∗∫
t

s

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(ik)
tk (4.5)

were used instead of the iterated Itô stochastic integrals; the corresponding
expansion was called the Stratonovich–Taylor expansion. In the formula (4.5)
the indices i1, . . . , ik take values 0, 1, . . . ,m.

In [161] the Itô–Taylor expansion [159] is reduced to the interesting and
unexpected form (the so-called unified Taylor–Itô expansion) by special trans-
formations (see Chapter 3). Every term of this expansion (if k > 0) contains
the iterated Itô stochastic integral

s∫
t

(s− tk)
lk . . .

t2∫
t

(s− t1)
l1df

(i1)
t1 . . . df

(ik)
tk , (4.6)

where l1, . . . , lk = 0, 1, 2, . . . and i1, . . . , ik = 1, . . . ,m.
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It is worth to mention another form of the unified Taylor–Itô expansion
[81], [164] (also see [1]-[17]). Terms of the latter expansion contain iterated Itô
stochastic integrals of the form

s∫
t

(t− tk)
lk . . .

t2∫
t

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk , (4.7)

where l1, . . . , lk = 0, 1, 2, . . . and i1, . . . , ik = 1, . . . ,m.

Obviously that some of the iterated Itô stochastic integrals (4.4) or (4.5)
are connected by linear relations, while this is not the case for integrals defined
by (4.6), (4.7). In this sense, the total quantity of stochastic integrals defined
by (4.6) or (4.7) is minimal. Futhermore, in this chapter we construct two
new forms of the Taylor–Stratonovich expansion (the so-called unified Taylor–
Stratonovich expansions) [165] (also see [163]) such that every term (if k > 0)
contains as a multiplier the iterated Stratonovich stochastic integral of one of
two types

∗∫
t

s

(t− tk)
lk . . .

∗∫
t

t2

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk , (4.8)

∗∫
t

s

(s− tk)
lk . . .

∗∫
t

t2

(s− t1)
l1df

(i1)
t1 . . . df

(ik)
tk , (4.9)

where l1, . . . , lk = 0, 1, 2, . . ., i1, . . . , ik = 1, . . . ,m, and k = 1, 2, . . .

It is not difficult to see that for the sets of iterated Stratonovich stochastic
integrals (4.8) and (4.9) the property of minimality (see above) also holds as
for the sets of iterated Itô stochastic integrals (4.6), (4.7).

As we noted above, the main problem in implementation of high-order
strong numerical methods for Itô SDEs is the mean-square approximation of
the iterated stochastic integrals (4.4)–(4.9). Obviously, these stochastic inte-
grals are particular cases of the stochastic integrals (4.2), (4.3).

Taking into account the results of Chapters 1, 2, 3, 5 and the minimal-
ity of the sets of stochastic integrals (4.6)–(4.9), we conclude that the unified
Taylor–Itô and Taylor–Stratonovich expansions based on the iterated stochastic
integrals (4.6)–(4.9) can be useful for constructing of high-order strong numer-
ical methods with the convergence orders 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, . . . for
Itô SDEs.



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series945

4.2 Auxiliary Lemmas

Let (Ω,F,P) be a complete probability space and let f(t, ω)
def
= ft : [0, T ]×Ω →

R be the standard Wiener process defined on the probability space (Ω,F,P).

Consider the family of σ-algebras {Ft, t ∈ [0, T ]} defined on the probability
space (Ω,F,P) and connected with the Wiener process ft in such a way that

1. Fs ⊂ Ft ⊂ F for s < t.

2. The Wiener process ft is Ft-measurable for all t ∈ [0, T ].

3. The process ft+∆− ft for all t ≥ 0, ∆ > 0 is independent with the events
of σ-algebra Ft.

Let us consider the class M2([t, T ]) (t ≥ 0) of random functions ξ(τ, ω)
def
=

ξτ : [t, T ]× Ω → R (see Sect. 1.1.2).

Recall (see Sect. 2.1.1) that the class Qm([t, T ]) (t ≥ 0) consists of Itô
processes ητ , τ ∈ [t, T ] of the form

ητ = ηt +

τ∫
t

asds+

τ∫
t

bsdfs, (4.10)

where (aτ)
m, (bτ)

m ∈ M2([t, T ]) and lim
s→τ

M
{
|bs − bτ |4

}
= 0 for all τ ∈ [t, T ]. The

second integral on the right-hand side of (4.10) is the Itô stochastic integral.

Also note that the definition of the Stratonovich stochastic integral in the
mean-square sense is given by (2.3) (Sect. 2.1.1) and the relation between
Stratonovich and Itô stochastic integrals (see Sect. 2.1.1) has the following form
[114] (also see [84])

∗∫
t

T

F (ητ , τ)dfτ =

T∫
t

F (ητ , τ)dfτ +
1

2

T∫
t

∂F

∂x
(ητ , τ)bτdτ w. p. 1. (4.11)

If the Wiener processes in (4.10) and (4.11) are independent, then

∗∫
t

T

F (ητ , τ)dfτ =

T∫
t

F (ητ , τ)dfτ w. p. 1. (4.12)

Recall that a possible variant of conditions providing the correctness of the
formulas (4.11) and (4.12) consists of the conditions: ητ ∈ Q4([t, T ]), F (ητ , τ) ∈
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M2([t, T ]), F (x, τ) ∈ C2,1(R× [t, T ]), where C2,1(R× [t, T ]) (t ≥ 0) is the space
of functions F (x, τ) : R× [t, T ] → R such that∣∣∣∣∂F∂x (x, τ)

∣∣∣∣ ≤ K,

∣∣∣∣∂2F∂x2 (x, τ)
∣∣∣∣ ≤ K,

∣∣∣∣∂F∂τ (x, τ)
∣∣∣∣ ≤ K,

∣∣∣∣ ∂2F∂τ∂x
(x, τ)

∣∣∣∣ ≤ K

for all x ∈ R and τ ∈ [t, T ], where constant K does not depend on x, τ.

Remark 4.1. Note that if F (x, τ) = F1(x)F2(τ), then it suffices to require
that F (x, τ) be twice differentiable with respect to x (with bounded derivatives)
and continuous with respect to τ (instead of the condition F (x, τ) ∈ C2,1(R ×
[t, T ])).

Also remind that S2([t, T ]) (t ≥ 0) is a subset of M2([t, T ]) and S2([t, T ])
consists of the mean-square continuous random functions (see Sect. 3.1).

Let us apply Theorem 3.1 (see Sect. 3.2) to derive one property for Itô
stochastic integrals.

Lemma 4.1 [14]-[17], [52]. Let h(τ), g(τ), G(τ) : [t, s] → R be continuous
nonrandom functions at the interval [t, s] and let G(τ) be a antiderivative of
the function g(τ). Furthermore, let ξτ ∈ S2([t, s]). Then

s∫
t

g(τ)

τ∫
t

h(θ)

θ∫
t

ξudf
(i)
u df

(j)
θ dτ =

s∫
t

(G(s)−G(θ))h(θ)

θ∫
t

ξudf
(i)
u df

(j)
θ

w. p. 1, where i, j = 1, 2 and f
(1)
τ , f

(2)
τ are independent standard Wiener processes

that are Fτ–measurable for all τ ∈ [t, s].

Proof. Applying Theorem 3.1 two times and Theorem 3.3, we get the
following relations

s∫
t

g(τ)

τ∫
t

h(θ)

θ∫
t

ξudf
(i)
u df

(j)
θ dτ =

s∫
t

ξudf
(i)
u

s∫
u

h(θ)df
(j)
θ

s∫
θ

g(τ)dτ =

= G(s)

s∫
t

ξudf
(i)
u

s∫
u

h(θ)df
(j)
θ −

s∫
t

ξudf
(i)
u

s∫
u

G(θ)h(θ)df
(j)
θ =

= G(s)

s∫
t

h(θ)

θ∫
t

ξudf
(i)
u df

(j)
θ −

s∫
t

G(θ)h(θ)

θ∫
t

ξudf
(i)
u df

(j)
θ =
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=

s∫
t

(G(s)−G(θ))h(θ)

θ∫
t

ξudf
(i)
u df

(j)
θ w. p. 1.

The proof of Lemma 4.1 is completed.

Let us consider an analogue of Lemma 4.1 for Stratonovich stochastic inte-
grals.

Lemma 4.2 [163] (also see [1]-[5], [12]-[17], [52]). Let h(τ), g(τ), G(τ) :
[t, s] → R be continuous nonrandom functions at the interval [t, s] and let G(τ)

be a antiderivative of the function g(τ). Furthermore, let ξ
(l)
τ ∈ Q4([t, s]) and

ξ(l)τ =

τ∫
t

audu+

τ∫
t

budf
(l)
u , l = 1, 2.

Then

s∫
t

g(τ)

∗∫
t

τ

h(θ)

∗∫
t

θ

ξ(l)u df
(i)
u df

(j)
θ dτ =

∗∫
t

s

(G(s)−G(θ))h(θ)
∗∫
t

θ

ξ(l)u df
(i)
u df

(j)
θ (4.13)

w. p. 1, where i, j, l = 1, 2 and f
(1)
τ , f

(2)
τ are independent standard Wiener pro-

cesses that are Fτ–measurable for all τ ∈ [t, s].

Proof. Under the conditions of Lemma 4.2, we can apply the equalities
(4.11) and (4.12) with F (x, θ) ≡ xh(θ) and

ηθ =

∗∫
t

θ

ξ(l)u df
(i)
u ,

since the function xh(θ) is sufficiently smooth (see Remark 4.1) and the follow-
ing obvious inclusions hold: ηθ ∈ Q4([t, s]), ηθh(θ) ∈ M2([t, s]).

Thus, we have the equalities

∗∫
t

τ

h(θ)

∗∫
t

θ

ξ(l)u df
(i)
u df

(j)
θ =

τ∫
t

h(θ)

∗∫
t

θ

ξ(l)u df
(i)
u df

(j)
θ +

1

2
1{i=j}

τ∫
t

h(θ)ξ
(l)
θ dθ, (4.14)

∗∫
t

θ

ξ(l)u df
(i)
u =

θ∫
t

ξ(l)u df
(i)
u +

1

2
1{l=i}

θ∫
t

budu (4.15)
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w. p. 1, where 1A is the indicator of the set A.

Substituting the formulas (4.14) and (4.15) into the left-hand side of the
equality (4.13) and applying Theorem 3.1 twice and Theorem 3.3, we get the
following relations

s∫
t

g(τ)

∗∫
t

τ

h(θ)

∗∫
t

θ

ξ(l)u df
(i)
u df

(j)
θ dτ =

s∫
t

ξ(l)u df
(i)
u

s∫
u

h(θ)df
(j)
θ

s∫
θ

g(τ)dτ+

+
1

2
1{l=i}

s∫
t

budu

s∫
u

h(θ)df
(j)
θ

s∫
θ

g(τ)dτ +
1

2
1{i=j}

s∫
t

h(θ)ξ
(l)
θ dθ

s∫
θ

g(τ)dτ =

= G(s)

 s∫
t

ξ(l)u df
(i)
u

s∫
u

h(θ)df
(j)
θ +

1

2
1{i=j}

s∫
t

h(θ)ξ
(l)
θ dθ+

+
1

2
1{l=i}

s∫
t

budu

s∫
u

h(θ)df
(j)
θ

−

−

 s∫
t

ξ(l)u df
(i)
u

s∫
u

G(θ)h(θ)df
(j)
θ +

1

2
1{i=j}

s∫
t

G(θ)h(θ)ξ
(l)
θ dθ+

+
1

2
1{l=i}

s∫
t

budu

s∫
u

h(θ)G(θ)df
(j)
θ

 =

= G(s)

 s∫
t

h(θ)

θ∫
t

ξ(l)u df
(i)
u df

(j)
θ +

1

2
1{i=j}

s∫
t

h(θ)ξ
(l)
θ dθ+

+
1

2
1{l=i}

s∫
t

h(θ)

θ∫
t

bududf
(j)
θ

−

−

 s∫
t

G(θ)h(θ)

θ∫
t

ξ(l)u df
(i)
u df

(j)
θ +

1

2
1{i=j}

s∫
t

G(θ)h(θ)ξ
(l)
θ dθ+

+
1

2
1{l=i}

s∫
t

h(θ)G(θ)

θ∫
t

bududf
(j)
θ

 (4.16)
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w. p. 1. Applying successively the formulas (4.14), (4.15) together with the
formula (4.14) in which h(θ) replaced by G(θ)h(θ) as well as the relation (4.16),
we obtain the equality (4.13). The proof of Lemma 4.2 is completed.

4.3 The Taylor–Itô Expansion

In this section, we use the Taylor–Itô expansion [159] and introduce some nec-
essary notations. At that we will use the original notations introduced by the
author of this book.

Let C2,1(Rn×[0, T ])
def
= L be the space of functions R(x, t) : Rn×[0, T ] → R

with the following property: these functions are continuous and twice continu-
ously differentiable in x and have one continuous derivative in t. We consider
the following operators on the space L

L =
∂

∂t
+

n∑
i=1

a(i)(x, t)
∂

∂x(i)
+

+
1

2

m∑
j=1

n∑
l,i=1

B(lj)(x, t)B(ij)(x, t)
∂2

∂x(l)∂x(i)
, (4.17)

G
(i)
0 =

n∑
j=1

B(ji)(x, t)
∂

∂x(j)
, i = 1, . . . ,m, (4.18)

where x(j) is the jth component of x, a(j)(x, t) is the jth component of a(x, t),
and B(ij)(x, t) is the ijth element of B(x, t).

By the Itô formula, we have the equality

R(xs, s) = R(xt, t) +

s∫
t

LR(xτ , τ)dτ +
m∑
i=1

s∫
t

G
(i)
0 R(xτ , τ)df

(i)
τ (4.19)

w. p. 1, where xt is a strong solution of the Itô SDE (4.1), 0 ≤ t < s ≤ T.
In the formula (4.19) it is assumed that the functions a(x, t), B(x, t), and

R(x, t) satisfy the following condition: LR(xτ , τ), G
(i)
0 R(xτ , τ) ∈ M2([0, T ]) for

i = 1, . . . ,m.

Introduce the following notations

(k)A =

∥∥∥∥∥A(i1...ik)

∥∥∥∥∥
m1 ... mk

i1=1,...,ik=1

, m1, . . . ,mk ≥ 1, (4.20)
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(k+l)A
l· (l)B(k) =



∥∥∥∥∥ m1∑
i1=1

. . .
ml∑
il=1

A(i1...ik+l)B(i1...il)

∥∥∥∥∥
ml+1 ... ml+k

il+1=1,...,il+k=1

for k ≥ 1

m1∑
i1=1

. . .
ml∑
il=1

A(i1...il)B(i1...il) for k = 0

,

∥∥∥∥∥Ak+1D
(ik)
k Ak . . . A2D

(i1)
1 A1R(x, t)

∥∥∥∥∥
m1 ... mk

i1=1,...,ik=1

= (k)Ak+1DkAk . . . A2D1A1R(x, t),

(4.21)

where Ap and D
(iq)
q are operators defined on the space L for p = 1, . . . , k + 1,

q = 1, . . . , k, and iq = 1, . . . ,mq. It is assumed that the left-hand side of (4.21)

exists. The symbol
0· is treated as the usual multiplication. If ml = 0 in (4.20)

for some l ∈ {1, . . . , k}, then the right-hand side of (4.20) is treated as∥∥∥∥∥A(i1...il−1il+1...ik)

∥∥∥∥∥
m1 ... ml−1 ml+1 ... mk

i1=1,...,il−1=1,il+1=1,...,ik=1

,

(shortly, (k−1)A).

We also introduce the following notations∥∥∥∥∥Q(il)
λl
. . . Q

(i1)
λ1
R(x, t)

∥∥∥∥∥
mλ1 ... mλl

i1=λ1,...,il=λl

def
= (pl)Qλl . . . Qλ1R(x, t),

(pk)J(λk...λ1)s,t =

∥∥∥∥∥J (ik...i1)
(λk...λ1)s,t

∥∥∥∥∥
mλ1 ... mλk

i1=λ1,...,ik=λk

,

Mk =

{
(λk, . . . , λ1) : λl = 1 or λl = 0; l = 1, . . . , k

}
, k ≥ 1,

J
(ik...i1)
(λk...λ1)s,t

=

s∫
t

. . .

t2∫
t

dw
(ik)
t1 . . . dw

(i1)
tk , k ≥ 1,

where λl = 1 or λl = 0, Q
(il)
λl

= L and il = 0 for λl = 0, Q
(il)
λl

= G
(il)
0 and

il = 1, . . . ,m for λl = 1,

pl =
l∑

j=1

λj for l = 1, . . . , r + 1, r ∈ N,
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w
(i)
τ (i = 1, . . . ,m) are Fτ -measurable for all τ ∈ [0, T ] independent standard

Wiener processes and w
(0)
τ = τ.

Applying (4.19) to the process R(xs, s) repeatedly, we obtain the following
Taylor–Itô expansion [159]

R(xs, s) = R(xt, t) +
r∑

k=1

∑
(λk,...,λ1)∈Mk

(pk)Qλk . . . Qλ1R(xt, t)
pk· (pk)J(λk...λ1)s,t+

+(Dr+1)s,t (4.22)

w. p. 1, where s, t ∈ [0, T ], s > t,

(Dr+1)s,t =

=
∑

(λr+1,...,λ1)∈Mr+1

s∫
t

. . .

 t2∫
t

(pr+1)Qλr+1
. . . Qλ1R(xt1, t1)

λr+1· dwt1

 . . .
λ1· dwtr+1

.

(4.23)

It is assumed that the right-hand sides of (4.22), (4.23) exist.

A possible variant of the conditions, under which the right-hand sides of
(4.22), (4.23) exist is as follows

(i) Q
(il)
λl
. . . Q

(i1)
λ1
R(x, t) ∈ L for all (λl, . . . , λ1) ∈

r⋃
g=1

Mg;

(ii) Q
(il)
λl
. . . Q

(i1)
λ1
R(xτ , τ) ∈ M2([0, T ]) for all (λl, . . . , λ1) ∈

r+1⋃
g=1

Mg.

Let us rewrite the expansion (4.22) in the another form

R(xs, s) = R(xt, t)+
r∑

k=1

∑
(λk,...,λ1)∈Mk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

Q
(ik)
λk

. . . Q
(i1)
λ1
R(xt, t)J

(ik...i1)
(λk...λ1)s,t

+

+(Dr+1)s,t w. p. 1.

Denote

Grk =

{
(λk, . . . , λ1) : r + 1 ≤ 2k − λ1 − . . .− λk ≤ 2r

}
,

Eqk =

{
(λk, . . . , λ1) : 2k − λ1 − . . .− λk = q

}
,

where λl = 1 or λl = 0 (l = 1, . . . , k).
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The Taylor–Itô expansion ordered according to the order of smallness (in
the mean-square sense when s ↓ t) of its terms has the form

R(xs, s) = R(xt, t)+

+
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

Q
(ik)
λk

. . . Q
(i1)
λ1
R(xt, t)J

(ik...i1)
(λk...λ1)s,t

+ (Hr+1)s,t (4.24)

w. p. 1, where

(Hr+1)s,t =
r∑

k=1

∑
(λk,...,λ1)∈Grk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

Q
(ik)
λk

. . . Q
(i1)
λ1
R(xt, t)J

(ik...i1)
(λk...λ1)s,t

+(Dr+1)s,t.

(4.25)

4.4 The First Form of the Unified Taylor–Itô Expansion

In this section, we transform the right-hand side of (4.22) by Theorem 3.1 and
Lemma 4.1 to a representation including the iterated Itô stochastic integrals
(4.7).

Denote

I
(i1...ik)
l1...lks,t

=

s∫
t

(t− tk)
lk . . .

t2∫
t

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk for k ≥ 1 (4.26)

and
I
(i1...ik)
l1...lks,t

= 1 for k = 0,

where i1, . . . , ik = 1, . . . ,m. Moreover, let

(k)Il1...lks,t =

∥∥∥∥∥I(i1...ik)l1...lks,t

∥∥∥∥∥
m

i1,...,ik=1

,

G(i)
p

def
=

1

p

(
G

(i)
p−1L− LG

(i)
p−1

)
, p = 1, 2, . . . , i = 1, . . . ,m, (4.27)

where L and G
(i)
0 , i = 1, . . . ,m are determined by the equalities (4.17), (4.18).

Denote

Aq
def
=

{
(k, j, l1, . . . , lk) : k + j +

k∑
p=1

lp = q; k, j, l1, . . . , lk = 0, 1, . . .

}
,
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l1

. . . G
(ik)
lk
LjR(x, t)

∥∥∥∥∥
m

i1,...,ik=1

def
= (k)Gl1 . . . GlkL

jR(x, t),

LjR(x, t)
def
=


L . . . L︸ ︷︷ ︸

j

R(x, t) for j ≥ 1

R(x, t) for j = 0

.

Theorem 4.1. Let conditions (i), (ii) be satisfied. Then for any s, t ∈ [0, T ]
such that s > t and for any positive integer r, the following expansion takes
place w. p. 1

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
LjR(xt, t)I

(i1...ik)
l1...lks,t

+ (Dr+1)s,t ,

(4.28)

where (Dr+1)s,t is defined by (4.23).

Proof. We claim that∑
(λq,...,λ1)∈Mq

(pq)Qλq . . . Qλ1R(xt, t)
pq· (pq)J(λq...λ1)s,t =

=
∑

(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
LjR(xt, t)I

(i1...ik)
l1...lks,t

(4.29)

w. p. 1. The equality (4.29) is valid for q = 1. Assume that (4.29) is valid for
some q > 1. In this case, using the induction hypothesis, we obtain∑

(λq+1,...,λ1)∈Mq+1

(pq+1)Qλ1 . . . Qλq+1
R(xt, t)

pq+1· (pq+1)J(λ1...λq+1)s,t =

=
∑

λq+1∈{1, 0}

s∫
t

∑
(λq,...,λ1)∈Mq

(
(pq+1)Qλ1 . . . Qλq+1

R(xt, t)
pq· (pq)J(λ1...λq)θ,t

)
λq+1· dwθ =

=
∑

λq+1∈{1, 0}

s∫
t

∑
(k,j,l1,...,lk)∈Aq

(θ − t)j

j!
×
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×

(
(k+λq+1)Gl1 . . . GlkL

jQλq+1
R(xt, t)

k· (k)Il1...lks,t

)
λq+1· dwθ =

=
∑

(k,j,l1,...,lk)∈Aq

(k)Gl1 . . . GlkL
j+1R(xt, t)

k·
s∫
t

(θ − t)j

j!
(k)Il1...lkθ,tdθ+

+

(k+1)Gl1 . . . GlkL
jG0R(xt, t)

k·
s∫
t

(θ − t)j

j!
(k)Il1...lkθ,t

 1· dfθ

 (4.30)

w. p. 1.

Using Lemma 4.1, we obtain

s∫
t

(θ − t)j

j!
(k)Il1...lkθ,tdθ =

=
1

(j + 1)!


(s− t)j+1 for k = 0

(s− t)j+1 · (k)Il1...lks,t − (−1)j+1 · (k)Il1...lk−1 lk+j+1s,t for k > 0

(4.31)

w. p. 1. In addition (see (4.26)) we get

s∫
t

(θ − t)j

j!
I
(i1...ik)
l1...lkθ,t

df
(ik+1)
θ =

(−1)j

j!
I
(i1...ikik+1)
l1...lkjs,t

(4.32)

in the notations just introduced. Substitute (4.31) and (4.32) into the formula
(4.30). Grouping summands in the obtained expression with equal lower indices
at iterated Itô stochastic integrals and using (4.27) as well as the equality

G(i)
p R(x, t) =

1

p!

p∑
q=0

(−1)qCq
pL

qG
(i)
0 L

p−qR(x, t), Cq
p =

p!

q!(p− q)!
(4.33)

(this equality follows from (4.27)), we note that the obtained expression equals
to ∑

(k,j,l1,...,lk)∈Aq+1

(s− t)j

j!
(k)Gl1 . . . GlkL

j{ηt}
k· (k)Il1...lks,t

w. p. 1. Summing the equalities (4.29) for q = 1, 2, . . . , r and applying the
formula (4.22), we obtain the expression (4.28). The proof is completed.
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Let us order terms of the expansion (4.28) according to their smallness
orders as s ↓ t in the mean-square sense

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
LjR(xt, t)I

(i1...ik)
l1...lks,t

+ (Hr+1)s,t

(4.34)

w. p. 1, where

(Hr+1)s,t =
∑

(k,j,l1,...,lk)∈Ur

(s− t)j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
LjR(xt, t)I

(i1...ik)
l1...lks,t

+

+(Dr+1)s,t ,

Dq =

{
(k, j, l1, . . . , lk) : k + 2

(
j +

k∑
p=1

lp

)
= q; k, j, l1, . . . , lk = 0, 1, . . .

}
,

(4.35)

Ur =

{
(k, j, l1, . . . , lk) : k + j +

k∑
p=1

lp ≤ r,

k + 2

(
j +

k∑
p=1

lp

)
≥ r + 1; k, j, l1, . . . , lk = 0, 1, . . .

}
, (4.36)

and (Dr+1)s,t is defined by (4.23). Note that the remainder term (Hr+1)s,t in
(4.34) has a higher order of smallness in the mean-square sense as s ↓ t than
the terms of the main part of the expansion (4.34).

4.5 The Second Form of the Unified Taylor–Itô Expan-

sion

Consider iterated Itô stochastic integrals of the form

J
(i1...ik)
l1...lks,t

=

s∫
t

(s− tk)
lk . . .

t2∫
t

(s− t1)
l1df

(i1)
t1 . . . df

(ik)
tk for k ≥ 1
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and
J
(i1...ik)
l1...lks,t

= 1 for k = 0,

where i1, . . . , ik = 1, . . . ,m.

The additive property of stochastic integrals and the Newton binomial for-
mula imply the following equality

I
(i1...ik)
l1...lks,t

=

l1∑
j1=0

. . .

lk∑
jk=0

k∏
g=1

C
jg
lg
(t− s)l1+...+lk−j1−...−jk J

(i1...ik)
j1...jks,t

w. p. 1, (4.37)

where

Ck
l =

l!

k!(l − k)!

is the binomial coefficient. Thus, the Taylor–Itô expansion of the process ηs =
R(xs, s), s ∈ [0, T ] can be constructed either using the iterated stochastic in-

tegrals I
(i1...ik)
l1...lks,t

similarly to the previous section or using the iterated stochastic

integrals J
(i1...ik)
l1...lks,t

. This is the main subject of this section.

Denote ∥∥∥∥∥J (i1...ik)
l1...lks,t

∥∥∥∥∥
m

i1,...,ik=1

def
= (k)Jl1...lks,t,∥∥∥∥∥LjG(i1)

l1
. . . G

(ik)
lk
R(x, t)

∥∥∥∥∥
m

i1,...,ik=1

def
= (k)LjGl1 . . . GlkR(x, t).

Theorem 4.2. Let conditions (i), (ii) be satisfied. Then for any s, t ∈ [0, T ]
such that s > t and for any positive integer r, the following expansion is valid
w. p. 1

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

LjG
(i1)
l1

. . . G
(ik)
lk
R(xt, t)J

(i1...ik)
l1...lks,t

+ (Dr+1)s,t ,

(4.38)

where (Dr+1)s,t is defined by (4.23).

Proof. To prove the theorem, we check the equalities∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

LjG
(i1)
l1

. . . G
(ik)
lk
R(xt, t)J

(i1...ik)
l1...lks,t

=
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=
∑

(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
LjR(xt, t)I

(i1...ik)
l1...lks,t

w. p. 1 (4.39)

for q = 1, 2, . . . , r. To check (4.39), substitute the expression (4.37) into the
right-hand side of (4.39) and then use the formulas (4.27), (4.33).

Let us order terms of the expansion (4.38) according to their smallness
orders as s ↓ t in the mean-square sense

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

LjG
(i1)
l1

. . . G
(ik)
lk
R(xt, t)J

(i1...ik)
l1...lks,t

+ (Hr+1)s,t

w. p. 1, where

(Hr+1)s,t =
∑

(k,j,l1,...,lk)∈Ur

(s− t)j

j!

m∑
i1,...,ik=1

LjG
(i1)
l1

. . . G
(ik)
lk
R(xt, t)J

(i1...ik)
l1...lks,t

+

+(Dr+1)s,t .

The remainder term (Dr+1)s,t is defined by (4.23); the sets Dq and Ur are
defined by (4.35) and (4.36), respectively. Finally, we note that the convergence
w. p. 1 of the truncated Taylor–Itô expansion (4.22) (without the remainder
term (Dr+1)s,t) to the process R(xs, s) as r → ∞ for all s, t ∈ [0, T ] such
that s > t and T < ∞ has been proved in [84] (Proposition 5.9.2). Since the
expansions (4.28) and (4.38) are obtained from the Taylor–Itô expansion (4.22)
without any additional conditions, the truncated expansions (4.28) and (4.38)
(without the reminder term (Dr+1)s,t) under the conditions of Proposition 5.9.2
[84] converge to the process R(xs, s) w. p. 1 as r → ∞ for all s, t ∈ [0, T ] such
that s > t and T <∞.

4.6 The Taylor–Stratonovich Expansion

In this section, we use the Taylor–Stratonovich expansion [159] and introduce
some necessary notations. At that we will use the original notations introduced
by the author of this book.

Let us consider two classic results.
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Proposition 4.1 [100]. Suppose that the following conditions are satisfied.

AI. The functions a(x, t), Bj(x, t) : Rn × [0, T ] → Rn (j = 1, . . . ,m) are
measurable for all (x, t) ∈ Rn × [0, T ], where Bj(x, t) is the jth column of the
matrix B(x, t) (see (4.1)).

AII. For all x, y ∈ Rn there exists a constant K <∞ such that

|a(x, t)− a(y, t)|+
m∑
j=1

|Bj(x, t)−Bj(y, t)| ≤ K |x− y| ,

|a(x, t)|2 +
m∑
j=1

|Bj(x, t)|2 ≤ K2
(
1 + |x|2

)
,

where |·| is the Euclidean norm of the vector.

AIII. A random variable x0 is F0-measurable and M
{
|x0|2

}
<∞.

Then there exists a unique (up to stochastic equivalence) and continuous
w. p. 1 strong solution of the Itô SDE (4.1).

Proposition 4.2 [84]. Suppose that the conditions AI–AIII (see Proposi-
tion 4.1) are satisfied and M

{
|xt0|

2n} <∞ (n ≥ 1). Then

M
{
|xt|2n

}
≤
(
1 +M

{
|xt0|

2n})eC(t−t0),
M
{
|xt − xt0|

2n} ≤ C1

(
1 +M

{
|xt0|

2n})(t− t0)
neC(t−t0),

where xt is the solution of the Itô SDE (4.1), t ∈ [t0, T ], T < ∞, constant C1

(C1 ∈ (0,∞)) depends only on n,K, T − t0, C = 2n(2n + 1)K2, K < ∞ is a
constant.

Assume that R(x, t) ∈ L, LR(xτ , τ), G
(i)
0 R(xτ , τ) ∈ M2([0, T ]) for i = 1, . . . ,

m and consider the Itô formula (4.19).

In addition, suppose that the function G
(i)
0 R(x, t) (i = 1, . . . ,m) is such

that the formulas (4.11) and (4.12) can be applied. For example, assume that

1. G
(i)
0 R(x, t) ∈ L, i = 1, . . . ,m.

2. For all x,y ∈ Rn, t, s ∈ [0, T ], i1, i2 = 1, . . . ,m and for some ν > 0∣∣∣G(i2)
0 G

(i1)
0 R(x, t)−G

(i2)
0 G

(i1)
0 R(y, t)

∣∣∣ ≤ K1 |x− y| ,∣∣∣G(i2)
0 G

(i1)
0 R(x, t)

∣∣∣+ ∣∣∣LG(i1)
0 R(x, t)

∣∣∣ ≤ K1 (1 + |x|) ,∣∣∣G(i2)
0 G

(i1)
0 R(x, s)−G

(i2)
0 G

(i1)
0 R(x, t)

∣∣∣ ≤ K1 |s− t|ν (1 + |x|) ,
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where K1 <∞ is a constant.

3. Conditions AI, AII are fulfilled (see Proposition 4.1).

4. M{|x0|8} <∞.

Indeed, using the above conditions, Proposition 4.2 and the elementary
inequality (a+ b)2 ≤ 2a2 + 2b2, we obtain

M

{∣∣∣G(i2)
0 G

(i1)
0 R(xs, s)−G

(i2)
0 G

(i1)
0 R(xt, t)

∣∣∣4} ≤

≤ 8M

{∣∣∣G(i2)
0 G

(i1)
0 R(xs, s)−G

(i2)
0 G

(i1)
0 R(xt, s)

∣∣∣4}+

+8M

{∣∣∣G(i2)
0 G

(i1)
0 R(xt, s)−G

(i2)
0 G

(i1)
0 R(xt, t)

∣∣∣4} ≤

≤ 8K4
1M
{
|xs − xt|4

}
+ 8K4

1 |s− t|4ν M
{(

1 + |xt|
)4} ≤

≤ C2 |s− t|2 + C3 |s− t|4ν → 0 if s− t→ 0, (4.40)

M

{∣∣∣G(i2)
0 G

(i1)
0 R(xs, s)

∣∣∣8} ≤ K8
1M
{(

1 + |xs|
)8} ≤

≤ C4

(
1 +M

{
|xs|8

})
≤ C5

(
1 +

(
1 +M

{
|x0|8

})
eCs
)
<∞, (4.41)

where C2, . . . , C5 <∞ are constants, t, s ∈ [0, T ].

Analogously, we get

M

{∣∣∣LG(i1)
0 R(xs, s)

∣∣∣8} <∞, s ∈ [0, T ]. (4.42)

Applying the Itô formula, we obtain w. p. 1

R(xs, s) = R(xt, t) +

s∫
t

LR(xτ , τ)dτ +
m∑
i1=1

s∫
t

G
(i1)
0 R(xτ , τ)df

(i1)
τ , (4.43)

G
(i1)
0 R(xs, s) = G

(i1)
0 R(xt, t) +

s∫
t

LG
(i1)
0 R(xτ , τ)dτ+

+
m∑
i2=1

s∫
t

G
(i2)
0 G

(i1)
0 R(xτ , τ)df

(i2)
τ , (4.44)
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where i1, i2 = 1, . . . ,m.

Thus, using (4.40)–(4.42), (4.11) and (4.12), we have

s∫
t

G
(i)
0 R(xτ , τ)df

(i)
τ =

∗∫
t

s

G
(i)
0 R(xτ , τ)df

(i)
τ − 1

2

s∫
t

G
(i)
0 G

(i)
0 R(xτ , τ)dτ (4.45)

w. p. 1, where s, t ∈ [0, T ], s > t, i = 1, . . . ,m.

Using the relation (4.45), let us write (4.43) in the following form

R(xs, s) = R(xt, t)+

s∫
t

L̄R(xτ , τ)dτ+
m∑
i=1

∗∫
t

s

G
(i)
0 R(xτ , τ)df

(i)
τ w. p. 1, (4.46)

where

L̄R(x, t) = LR(x, t)− 1

2

m∑
i=1

G
(i)
0 G

(i)
0 R(x, t). (4.47)

Introduce the following notations∥∥∥∥∥D(il)
λl
. . . D

(i1)
λ1
R(x, t)

∥∥∥∥∥
mλ1 ... mλl

i1=λ1,...,il=λl

def
= (pl)Dλl . . . Dλ1R(x, t),

(pk)J∗
(λk...λ1)s,t

=

∥∥∥∥∥J∗(ik...i1)
(λk...λ1)s,t

∥∥∥∥∥
mλ1 ... mλk

i1=λ1,...,ik=λk

,

Mk =

{
(λk, . . . , λ1) : λl = 1 or λl = 0; l = 1, . . . , k

}
, k ≥ 1,

J
∗(ik...i1)
(λk...λ1)s,t

=

∗∫
t

s

. . .

∗∫
t

t2

dw
(ik)
t1 . . . dw

(i1)
tk , k ≥ 1,

where λl = 1 or λl = 0, D
(il)
λl

= L̄ and il = 0 for λl = 0, D
(il)
λl

= G
(il)
0 and

il = 1, . . . ,m for λl = 1,

pl =
l∑

j=1

λj for l = 1, . . . , r + 1, r ∈ N,

w
(i)
τ (i = 1, . . . ,m) are Fτ -measurable for all τ ∈ [0, T ] independent standard

Wiener processes and w
(0)
τ = τ.



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series961

Applying the formula (4.46) to the process R(xs, s) repeatedly, we obtain
the following Taylor–Stratonovich expansion [159]

R(xs, s) = R(xt, t) +
r∑

k=1

∑
(λk,...,λ1)∈Mk

(pk)Dλk . . . Dλ1R(xt, t)
pk· (pk)J∗

(λk...λ1)s,t
+

+(Dr+1)s,t (4.48)

w. p. 1, where s, t ∈ [0, T ], s > t,

(Dr+1)s,t =

=
∑

(λr+1,...,λ1)∈Mr+1

∗∫
t

s

. . .

( ∗∫
t

t2

(pr+1)Dλr+1
. . . Dλ1R(xt1, t1)

λr+1· dwt1

)
. . .

λ1· dwtr+1
.

(4.49)

Let us rewrite the expansion (4.48) in another form w. p. 1

R(xs, s) = R(xt, t)+

+
r∑

k=1

∑
(λk,...,λ1)∈Mk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

+(Dr+1)s,t . (4.50)

Denote

Grk =
{
(λk, . . . , λ1) : r + 1 ≤ 2k − λ1 − . . .− λk ≤ 2r

}
,

Eqk =
{
(λk, . . . , λ1) : 2k − λ1 − . . .− λk = q

}
,

where λl = 1 or λl = 0 (l = 1, . . . , k).

Let us order terms of the Taylor–Stratonovich expansion (4.48) or (4.50)
according to their smallness orders as s ↓ t in the mean-square sense

R(xs, s) = R(xt, t)+

+
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

+(Hr+1)s,t (4.51)

w. p. 1, where

(Hr+1)s,t =
r∑

k=1

∑
(λk,...,λ1)∈Grk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

+
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+(Dr+1)s,t . (4.52)

The following two questions seem interesting.

1. Under what conditions do the right-hand sides of the formulas (4.51)
and (4.52) exist for r ≥ 2?

2. Is it possible to obtain another representation of the remainder term
(4.52) for r ≥ 2?

Below we will provide compelling arquments in favor of the following two
facts.

(A). First, one can construct the Taylor–Stratonovich expansion (4.51) (r ≥
2) in such a way that its remainder term will coincide w. p. 1 with the remainder
term (4.25) (r ≥ 2) of the Taylor–Itô expansion (4.24) (r ≥ 2).

(B). Second, the truncated Taylor–Stratonovich expansion (4.51) (r ≥ 2)
(without the remainder term (4.52) (r ≥ 2)) will coincide w. p. 1 with the
truncated Taylor–Itô expansion (4.24) (r ≥ 2) (without the remainder term
(4.25) (r ≥ 2)).

This means that the right-hand side of (4.51) (r ≥ 2) (in which the remain-
der term will have the form (4.25) (r ≥ 2)) will exist under the conditions (i),
(ii) (see Sect. 4.3).

Let us begin our reasoning with Theorem 2.12 (see Sect. 2.4.1). This the-
orem allows us to represent the iterated Stratonovich stochastic integral of
multiplicity k (k ∈ N) as a sum of iterated Itô stochastic integrals and its
mathematical expectation. It is obvious that it is possible to obtain an in-
verse formula that will express the iterated Itô stochastic integral (2.374) as a
sum of iterated Stratonovich stochastic integrals (2.373). Below we present the
corresponding proposition.

Proposition 4.3. Suppose that every ψl(τ) (l = 1, . . . , k) is a continuous
function at the interval [t, T ]. Then, the following relation between iterated Itô
and Stratonovich stochastic integrals

J [ψ(k)]T,t = J∗[ψ(k)]T,t+

[k/2]∑
r=1

(−1)r

2r

∑
(sr,...,s1)∈Ak,r

J∗[ψ(k)]sr,...,s1T,t w. p. 1 (4.53)

is correct, where
∑
∅

is supposed to be equal to zero, J [ψ(k)]T,t and J
∗[ψ(k)]T,t are

defined by (2.374) and (2.373), respectively,
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J∗[ψ(k)]sl,...,s1T,t
def
=

l∏
p=1

1{isp=isp+1 ̸=0} ×

×
∗∫
t

T

ψk(tk) . . .

∗∫
t

tsl+3

ψsl+2(tsl+2)

tsl+2∫
t

ψsl(tsl+1)ψsl+1(tsl+1)×

×
∗∫
t

tsl+1

ψsl−1(tsl−1) . . .

∗∫
t

ts1+3

ψs1+2(ts1+2)

ts1+2∫
t

ψs1(ts1+1)ψs1+1(ts1+1)×

×
∗∫
t

ts1+1

ψs1−1(ts1−1) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(is1−1)
ts1−1

dts1+1dw
(is1+2)
ts1+2

. . .

. . . dw
(isl−1)
tsl−1

dtsl+1dw
(isl+2)
tsl+2

. . . dw
(ik)
tk ,

where

Ak,l =
{
(sl, . . . , s1) : sl > sl−1 + 1, . . . , s2 > s1 + 1, sl, . . . , s1 = 1, . . . , k − 1

}
,

(sl, . . . , s1) ∈ Ak,l, l = 1, . . . , [k/2] , is = 0, 1, . . . ,m, s = 1, . . . , k,

[x] is an integer part of a real number x, 1A is the indicator of the set A.

For example, from Proposition 4.3 for k = 1, 2, 3, 4 we obtain the following
equalities w. p. 1

T∫
t

ψ1(t1)dw
(i1)
t1 =

∗∫
t

T

ψ1(t1)dw
(i1)
t1 ,

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 −

−1

2
1{i1=i2 ̸=0}

T∫
t

ψ2(t2)ψ1(t2)dt2,

T∫
t

ψ3(t3) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(i3)
t3 =

∗∫
t

T

ψ3(t3) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i3)
t3 −
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−1

2
1{i1=i2 ̸=0}

∗∫
t

T

ψ3(t3)

t3∫
t

ψ2(t2)ψ1(t2)dt2dw
(i3)
t3 −

−1

2
1{i2=i3 ̸=0}

T∫
t

ψ3(t3)ψ2(t3)

∗∫
t

t3

ψ1(t1)dw
(i1)
t1 dt3,

T∫
t

ψ4(t4) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(i4)
t4 =

∗∫
t

T

ψ4(t4) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(i4)
t4 −

−1

2
1{i1=i2 ̸=0}

∗∫
t

T

ψ4(t4)

∗∫
t

t4

ψ3(t3)

t3∫
t

ψ1(t2)ψ2(t2)dt2dw
(i3)
t3 dw

(i4)
t4 −

−1

2
1{i2=i3 ̸=0}

∗∫
t

T

ψ4(t4)

t4∫
t

ψ3(t3)ψ2(t3)

∗∫
t

t3

ψ1(t1)dw
(i1)
t1 dt3dw

(i4)
t4 −

−1

2
1{i3=i4 ̸=0}

T∫
t

ψ4(t4)ψ3(t4)

∗∫
t

t4

ψ2(t2)

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 dt4+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

ψ4(t4)ψ3(t4)

t4∫
t

ψ2(t2)ψ1(t2)dt2dt4

Further, using Proposition 4.3, we obtain for r ≥ 2

R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

Q
(ik)
λk

. . . Q
(i1)
λ1
R(xt, t)J

(ik...i1)
(λk...λ1)s,t

=

= R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

(4.54)

w. p. 1, where notations are the same as in (4.24), (4.51). Thus, (A) and (B)
take place.
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4.7 The First Form of the Unified Taylor–Stratonovich

Expansion

In this section, we transform the right-hand side of (4.48) by Theorem 3.1 and
Lemma 4.2 to a representation including the iterated Stratonovich stochastic
integrals (4.8). Moreover, we will use the remainder term (Dr+1)s,t of the form
(4.49).

Denote

I
∗(i1...ik)
l1...lks,t

=

∗∫
t

s

(t− tk)
lk . . .

∗∫
t

t2

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk for k ≥ 1 (4.55)

and
I
∗(i1...ik)
l1...lks,t

= 1 for k = 0,

where i1, . . . , ik = 1, . . . ,m.

Futhermore, let

(k)I∗l1...lks,t =

∥∥∥∥∥I∗(i1...ik)l1...lks,t

∥∥∥∥∥
m

i1,...,ik=1

,

Ḡ(i)
p

def
=

1

p

(
Ḡ

(i)
p−1L̄− L̄Ḡ

(i)
p−1

)
, p = 1, 2, . . . , i = 1, . . . ,m, (4.56)

where Ḡ
(i)
0

def
= G

(i)
0 , i = 1, . . . ,m. The operators L̄ and G

(i)
0 , i = 1, . . . ,m are

determined by the equalities (4.17), (4.18), and (4.47).

Denote

Aq
def
=

{
(k, j, l1, . . . , lk) : k + j +

k∑
p=1

lp = q; k, j, l1, . . . , lk = 0, 1, . . .

}
,

∥∥∥∥∥Ḡ(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(x, t)

∥∥∥∥∥
m

i1,...,ik=1

def
= (k)Ḡl1 . . . ḠlkL̄

jR(x, t),

L̄jR(x, t)
def
=


L̄ . . . L̄︸ ︷︷ ︸

j

R(x, t) for j ≥ 1

R(x, t) for j = 0

.
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Theorem 4.3 [163] (also see [1]-[17], [52], [165]). Suppose that sufficient
conditions are satisfied under which the right-hand sides of (4.48), (4.49) exist.
Then for any s, t ∈ [0, T ] such that s > t and for any positive integer r, the
following expansion takes place w. p. 1

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

+ (Dr+1)s,t ,

(4.57)

where (Dr+1)s,t is defined by (4.49).

Proof. We claim that∑
(λq,...,λ1)∈Mq

(pq)Dλq . . . Dλ1R(xt, t)
pq· (pq)J∗

(λq...λ1)s,t
=

=
∑

(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

(4.58)

w. p. 1. The equality (4.58) is valid for q = 1. Assume that (4.58) is valid for
some q > 1. In this case using the induction hypothesis we obtain∑

(λq+1,...,λ1)∈Mq+1

(pq+1)Dλ1 . . . Dλq+1
R(xt, t)

pq+1· (pq+1)J∗
(λ1...λq+1)s,t

=

=
∑

λq+1∈{1, 0}

∗∫
t

s ∑
(λq,...,λ1)∈Mq

(
(pq+1)Dλ1 . . . Dλq+1

R(xt, t)
pq· (pq)J∗

(λ1...λq)θ,t

)
λq+1· dwθ =

=
∑

λq+1∈{1, 0}

∗∫
t

s ∑
(k,j,l1,...,lk)∈Aq

(θ − t)j

j!
×

×

(
(k+λq+1)Ḡl1 . . . ḠlkL̄

jDλq+1
R(xt, t)

k· (k)I∗l1...lks,t

)
λq+1· dwθ =

=
∑

(k,j,l1,...,lk)∈Aq

(k)Ḡl1 . . . ḠlkL̄
j+1R(xt, t)

k·
s∫
t

(θ − t)j

j!
(k)I∗l1...lkθ,tdθ+

+

(k+1)Ḡl1 . . . ḠlkL̄
jḠ0R(xt, t)

k·
∗∫
t

s

(θ − t)j

j!
(k)I∗l1...lkθ,t

 1· dfθ

 (4.59)
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w. p. 1.

Using Lemma 4.2, we obtain

s∫
t

(θ − t)j

j!
(k)I∗l1...lkθ,tdθ =

=
1

(j + 1)!


(s− t)j+1 for k = 0

(s− t)j+1 · (k)I∗l1...lks,t − (−1)j+1 · (k)I∗l1...lk−1 lk+j+1s,t
for k > 0

(4.60)

w. p. 1. In addition (see (4.55)) we get

∗∫
t

s

(θ − t)j

j!
I
∗(i1...ik)
l1...lkθ,t

df
(ik+1)
θ =

(−1)j

j!
I
∗(i1...ikik+1)
l1...lkjs,t

(4.61)

in the notations just introduced. Substitute (4.60) and (4.61) into the formula
(4.59). Grouping summands in the obtained expression with equal lower indices
at iterated Stratonovich stochastic integrals and using (4.56) as well as the
equality

Ḡ(i)
p R(x, t) =

1

p!

p∑
q=0

(−1)qCq
pL̄

qḠ
(i)
0 L̄

p−qR(x, t), Cq
p =

p!

q!(p− q)!
(4.62)

(this equality follows from (4.56)), we note that the obtained expression equals
to ∑

(k,j,l1,...,lk)∈Aq+1

(s− t)j

j!
(k)Ḡl1 . . . ḠlkL̄

j{ηt}
k· (k)I∗l1...lks,t

w. p. 1. Summing the equalities (4.58) for q = 1, 2, . . . , r and applying the
formula (4.48), we obtain the expression (4.57). The proof is completed.

Let us order terms of the expansion (4.57) according to their smallness
orders as s ↓ t in the mean-square sense

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

+ (Hr+1)s,t

(4.63)
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w. p. 1, where

(Hr+1)s,t =
∑

(k,j,l1,...,lk)∈Ur

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

+

+(Dr+1)s,t ,

Dq =

{
(k, j, l1, . . . , lk) : k + 2

(
j +

k∑
p=1

lp

)
= q; k, j, l1, . . . , lk = 0, 1, . . .

}
,

(4.64)

Ur =

{
(k, j, l1, . . . , lk) : k + j +

k∑
p=1

lp ≤ r,

k + 2

(
j +

k∑
p=1

lp

)
≥ r + 1; k, j, l1, . . . , lk = 0, 1, . . .

}
, (4.65)

and (Dr+1)s,t is defined by (4.49). Note that the remainder term (Hr+1)s,t in
(4.63) has a higher order of smallness in the mean-square sense as s ↓ t than
the terms of the main part of the expansion (4.63).

4.8 The Second Form of the Unified Taylor–Stratonovich

Expansion

Consider iterated Stratonovich stochastic integrals of the form

J
∗(i1...ik)
l1...lks,t

=

∗∫
t

s

(s− tk)
lk . . .

∗∫
t

t2

(s− t1)
l1df

(i1)
t1 . . . df

(ik)
tk for k ≥ 1

and
J
∗(i1...ik)
l1...lks,t

= 1 for k = 0,

where i1, . . . , ik = 1, . . . ,m.

The additive property of stochastic integrals and the Newton binomial for-
mula imply the following equality

I
∗(i1...ik)
l1...lks,t

=

l1∑
j1=0

. . .

lk∑
jk=0

k∏
g=1

C
jg
lg
(t− s)l1+...+lk−j1−...−jk J

∗(i1...ik)
j1...jks,t

w. p. 1, (4.66)
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where

Ck
l =

l!

k!(l − k)!

is the binomial coefficient. Thus, the Taylor–Stratonovich expansion of the
process ηs = R(xs, s), s ∈ [0, T ] can be constructed either using the iterated

stochastic integrals I
∗(i1...ik)
l1...lks,t

similarly to the previous section or using the iterated

stochastic integrals J
∗(i1...ik)
l1...lks,t

. This is the main subject of this section.

Denote ∥∥∥∥∥J∗(i1...ik)
l1...lks,t

∥∥∥∥∥
m

i1,...,ik=1

def
= (k)J∗

l1...lks,t
,

∥∥∥∥∥L̄jḠ(i1)
l1

. . . Ḡ
(ik)
lk
R(x, t)

∥∥∥∥∥
m

i1,...,ik=1

def
= (k)L̄jḠl1 . . . ḠlkR(x, t).

Theorem 4.4 [163] (also see [1]-[17], [52], [165]). Suppose that sufficient
conditions are satisfied under which the right-hand sides of (4.48), (4.49) exist.
Then for any s, t ∈ [0, T ] such that s > t and for any positive integer r, the
following expansion is valid w. p. 1

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

+ (Dr+1)s,t ,

(4.67)

where (Dr+1)s,t is defined by (4.49).

Proof. To prove the theorem, we check the equalities∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

=

=
∑

(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

w. p. 1 (4.68)

for q = 1, 2, . . . , r. To check (4.68), substitute the expression (4.66) into the
right-hand side of (4.68) and then use the formulas (4.56), (4.62).

Let us order terms of the expansion (4.67) according to their smallness
orders as s ↓ t in the mean-square sense
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R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

+ (Hr+1)s,t

w. p. 1, where

(Hr+1)s,t =
∑

(k,j,l1,...,lk)∈Ur

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

+

+(Dr+1)s,t .

The remainder term (Dr+1)s,t is defined by (4.49); the sets Dq and Ur are
defined by (4.64) and (4.65), respectively. Finally, we note that the convergence
w. p. 1 of the truncated Taylor–Stratonovich expansion (4.48) (without the
remainder term (Dr+1)s,t) to the process R(xs, s) as r → ∞ for all s, t ∈ [0, T ]
such that s > t and T <∞ has been proved in [84] (Proposition 5.10.2). Since
the expansions (4.57) and (4.67) are obtained from the Taylor–Stratonovich
expansion (4.48) without any additional conditions, the truncated expansions
(4.57) and (4.67) (without the reminder term (Dr+1)s,t) under the conditions of
Proposition 5.10.2 [84] converge to the process R(xs, s) w. p. 1 as r → ∞ for
all s, t ∈ [0, T ] such that s > t and T <∞.

4.9 A Remark on Theorems 4.3 and 4.4

Note that when proving Theorems 4.3 and 4.4 we established the following
equalities w. p. 1

R(xt, t) +
r∑

k=1

∑
(λk,...,λ1)∈Mk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

=

= R(xt, t) +
r∑
q=1

∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

,

(4.69)

R(xt, t) +
r∑

k=1

∑
(λk,...,λ1)∈Mk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

=
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= R(xt, t) +
r∑
q=1

∑
(k,j,l1,...,lk)∈Aq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

.

(4.70)

It is easy to see that by analogy with (4.69) and (4.70) the following equal-
ities can be obtained w. p. 1

R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

=

= R(xt, t) +
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

,

(4.71)

R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

=

= R(xt, t) +
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

.

(4.72)

Recall the equality (4.54)

R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

Q
(ik)
λk

. . . Q
(i1)
λ1
R(xt, t)J

(ik...i1)
(λk...λ1)s,t

=

= R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

D
(ik)
λk

. . . D
(i1)
λ1
R(xt, t)J

∗(ik...i1)
(λk...λ1)s,t

(4.73)

w. p. 1, where r ≥ 2.

Combining (4.71)–(4.73), we obtain

R(xt, t) +
r∑

q,k=1

∑
(λk,...,λ1)∈Eqk

mλ1∑
i1=λ1

. . .

mλk∑
ik=λk

Q
(ik)
λk

. . . Q
(i1)
λ1
R(xt, t)J

(ik...i1)
(λk...λ1)s,t

=

= R(xt, t) +
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

=
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= R(xt, t) +
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

(4.74)
w. p. 1, where r ≥ 2.

The equality (4.74) means that we have the following theorem (see (4.24),
(4.25)).

Theorem 4.5. Let conditions (i), (ii) (see Sect. 4.3) be satisfied. Then
for any s, t ∈ [0, T ] such that s > t the following unified Taylor–Stratonovich
expansions take place w. p. 1

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

+ (Hr+1)s,t ,

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

L̄jḠ
(i1)
l1

. . . Ḡ
(ik)
lk
R(xt, t)J

∗(i1...ik)
l1...lks,t

+ (Hr+1)s,t ,

where r ≥ 2, the reainder term (Hr+1)s,t is definded by the relations (4.25) and
(4.23); another notations are the same as in Sect. 4.3, 4.6–4.8.

4.10 Comparison of the Unified Taylor–Itô and Taylor–

Stratonovich Expansions with the Classical Taylor–

Itô and Taylor–Stratonovich Expansions

Note that the truncated unified Taylor–Itô and Taylor–Stratonovich expansions
contain the less number of various iterated Itô and Stratonovich stochastic
integrals (moreover, their major part will have less multiplicity) in comparison
with the classical Taylor–Itô and Taylor–Stratonovich expansions [159].

It is easy to notice that the stochastic integrals from the sets (4.4), (4.5)
are connected by linear relations. However, the stochastic integrals from the
sets (4.6), (4.7) cannot be connected by linear relations. This also holds for the
stochastic integrals from the sets (4.8), (4.9). Therefore, we will call the sets
(4.6)–(4.9) as the stochastic bases.
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Let us call the numbers rankA(r) and rankD(r) of various iterated Itô and
Stratonovich stochastic integrals, which are included in the sets (4.6)–(4.9) as
the ranks of stochastic bases when summation in the stochastic expansions is
performed using the sets Aq (q = 1, . . . , r) and Dq (q = 1, . . . , r) correspond-
ingly. Here r is a fixed natural number.

At the beginning, let us analyze several examples related to the Taylor–
Itô expansions (obviously, the same conclusions will hold for the Taylor–
Stratonovich expansions).

Assume that the summation in the unified Taylor–Itô expansions is per-
formed using the sets Dq (q = 1, . . . , r). It is easy to see that the truncated
unified Taylor–Itô expansion (4.34), where the summation is performed using
the sets Dq when r = 3 includes 4 (rankD(3) = 4) various iterated Itô stochastic
integrals

I
(i1)
0s,t
, I

(i1i2)
00s,t

, I
(i1)
1s,t
, I

(i1i2i3)
000s,t

.

The same truncated classical Taylor–Itô expansion (4.24) [84] contains 5
various iterated Itô stochastic integrals

J
(i1)
(1)s,t, J

(i1i2)
(11)s,t, J

(i10)
(10)s,t, J

(0i1)
(01)s,t, J

(i1i2i3)
(111)s,t.

For r = 4 we have 7 (rankD(4) = 7) stochastic integrals

I
(i1)
0s,t
, I

(i1i2)
00s,t

, I
(i1)
1s,t
, I

(i1i2i3)
000s,t

, I
(i1i2)
01s,t

, I
(i1i2)
10s,t

, I
(i1i2i3i4)
0000s,t

against 9 stochastic integrals

J
(i1)
(1)s,t, J

(i1i2)
(11)s,t, J

(i10)
(10)s,t, J

(0i1)
(01)s,t, J

(i1i2i3)
(111)s,t, J

(i10i3)
(101)s,t, J

(i1i20)
(110)s,t, J

(0i1i2)
(011)s,t, J

(i1i2i3i4)
(1111)s,t .

For r = 5 (rankD(5) = 12) we get 12 integrals against 17 integrals and for
r = 6 and r = 7 we have 20 against 29 and 33 against 50 correspondingly.

We will obtain the same results when compare the unified Taylor–Stratono-
vich expansions [163] (also see [1]-[17], [52], [165]) with their classical analogues
[84], [159] (see previous sections).

Note that the summation with respect to the sets Dq is usually used while
constructing strong numerical methods (built according to the mean-square cri-
terion of convergence) for Itô SDEs [82], [84] (also see [13]). The summation
with respect to the sets Aq is usually used when building weak numerical meth-
ods (built in accordance with the weak criterion of convergence) for Itô SDEs
[82], [84]. For example, rankA(4) = 15 while the total number of various iter-
ated Itô stochastic integrals (included in the classical Taylor–Itô expansion [84]
when r = 4) equals to 26.
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Let us show that [3]-[17], [52]

rankA(r) = 2r − 1.

Let (l1, . . . , lk) be an ordered set such that l1, . . . , lk = 0, 1, . . . and k =

1, 2, . . . Consider S(k)
def
= l1 + . . . + lk = p (p is a fixed natural number or

zero). Let N(k, p) be a number of all ordered combinations (l1, . . . , lk) such
that l1, . . . , lk = 0, 1, . . . , k = 1, 2, . . . , and S(k) = p. First, let us show that

N(k, p) = Ck−1
p+k−1,

where

Cm
n =

n!

m!(n−m)!

is a binomial coefficient.

It is not difficult to see that

N(1, p) = 1 = C1−1
p+1−1,

N(2, p) = p+ 1 = C2−1
p+2−1,

N(3, p) =
(p+ 1)(p+ 2)

2
= C3−1

p+3−1.

Moreover,

N(k + 1, p) =

p∑
l=0

N(k, l) =

p∑
l=0

Ck−1
l+k−1 = Ck

p+k,

where we used the induction assumption and the well known property of bino-
mial coefficients.

Then

rankA(r) =

= N(1, 0) + (N(1, 1) +N(2, 0)) + (N(1, 2) +N(2, 1) +N(3, 0)) + . . .

. . .+ (N(1, r − 1) +N(2, r − 2) + . . .+N(r, 0)) =

= C0
0 + (C0

1 + C1
1) + (C0

2 + C1
2 + C2

2) + . . .

. . .+ (C0
r−1 + C1

r−1 + C2
r−1 + . . .+ Cr−1

r−1) =

= 20 + 21 + 22 + . . .+ 2r−1 = 2r − 1.
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Let nM(r) be the total number of various iterated stochastic integrals in-
cluded in the classical Taylor–Itô expansion (4.22) [84], where summation is
performed with respect to the set

r⋃
k=1

Mk.

If we exclude from the consideration the integrals, which are equal to

(s− t)j

j!
,

then
nM(r) =

= (21 − 1) + (22 − 1) + (23 − 1) + . . .+ (2r − 1) =

= 2(1 + 2 + 22 + . . .+ 2r−1)− r = 2(2r − 1)− r.

It means that

lim
r→∞

nM(r)

rankA(r)
= 2.

The numbers

rankA(r), nM(r), f(r) = nM(r)/rankA(r)

for various values r are shown in Table 4.1.

Let us show that [3]-[17], [52]

rankD(r) =



r−1∑
s=0

(r−1)/2+[s/2]∑
l=s

Cs
l for r = 1, 3, 5, . . .

r−1∑
s=0

r/2−1+[(s+1)/2]∑
l=s

Cs
l for r = 2, 4, 6, . . .

, (4.75)

where [x] is an integer part of a real number x and Cm
n is a binomial coefficient.

For the proof of (4.75) we rewrite the condition

k + 2(j + S(k)) ≤ r,

where S(k)
def
= l1 + . . .+ lk (k, j, l1, . . . , lk = 0, 1, . . .) in the form

j + S(k) ≤ (r − k)/2
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Table 4.1: Numbers rankA(r), nM(r), f(r) = nM(r)/rankA(r)

r 1 2 3 4 5 6 7 8 9 10

rankA(r) 1 3 7 15 31 63 127 255 511 1023

nM(r) 1 4 11 26 57 120 247 502 1013 2036

f(r) 1 1.3333 1.5714 1.7333 1.8387 1.9048 1.9449 1.9686 1.9824 1.9902

and perform the consideration of all possible combinations with respect to k =
1, . . . , r. Moreover, we take into account the above reasoning.

Let us calculate the number nE(r) of all different iterated Itô stochastic
integrals from the classical Taylor–Itô expansion (4.24) [84] if the summation
in this expansion is performed with respect to the set

r⋃
q,k=1

Eqk.

The summation condition can be rewritten in this case in the form

0 ≤ p+ 2q ≤ r,

where q is a total number of integrations with respect to time while p is a total
number of integrations with respect to the Wiener processes in the selected
iterated stochastic integral from the Taylor–Itô expansion (4.24) [84]. At that
the multiplicity of the mentioned stochastic integral equals to p+q and it is not
more than r. Let us rewrite the above condition (0 ≤ p + 2q ≤ r) in the form:
0 ≤ q ≤ (r − p)/2 ⇔ 0 ≤ q ≤ [(r − p)/2], where [x] means an integer part of a
real number x. Then, performing the consideration of all possible combinations
with respect to p = 1, . . . , r and using the combinatorial reasoning, we come to
the formula

nE(r) =
r∑
s=1

[(r−s)/2]∑
l=0

Cs
[(r−s)/2]+s−l, (4.76)

where [x] means an integer part of a real number x.

The numbers

rankD(r), nE(r), g(r) = nE(r)/rankD(r)

for various values r are shown in Table 4.2.
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Table 4.2: Numbers rankD(r), nE(r), g(r) = nE(r)/rankD(r)

r 1 2 3 4 5 6 7 8 9 10

rankD(r) 1 2 4 7 12 20 33 54 88 143

nE(r) 1 2 5 9 17 29 50 83 138 261

g(r) 1 1 1.2500 1.2857 1.4167 1.4500 1.5152 1.5370 1.5682 1.8252

4.11 Application of First Form of the Unified Taylor–

Itô Expansion to the High-Order Strong Numerical

Methods for Itô SDEs

Let us rewrite (4.34) for all s, t ∈ [0, T ] such that s > t in the following form

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
LjR(xt, t)I

(i1...ik)
l1...lks,t

+

+1{r=2d−1,d∈N}
(s− t)(r+1)/2

((r + 1)/2)!
L(r+1)/2R(xt, t) +

(
H̄r+1

)
s,t

w. p. 1, (4.77)

where (
H̄r+1

)
s,t

= (Hr+1)s,t − 1{r=2d−1,d∈N}
(s− t)(r+1)/2

((r + 1)/2)!
L(r+1)/2R(xt, t).

Consider the partition {τp}Np=0 of the interval [0, T ] such that

0 = τ0 < τ1 < . . . < τN = T, ∆N = max
0≤j≤N−1

|τj+1 − τj| .

From (4.77) for s = τp+1, t = τp we obtain the following representation of
explicit one-step strong numerical scheme for the Itô SDE (4.1), which is based
on first form of the unified Taylor–Itô expansion

yp+1 = yp +
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(τp+1 − τp)
j

j!

m∑
i1,...,ik=1

G
(i1)
l1

. . . G
(ik)
lk
Ljyp Î

(i1...ik)
l1...lkτp+1,τp

+

+1{r=2d−1,d∈N}
(τp+1 − τp)

(r+1)/2

((r + 1)/2)!
L(r+1)/2yp, (4.78)
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where Î
(i1...ik)
l1...lkτp+1,τp

is an approximation of iterated Itô stochastic integral

I
(i1...ik)
l1...lkτp+1,τp

of the form

I
(i1...ik)
l1...lks,t

=

s∫
t

(t− tk)
lk . . .

t2∫
t

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk .

Note that we understand the equality (4.78) componentwise with respect

to the components y
(i)
p of the column yp. Also for simplicity we put τp = p∆,

∆ = T/N, T = τN , p = 0, 1, . . . , N.

It is known [84] that under the appropriate conditions the numerical scheme
(4.78) has strong order of convergence r/2 (r ∈ N).

Let Bj(x, t) is the jth column of the matrix function B(x, t).

Below we consider particular cases of the numerical scheme (4.78) for r =
2, 3, 4, 5, and 6, i.e. explicit one-step strong numerical schemes for the Itô
SDE (4.1) with the convergence orders 1.0, 1.5, 2.0, 2.5, and 3.0. At that for

simplicity we will write a, La, Bi, G
(i)
0 Bj, . . . instead of a(yp, τp), La(yp, τp),

Bi(yp, τp), G
(i)
0 Bj(yp, τp), . . . correspondingly. Moreover, the operators L and

G
(i)
0 , i = 1, . . . ,m are determined by the equalities (4.17), (4.18).

Scheme with strong order 1.0 (Milstein Scheme)

yp+1 = yp +
m∑
i1=1

Bi1 Î
(i1)
0τp+1,τp

+∆a+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

(i2i1)
00τp+1,τp

. (4.79)

Scheme with strong order 1.5

yp+1 = yp +
m∑
i1=1

Bi1 Î
(i1)
0τp+1,τp

+∆a+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 a

(
∆Î

(i1)
0τp+1,τp

+ Î
(i1)
1τp+1,τp

)
− LBi1 Î

(i1)
1τp+1,τp

]
+

+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

(i3i2i1)
000τp+1,τp

+
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+
∆2

2
La. (4.80)

Scheme with strong order 2.0

yp+1 = yp +
m∑
i1=1

Bi1 Î
(i1)
0τp+1,τp

+∆a+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 a

(
∆Î

(i1)
0τp+1,τp

+ Î
(i1)
1τp+1,τp

)
− LBi1 Î

(i1)
1τp+1,τp

]
+

+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

(i3i2i1)
000τp+1,τp

+
∆2

2
La+

+
m∑

i1,i2=1

[
G

(i2)
0 LBi1

(
Î
(i2i1)
10τp+1,τp

− Î
(i2i1)
01τp+1,τp

)
− LG

(i2)
0 Bi1 Î

(i2i1)
10τp+1,τp

+

+G
(i2)
0 G

(i1)
0 a

(
Î
(i2i1)
01τp+1,τp

+∆Î
(i2i1)
00τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

G
(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i4i3i2i1)
0000τp+1,τp

. (4.81)

Scheme with strong order 2.5

yp+1 = yp +
m∑
i1=1

Bi1 Î
(i1)
0τp+1,τp

+∆a+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 a

(
∆Î

(i1)
0τp+1,τp

+ Î
(i1)
1τp+1,τp

)
− LBi1 Î

(i1)
1τp+1,τp

]
+

+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

(i3i2i1)
000τp+1,τp

+
∆2

2
La+

+
m∑

i1,i2=1

[
G

(i2)
0 LBi1

(
Î
(i2i1)
10τp+1,τp

− Î
(i2i1)
01τp+1,τp

)
− LG

(i2)
0 Bi1 Î

(i2i1)
10τp+1,τp

+

+G
(i2)
0 G

(i1)
0 a

(
Î
(i2i1)
01τp+1,τp

+∆Î
(i2i1)
00τp+1,τp

)]
+
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+
m∑

i1,i2,i3,i4=1

G
(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i4i3i2i1)
0000τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 La

(
1

2
Î
(i1)
2τp+1,τp

+∆Î
(i1)
1τp+1,τp

+
∆2

2
Î
(i1)
0τp+1,τp

)
+

+
1

2
LLBi1 Î

(i1)
2τp+1,τp

− LG
(i1)
0 a

(
Î
(i1)
2τp+1,τp

+∆Î
(i1)
1τp+1,τp

)]
+

+
m∑

i1,i2,i3=1

[
G

(i3)
0 LG

(i2)
0 Bi1

(
Î
(i3i2i1)
100τp+1,τp

− Î
(i3i2i1)
010τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 LBi1

(
Î
(i3i2i1)
010τp+1,τp

− Î
(i3i2i1)
001τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 G

(i1)
0 a

(
∆Î

(i3i2i1)
000τp+1,τp

+ Î
(i3i2i1)
001τp+1,τp

)
−

−LG(i3)
0 G

(i2)
0 Bi1 Î

(i3i2i1)
100τp+1,τp

]
+

+
m∑

i1,i2,i3,i4,i5=1

G
(i5)
0 G

(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i5i4i3i2i1)
00000τp+1,τp

+

+
∆3

6
LLa. (4.82)

Scheme with strong order 3.0

yp+1 = yp +
m∑
i1=1

Bi1 Î
(i1)
0τp+1,τp

+∆a+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 a

(
∆Î

(i1)
0τp+1,τp

+ Î
(i1)
1τp+1,τp

)
− LBi1 Î

(i1)
1τp+1,τp

]
+

+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

(i3i2i1)
000τp+1,τp

+
∆2

2
La+

+
m∑

i1,i2=1

[
G

(i2)
0 LBi1

(
Î
(i2i1)
10τp+1,τp

− Î
(i2i1)
01τp+1,τp

)
− LG

(i2)
0 Bi1 Î

(i2i1)
10τp+1,τp

+
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+G
(i2)
0 G

(i1)
0 a

(
Î
(i2i1)
01τp+1,τp

+∆Î
(i2i1)
00τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

G
(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i4i3i2i1)
0000τp+1,τp

+ qp+1,p + rp+1,p, (4.83)

where

qp+1,p =
m∑
i1=1

[
G

(i1)
0 La

(
1

2
Î
(i1)
2τp+1,τp

+∆Î
(i1)
1τp+1,τp

+
∆2

2
Î
(i1)
0τp+1,τp

)
+

+
1

2
LLBi1 Î

(i1)
2τp+1,τp

− LG
(i1)
0 a

(
Î
(i1)
2τp+1,τp

+∆Î
(i1)
1τp+1,τp

)]
+

+
m∑

i1,i2,i3=1

[
G

(i3)
0 LG

(i2)
0 Bi1

(
Î
(i3i2i1)
100τp+1,τp

− Î
(i3i2i1)
010τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 LBi1

(
Î
(i3i2i1)
010τp+1,τp

− Î
(i3i2i1)
001τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 G

(i1)
0 a

(
∆Î

(i3i2i1)
000τp+1,τp

+ Î
(i3i2i1)
001τp+1,τp

)
−

−LG(i3)
0 G

(i2)
0 Bi1 Î

(i3i2i1)
100τp+1,τp

]
+

+
m∑

i1,i2,i3,i4,i5=1

G
(i5)
0 G

(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i5i4i3i2i1)
00000τp+1,τp

+

+
∆3

6
LLa,

and

rp+1,p =
m∑

i1,i2=1

[
G

(i2)
0 G

(i1)
0 La

(
1

2
Î
(i2i1)
02τp+1,τp

+∆Î
(i2i1)
01τp+1,τp

+
∆2

2
Î
(i2i1)
00τp+1,τp

)
+

+
1

2
LLG

(i2)
0 Bi1 Î

(i2i1)
20τp+1,τp

+

+G
(i2)
0 LG

(i1)
0 a

(
Î
(i2i1)
11τp+1,τp

− Î
(i2i1)
02τp+1,τp

+∆
(
Î
(i2i1)
10τp+1,τp

− Î
(i2i1)
01τp+1,τp

))
+

+LG
(i2)
0 LBi1

(
Î
(i2i1)
11τp+1,τp

− Î
(i2i1)
20τp+1,τp

)
+
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+G
(i2)
0 LLBi1

(
1

2
Î
(i2i1)
02τp+1,τp

+
1

2
Î
(i2i1)
20τp+1,τp

− Î
(i2i1)
11τp+1,τp

)
−

−LG(i2)
0 G

(i1)
0 a

(
∆Î

(i2i1)
10τp+1,τp

+ Î
(i2i1)
11τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

[
G

(i4)
0 G

(i3)
0 G

(i2)
0 G

(i1)
0 a

(
∆Î

(i4i3i2i1)
0000τp+1,τp

+ Î
(i4i3i2i1)
0001τp+1,τp

)
+

+G
(i4)
0 G

(i3)
0 LG

(i2)
0 Bi1

(
Î
(i4i3i2i1)
0100τp+1,τp

− Î
(i4i3i2i1)
0010τp+1,τp

)
−

−LG(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i4i3i2i1)
1000τp+1,τp

+

+G
(i4)
0 LG

(i3)
0 G

(i2)
0 Bi1

(
Î
(i4i3i2i1)
1000τp+1,τp

− Î
(i4i3i2i1)
0100τp+1,τp

)
+

+G
(i4)
0 G

(i3)
0 G

(i2)
0 LBi1

(
Î
(i4i3i2i1)
0010τp+1,τp

− Î
(i4i3i2i1)
0001τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4,i5,i6=1

G
(i6)
0 G

(i5)
0 G

(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

(i6i5i4i3i2i1)
000000τp+1,τp

.

It is well known [84] that under the standard conditions the numerical
schemes (4.79)–(4.83) have strong orders of convergence 1.0, 1.5, 2.0, 2.5, and
3.0 correspondingly. Among these conditions we consider only the condition for
approximations of iterated Itô stochastic integrals from the numerical schemes
(4.79)–(4.83) [84] (also see [13])

M


(
I
(i1...ik)
l1...lkτp+1,τp

− Î
(i1...ik)
l1...lkτp+1,τp

)2
 ≤ C∆r+1, (4.84)

where constant C is independent of ∆ and r/2 are strong orders of convergence
for the numerical schemes (4.79)–(4.83), i.e. r/2 = 1.0, 1.5, 2.0, 2.5, and 3.0.

As we mentioned above, the numerical schemes (4.79)–(4.83) are unrealiz-
able in practice without procedures for the numerical simulation of iterated Itô
stochastic integrals from (4.77).

In Chapter 5 we give an extensive material on the mean-square approxi-
mation of specific iterated Itô stochastic integrals from the numerical schemes
(4.79)–(4.83). The mentioned material based on the results of Chapter 1.
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4.12 Application of First Form of the Unified Taylor–

Stratonovich Expansion to the High-Order Strong

Numerical Methods for Itô SDEs

Let us rewrite (4.63) for all s, t ∈ [0, T ] such that s > t in the following from

R(xs, s) = R(xt, t)+

+
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(s− t)j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jR(xt, t)I

∗(i1...ik)
l1...lks,t

+

+1{r=2d−1,d∈N}
(s− t)(r+1)/2

((r + 1)/2)!
L(r+1)/2R(xt, t) +

(
H̄r+1

)
s,t

w. p. 1, (4.85)

where (
H̄r+1

)
s,t

= (Hr+1)s,t − 1{r=2d−1,d∈N}
(s− t)(r+1)/2

((r + 1)/2)!
L(r+1)/2R(xt, t).

Consider the partition {τp}Np=0 of the interval [0, T ] such that

0 = τ0 < τ1 < . . . < τN = T, ∆N = max
0≤j≤N−1

|τj+1 − τj| .

From (4.85) for s = τp+1, t = τp we obtain the following representation of
explicit one-step strong numerical scheme for the Itô SDE (4.1), which is based
on first form of the unified Taylor–Stratonovich expansion

yp+1 = yp +
r∑
q=1

∑
(k,j,l1,...,lk)∈Dq

(τp+1 − τp)
j

j!

m∑
i1,...,ik=1

Ḡ
(i1)
l1

. . . Ḡ
(ik)
lk
L̄jyp Î

∗(i1...ik)
l1...lkτp+1,τp

+

+1{r=2d−1,d∈N}
(τp+1 − τp)

(r+1)/2

((r + 1)/2)!
L(r+1)/2yp, (4.86)

where Î
∗(i1...ik)
l1...lkτp+1,τp

is an approximation of iterated Stratonovich stochastic integral

I
∗(i1...ik)
l1...lkτp+1,τp

of the form

I
∗(i1...ik)
l1...lks,t

=

∗∫
t

s

(t− tk)
lk . . .

∗∫
t

t2

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk .
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Note that we understand the equality (4.86) componentwise with respect

to the components y
(i)
p of the column yp. Also for simplicity we put τp = p∆,

∆ = T/N, T = τN , p = 0, 1, . . . , N.

It is known [84] that under the appropriate conditions the numerical scheme
(4.86) has strong order of convergence r/2 (r ∈ N).

Denote

ā(x, t) = a(x, t)− 1

2

m∑
j=1

G
(j)
0 Bj(x, t),

where Bj(x, t) is the jth column of the matrix function B(x, t).

It is not difficult to show that (see (4.47))

L̄R(x, t) =
∂R

∂t
(x, t) +

n∑
j=1

ā(j)(x, t)
∂R

∂x(j)
(x, t), (4.87)

where ā(j)(x, t) is the jth component of the vector function ā(x, t).

Below we consider particular cases of the numerical scheme (4.86) for
r = 2, 3, 4, 5, and 6, i.e. explicit one-step strong numerical schemes for the Itô
SDE (4.1) with the convergence orders 1.0, 1.5, 2.0, 2.5, and 3.0. At that, for

simplicity we will write ā, L̄ā, La, Bi, G
(i)
0 Bj, . . . instead of ā(yp, τp), L̄ā(yp, τp),

La(yp, τp), Bi(yp, τp), G
(i)
0 Bj(yp, τp), . . . correspondingly. Moreover, the oper-

ators L̄ and G
(i)
0 , i = 1, . . . ,m are determined by the equalities (4.17), (4.18),

and (4.87).

Scheme with strong order 1.0

yp+1 = yp +
m∑
i1=1

Bi1 Î
∗(i1)
0τp+1,τp

+∆ā+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

∗(i2i1)
00τp+1,τp

. (4.88)

Scheme with strong order 1.5

yp+1 = yp +
m∑
i1=1

Bi1 Î
∗(i1)
0τp+1,τp

+∆ā+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

∗(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 ā

(
∆Î

∗(i1)
0τp+1,τp

+ Î
∗(i1)
1τp+1,τp

)
− L̄Bi1 Î

∗(i1)
1τp+1,τp

]
+
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+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

∗(i3i2i1)
000τp+1,τp

+

+
∆2

2
La. (4.89)

Scheme with strong order 2.0

yp+1 = yp +
m∑
i1=1

Bi1 Î
∗(i1)
0τp+1,τp

+∆ā+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

∗(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 ā

(
∆Î

∗(i1)
0τp+1,τp

+ Î
∗(i1)
1τp+1,τp

)
− L̄Bi1 Î

∗(i1)
1τp+1,τp

]
+

+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

∗(i3i2i1)
000τp+1,τp

+
∆2

2
L̄ā+

+
m∑

i1,i2=1

[
G

(i2)
0 L̄Bi1

(
Î
∗(i2i1)
10τp+1,τp

− Î
∗(i2i1)
01τp+1,τp

)
− L̄G

(i2)
0 Bi1 Î

∗(i2i1)
10τp+1,τp

+

+G
(i2)
0 G

(i1)
0 ā

(
Î
∗(i2i1)
01τp+1,τp

+∆Î
∗(i2i1)
00τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

G
(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i4i3i2i1)
0000τp+1,τp

. (4.90)

Scheme with strong order 2.5

yp+1 = yp +
m∑
i1=1

Bi1 Î
∗(i1)
0τp+1,τp

+∆ā+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

∗(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 ā

(
∆Î

∗(i1)
0τp+1,τp

+ Î
∗(i1)
1τp+1,τp

)
− L̄Bi1 Î

∗(i1)
1τp+1,τp

]
+

+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

∗(i3i2i1)
000τp+1,τp

+
∆2

2
L̄ā+
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+
m∑

i1,i2=1

[
G

(i2)
0 L̄Bi1

(
Î
∗(i2i1)
10τp+1,τp

− Î
∗(i2i1)
01τp+1,τp

)
− L̄G

(i2)
0 Bi1 Î

∗(i2i1)
10τp+1,τp

+

+G
(i2)
0 G

(i1)
0 ā

(
Î
∗(i2i1)
01τp+1,τp

+∆Î
∗(i2i1)
00τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

G
(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i4i3i2i1)
0000τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 L̄ā

(
1

2
Î
∗(i1)
2τp+1,τp

+∆Î
∗(i1)
1τp+1,τp

+
∆2

2
Î
∗(i1)
0τp+1,τp

)
+

+
1

2
L̄L̄Bi1 Î

∗(i1)
2τp+1,τp

− L̄G
(i1)
0 ā

(
Î
∗(i1)
2τp+1,τp

+∆Î
∗(i1)
1τp+1,τp

)]
+

+
m∑

i1,i2,i3=1

[
G

(i3)
0 L̄G

(i2)
0 Bi1

(
Î
∗(i3i2i1)
100τp+1,τp

− Î
∗(i3i2i1)
010τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 L̄Bi1

(
Î
∗(i3i2i1)
010τp+1,τp

− Î
∗(i3i2i1)
001τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 G

(i1)
0 ā

(
∆Î

∗(i3i2i1)
000τp+1,τp

+ Î
∗(i3i2i1)
001τp+1,τp

)
−

−L̄G(i3)
0 G

(i2)
0 Bi1 Î

∗(i3i2i1)
100τp+1,τp

]
+

+
m∑

i1,i2,i3,i4,i5=1

G
(i5)
0 G

(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i5i4i3i2i1)
00000τp+1,τp

+

+
∆3

6
LLa. (4.91)

Scheme with strong order 3.0

yp+1 = yp +
m∑
i1=1

Bi1 Î
∗(i1)
0τp+1,τp

+∆ā+
m∑

i1,i2=1

G
(i2)
0 Bi1 Î

∗(i2i1)
00τp+1,τp

+

+
m∑
i1=1

[
G

(i1)
0 ā

(
∆Î

∗(i1)
0τp+1,τp

+ Î
∗(i1)
1τp+1,τp

)
− L̄Bi1 Î

∗(i1)
1τp+1,τp

]
+
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+
m∑

i1,i2,i3=1

G
(i3)
0 G

(i2)
0 Bi1 Î

∗(i3i2i1)
000τp+1,τp

+
∆2

2
L̄ā+

+
m∑

i1,i2=1

[
G

(i2)
0 L̄Bi1

(
Î
∗(i2i1)
10τp+1,τp

− Î
∗(i2i1)
01τp+1,τp

)
− L̄G

(i2)
0 Bi1 Î

∗(i2i1)
10τp+1,τp

+

+G
(i2)
0 G

(i1)
0 ā

(
Î
∗(i2i1)
01τp+1,τp

+∆Î
∗(i2i1)
00τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

G
(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i4i3i2i1)
0000τp+1,τp

+ qp+1,p + rp+1,p, (4.92)

where

qp+1,p =
m∑
i1=1

[
G

(i1)
0 L̄ā

(
1

2
Î
∗(i1)
2τp+1,τp

+∆Î
∗(i1)
1τp+1,τp

+
∆2

2
Î
∗(i1)
0τp+1,τp

)
+

+
1

2
L̄L̄Bi1 Î

∗(i1)
2τp+1,τp

− L̄G
(i1)
0 ā

(
Î
∗(i1)
2τp+1,τp

+∆Î
∗(i1)
1τp+1,τp

)]
+

+
m∑

i1,i2,i3=1

[
G

(i3)
0 L̄G

(i2)
0 Bi1

(
Î
∗(i3i2i1)
100τp+1,τp

− Î
∗(i3i2i1)
010τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 L̄Bi1

(
Î
∗(i3i2i1)
010τp+1,τp

− Î
∗(i3i2i1)
001τp+1,τp

)
+

+G
(i3)
0 G

(i2)
0 G

(i1)
0 ā

(
∆Î

∗(i3i2i1)
000τp+1,τp

+ Î
∗(i3i2i1)
001τp+1,τp

)
−

−L̄G(i3)
0 G

(i2)
0 Bi1 Î

∗(i3i2i1)
100τp+1,τp

]
+

+
m∑

i1,i2,i3,i4,i5=1

G
(i5)
0 G

(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i5i4i3i2i1)
00000τp+1,τp

+

+
∆3

6
L̄L̄ā,

and

rp+1,p =
m∑

i1,i2=1

[
G

(i2)
0 G

(i1)
0 L̄ā

(
1

2
Î
∗(i2i1)
02τp+1,τp

+∆Î
∗(i2i1)
01τp+1,τp

+
∆2

2
Î
∗(i2i1)
00τp+1,τp

)
+
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+
1

2
L̄L̄G

(i2)
0 Bi1 Î

∗(i2i1)
20τp+1,τp

+

+G
(i2)
0 L̄G

(i1)
0 ā

(
Î
∗(i2i1)
11τp+1,τp

− Î
∗(i2i1)
02τp+1,τp

+∆
(
Î
∗(i2i1)
10τp+1,τp

− Î
∗(i2i1)
01τp+1,τp

))
+

+L̄G
(i2)
0 L̄Bi1

(
Î
∗(i2i1)
11τp+1,τp

− Î
∗(i2i1)
20τp+1,τp

)
+

+G
(i2)
0 L̄L̄Bi1

(
1

2
Î
∗(i2i1)
02τp+1,τp

+
1

2
Î
∗(i2i1)
20τp+1,τp

− Î
∗(i2i1)
11τp+1,τp

)
−

−L̄G(i2)
0 G

(i1)
0 ā

(
∆Î

∗(i2i1)
10τp+1,τp

+ Î
∗(i2i1)
11τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4=1

[
G

(i4)
0 G

(i3)
0 G

(i2)
0 G

(i1)
0 ā

(
∆Î

∗(i4i3i2i1)
0000τp+1,τp

+ Î
∗(i4i3i2i1)
0001τp+1,τp

)
+

+G
(i4)
0 G

(i3)
0 L̄G

(i2)
0 Bi1

(
Î
∗(i4i3i2i1)
0100τp+1,τp

− Î
∗(i4i3i2i1)
0010τp+1,τp

)
−

−L̄G(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i4i3i2i1)
1000τp+1,τp

+

+G
(i4)
0 L̄G

(i3)
0 G

(i2)
0 Bi1

(
Î
∗(i4i3i2i1)
1000τp+1,τp

− Î
∗(i4i3i2i1)
0100τp+1,τp

)
+

+G
(i4)
0 G

(i3)
0 G

(i2)
0 L̄Bi1

(
Î
∗(i4i3i2i1)
0010τp+1,τp

− Î
∗(i4i3i2i1)
0001τp+1,τp

)]
+

+
m∑

i1,i2,i3,i4,i5,i6=1

G
(i6)
0 G

(i5)
0 G

(i4)
0 G

(i3)
0 G

(i2)
0 Bi1 Î

∗(i6i5i4i3i2i1)
000000τp+1,τp

.

It is well known [84] that under the standard conditions the numerical
schemes (4.88)–(4.92) have strong orders of convergence 1.0, 1.5, 2.0, 2.5, and
3.0 correspondingly. Among these conditions we consider only the condition for
approximations of iterated Stratonovich stochastic integrals from the numerical
schemes (4.88)–(4.92) [84] (also see [13])

M


(
I
∗(i1...ik)
l1...lkτp+1,τp

− Î
∗(i1...ik)
l1...lkτp+1,τp

)2
 ≤ C∆r+1,

where constant C is independent of ∆ and r/2 are strong orders of convergence
for the numerical schemes (4.88)–(4.92), i.e. r/2 = 1.0, 1.5, 2.0, 2.5, and 3.0.



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series989

As we mentioned above, the numerical schemes (4.88)–(4.92) are unreal-
izable in practice without procedures for the numerical simulation of iterated
Stratonovich stochastic integrals from (4.85).

In Chapter 5 we give an extensive material on the mean-square approxi-
mation of specific iterated Itô and Stratonovich stochastic integrals from the
numerical schemes (4.79)–(4.83), (4.88)–(4.92). The mentioned material based
on the results of Chapters 1 and 2.



Chapter 5

Mean-Square Approximation of
Specific Iterated Itô and Stratonovich
Stochastic Integrals of Multiplicities 1
to 6 from the Taylor–Itô and
Taylor–Stratonovich Expansions Based
on Theorems From Chapters 1 and 2

5.1 Mean-Square Approximation of Specific Iterated Itô

and Stratonovich Stochastic Integrals of multiplici-

ties 1 to 6 Based on Legendre Polynomials

This section is devoted to the extensive practical material on expansions and
mean-square approximations of specific iterated Itô and Stratonovich stochastic
integrals of multiplicities 1 to 6 on the base of Theorems 1.1, 2.1–2.9, 2.33–2.36,
2.50, 2.51, 2.62, 2.63 and multiple Fourier–Legendre series. The considered
iterated Itô and Stratonovich stochastic integrals are part of the Taylor–Itô
and Taylor–Stratonovich expansions. Therefore, the results of this section can
be useful for the numerical solution of Itô SDEs with non-commutative noise.

Consider the following iterated Itô and Stratonovich stochastic integrals

J [ψ(k)]T,t =

T∫
t

ψk(tk) . . .

t2∫
t

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (5.1)

J∗[ψ(k)]T,t =

∗∫
t

T

ψk(tk) . . .

∗∫
t

t2

ψ1(t1)dw
(i1)
t1 . . . dw

(ik)
tk , (5.2)

990
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where every ψl(τ) (l = 1, . . . , k) is a continuous nonrandom function on [t, T ],

w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ, f

(i)
τ (i = 1, . . . ,m) are independent

standard Wiener processes; i1, . . . , ik = 0, 1, . . . ,m.

As we saw in Chapter 4, ψl(τ) ≡ 1 (l = 1, . . . , k) and i1, . . . , ik = 0, 1, . . . ,m
in (5.1), (5.2) if we consider the iterated stochastic integrals from the classi-
cal Taylor–Itô and Taylor–Stratonovich expansions [84]. At the same time
ψl(τ) ≡ (t− τ)ql (l = 1, . . . , k, q1, . . . , qk = 0, 1, 2, . . .) and i1, . . . , ik = 1, . . . ,m
for the iterated stochastic integrals from the unified Taylor–Itô and Taylor–
Stratonovich expansions [1]-[17], [52], [161], [163].

Thus, in this section, we will consider the following collections of iterated
Itô and Stratonovich stochastic integrals

I
(i1...ik)
(l1...lk)T,t

=

T∫
t

(t− tk)
lk . . .

t2∫
t

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk , (5.3)

I
∗(i1...ik)
(l1...lk)T,t

=

∗∫
t

T

(t− tk)
lk . . .

∗∫
t

t2

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk , (5.4)

where i1, . . . , ik = 1, . . . ,m, l1, . . . , lk = 0, 1, . . .

The complete orthonormal system of Legendre polynomials in the space
L2([t, T ]) looks as follows

ϕj(x) =

√
2j + 1

T − t
Pj

((
x− T + t

2

)
2

T − t

)
, j = 0, 1, 2, . . . , (5.5)

where

Pj(x) =
1

2jj!

dj

dxj
(
x2 − 1

)j
(5.6)

is the Legendre polynomial.

Let us recall some properties of Legendre polynomials [121] (see Sect. 2.1.2)

Pj(1) = 1, Pj+1(−1) = −Pj(−1), j = 0, 1, 2, . . . ,

dPj+1

dx
(x)− dPj−1

dx
(x) = (2j + 1)Pj(x),

xPj(x) =
(j + 1)Pj+1(x) + jPj−1(x)

2j + 1
, j = 1, 2, . . . ,
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1∫
−1

xkPj(x)dx = 0, k = 0, 1, . . . , j − 1,

1∫
−1

Pk(x)Pj(x)dx =


0 if k ̸= j

2/(2j + 1) if k = j

,

Pn(x)Pm(x) =
m∑
k=0

Km,n,kPn+m−2k(x),

where

Km,n,k =
am−kakan−k
am+n−k

· 2n+ 2m− 4k + 1

2n+ 2m− 2k + 1
, ak =

(2k − 1)!!

k!
, m ≤ n.

Applying the above properties of the Legendre polynomial system (5.5) and
Theorems 1.1, 2.1–2.9, 2.33–2.36, 2.50, 2.51, 2.62, 2.63, we obtain the following
expansions of iterated Itô and Stratonovich stochastic integrals from the sets
(5.3), (5.4)

I
(i1)
(0)T,t =

√
T − tζ

(i1)
0 , (5.7)

I
(i1)
(1)T,t = −(T − t)3/2

2

(
ζ
(i1)
0 +

1√
3
ζ
(i1)
1

)
, (5.8)

I
(i1)
(2)T,t =

(T − t)5/2

3

(
ζ
(i1)
0 +

√
3

2
ζ
(i1)
1 +

1

2
√
5
ζ
(i1)
2

)
, (5.9)

I
∗(i1i2)
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

))
, (5.10)

I
(i1i2)
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
,

(5.11)

I
∗(i1i2)
(01)T,t = −T − t

2
I
∗(i1i2)
(00)T,t −

(T − t)2

4

(
1√
3
ζ
(i1)
0 ζ

(i2)
1 +

+
∞∑
i=0

(
(i+ 2)ζ

(i1)
i ζ

(i2)
i+2 − (i+ 1)ζ

(i1)
i+2ζ

(i2)
i√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
, (5.12)
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I
∗(i1i2)
(10)T,t = −T − t

2
I
∗(i1i2)
(00)T,t −

(T − t)2

4

(
1√
3
ζ
(i2)
0 ζ

(i1)
1 +

+
∞∑
i=0

(
(i+ 1)ζ

(i2)
i+2ζ

(i1)
i − (i+ 2)ζ

(i2)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
(5.13)

or

I
∗(i1i2)
(01)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C01
j2j1
ζ
(i1)
j1
ζ
(i2)
j2
,

I
∗(i1i2)
(10)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C10
j2j1
ζ
(i1)
j1
ζ
(i2)
j2
,

where

C01
j2j1

=

√
(2j1 + 1)(2j2 + 1)

8
(T − t)2C̄01

j2j1
,

C10
j2j1

=

√
(2j1 + 1)(2j2 + 1)

8
(T − t)2C̄10

j2j1
, (5.14)

C̄01
j2j1

= −
1∫

−1

(1 + y)Pj2(y)

y∫
−1

Pj1(x)dxdy,

C̄10
j2j1

= −
1∫

−1

Pj2(y)

y∫
−1

(1 + x)Pj1(x)dxdy;

I
(i1i2)
(10)T,t = I

∗(i1i2)
(10)T,t +

1

4
1{i1=i2}(T − t)2 w. p. 1,

I
(i1i2)
(01)T,t = I

∗(i1i2)
(01)T,t +

1

4
1{i1=i2}(T − t)2 w. p. 1,

I
(i1i2)
(01)T,t = −T − t

2
I
(i1i2)
(00)T,t −

(T − t)2

4

(
1√
3
ζ
(i1)
0 ζ

(i2)
1 +

+
∞∑
i=0

(
(i+ 2)ζ

(i1)
i ζ

(i2)
i+2 − (i+ 1)ζ

(i1)
i+2ζ

(i2)
i√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
, (5.15)
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I
(i1i2)
(10)T,t = −T − t

2
I
(i1i2)
(00)T,t −

(T − t)2

4

(
1√
3
ζ
(i2)
0 ζ

(i1)
1 +

+
∞∑
i=0

(
(i+ 1)ζ

(i2)
i+2ζ

(i1)
i − (i+ 2)ζ

(i2)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
(5.16)

or

I
(i1i2)
(01)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C01
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
,

I
(i1i2)
(10)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C10
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
,

I
∗(i1i2i3)
(000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
, (5.17)

I
(i1i2i3)
(000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.18)

I
(i1i1i1)
(000)T,t =

1

6
(T − t)3/2

((
ζ
(i1)
0

)3
− 3ζ

(i1)
0

)
w. p. 1,

I
∗(i1i1i1)
(000)T,t =

1

6
(T − t)3/2

(
ζ
(i1)
0

)3
w. p. 1, (5.19)

where

Cj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
(T − t)3/2C̄j3j2j1, (5.20)

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz; (5.21)
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here and further in this section

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s (i = 1, . . . ,m, j = 0, 1, . . .)

are independent standard Gaussian random variables for various i or j;

I
(i1i2i3)
(000)T,t = I

∗(i1i2i3)
(000)T,t +

1

2
1{i1=i2 ̸=0}I

(i3)
(1)T,t−

−1

2
1{i2=i3 ̸=0}

(
(T − t)I

(i1)
(0)T,t + I

(i1)
(1)T,t

)
w. p. 1,

I
∗(i1i2)
(02)T,t = −(T − t)2

4
I
∗(i1i2)
(00)T,t − (T − t)I

∗(i1i2)
(01)T,t +

(T − t)3

8

[
2

3
√
5
ζ
(i2)
2 ζ

(i1)
0 +

+
1

3
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=0

(
(i+ 2)(i+ 3)ζ

(i2)
i+3ζ

(i1)
i − (i+ 1)(i+ 2)ζ

(i2)
i ζ

(i1)
i+3√

(2i+ 1)(2i+ 7)(2i+ 3)(2i+ 5)
+

+
(i2 + i− 3)ζ

(i2)
i+1ζ

(i1)
i − (i2 + 3i− 1)ζ

(i2)
i ζ

(i1)
i+1√

(2i+ 1)(2i+ 3)(2i− 1)(2i+ 5)

)]
, (5.22)

I
∗(i1i2)
(20)T,t = −(T − t)2

4
I
∗(i1i2)
(00)T,t − (T − t)I

∗(i1i2)
(10)T,t +

(T − t)3

8

[
2

3
√
5
ζ
(i2)
0 ζ

(i1)
2 +

+
1

3
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=0

(
(i+ 1)(i+ 2)ζ

(i2)
i+3ζ

(i1)
i − (i+ 2)(i+ 3)ζ

(i2)
i ζ

(i1)
i+3√

(2i+ 1)(2i+ 7)(2i+ 3)(2i+ 5)
+

+
(i2 + 3i− 1)ζ

(i2)
i+1ζ

(i1)
i − (i2 + i− 3)ζ

(i2)
i ζ

(i1)
i+1√

(2i+ 1)(2i+ 3)(2i− 1)(2i+ 5)

)]
, (5.23)

I
∗(i1i2)
(11)T,t = −(T − t)2

4
I
∗(i1i2)
(00)T,t −

(T − t)

2

(
I
∗(i1i2)
(10)T,t + I

∗(i1i2)
(01)T,t

)
+

+
(T − t)3

8

[
1

3
ζ
(i1)
1 ζ

(i2)
1 +

∞∑
i=0

(
(i+ 1)(i+ 3)

(
ζ
(i2)
i+3ζ

(i1)
i − ζ

(i2)
i ζ

(i1)
i+3

)
√

(2i+ 1)(2i+ 7)(2i+ 3)(2i+ 5)
+
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+
(i+ 1)2

(
ζ
(i2)
i+1ζ

(i1)
i − ζ

(i2)
i ζ

(i1)
i+1

)
√

(2i+ 1)(2i+ 3)(2i− 1)(2i+ 5)

)]
(5.24)

or

I
∗(i1i2)
(02)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C02
j2j1
ζ
(i1)
j1
ζ
(i2)
j2
,

I
∗(i1i2)
(20)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C20
j2j1
ζ
(i1)
j1
ζ
(i2)
j2
,

I
∗(i1i2)
(11)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C11
j2j1
ζ
(i1)
j1
ζ
(i2)
j2
,

where

C02
j2j1

=

√
(2j1 + 1)(2j2 + 1)

16
(T − t)3C̄02

j2j1
,

C20
j2j1

=

√
(2j1 + 1)(2j2 + 1)

16
(T − t)3C̄20

j2j1
,

C11
j2j1

=

√
(2j1 + 1)(2j2 + 1)

16
(T − t)3C̄11

j2j1
,

C̄02
j2j1

=

1∫
−1

Pj2(y)(y + 1)2
y∫

−1

Pj1(x)dxdy,

C̄20
j2j1

=

1∫
−1

Pj2(y)

y∫
−1

Pj1(x)(x+ 1)2dxdy,

C̄11
j2j1

=

1∫
−1

Pj2(y)(y + 1)

y∫
−1

Pj1(x)(x+ 1)dxdy,

I
∗(i1i1)
(11)T,t =

1

2

(
I
(i1)
(1)T,t

)2
w. p. 1,

I
(i1i2)
(02)T,t = I

∗(i1i2)
(02)T,t −

1

6
1{i1=i2}(T − t)3 w. p. 1, (5.25)
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I
(i1i2)
(20)T,t = I

∗(i1i2)
(20)T,t −

1

6
1{i1=i2}(T − t)3 w. p. 1, (5.26)

I
(i1i2)
(11)T,t = I

∗(i1i2)
(11)T,t −

1

6
1{i1=i2}(T − t)3 w. p. 1,

I
(i1i2)
(02)T,t = −(T − t)2

4
I
(i1i2)
(00)T,t − (T − t)I

(i1i2)
01T,t

+
(T − t)3

8

[
2

3
√
5
ζ
(i2)
2 ζ

(i1)
0 +

+
1

3
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=0

(
(i+ 2)(i+ 3)ζ

(i2)
i+3ζ

(i1)
i − (i+ 1)(i+ 2)ζ

(i2)
i ζ

(i1)
i+3√

(2i+ 1)(2i+ 7)(2i+ 3)(2i+ 5)
+

+
(i2 + i− 3)ζ

(i2)
i+1ζ

(i1)
i − (i2 + 3i− 1)ζ

(i2)
i ζ

(i1)
i+1√

(2i+ 1)(2i+ 3)(2i− 1)(2i+ 5)

)]
−

− 1

24
1{i1=i2}(T − t)3, (5.27)

I
(i1i2)
(20)T,t = −(T − t)2

4
I
(i1i2)
(00)T,t − (T − t)I

(i1i2)
(10)T,t +

(T − t)3

8

[
2

3
√
5
ζ
(i2)
0 ζ

(i1)
2 +

+
1

3
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=0

(
(i+ 1)(i+ 2)ζ

(i2)
i+3ζ

(i1)
i − (i+ 2)(i+ 3)ζ

(i2)
i ζ

(i1)
i+3√

(2i+ 1)(2i+ 7)(2i+ 3)(2i+ 5)
+

+
(i2 + 3i− 1)ζ

(i2)
i+1ζ

(i1)
i − (i2 + i− 3)ζ

(i2)
i ζ

(i1)
i+1√

(2i+ 1)(2i+ 3)(2i− 1)(2i+ 5)

)]
−

− 1

24
1{i1=i2}(T − t)3, (5.28)

I
(i1i2)
(11)T,t = −(T − t)2

4
I
(i1i2)
(00)T,t −

T − t

2

(
I
(i1i2)
(10)T,t + I

(i1i2)
(01)T,t

)
+

+
(T − t)3

8

[
1

3
ζ
(i1)
1 ζ

(i2)
1 +

∞∑
i=0

(
(i+ 1)(i+ 3)

(
ζ
(i2)
i+3ζ

(i1)
i − ζ

(i2)
i ζ

(i1)
i+3

)
√
(2i+ 1)(2i+ 7)(2i+ 3)(2i+ 5)

+
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+
(i+ 1)2

(
ζ
(i2)
i+1ζ

(i1)
i − ζ

(i2)
i ζ

(i1)
i+1

)
√

(2i+ 1)(2i+ 3)(2i− 1)(2i+ 5)

)]
−

− 1

24
1{i1=i2}(T − t)3 (5.29)

or

I
(i1i2)
(02)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C02
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
,

I
(i1i2)
(20)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C20
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
,

I
(i1i2)
(11)T,t = l.i.m.

p→∞

p∑
j1,j2=0

C11
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
,

I
(i1)
(3)T,t = −(T − t)7/2

4

(
ζ
(i1)
0 +

3
√
3

5
ζ
(i1)
1 +

1√
5
ζ
(i1)
2 +

1

5
√
7
ζ
(i1)
3

)
, (5.30)

I
∗(i1i2i3i4)
(0000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
,

I
(i1i2i3i4)
(0000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

Cj4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
, (5.31)
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I
(i1i1i1i1)
(0000)T,t =

1

24
(T − t)2

((
ζ
(i1)
0

)4
− 6

(
ζ
(i1)
0

)2
+ 3

)
w. p. 1,

I
∗(i1i1i1i1)
(0000)T,t =

1

24
(T − t)2

(
ζ
(i1)
0

)4
w. p. 1, (5.32)

where

Cj4j3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

16
(T − t)2C̄j4j3j2j1, (5.33)

C̄j4j3j2j1 =

1∫
−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdu; (5.34)

I
∗(i1i2i3)
(001)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

C001
j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
,

I
∗(i1i2i3)
(010)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

C010
j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
,

I
∗(i1i2i3)
(100)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

C100
j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
,

I
(i1i2i3)
(001)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

C001
j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.35)

I
(i1i2i3)
(010)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

C010
j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.36)
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I
(i1i2i3)
(100)T,t = l.i.m.

p→∞

p∑
j1,j2,j3=0

C100
j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.37)

where

C001
j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

16
(T − t)5/2C̄001

j3j2j1
,

C010
j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

16
(T − t)5/2C̄010

j3j2j1
,

C100
j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

16
(T − t)5/2C̄100

j3j2j1
,

C̄100
j3j2j1

= −
1∫

−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)(x+ 1)dxdydz,

C̄010
j3j2j1

= −
1∫

−1

Pj3(z)

z∫
−1

Pj2(y)(y + 1)

y∫
−1

Pj1(x)dxdydz,

C̄001
j3j2j1

= −
1∫

−1

Pj3(z)(z + 1)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz;

I
(i1i1i1)
(lll)T,t =

1

6

((
I
(i1)
(l)T,t

)3
− 3I

(i1)
(l)T,t∆l(T,t)

)
w. p. 1,

I
∗(i1i1i1)
(lll)T,t =

1

6

(
I
(i1)
(l)T,t

)3
w. p. 1,

I
(i1i1i1i1)
(llll)T,t =

1

24

((
I
(i1)
(l)T,t

)4
− 6

(
I
(i1)
(l)T,t

)2
∆(l)T,t + 3

(
∆(l)T,t

)2)
w. p. 1,

I
∗(i1i1i1i1)
(llll)T,t =

1

24

(
I
(i1)
(l)T,t

)4
w. p. 1,
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where

I
(i1)
(l)T,t =

l∑
j=0

C l
jζ

(i1)
j w. p. 1, (5.38)

∆l(T,t) =

T∫
t

(t− s)2lds, C l
j =

T∫
t

(t− s)lϕj(s)ds;

I
∗(i1i2i3i4i5)
(00000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4,j5=0

Cj5j4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5
,

I
(i1i2i3i4i5)
(00000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4,j5=0

Cj5j4j3j2j1

(
5∏
l=1

ζ
(il)
jl

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5

− 1{i1=i5}1{j1=j5}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i5)
j5

−

−1{i2=i5}1{j2=j5}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i5)
j5

−

−1{i3=i5}1{j3=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4

− 1{i4=i5}1{j4=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4}ζ
(i5)
j5

+ 1{i1=i2}1{j1=j2}1{i3=i5}1{j3=j5}ζ
(i4)
j4

+

+1{i1=i2}1{j1=j2}1{i4=i5}1{j4=j5}ζ
(i3)
j3

+ 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}ζ
(i5)
j5

+

+1{i1=i3}1{j1=j3}1{i2=i5}1{j2=j5}ζ
(i4)
j4

+ 1{i1=i3}1{j1=j3}1{i4=i5}1{j4=j5}ζ
(i2)
j2

+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}ζ
(i5)
j5

+ 1{i1=i4}1{j1=j4}1{i2=i5}1{j2=j5}ζ
(i3)
j3

+

+1{i1=i4}1{j1=j4}1{i3=i5}1{j3=j5}ζ
(i2)
j2

+ 1{i1=i5}1{j1=j5}1{i2=i3}1{j2=j3}ζ
(i4)
j4

+

+1{i1=i5}1{j1=j5}1{i2=i4}1{j2=j4}ζ
(i3)
j3

+ 1{i1=i5}1{j1=j5}1{i3=i4}1{j3=j4}ζ
(i2)
j2

+

+1{i2=i3}1{j2=j3}1{i4=i5}1{j4=j5}ζ
(i1)
j1

+ 1{i2=i4}1{j2=j4}1{i3=i5}1{j3=j5}ζ
(i1)
j1

+

+1{i2=i5}1{j2=j5}1{i3=i4}1{j3=j4}ζ
(i1)
j1

)
, (5.39)

I
(i1i1i1i1i1)
(00000)T,t =

1

120
(T − t)5/2

((
ζ
(i1)
0

)5
− 10

(
ζ
(i1)
0

)3
+ 15ζ

(i1)
0

)
w. p. 1,
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I
∗(i1i1i1i1i1)
(00000)T,t =

1

120
(T − t)5/2

(
ζ
(i1)
0

)5
w. p. 1,

where

Cj5j4j3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)

32
(T − t)5/2C̄j5j4j3j2j1,

C̄j5j4j3j2j1 =

1∫
−1

Pj5(v)

v∫
−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdudv;

I
∗(i1i2i3)
(0001)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C0001
j4j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
,

I
∗(i1i2i3)
(0010)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C0010
j4j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
,

I
∗(i1i2i3)
(0100)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C0100
j4j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
,

I
∗(i1i2i3)
(1000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C1000
j4j3j2j1

ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
,

I
(i1i2i3i4)
(0001)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C0001
j4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
,



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series1003

I
(i1i2i3i4)
(0010)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C0010
j4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
,

I
(i1i2i3i4)
(0100)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C0100
j4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
,

I
(i1i2i3i4)
(1000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4=0

C1000
j4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
,

where
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C0001
j4j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

32
(T − t)3C̄0001

j4j3j2j1
,

C0010
j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

32
(T − t)3C̄0010

j4j3j2j1
,

C0100
j4j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

32
(T − t)3C̄0100

j3j2j1
,

C1000
j4j3j2j1

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

32
(T − t)3C̄1000

j4j3j2j1
,

C̄1000
j4j3j2j1

= −
1∫

−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)(x+ 1)dxdydzdu,

C̄0100
j4j3j2j1

= −
1∫

−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)(y + 1)

y∫
−1

Pj1(x)dxdydzdu,

C̄0010
j4j3j2j1

= −
1∫

−1

Pj4(u)

u∫
−1

Pj3(z)(z + 1)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdu,

C̄0001
j4j3j2j1

= −
1∫

−1

Pj4(u)(u+ 1)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdu;

I
∗(i1i2i3i4i5i6)
(000000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4,j5,j6=0

Cj6j5j4j3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6
,

I
(i1i2i3i4i5i6)
(000000)T,t = l.i.m.

p→∞

p∑
j1,j2,j3,j4,j5,j6=0

Cj6j5j4j3j2j1

(
6∏
l=1

ζ
(il)
jl

−

−1{j1=j6}1{i1=i6}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

− 1{j2=j6}1{i2=i6}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

−
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−1{j3=j6}1{i3=i6}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5

− 1{j4=j6}1{i4=i6}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5

−

−1{j5=j6}1{i5=i6}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

− 1{j1=j2}1{i1=i2}ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

−

−1{j1=j3}1{i1=i3}ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

− 1{j1=j4}1{i1=i4}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5
ζ
(i6)
j6

−

−1{j1=j5}1{i1=i5}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i6)
j6

− 1{j2=j3}1{i2=i3}ζ
(i1)
j1
ζ
(i4)
j4
ζ
(i5)
j5
ζ
(i6)
j6

−

−1{j2=j4}1{i2=i4}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i5)
j5
ζ
(i6)
j6

− 1{j2=j5}1{i2=i5}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i6)
j6

−

−1{j3=j4}1{i3=i4}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i5)
j5
ζ
(i6)
j6

− 1{j3=j5}1{i3=i5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i6)
j6

−

−1{j4=j5}1{i4=i5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i6)
j6

+

+1{j1=j2}1{i1=i2}1{j3=j4}1{i3=i4}ζ
(i5)
j5
ζ
(i6)
j6

+ 1{j1=j2}1{i1=i2}1{j3=j5}1{i3=i5}ζ
(i4)
j4
ζ
(i6)
j6

+

+1{j1=j2}1{i1=i2}1{j4=j5}1{i4=i5}ζ
(i3)
j3
ζ
(i6)
j6

+ 1{j1=j3}1{i1=i3}1{j2=j4}1{i2=i4}ζ
(i5)
j5
ζ
(i6)
j6

+

+1{j1=j3}1{i1=i3}1{j2=j5}1{i2=i5}ζ
(i4)
j4
ζ
(i6)
j6

+ 1{j1=j3}1{i1=i3}1{j4=j5}1{i4=i5}ζ
(i2)
j2
ζ
(i6)
j6

+

+1{j1=j4}1{i1=i4}1{j2=j3}1{i2=i3}ζ
(i5)
j5
ζ
(i6)
j6

+ 1{j1=j4}1{i1=i4}1{j2=j5}1{i2=i5}ζ
(i3)
j3
ζ
(i6)
j6

+

+1{j1=j4}1{i1=i4}1{j3=j5}1{i3=i5}ζ
(i2)
j2
ζ
(i6)
j6

+ 1{j1=j5}1{i1=i5}1{j2=j3}1{i2=i3}ζ
(i4)
j4
ζ
(i6)
j6

+

+1{j1=j5}1{i1=i5}1{j2=j4}1{i2=i4}ζ
(i3)
j3
ζ
(i6)
j6

+ 1{j1=j5}1{i1=i5}1{j3=j4}1{i3=i4}ζ
(i2)
j2
ζ
(i6)
j6

+

+1{j2=j3}1{i2=i3}1{j4=j5}1{i4=i5}ζ
(i1)
j1
ζ
(i6)
j6

+ 1{j2=j4}1{i2=i4}1{j3=j5}1{i3=i5}ζ
(i1)
j1
ζ
(i6)
j6

+

+1{j2=j5}1{i2=i5}1{j3=j4}1{i3=i4}ζ
(i1)
j1
ζ
(i6)
j6

+ 1{j6=j1}1{i6=i1}1{j3=j4}1{i3=i4}ζ
(i2)
j2
ζ
(i5)
j5

+

+1{j6=j1}1{i6=i1}1{j3=j5}1{i3=i5}ζ
(i2)
j2
ζ
(i4)
j4

+ 1{j6=j1}1{i6=i1}1{j2=j5}1{i2=i5}ζ
(i3)
j3
ζ
(i4)
j4

+

+1{j6=j1}1{i6=i1}1{j2=j4}1{i2=i4}ζ
(i3)
j3
ζ
(i5)
j5

+ 1{j6=j1}1{i6=i1}1{j4=j5}1{i4=i5}ζ
(i2)
j2
ζ
(i3)
j3

+

+1{j6=j1}1{i6=i1}1{j2=j3}1{i2=i3}ζ
(i4)
j4
ζ
(i5)
j5

+ 1{j6=j2}1{i6=i2}1{j3=j5}1{i3=i5}ζ
(i1)
j1
ζ
(i4)
j4

+

+1{j6=j2}1{i6=i2}1{j4=j5}1{i4=i5}ζ
(i1)
j1
ζ
(i3)
j3

+ 1{j6=j2}1{i6=i2}1{j3=j4}1{i3=i4}ζ
(i1)
j1
ζ
(i5)
j5

+

+1{j6=j2}1{i6=i2}1{j1=j5}1{i1=i5}ζ
(i3)
j3
ζ
(i4)
j4

+ 1{j6=j2}1{i6=i2}1{j1=j4}1{i1=i4}ζ
(i3)
j3
ζ
(i5)
j5

+

+1{j6=j2}1{i6=i2}1{j1=j3}1{i1=i3}ζ
(i4)
j4
ζ
(i5)
j5

+ 1{j6=j3}1{i6=i3}1{j2=j5}1{i2=i5}ζ
(i1)
j1
ζ
(i4)
j4

+

+1{j6=j3}1{i6=i3}1{j4=j5}1{i4=i5}ζ
(i1)
j1
ζ
(i2)
j2

+ 1{j6=j3}1{i6=i3}1{j2=j4}1{i2=i4}ζ
(i1)
j1
ζ
(i5)
j5

+

+1{j6=j3}1{i6=i3}1{j1=j5}1{i1=i5}ζ
(i2)
j2
ζ
(i4)
j4

+ 1{j6=j3}1{i6=i3}1{j1=j4}1{i1=i4}ζ
(i2)
j2
ζ
(i5)
j5

+

+1{j6=j3}1{i6=i3}1{j1=j2}1{i1=i2}ζ
(i4)
j4
ζ
(i5)
j5

+ 1{j6=j4}1{i6=i4}1{j3=j5}1{i3=i5}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{j6=j4}1{i6=i4}1{j2=j5}1{i2=i5}ζ
(i1)
j1
ζ
(i3)
j3

+ 1{j6=j4}1{i6=i4}1{j2=j3}1{i2=i3}ζ
(i1)
j1
ζ
(i5)
j5

+
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+1{j6=j4}1{i6=i4}1{j1=j5}1{i1=i5}ζ
(i2)
j2
ζ
(i3)
j3

+ 1{j6=j4}1{i6=i4}1{j1=j3}1{i1=i3}ζ
(i2)
j2
ζ
(i5)
j5

+

+1{j6=j4}1{i6=i4}1{j1=j2}1{i1=i2}ζ
(i3)
j3
ζ
(i5)
j5

+ 1{j6=j5}1{i6=i5}1{j3=j4}1{i3=i4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{j6=j5}1{i6=i5}1{j2=j4}1{i2=i4}ζ
(i1)
j1
ζ
(i3)
j3

+ 1{j6=j5}1{i6=i5}1{j2=j3}1{i2=i3}ζ
(i1)
j1
ζ
(i4)
j4

+

+1{j6=j5}1{i6=i5}1{j1=j4}1{i1=i4}ζ
(i2)
j2
ζ
(i3)
j3

+ 1{j6=j5}1{i6=i5}1{j1=j3}1{i1=i3}ζ
(i2)
j2
ζ
(i4)
j4

+

+1{j6=j5}1{i6=i5}1{j1=j2}1{i1=i2}ζ
(i3)
j3
ζ
(i4)
j4

−
−1{j6=j1}1{i6=i1}1{j2=j5}1{i2=i5}1{j3=j4}1{i3=i4}−
−1{j6=j1}1{i6=i1}1{j2=j4}1{i2=i4}1{j3=j5}1{i3=i5}−
−1{j6=j1}1{i6=i1}1{j2=j3}1{i2=i3}1{j4=j5}1{i4=i5}−
−1{j6=j2}1{i6=i2}1{j1=j5}1{i1=i5}1{j3=j4}1{i3=i4}−
−1{j6=j2}1{i6=i2}1{j1=j4}1{i1=i4}1{j3=j5}1{i3=i5}−
−1{j6=j2}1{i6=i2}1{j1=j3}1{i1=i3}1{j4=j5}1{i4=i5}−
−1{j6=j3}1{i6=i3}1{j1=j5}1{i1=i5}1{j2=j4}1{i2=i4}−
−1{j6=j3}1{i6=i3}1{j1=j4}1{i1=i4}1{j2=j5}1{i2=i5}−
−1{j3=j6}1{i3=i6}1{j1=j2}1{i1=i2}1{j4=j5}1{i4=i5}−
−1{j6=j4}1{i6=i4}1{j1=j5}1{i1=i5}1{j2=j3}1{i2=i3}−
−1{j6=j4}1{i6=i4}1{j1=j3}1{i1=i3}1{j2=j5}1{i2=i5}−
−1{j6=j4}1{i6=i4}1{j1=j2}1{i1=i2}1{j3=j5}1{i3=i5}−
−1{j6=j5}1{i6=i5}1{j1=j4}1{i1=i4}1{j2=j3}1{i2=i3}−
−1{j6=j5}1{i6=i5}1{j1=j2}1{i1=i2}1{j3=j4}1{i3=i4}−

−1{j6=j5}1{i6=i5}1{j1=j3}1{i1=i3}1{j2=j4}1{i2=i4}

)
,

I
(i1i1i1i1i1i1)
(000000)T,t =

1

720
(T − t)3

((
ζ
(i1)
0

)6
− 15

(
ζ
(i1)
0

)4
+ 45

(
ζ
(i1)
0

)2
− 15

)
w. p. 1,

I
∗(i1i1i1i1i1i1)
(000000)T,t =

1

720
(T − t)3

(
ζ
(i1)
0

)6
w. p. 1,

where
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Cj6j5j4j3j2j1 =

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)(2j5 + 1)(2j6 + 1)

64
(T − t)3C̄j6j5j4j3j2j1,

C̄j6j5j4j3j2j1 =

=

1∫
−1

Pj6(w)

w∫
−1

Pj5(v)

v∫
−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdudvdw.

It should be noted that instead of the expansion (5.17) we can consider the
following expansion, which is derived by direct calculation

I
∗(i1i2i3)
(000)T,t = − 1

T − t

(
I
(i3)
(0)T,tI

∗(i2i1)
(10)T,t + I

(i1)
(0)T,tI

∗(i2i3)
(10)T,t

)
+

1

2
I
(i3)
(0)T,t

(
I
∗(i1i2)
(00)T,t − I

∗(i2i1)
(00)T,t

)
−

−(T − t)3/2
(
1

6
ζ
(i1)
0 ζ

(i3)
0

(
ζ
(i2)
0 +

√
3ζ

(i2)
1 − 1√

5
ζ
(i2)
2

)
+

1

4
D

(i1i2i3)
T,t

)
, (5.40)

where

D
(i1i2i3)
T,t =

∞∑
i=1, j=0, k=i

2i≥k+i−j≥−2; k+i−j −even

NijkKi+1,k+1,k+i−j
2 +1ζ

(i1)
i ζ

(i2)
j ζ

(i3)
k +

+
∞∑

i=1, j=0, 1≤k≤i−1
2k≥k+i−j≥−2; k+i−j −even

NijkKk+1,i+1,k+i−j
2 +1ζ

(i1)
i ζ

(i2)
j ζ

(i3)
k −

−
∞∑

i=1, j=0, k=i+2
2i+2≥k+i−j≥0; k+i−j −even

NijkKi+1,k−1,k+i−j
2
ζ
(i1)
i ζ

(i2)
j ζ

(i3)
k −

−
∞∑

i=1, j=0, 1≤k≤i+1
2k−2≥k+i−j≥0; k+i−j −even

NijkKk−1,i+1,k+i−j
2
ζ
(i1)
i ζ

(i2)
j ζ

(i3)
k −

−
∞∑

i=1, j=0, k=i−2,k≥1
2i−2≥k+i−j≥0; k+i−j −even

NijkKi−1,k+1,k+i−j
2
ζ
(i1)
i ζ

(i2)
j ζ

(i3)
k −

−
∞∑

i=1, j=0, 1≤k≤i−3
2k+2≥k+i−j≥0; k+i−j −even

NijkKk+1,i−1,k+i−j
2
ζ
(i1)
i ζ

(i2)
j ζ

(i3)
k +
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+
∞∑

i=1, j=0, k=i
2i≥k+i−j≥2; k+i−j −even

NijkKi−1,k−1,k+i−j
2 −1ζ

(i1)
i ζ

(i2)
j ζ

(i3)
k +

+
∞∑

i=1, j=0 1≤k≤i−1
2k≥k+i−j≥2; k+i−j −even

NijkKk−1,i−1,k+i−j
2 −1ζ

(i1)
i ζ

(i2)
j ζ

(i3)
k ,

where

Nijk =

√
1

(2k + 1)(2j + 1)(2i+ 1)
,

Km,n,k =
am−kakan−k
am+n−k

· 2n+ 2m− 4k + 1

2n+ 2m− 2k + 1
, ak =

(2k − 1)!!

k!
, m ≤ n.

However, as we will see further the expansion (5.18) is more convenient for
the practical implementation then (5.40).

Also note the following relation between iterated Itô and Stratonovich
stochastic integrals

I
(i1i2i3i4)
(0000)T,t = I

∗(i1i2i3i4)
(0000)T,t +

1

2
1{i1=i2}I

∗(i3i4)
(10)T,t −

1

2
1{i2=i3}

(
I
∗(i1i4)
(10)T,t − I

∗(i1i4)
(01)T,t

)
−

−1

2
1{i3=i4}

(
(T − t)I

∗(i1i2)
(00)T,t + I

∗(i1i2)
(01)T,t

)
+

1

8
(T − t)21{i1=i2}1{i3=i4} w. p. 1.

Let us denote as

I
(i1...ik)q
(l1...lk)T,t

, I
∗(i1...ik)q
(l1...lk)T,t

the approximations of iterated Itô and Stratonovich stochastic integrals

I
(i1...ik)
(l1...lk)T,t

, I
∗(i1...ik)
(l1...lk)T,t

defined by (5.3), (5.4), i.e. we replace ∞ on q in the expansions of these sto-

chastic integrals. For example, I
∗(i1i2)q
(00)T,t is the approximation of the iterated

Stratonovich stochastic integral I
∗(i1i2)
(00)T,t obtained from (5.10) by replacing ∞ on

q, etc.

It is easy to prove that

M

{(
I
∗(i1i2)
(00)T,t − I

∗(i1i2)q
(00)T,t

)2}
=

(T − t)2

2

(
1

2
−

q∑
i=1

1

4i2 − 1

)
(i1 ̸= i2). (5.41)
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Moreover, using Theorem 1.3, we obtain for i1 ̸= i2

M

{(
I
∗(i1i2)
(10)T,t − I

∗(i1i2)q
(10)T,t

)2}
= M

{(
I
∗(i1i2)
(01)T,t − I

∗(i1i2)q
(01)T,t

)2}
=

=
(T − t)4

16

(
5

9
− 2

q∑
i=2

1

4i2 − 1
−

q∑
i=1

1

(2i− 1)2(2i+ 3)2
−

−
q∑
i=0

(i+ 2)2 + (i+ 1)2

(2i+ 1)(2i+ 5)(2i+ 3)2

)
. (5.42)

For the case i1 = i2 using Theorem 1.3, we have

M

{(
I
(i1i1)
(10)T,t − I

(i1i1)q
(10)T,t

)2}
= M

{(
I
(i1i1)
(01)T,t − I

(i1i1)q
(01)T,t

)2}
=

=
(T − t)4

16

(
1

9
−

q∑
i=0

1

(2i+ 1)(2i+ 5)(2i+ 3)2
− 2

q∑
i=1

1

(2i− 1)2(2i+ 3)2

)
.

(5.43)

In Tables 5.1–5.3 we have calculations according to the formulas (5.41)–
(5.43) for various values of q. In the given tables ε means the right-hand sides
of these formulas. Obviously, these results are consistent with the estimate
(1.225).

Let us consider (5.12), (5.13) for i1 = i2

I
∗(i1i1)
(01)T,t = −(T − t)2

4

((
ζ
(i1)
0

)2
+

1√
3
ζ
(i1)
0 ζ

(i1)
1 +

+
∞∑
i=0

(
1√

(2i+ 1)(2i+ 5)(2i+ 3)
ζ
(i1)
i ζ

(i1)
i+2 −

1

(2i− 1)(2i+ 3)

(
ζ
(i1)
i

)2))
,

(5.44)

I
∗(i1i1)
(10)T,t = −(T − t)2

4

((
ζ
(i1)
0

)2
+

1√
3
ζ
(i1)
0 ζ

(i1)
1 +

+
∞∑
i=0

(
− 1√

(2i+ 1)(2i+ 5)(2i+ 3)
ζ
(i1)
i ζ

(i1)
i+2 +

1

(2i− 1)(2i+ 3)

(
ζ
(i1)
i

)2))
.

(5.45)
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Table 5.1: Confirmation of the formula (5.41)

2ε/(T − t)2 0.1667 0.0238 0.0025 2.4988 · 10−4 2.4999 · 10−5

q 1 10 100 1000 10000

Table 5.2: Confirmation of the formula (5.42)

16ε/(T − t)4 0.3797 0.0581 0.0062 6.2450 · 10−4 6.2495 · 10−5

q 1 10 100 1000 10000

From (5.44), (5.45), considering (5.7) and (5.8), we obtain

I
∗(i1i1)
(10)T,t + I

∗(i1i1)
(01)T,t = −(T − t)2

2

((
ζ
(i1)
0

)2
+

1√
3
ζ
(i1)
0 ζ

(i1)
1

)
= I

(i1)
(0)T,tI

(i1)
(1)T,t w. p. 1.

(5.46)

Obtaining (5.46) we supposed that the formulas (5.12), (5.13) are valid
w. p. 1. The complete proof of this fact is given in Sect. 1.7.2 (Theorem 1.10).

Note that it is easy to obtain the equality (5.46) using the Itô formula and
standard relations between iterated Itô and Stratonovich stochastic integrals.

Using the Itô formula, we obtain

I
∗(i1i1)
(11)T,t =

(
I
(i1)
(1)T,t

)2
2

w. p. 1. (5.47)

In addition, using the Itô formula, we have

I
(i1i1)
(20)T,t + I

(i1i1)
(02)T,t = I

(i1)
(0)T,tI

(i1)
(2)T,t −

(T − t)3

3
w. p. 1. (5.48)

From (5.48), considering the formulas (5.25), (5.26), we obtain

I
∗(i1i1)
(20)T,t + I

∗(i1i1)
(02)T,t = I

(i1)
(0)T,tI

(i1)
(2)T,t w. p. 1. (5.49)

Let us check whether the formulas (5.47), (5.49) follow from (5.22)–(5.24),

Table 5.3: Confirmation of the formula (5.43)

16ε/(T−t)4 0.0070 4.3551·10−5 6.0076·10−8 6.2251 ·10−11 6.3178 ·10−14

q 1 10 100 1000 10000
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if we suppose i1 = i2 in the last ones. From (5.22)–(5.24) for i1 = i2 we get

I
∗(i1i1)
(20)T,t + I

∗(i1i1)
(02)T,t = −(T − t)2

2
I
∗(i1i1)
(00)T,t − (T − t)

(
I
∗(i1i1)
(10)T,t + I

∗(i1i1)
(01)T,t

)
+

+
(T − t)3

4

(
1

3

(
ζ
(i1)
0

)2
+

2

3
√
5
ζ
(i1)
2 ζ

(i1)
0

)
, (5.50)

I
∗(i1i1)
(11)T,t = −(T − t)2

4
I
∗(i1i1)
(00)T,t −

T − t

2

(
I
∗(i1i1)
(10)T,t + I

∗(i1i1)
(01)T,t

)
+

(T − t)3

24

(
ζ
(i1)
1

)2
.

(5.51)

It is easy to see that considering (5.46) and (5.7)–(5.10), we actually obtain
the equalities (5.47) and (5.49) from (5.50) and (5.51). This fact indirectly
confirms the correctness of the formulas (5.22)–(5.24).

Obtaining (5.47), (5.49) we supposed that the formulas (5.22)–(5.24) are
valid w. p. 1. The complete proof of this fact is given in Sect. 1.7.2 (Theorem
1.10).

On the basis of the presented expansions of iterated stochastic integrals
we can see that increasing of multiplicities of these integrals or degree indices
of their weight functions leads to noticeable complication of formulas for the
mentioned expansions.

However, increasing of the mentioned parameters leads to increasing of or-
ders of smallness with respect to T − t in the mean-square sense for iterated
stochastic integrals. This leads to a sharp decrease of member quantities in
expansions of iterated stochastic integrals, which are required for achieving the
acceptable accuracy of approximation. In this context, let us consider the ap-
proach to the approximation of iterated stochastic integrals, which provides a
possibility to obtain the mean-square approximations of the required accuracy
without using the complex expansions like (5.40).

Let us analyze the following approximation of iterated Itô stochastic integral
of multiplicity 3 using (5.18)

I
(i1i2i3)q1
(000)T,t =

q1∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.52)

where Cj3j2j1 is defined by (5.20), (5.21).



1012D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

In particular, from (5.52) for i1 ̸= i2, i2 ̸= i3, i1 ̸= i3 we obtain

I
(i1i2i3)q1
(000)T,t =

q1∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
. (5.53)

Furthermore, using Theorem 1.3 for k = 3, we get

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q1
(000)T,t

)2}
=

=
(T − t)3

6
−

q1∑
j1,j2,j3=0

C2
j3j2j1

(i1 ̸= i2, i1 ̸= i3, i2 ̸= i3), (5.54)

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q1
(000)T,t

)2}
=

=
(T − t)3

6
−

q1∑
j1,j2,j3=0

C2
j3j2j1

−
q1∑

j1,j2,j3=0

Cj2j3j1Cj3j2j1 (i1 ̸= i2 = i3), (5.55)

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q1
(000)T,t

)2}
=

=
(T − t)3

6
−

q1∑
j1,j2,j3=0

C2
j3j2j1

−
q1∑

j1,j2,j3=0

Cj3j2j1Cj1j2j3 (i1 = i3 ̸= i2), (5.56)

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q1
(000)T,t

)2}
=

=
(T − t)3

6
−

q1∑
j1,j2,j3=0

C2
j3j2j1

−
q1∑

j1,j2,j3=0

Cj3j1j2Cj3j2j1 (i1 = i2 ̸= i3). (5.57)

From the other hand, from Theorem 1.4 for k = 3 we obtain

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q1
(000)T,t

)2}
≤ 6

(
(T − t)3

6
−

q1∑
j1,j2,j3=0

C2
j3j2j1

)
, (5.58)

where i1, i2, i3 = 1, . . . ,m.
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We can act similarly with more complicated iterated stochastic integrals.
For example, for the approximation of stochastic integral I

(i1i2i3i4)
(0000)T,t we can write

(see (5.31))

I
(i1i2i3i4)q2
(0000)T,t =

q2∑
j1,j2,j3,j4=0

Cj4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
, (5.59)

where Cj4j3j2j1 is defined by (5.33), (5.34).

Moreover, according to Theorem 1.4 for k = 4, we get

M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q2
(0000)T,t

)2}
≤ 24

(
(T − t)4

24
−

q2∑
j1,j2,j3,j4=0

C2
j4j3j2j1

)
,

where i1, i2, i3, i4 = 1, . . . ,m.

For pairwise different i1, i2, i3, i4 = 1, . . . ,m from Theorem 1.3 we obtain

M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q2
(0000)T,t

)2}
=

(T − t)4

24
−

q2∑
j1,j2,j3,j4=0

C2
j4j3j2j1

. (5.60)

Using Theorem 1.3, we can calculate exactly the left-hand side of (5.60)
for any possible combinations of i1, i2, i3, i4. These relations were obtained in
Sect. 1.2. For example

M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q2
(0000)T,t

)2}
=

=
(T − t)4

24
−

q2∑
j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j2)

(∑
(j3,j4)

Cj4j3j2j1

))
,

where i1 = i2 ̸= i3 = i4 and ∑
(j1,j2)

means the sum with respect to permutations (j1, j2).
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Table 5.4: Coefficients C̄0j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 4
3

−2
3

2
15

0 0 0 0

j2 = 1 0 2
15

−2
15

4
105

0 0 0

j2 = 2 −4
15

2
15

2
105

−2
35

2
105

0 0

j2 = 3 0 −2
35

2
35

2
315

−2
63

8
693

0

j2 = 4 0 0 −8
315

2
63

2
693

−2
99

10
1287

j2 = 5 0 0 0 −10
693

2
99

2
1287

−2
143

j2 = 6 0 0 0 0 −4
429

2
143

2
2145

Table 5.5: Coefficients C̄1j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 2
3

−4
15

0 2
105

0 0 0

j2 = 1 2
15

0 −4
105

0 2
315

0 0

j2 = 2 −2
15

8
105

0 −2
105

0 4
1155

0

j2 = 3 −2
35

0 8
315

0 −38
3465

0 20
9009

j2 = 4 0 −4
315

0 46
3465

0 −64
9009

0

j2 = 5 0 0 −4
693

0 74
9009

0 −32
6435

j2 = 6 0 0 0 −10
3003

0 4
715

0

Table 5.6: Coefficients C̄2j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 2
15

0 −4
105

0 2
315

0 0

j2 = 1 2
15

−4
105

0 −2
315

0 8
3465

0

j2 = 2 2
105

0 0 0 −2
495

0 4
3003

j2 = 3 −2
35

8
315

0 −2
3465

0 −116
45045

0

j2 = 4 −8
315

0 4
495

0 −2
6435

0 −16
9009

j2 = 5 0 −4
693

0 38
9009

0 −8
45045

0

j2 = 6 0 0 −8
3003

0 118
45045

0 −4
36465
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Table 5.7: Coefficients C̄3j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 0 2
105

0 −4
315

0 2
693

0

j2 = 1 4
105

0 −2
315

0 −8
3465

0 10
9009

j2 = 2 2
35

−2
105

0 4
3465

0 −74
45045

0

j2 = 3 2
315

0 −2
3465

0 16
45045

0 −10
9009

j2 = 4 −2
63

46
3465

0 −32
45045

0 2
9009

0

j2 = 5 −10
693

0 38
9009

0 −4
9009

0 122
765765

j2 = 6 0 −10
3003

0 20
9009

0 −226
765765

0

Table 5.8: Coefficients C̄4j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 0 0 2
315

0 −4
693

0 2
1287

j2 = 1 0 2
315

0 −8
3465

0 −10
9009

0

j2 = 2 2
105

0 −2
495

0 4
6435

0 −38
45045

j2 = 3 2
63

−38
3465

0 16
45045

0 2
9009

0

j2 = 4 2
693

0 −2
6435

0 0 0 2
13923

j2 = 5 −2
99

74
9009

0 −4
9009

0 −2
153153

0

j2 = 6 −4
429

0 118
45045

0 −4
13923

0 −2
188955

Table 5.9: Coefficients C̄5j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 0 0 0 2
693

0 −4
1287

0

j2 = 1 0 0 8
3465

0 −10
9009

0 −4
6435

j2 = 2 0 4
1155

0 −74
45045

0 16
45045

0

j2 = 3 8
693

0 −116
45045

0 2
9009

0 8
58905

j2 = 4 2
99

−64
9009

0 2
9009

0 4
153153

0

j2 = 5 2
1287

0 −8
45045

0 −2
153153

0 4
415701

j2 = 6 −2
143

4
715

0 −226
765765

0 −8
415701

0
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Table 5.10: Coefficients C̄6j2j1

j1 = 0 j1 = 1 j1 = 2 j1 = 3 j1 = 4 j1 = 5 j1 = 6

j2 = 0 0 0 0 0 2
1287

0 −4
2145

j2 = 1 0 0 0 10
9009

0 −4
6435

0

j2 = 2 0 0 4
3003

0 −38
45045

0 8
36465

j2 = 3 0 20
9009

0 −10
9009

0 8
58905

0

j2 = 4 10
1287

0 −16
9009

0 2
13923

0 4
188955

j2 = 5 2
143

−32
6435

0 122
765765

0 4
415701

0

j2 = 6 2
2145

0 −4
36465

0 −2
188955

0 0

Table 5.11: Coefficients C̄00j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
3

−2
5

2
15

j2 = 1 −2
15

2
15

−2
21

j2 = 2 −2
15

2
35

2
105

Table 5.12: Coefficients C̄10j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
5

−2
9

2
35

j2 = 1 −2
45

2
35

−2
45

j2 = 2 −2
21

2
45

2
315

Table 5.13: Coefficients C̄02j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2
15

2
21

−4
105

j2 = 1 2
35

−4
105

2
105

j2 = 2 4
105

−2
105

0
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Table 5.14: Coefficients C̄01j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
15

−2
45

−2
105

j2 = 1 2
45

−2
105

2
315

j2 = 2 −2
35

2
63

−2
315

Table 5.15: Coefficients C̄11j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
15

−2
35

0

j2 = 1 2
105

0 −2
315

j2 = 2 −4
105

2
105

0

Assume that q1 = 6. In Tables 5.4–5.10 we have the exact values of co-
efficients C̄j3j2j1 (j1, j2, j3 = 0, 1, . . . , 6). Here and further in this section the
Fourier–Legendre coefficients have been calculated exactly using computer al-
gebra system Derive. Note that in [53], [54] the database with 270,000 exactly
calculated Fourier–Legendre coefficients was described. This database was used
in the software package, which is written in the Python programming language
for the implementation of the numerical schemes (4.79)-(4.83), (4.88)-(4.92).

Calculating the value on the right-hand side of (5.54) for q1 = 6 (i1 ̸= i2,

i1 ̸= i3, i3 ̸= i2), we obtain the following approximate equality

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q1
(000)T,t

)2}
≈ 0.01956(T − t)3.

Let us choose, for example, q2 = 2. In Tables 5.11–5.19 we have the exact
values of coefficients C̄j4j3j2j1 (j1, j2, j3, j4 = 0, 1, 2). In the case of pairwise

Table 5.16: Coefficients C̄20j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
15

−2
35

0

j2 = 1 2
105

0 −2
315

j2 = 2 −4
105

2
105

0
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Table 5.17: Coefficients C̄21j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
21

−2
45

2
315

j2 = 1 2
315

2
315

−2
225

j2 = 2 −2
105

2
225

2
1155

Table 5.18: Coefficients C̄12j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2
35

2
45

−2
105

j2 = 1 2
63

−2
105

2
225

j2 = 2 2
105

−2
225

−2
3465

different i1, i2, i3, i4 we obtain from (5.60) the following approximate equality

M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q2
(0000)T,t

)2}
≈ 0.0236084(T − t)4. (5.61)

Let us analyze the following four approximations of the iterated Itô stochas-
tic integrals (see (5.35)–(5.39))

I
(i1i2i3)q3
(001)T,t =

q3∑
j1,j2,j3=0

C001
j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.62)

I
(i1i2i3)q3
(010)T,t =

q3∑
j1,j2,j3=0

C010
j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.63)

I
(i1i2i3)q3
(100)T,t =

q3∑
j1,j2,j3=0

C100
j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.64)
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Table 5.19: Coefficients C̄22j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 2
105

−2
315

0

j2 = 1 2
315

0 −2
1155

j2 = 2 0 2
3465

0

I
(i1i2i3i4i5)q4
(00000)T,t =

q4∑
j1,j2,j3,j4,j5=0

Cj5j4j3j2j1

(
5∏
l=1

ζ
(il)
jl

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4
ζ
(i5)
j5

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i5)
j5

− 1{i1=i5}1{j1=j5}ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4
ζ
(i5)
j5

− 1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i5)
j5

−

−1{i2=i5}1{j2=j5}ζ
(i1)
j1
ζ
(i3)
j3
ζ
(i4)
j4

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i5)
j5

−

−1{i3=i5}1{j3=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i4)
j4

− 1{i4=i5}1{j4=j5}ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

+

+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4}ζ
(i5)
j5

+ 1{i1=i2}1{j1=j2}1{i3=i5}1{j3=j5}ζ
(i4)
j4

+

+1{i1=i2}1{j1=j2}1{i4=i5}1{j4=j5}ζ
(i3)
j3

+ 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}ζ
(i5)
j5

+

+1{i1=i3}1{j1=j3}1{i2=i5}1{j2=j5}ζ
(i4)
j4

+ 1{i1=i3}1{j1=j3}1{i4=i5}1{j4=j5}ζ
(i2)
j2

+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}ζ
(i5)
j5

+ 1{i1=i4}1{j1=j4}1{i2=i5}1{j2=j5}ζ
(i3)
j3

+

+1{i1=i4}1{j1=j4}1{i3=i5}1{j3=j5}ζ
(i2)
j2

+ 1{i1=i5}1{j1=j5}1{i2=i3}1{j2=j3}ζ
(i4)
j4

+

+1{i1=i5}1{j1=j5}1{i2=i4}1{j2=j4}ζ
(i3)
j3

+ 1{i1=i5}1{j1=j5}1{i3=i4}1{j3=j4}ζ
(i2)
j2

+

+1{i2=i3}1{j2=j3}1{i4=i5}1{j4=j5}ζ
(i1)
j1

+ 1{i2=i4}1{j2=j4}1{i3=i5}1{j3=j5}ζ
(i1)
j1

+

+1{i2=i5}1{j2=j5}1{i3=i4}1{j3=j4}ζ
(i1)
j1

)
. (5.65)

Assume that q3 = 2, q4 = 1. In Tables 5.20–5.36 we have the exact values of
Fourier–Legendre coefficients C̄001

j3j2j1
, C̄010

j3j2j1
, C̄100

j3j2j1
(j1, j2, j3 = 0, 1, 2), C̄j5j4j3j2j1

(j1, . . . , j5 = 0, 1).

In the case of pairwise different i1, . . . , i5 from Tables 5.20–5.36 we obtain
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Table 5.20: Coefficients C̄001
0j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2 14
15

−2
15

j2 = 1 −2
15

−2
15

6
35

j2 = 2 2
5

−22
105

−2
105

Table 5.21: Coefficients C̄001
1j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −6
5

22
45

−2
105

j2 = 1 −2
9

−2
105

26
315

j2 = 2 22
105

−38
315

−2
315

Table 5.22: Coefficients C̄001
2j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2
5

2
21

4
105

j2 = 1 −22
105

4
105

2
105

j2 = 2 0 −2
105

0

Table 5.23: Coefficients C̄100
0j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2
3

2
15

2
15

j2 = 1 −2
15

−2
45

2
35

j2 = 2 2
15

−2
35

−4
105

Table 5.24: Coefficients C̄100
1j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2
5

2
45

2
21

j2 = 1 −2
15

−2
105

4
105

j2 = 2 2
35

−2
63

−2
105
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Table 5.25: Coefficients C̄100
2j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −2
15

−2
105

4
105

j2 = 1 −2
21

−2
315

2
105

j2 = 2 −2
105

−2
315

0

Table 5.26: Coefficients C̄010
0j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −4
3

8
15

0

j2 = 1 −4
15

0 8
105

j2 = 2 4
15

−16
105

0

Table 5.27: Coefficients C̄010
1j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −4
5

4
15

4
105

j2 = 1 −4
15

4
105

4
105

j2 = 2 4
35

−8
105

0

Table 5.28: Coefficients C̄010
2j2j1

j1 = 0 j1 = 1 j1 = 2

j2 = 0 −4
15

4
105

4
105

j2 = 1 −4
21

4
105

4
315

j2 = 2 −4
105

0 0

Table 5.29: Coefficients C̄000j2j1

j1 = 0 j1 = 1

j2 = 0 4
15

−8
45

j2 = 1 −4
45

8
105
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Table 5.30: Coefficients C̄010j2j1

j1 = 0 j1 = 1

j2 = 0 4
45

−16
315

j2 = 1 −4
315

4
315

Table 5.31: Coefficients C̄110j2j1

j1 = 0 j1 = 1

j2 = 0 8
105

−2
45

j2 = 1 −4
315

4
315

Table 5.32: Coefficients C̄011j2j1

j1 = 0 j1 = 1

j2 = 0 8
315

−4
315

j2 = 1 0 2
945

Table 5.33: Coefficients C̄001j2j1

j1 = 0 j1 = 1

j2 = 0 0 4
315

j2 = 1 8
315

−2
105

Table 5.34: Coefficients C̄100j2j1

j1 = 0 j1 = 1

j2 = 0 8
45

−4
35

j2 = 1 −16
315

2
45

Table 5.35: Coefficients C̄101j2j1

j1 = 0 j1 = 1

j2 = 0 4
315

0

j2 = 1 4
315

−8
945
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Table 5.36: Coefficients C̄111j2j1

j1 = 0 j1 = 1

j2 = 0 2
105

−8
945

j2 = 1 2
945

0

M

{(
I
(i1i2i3)
(100)T,t − I

(i1i2i3)q3
(100)T,t

)2}
=

=
(T − t)5

60
−

2∑
j1,j2,j3=0

(
C100
j3j2j1

)2 ≈ 0.00815429(T − t)5,

M

{(
I
(i1i2i3)
(010)T,t − I

(i1i2i3)q3
(010)T,t

)2}
=

=
(T − t)5

20
−

2∑
j1,j2,j3=0

(
C010
j3j2j1

)2 ≈ 0.01739030(T − t)5,

M

{(
I
(i1i2i3)
(001)T,t − I

(i1i2i3)q3
(001)T,t

)2}
=

=
(T − t)5

10
−

2∑
j1,j2,j3=0

(
C001
j3j2j1

)2 ≈ 0.02528010(T − t)5,

M

{(
I
(i1i2i3i4i5)
(00000)T,t − I

(i1i2i3i4i5)q4
(00000)T,t

)2}
=

=
(T − t)5

120
−

1∑
j1,j2,j3,j4,j5=0

C2
j5j4j3j2j1

≈ 0.00759105(T − t)5.

Note that from Theorem 1.4 for k = 5 we have

M

{(
I
(i1i2i3i4i5)
(00000)T,t − I

(i1i2i3i4i5)q4
(00000)T,t

)2}
≤ 120

(
(T − t)5

120
−

q4∑
j1,j2,j3,j4,j5=0

C2
j5j4j3j2j1

)
,

where i1, . . . , i5 = 1, . . . ,m.
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Moreover, from Theorem 1.4 we obtain the following useful estimates

M

{(
I
(i1i2)
(01)T,t − I

(i1i2)q
(01)T,t

)2}
≤ 2

(
(T − t)4

4
−

q∑
j1,j2=0

(
C01
j2j1

)2)
,

M

{(
I
(i1i2)
(10)T,t − I

(i1i2)q
(10)T,t

)2}
≤ 2

(
(T − t)4

12
−

q∑
j1,j2=0

(
C10
j2j1

)2)
,

M

{(
I
(i1i2i3)
(100)T,t − I

(i1i2i3)q
(100)T,t

)2}
≤ 6

(
(T − t)5

60
−

q∑
j1,j2,j3=0

(
C100
j3j2j1

)2)
,

M

{(
I
(i1i2i3)
(010)T,t − I

(i1i2i3)q
(010)T,t

)2}
≤ 6

(
(T − t)5

20
−

q∑
j1,j2,j3=0

(
C010
j3j2j1

)2)
,

M

{(
I
(i1i2i3)
(001)T,t − I

(i1i2i3)q
(001)T,t

)2}
≤ 6

(
(T − t)5

10
−

q∑
j1,j2,j3=0

(
C001
j3j2j1

)2)
,

M

{(
I
(i1i2)
(20))T,t − I

(i1i2)q
(20)T,t

)2}
≤ 2

(
(T − t)6

30
−

q∑
j2,j1=0

(
C20
j2j1

)2)
,

M

{(
I
(i1i2)
(11)T,t − I

(i1i2)q
(11)T,t

)2}
≤ 2

(
(T − t)6

18
−

q∑
j2,j1=0

(
C11
j2j1

)2)
,

M

{(
I
(i1i2)
(02)T,t − I

(i1i2)q
(02)T,t

)2}
≤ 2

(
(T − t)6

6
−

q∑
j2,j1=0

(
C02
j2j1

)2)
,

M

{(
I
(i1i2i3i4)
(1000)T,t − I

(i1i2i3i4)q
(1000)T,t

)2}
≤ 24

(
(T − t)6

360
−

q∑
j1,j2,j3,j4=0

(
C1000
j4j3j2j1

)2)
,

M

{(
I
(i1i2i3i4)
(0100)T,t − I

(i1i2i3i4)q
(0100)T,t

)2}
≤ 24

(
(T − t)6

120
−

q∑
j1,j2,j3,j4=0

(
C0100
j4j3j2j1

)2)
,

M

{(
I
(i1i2i3i4)
(0010)T,t − I

(i1i2i3i4)q
(0010)T,t

)2}
≤ 24

(
(T − t)6

60
−

q∑
j1,j2,j3,j4=0

(
C0010
j4j3j2j1

)2)
,

M

{(
I
(i1i2i3i4)
(0001)T,t − I

(i1i2i3i4)q
(0001)T,t

)2}
≤ 24

(
(T − t)6

36
−

q∑
j1,j2,j3,j4=0

(
C0001
j4j3j2j1

)2)
,
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M

{(
I
(i1i2i3i4i5i6)
(000000)T,t − I

(i1i2i3i4i5i6)q
(000000)T,t

)2}
≤

≤ 720

(
(T − t)6

720
−

q∑
j1,j2,j3,j4,j5,j6=0

C2
j6j5j4j3j2j1

)
.

In addition, from Theorem 1.3 for k = 2 we get

M

{(
I
(i1i2)
(10)T,t − I

(i1i2)q
(10)T,t

)2}
=

=
(T − t)4

12
−

q∑
j1,j2=0

(
C10
j2j1

)2 − q∑
j1,j2=0

C10
j2j1
C10
j1j2

(i1 = i2),

M

{(
I
(i1i2)
(10)T,t − I

(i1i2)q
(10)T,t

)2}
=

(T − t)4

12
−

q∑
j1,j2=0

(
C10
j2j1

)2
(i1 ̸= i2),

M

{(
I
(i1i2)
(01)T,t − I

(i1i2)q
(01)T,t

)2}
=

=
(T − t)4

4
−

q∑
j1,j2=0

(
C01
j2j1

)2 − q∑
j1,j2=0

C01
j2j1
C01
j1j2

(i1 = i2),

M

{(
I
(i1i2)
(01)T,t − I

(i1i2)q
(01)T,t

)2}
=

(T − t)4

4
−

q∑
j1,j2=0

(
C01
j2j1

)2
(i1 ̸= i2),

M

{(
I
(i1i2)
(20)T,t − I

(i1i2)q
(20)T,t

)2}
=

=
(T − t)6

30
−

q∑
j1,j2=0

(
C20
j2j1

)2 − q∑
j1,j2=0

C20
j2j1
C20
j1j2

(i1 = i2),

M

{(
I
(i1i2)
(20)T,t − I

(i1i2)q
(20)T,t

)2}
=

(T − t)6

30
−

q∑
j1,j2=0

(
C20
j2j1

)2
(i1 ̸= i2),

M

{(
I
(i1i2)
(11)T,t − I

(i1i2)q
(11)T,t

)2}
=
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=
(T − t)6

18
−

q∑
j1,j2=0

(
C11
j2j1

)2 − q∑
j1,j2=0

C11
j2j1
C11
j1j2

(i1 = i2),

M

{(
I
(i1i2)
(11)T,t − I

(i1i2)q
(11)T,t

)2}
=

(T − t)6

18
−

q∑
j1,j2=0

(
C11
j2j1

)2
(i1 ̸= i2),

M

{(
I
(i1i2)
(02) − I

(i1i2)q
(02)T,t

)2}
=

=
(T − t)6

6
−

q∑
j1,j2=0

(
C02
j2j1

)2 − q∑
j1,j2=0

C02
j2j1
C02
j1j2

(i1 = i2),

M

{(
I
(i1i2)
(02)T,t − I

(i1i2)q
(02)T,t

)2}
=

(T − t)6

6
−

q∑
j1,j2=0

(
C02
j2j1

)2
(i1 ̸= i2).

Clearly, expansions for iterated Stratonovich stochastic integrals (see Theo-
rems 1.1, 2.1–2.9, 2.33–2.36, 2.50, 2.51, 2.62–2.65) are simpler than expansions
for iterated Itô stochastic integrals (see Theorems 1.1, 1.2, 1.16 and (1.45)–
(1.51)). However, the calculation of the mean-square approximation error for
iterated Stratonovich stochastic integrals turns out to be much more difficult
than for iterated Itô stochastic integrals. Below we consider how we can esti-
mate or calculate exactly (for some particular cases) the mean-square approxi-
mation error for iterated Stratonovich stochastic integrals.

Consider the iterated Stratonovich stochastic integral of multiplicity 2

J∗[ψ(2)]T,t =

∗∫
t

T

ψ2(t2)

∗∫
t

t2

ψ1(t1)df
(i1)
t1 df

(i1)
t2 (i1 = 1, . . . ,m),

where ψ1(τ), ψ2(τ) are continuously differentiable functions on [t, T ].

By Theorem 2.2 we have

J∗[ψ(2)]T,t = l.i.m.
p→∞

p∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i1)
j2
.

Consider the following approximation of the stochastic integral J∗[ψ(2)]T,t

J∗[ψ(2)]qT,t =

q∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i1)
j2
.
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According to the standard relation between Stratonovich and Itô stochastic
integrals (see (2.478)) and (1.96), we obtain

M

{(
J∗[ψ(2)]T,t − J∗[ψ(2)]qT,t

)2}
=

= M


J [ψ(2)]T,t +

1

2

T∫
t

ψ1(s)ψ2(s)ds−
q∑

j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i1)
j2

2
 =

= M


J [ψ(2)]T,t − J [ψ(2)]qT,t +

1

2

T∫
t

ψ1(s)ψ2(s)ds−
q∑

j1=0

Cj1j1

2
 =

= M

{(
J [ψ(2)]T,t − J [ψ(2)]qT,t

)2}
+

1

2

T∫
t

ψ1(s)ψ2(s)ds−
q∑

j1=0

Cj1j1

2

=

=

∫
[t,T ]2

K2(t1, t2)dt1dt2 −
q∑

j1,j2=0

C2
j2j1

−
q∑

j1,j2=0

Cj2j1Cj1j2+

+

1

2

T∫
t

ψ1(s)ψ2(s)ds−
q∑

j1=0

Cj1j1

2

,

where

J [ψ(2)]qT,t =

q∑
j1,j2=0

Cj2j1ζ
(i1)
j1
ζ
(i1)
j2

−
q∑

j1=0

Cj1j1

is the approximation (see (1.46)) of the iterated Itô stochastic integral

J [ψ(2)]T,t =

T∫
t

ψ2(t2)

t2∫
t

ψ1(t1)df
(i1)
t1 df

(i1)
t2 (i1 = 1, . . . ,m).

It is not difficult to see that the value

M

{(
J∗[ψ(2)]T,t − J∗[ψ(2)]qT,t

)2}
is greater than the value

M

{(
J [ψ(2)]T,t − J [ψ(2)]qT,t

)2}
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by

E(i1)
q =

1

2

T∫
t

ψ1(s)ψ2(s)ds−
q∑

j1=0

Cj1j1

2

.

For some particular cases E
(i1)
q = 0. For example, for the case ψ1(τ), ψ2(τ)

≡ 1 ({ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials or
trigonometric functions in the space L2([t, T ])) we have

q∑
j1=0

Cj1j1 =
1

2

q∑
j1=0

(Cj1)
2 =

1

2
(C0)

2 =
1

2
(T − t) =

1

2

T∫
t

ds.

However, E
(i1)
q ̸= 0 in a general case.

Consider the following iterated Stratonovich stochastic integral of multi-
plicity 3

I
∗(i1i2i3)
(000)T,t =

∗∫
t

T ∗∫
t

t3 ∗∫
t

t2

df
(i1)
t1 df

(i2)
t2 df

(i3)
t3 (i1, i2, i3 = 1, . . . ,m).

Taking into account the standard relations between Itô and Stratonovich
stochastic integrals (see (2.399)) and Theorem 1.1 (the case k = 3) together
with Theorem 2.8, we obtain

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

= M


I(i1i2i3)(000)T,t +

1

2
1{i1=i2}

T∫
t

τ∫
t

dsdf (i3)τ +
1

2
1{i2=i3}

T∫
t

τ∫
t

df (i1)s dτ − I
∗(i1i2i3)q
(000)T,t

2
=

= M


I(i1i2i3)(000)T,t − I

(i1i2i3)q
(000)T,t + I

(i1i2i3)q
(000)T,t + 1{i1=i2}

1

2

T∫
t

τ∫
t

dsdf (i3)τ +

+1{i2=i3}
1

2

T∫
t

τ∫
t

df (i1)s dτ − I
∗(i1i2i3)q
(000)T,t

2
 , (5.66)

where the approximations I
∗(i1i2i3)q
(000)T,t , I

(i1i2i3)q
(000)T,t are defined by the relations (see

(5.17), (5.18))
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I
(i1i2i3)q
(000)T,t =

q∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.67)

I
∗(i1i2i3)q
(000)T,t =

q∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
. (5.68)

Substituting (5.67) and (5.68) into (5.66) yields

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

= M


I(i1i2i3)(000)T,t − I

(i1i2i3)q
(000)T,t + 1{i1=i2}

1

2

T∫
t

τ∫
t

dsdf (i3)τ −
q∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

+

+1{i2=i3}

1

2

T∫
t

τ∫
t

df (i1)s dτ −
q∑

j1,j3=0

Cj3j3j1ζ
(i1)
j1

− 1{i1=i3}

q∑
j1,j2=0

Cj1j2j1ζ
(i2)
j2

2
≤

(5.69)

≤ 4

(
M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
+ 1{i1=i2}F

(i3)
q + 1{i2=i3}G

(i1)
q + 1{i1=i3}H

(i2)
q

)
,

(5.70)

where

F (i3)
q = M


1

2

T∫
t

τ∫
t

dsdf (i3)τ −
q∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

2
 , (5.71)

G(i1)
q = M


1

2

T∫
t

τ∫
t

df (i1)s dτ −
q∑

j1,j3=0

Cj3j3j1ζ
(i1)
j1

2
 , (5.72)

H(i2)
q = M


(

q∑
j1,j2=0

Cj1j2j1ζ
(i2)
j2

)2
 . (5.73)

In the cases of Legendre polynomials or trigonometric functions, we have
(see Theorem 2.8) the equalities

lim
q→∞

F (i3)
q = 0, lim

q→∞
G(i1)
q = 0, lim

q→∞
H(i2)
q = 0.
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However, in accordance with (5.70) the value

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
with a finite q can be estimated by terms of a rather complex structure (see
(5.71)-(5.73)). As is easily observed, this peculiarity will also apply to the it-
erated Stratonovich stochastic integrals of multiplicities k ≥ 4 with the only
difference that the number of additional terms like (5.71)-(5.73) will be consider-
ably higher and their structure will be more complicated (the exact calculation
of the mean-square error of approximation for iterated Stratonovich stochastic
integrals of multiplicities 1 to 4 is presented in Sect. 5.5, 5.6).

Therefore, the payment for a relatively simple approximation of the iterated
Stratonovich stochastic integrals (Theorems 2.1–2.9, 2.30, 2.33–2.36, 2.50, 2.51,
2.62–2.65) in comparison with the iterated Itô stochastic integrals (Theorems
1.1, 1.2, 1.16) is a much more difficult calculation or estimation procedure of
their mean-square approximation errors.

As we mentioned above, on the basis of the presented approximations of
iterated Stratonovich stochastic integrals we can see that increasing of multi-
plicities of these integrals leads to increasing of orders of smallness with respect
to T − t in the mean-square sense for iterated Stratonovich stochastic integrals
(T − t ≪ 1 because the length T − t of integration interval [t, T ] of the it-
erated Stratonovich stochastic integrals plays the role of integration step for
the numerical methods for Itô SDEs, i.e. T − t is already fairly small). This
leads to a sharp decrease of member quantities in the approximations of it-
erated Stratonovich stochastic integrals which are required for achieving the
acceptable accuracy of approximation.

From (5.41) (i1 ̸= i2) we obtain

M

{(
I
∗(i1i2)
(00)T,t − I

∗(i1i2)q
(00)T,t

)2}
=

(T − t)2

2

∞∑
i=q+1

1

4i2 − 1
≤

≤ (T − t)2

2

∞∫
q

1

4x2 − 1
dx = −(T − t)2

8
ln

∣∣∣∣1− 2

2q + 1

∣∣∣∣ ≤ C1
(T − t)2

q
, (5.74)

where constant C1 does not depend on q.

It is easy to notice that for a sufficiently small T − t (recall that T − t≪ 1
since it is a step of integration for the numerical schemes for Itô SDEs) there
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exists a constant C2 such that

M

{(
I
∗(i1...ik)
(l1...lk)T,t

− I
∗(i1...ik)q
(l1...lk)T,t

)2}
≤ C2M

{(
I
∗(i1i2)
(00)T,t − I

∗(i1i2)q
(00)T,t

)2}
, (5.75)

where I
∗(i1...ik)q
(l1...lk)T,t

is an approximation of the iterated Stratonovich stochastic in-

tegral I
∗(i1...ik)
(l1...lk)T,t

.

From (5.74) and (5.75) we finally obtain

M

{(
I
∗(i1...ik)
(l1...lk)T,t

− I
∗(i1...ik)q
(l1...lk)T,t

)2}
≤ C

(T − t)2

q
, (5.76)

where constant C is independent of T − t.

The same idea can be found in [84] in the framework of the method of ap-
proximation of iterated Stratonovich stochastic integrals based on the trigono-
metric expansion of the Brownian bridge process. Note that, in contrast to the
estimate (5.76), the constant C in Theorems 2.38–2.40 does not depend on p.

We can get more information about the numbers q (these numbers are dif-
ferent for different iterated Stratonovich stochastic integrals) using the another
approach. Since for pairwise different i1, . . . , ik = 1, . . . ,m

J∗[ψ(k)]T,t = J [ψ(k)]T,t w. p. 1,

where J [ψ(k)]T,t, J
∗[ψ(k)]T,t are defined by (5.1) and (5.2) correspondingly, then

for pairwise different i1, . . . , i6 = 1, . . . ,m from Theorem 1.3 we obtain

M

{(
I
∗(i1i2)
(01)T,t − I

∗(i1i2)q
(01)T,t

)2}
=

(T − t)4

4
−

q∑
j1,j2=0

(
C01
j2j1

)2
,

M

{(
I
∗(i1i2)
(10)T,t − I

∗(i1i2)q
(10)T,t

)2}
=

(T − t)4

12
−

q∑
j1,j2=0

(
C10
j2j1

)2
,

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

6
−

q∑
j3,j2,j1=0

C2
j3j2j1

, (5.77)

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

24
−

q∑
j1,j2,j3,j4=0

C2
j4j3j2j1

, (5.78)

M

{(
I
∗(i1i2i3)
(100)T,t − I

∗(i1i2i3)q
(100)T,t

)2}
=

(T − t)5

60
−

q∑
j1,j2,j3=0

(
C100
j3j2j1

)2
,
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M

{(
I
∗(i1i2i3)
(010))T,t − I

∗(i1i2i3)q
(010)T,t

)2}
=

(T − t)5

20
−

q∑
j1,j2,j3=0

(
C010
j3j2j1

)2
,

M

{(
I
∗(i1i2i3)
(001)T,t − I

∗(i1i2i3)q
(001)T,t

)2}
=

(T − t)5

10
−

q∑
j1,j2,j3=0

(
C001
j3j2j1

)2
,

M

{(
I
∗(i1i2i3i4i5)
(00000)T,t − I

∗(i1i2i3i4i5)q
(00000)T,t

)2}
=

(T − t)5

120
−

q∑
j1,j2,j3,j4,j5=0

C2
j5i4i3i2j1

,

M

{(
I
∗(i1i2)
(20)T,t − I

∗(i1i2)q
(20)T,t

)2}
=

(T − t)6

30
−

q∑
j2,j1=0

(
C20
j2j1

)2
,

M

{(
I
∗(i1i2)
(11)T,t − I

∗(i1i2)q
(11)T,t

)2}
=

(T − t)6

18
−

q∑
j2,j1=0

(
C11
j2j1

)2
,

M

{(
I
∗(i1i2)
(02)T,t − I

∗(i1i2)q
(02)T,t

)2}
=

(T − t)6

6
−

q∑
j2,j1=0

(
C02
j2j1

)2
,

M

{(
I
∗(i1i2i3i4)
(1000)T,t − I

∗(i1i2i3i4)q
(1000)T,t

)2}
=

(T − t)6

360
−

q∑
j1,j2,j3,j4=0

(
C1000
j4j3j2j1

)2
,

M

{(
I
∗(i1i2i3i4)
(0100)T,t − I

∗(i1i2i3i4)q
(0100)T,t

)2}
=

(T − t)6

120
−

q∑
j1,j2,j3,j4=0

(
C0100
j4j3j2j1

)2
,

M

{(
I
∗(i1i2i3i4)
(0010)T,t − I

∗(i1i2i3i4)q
(0010)T,t

)2}
=

(T − t)6

60
−

q∑
j1,j2,j3,j4=0

(
C0010
j4j3j2j1

)2
,

M

{(
I
∗(i1i2i3i4)
(0001)T,t − I

∗(i1i2i3i4)q
(0001)T,t

)2}
=

(T − t)6

36
−

q∑
j1,j2,j3,j4=0

(
C0001
j4j3j2j1

)2
,

M

{(
I
∗(i1i2i3i4i5i6)
(000000)T,t − I

∗(i1i2i3i4i5i6)q
(000000)T,t

)2}
=

(T − t)6

720
−

q∑
j1,j2,j3,j4,j5,j6=0

C2
j6j5j4j3j2j1

.

Recall that the systems of iterated stochastic integrals (5.1)–(5.4) are part
of the Taylor–Itô and Taylor–Stratonovich expansions (see Chapter 4).

The function K(t1, . . . , tk) from Theorem 1.1 for the set (5.3) is defined by

K(t1, . . . , tk) = (t− tk)
lk . . . (t− t1)

l1 1{t1<...<tk}, t1, . . . , tk ∈ [t, T ], (5.79)
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where 1A is the indicator of the set A.

In particular, for the stochastic integrals I
(i1)
(1)T,t, I

(i1)
(2)T,t, I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t,

I
(i1i2)
(01)T,t, I

(i1i2)
(10)T,t, I

(i1...i4)
(0000)T,t, I

(i1i2)
(20)T,t, I

(i1i2)
(11)T,t, I

(i1i2)
(02)T,t (i1, . . . , i4 = 1, . . . ,m) the func-

tions K(t1, . . . , tk) defined by (5.79) look as follows

K1(t1) = t− t1, K2(t1) = (t− t1)
2, K00(t1, t2) = 1{t1<t2}, (5.80)

K000(t1, t2, t3) = 1{t1<t2<t3}, K01(t1, t2) = (t− t2)1{t1<t2}, (5.81)

K10(t1, t2) = (t− t1)1{t1<t2}, K0000(t1, t2) = 1{t1<t2<t3<t4}, (5.82)

K20(t1, t2) = (t− t1)
21{t1<t2}, K11(t1, t2) = (t− t1)(t− t2)1{t1<t2}, (5.83)

K02(t1, t2) = (t− t2)
21{t1<t2}, (5.84)

where t1, . . . , t4 ∈ [t, T ].

It is obviously that the most simple expansion for the polynomial of a fi-
nite degree into the Fourier series using the complete orthonormal system of
functions in the space L2([t, T ]) will be its Fourier–Legendre expansion (finite
sum). The polynomial functions are included in the functions (5.80)–(5.84)
as their components if l21 + . . . + l2k > 0. So, it is logical to expect that the
most simple expansions for the functions (5.80)–(5.84) into generalized multi-
ple Fourier series will be Fourier–Legendre expansions of these functions when
l21 + . . . + l2k > 0. Note that the given assumption is confirmed completely
(compare the formulas (5.8), (5.9) with the formulas (5.85), (5.90) (see below)
correspondently). So, usage of Legendre polynomials for the approximation of
iterated Itô and Stratonovich stochastic integrals is a step forward.

5.2 Mean-Square Approximation of Specific Iterated

Stratonovich Stochastic Integrals of multiplicities 1

to 3 Based on Trigonometric System of Functions

In [1]-[17], [50] on the base of Theorems 1.1, 2.2, 2.6, and 2.8 the author obtained
(also see early publications [76] (1997), [77] (1998), [80] (1994), [81] (1996))
the following expansions of the iterated Stratonovich stochastic integrals (5.4)
(independently from the papers [82]-[85], [92] excepting the method, in which

the additional random variables ξ
(i)
q and µ

(i)
q are introduced)
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I
∗(i1)
(0)T,t =

√
T − tζ

(i1)
0 ,

I
∗(i1)q
(1)T,t = −(T − t)3/2

2

(
ζ
(i1)
0 −

√
2

π

(
q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.85)

I
∗(i1i2)q
(00)T,t =

1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

q∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

))
+

√
2

π

√
αq

(
ξ(i1)q ζ

(i2)
0 − ζ

(i1)
0 ξ(i2)q

))
, (5.86)

I
∗(i1i2i3)q
(000)T,t = (T − t)3/2

(
1

6
ζ
(i1)
0 ζ

(i2)
0 ζ

(i3)
0 +

√
αq

2
√
2π

(
ξ(i1)q ζ

(i2)
0 ζ

(i3)
0 − ξ(i3)q ζ

(i2)
0 ζ

(i1)
0

)
+

+
1

2
√
2π2

√
βq

(
µ(i1)q ζ

(i2)
0 ζ

(i3)
0 − 2µ(i2)q ζ

(i1)
0 ζ

(i3)
0 + µ(i3)q ζ

(i1)
0 ζ

(i2)
0

)
+

+
1

2
√
2

q∑
r=1

(
1

πr

(
ζ
(i1)
2r−1ζ

(i2)
0 ζ

(i3)
0 − ζ

(i3)
2r−1ζ

(i2)
0 ζ

(i1)
0

)
+

+
1

π2r2

(
ζ
(i1)
2r ζ

(i2)
0 ζ

(i3)
0 − 2ζ

(i2)
2r ζ

(i3)
0 ζ

(i1)
0 + ζ

(i3)
2r ζ

(i2)
0 ζ

(i1)
0

))
+

+

q∑
r=1

(
1

4πr

(
ζ
(i1)
2r ζ

(i2)
2r−1ζ

(i3)
0 − ζ

(i1)
2r−1ζ

(i2)
2r ζ

(i3)
0 − ζ

(i2)
2r−1ζ

(i3)
2r ζ

(i1)
0 + ζ

(i3)
2r−1ζ

(i2)
2r ζ

(i1)
0

)
+

+
1

8π2r2

(
3ζ

(i1)
2r−1ζ

(i2)
2r−1ζ

(i3)
0 + ζ

(i1)
2r ζ

(i2)
2r ζ

(i3)
0 − 6ζ

(i1)
2r−1ζ

(i3)
2r−1ζ

(i2)
0 +

+3ζ
(i2)
2r−1ζ

(i3)
2r−1ζ

(i1)
0 − 2ζ

(i1)
2r ζ

(i3)
2r ζ

(i2)
0 + ζ

(i3)
2r ζ

(i2)
2r ζ

(i1)
0

))
+D

(i1i2i3)q
T,t

)
, (5.87)

where

D
(i1i2i3)q
T,t =

1

2π2

q∑
r,l=1
r ̸=l

(
1

r2 − l2

(
ζ
(i1)
2r ζ

(i2)
2l ζ

(i3)
0 − ζ

(i2)
2r ζ

(i1)
0 ζ

(i3)
2l +
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+
r

l
ζ
(i1)
2r−1ζ

(i2)
2l−1ζ

(i3)
0 − l

r
ζ
(i1)
0 ζ

(i2)
2r−1ζ

(i3)
2l−1

)
− 1

rl
ζ
(i1)
2r−1ζ

(i2)
0 ζ

(i3)
2l−1

)
+

+
1

4
√
2π2

(
q∑

r,m=1

(
2

rm

(
−ζ(i1)2r−1ζ

(i2)
2m−1ζ

(i3)
2m + ζ

(i1)
2r−1ζ

(i2)
2r ζ

(i3)
2m−1+

+ζ
(i1)
2r−1ζ

(i2)
2m ζ

(i3)
2m−1 − ζ

(i1)
2r ζ

(i2)
2r−1ζ

(i3)
2m−1

)
+

+
1

m(r +m)

(
−ζ(i1)2(m+r)ζ

(i2)
2r ζ

(i3)
2m − ζ

(i1)
2(m+r)−1ζ

(i2)
2r−1ζ

(i3)
2m −

−ζ(i1)2(m+r)−1ζ
(i2)
2r ζ

(i3)
2m−1 + ζ

(i1)
2(m+r)ζ

(i2)
2r−1ζ

(i3)
2m−1

))
+

+

q∑
m=1

q∑
l=m+1

(
1

m(l −m)

(
ζ
(i1)
2(l−m)ζ

(i2)
2l ζ

(i3)
2m + ζ

(i1)
2(l−m)−1ζ

(i2)
2l−1ζ

(i3)
2m −

−ζ(i1)2(l−m)−1ζ
(i2)
2l ζ

(i3)
2m−1 + ζ

(i1)
2(l−m)ζ

(i2)
2l−1ζ

(i3)
2m−1

)
+

+
1

l(l −m)

(
−ζ(i1)2(l−m)ζ

(i2)
2m ζ

(i3)
2l + ζ

(i1)
2(l−m)−1ζ

(i2)
2m−1ζ

(i3)
2l −

−ζ(i1)2(l−m)−1ζ
(i2)
2m ζ

(i3)
2l−1 − ζ

(i1)
2(l−m)ζ

(i2)
2m−1ζ

(i3)
2l−1

)))
,

I
∗(i1i2)q
(10)T,t = −(T − t)2

(
1

6
ζ
(i1)
0 ζ

(i2)
0 − 1

2
√
2π

√
αqξ

(i2)
q ζ

(i1)
0 +

+
1

2
√
2π2

√
βq

(
µ(i2)q ζ

(i1)
0 − 2µ(i1)q ζ

(i2)
0

)
+

+
1

2
√
2

q∑
r=1

(
− 1

πr
ζ
(i2)
2r−1ζ

(i1)
0 +

1

π2r2

(
ζ
(i2)
2r ζ

(i1)
0 − 2ζ

(i1)
2r ζ

(i2)
0

))
−

− 1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
ζ
(i1)
2r ζ

(i2)
2l +

l

r
ζ
(i1)
2r−1ζ

(i2)
2l−1

)
+

+

q∑
r=1

(
1

4πr

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r

)
+

1

8π2r2

(
3ζ

(i1)
2r−1ζ

(i2)
2r−1 + ζ

(i2)
2r ζ

(i1)
2r

)))
,

(5.88)



1036D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

I
∗(i1i2)q
(01)T,t = (T − t)2

(
−1

3
ζ
(i1)
0 ζ

(i2)
0 − 1

2
√
2π

√
αq

(
ξ(i1)q ζ

(i2)
0 − 2ξ(i2)q ζ

(i1)
0

)
+

+
1

2
√
2π2

√
βq

(
µ(i1)q ζ

(i2)
0 − 2µ(i2)q ζ

(i1)
0

)
−

− 1

2
√
2

q∑
r=1

(
1

πr

(
ζ
(i1)
2r−1ζ

(i2)
0 − 2ζ

(i2)
2r−1ζ

(i1)
0

)
− 1

π2r2

(
ζ
(i1)
2r ζ

(i2)
0 − 2ζ

(i2)
2r ζ

(i1)
0

))
+

+
1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
r

l
ζ
(i1)
2r−1ζ

(i2)
2l−1 + ζ

(i1)
2r ζ

(i2)
2l

)
−

−
q∑
r=1

(
1

4πr

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r

)
− 1

8π2r2

(
3ζ

(i1)
2r−1ζ

(i2)
2r−1 + ζ

(i1)
2r ζ

(i2)
2r

)))
,

(5.89)

I
∗(i1)q
(2)T,t = (T − t)5/2

(
1

3
ζ
(i1)
0 +

1√
2π2

(
q∑
r=1

1

r2
ζ
(i1)
2r +

√
βqµ

(i1)
q

)
−

− 1√
2π

(
q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.90)

where

ξ(i)q =
1

√
αq

∞∑
r=q+1

1

r
ζ
(i)
2r−1, αq =

π2

6
−

q∑
r=1

1

r2
, µ(i)q =

1√
βq

∞∑
r=q+1

1

r2
ζ
(i)
2r ,

βq =
π4

90
−

q∑
r=1

1

r4
, ζ

(i)
j =

T∫
t

ϕj(s)df
(i)
s ,

where ϕj(s) is defined by (1.69) and ζ
(i)
0 , ζ

(i)
2r , ζ

(i)
2r−1, ξ

(i)
q , µ

(i)
q (r = 1, . . . , q,

i = 1, . . . ,m) are independent standard Gaussian random variables (i1, i2, i3 =
1, . . . ,m).

Note that (5.88), (5.89) imply the following

∞∑
j=0

C10
jj =

∞∑
j=0

C01
jj = −(T − t)2

4
, (5.91)
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where

C10
jj =

T∫
t

ϕj(x)

x∫
t

ϕj(y)(t− y)dydx,

C01
jj =

T∫
t

ϕj(x)(t− x)

x∫
t

ϕj(y)dydx.

Note that the formulas (5.91) are particular cases of the more general rela-
tion (2.10), which has been applied for the proof of Theorems 2.1–2.3.

Let us consider the mean-square errors of approximations (5.86)–(5.89).
From the relations (5.86)–(5.89) when i1 ̸= i2, i2 ̸= i3, i1 ̸= i3 by direct calcula-
tion we obtain

M

{(
I
∗(i1i2)
(00)T,t − I

∗(i1i2)q
(00)T,t

)2}
=

(T − t)2

2π2

(
π2

6
−

q∑
r=1

1

r2

)
, (5.92)

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
= (T − t)3

(
1

4π2

(
π2

6
−

q∑
r=1

1

r2

)
+

+
55

32π4

(
π4

90
−

q∑
r=1

1

r4

)
+

1

4π4

( ∞∑
r,l=1
r ̸=l

−
q∑

r,l=1
r ̸=l

)
5l4 + 4r4 − 3l2r2

r2l2(r2 − l2)2

)
, (5.93)

M

{(
I
∗(i1i2)
(01)T,t − I

∗(i1i2)q
(01)T,t

)2}
= (T − t)4

(
1

8π2

(
π2

6
−

q∑
r=1

1

r2

)
+

+
5

32π4

(
π4

90
−

q∑
r=1

1

r4

)
+

1

4π4

( ∞∑
k,l=1
k ̸=l

−
q∑

k,l=1
k ̸=l

)
l2 + k2

k2(l2 − k2)2

)
, (5.94)

M

{(
I
∗(i1i2)
(10)T,t − I

∗(i1i2)q
(10)T,t

)2}
= (T − t)4

(
1

8π2

(
π2

6
−

q∑
r=1

1

r2

)
+

+
5

32π4

(
π4

90
−

q∑
r=1

1

r4

)
+

1

4π4

( ∞∑
k,l=1
k ̸=l

−
q∑

k,l=1
k ̸=l

)
l2 + k2

l2(l2 − k2)2

)
. (5.95)
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It is easy to demonstrate that the relations (5.93), (5.94), and (5.95) can
be represented using Theorem 1.3 in the following form

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
= (T − t)3

(
4

45
− 1

4π2

q∑
r=1

1

r2
−

− 55

32π4

q∑
r=1

1

r4
− 1

4π4

q∑
r,l=1
r ̸=l

5l4 + 4r4 − 3r2l2

r2l2 (r2 − l2)2

)
, (5.96)

M

{(
I
∗(i1i2)
(10)T,t − I

∗(i1i2)q
(10)T,t

)2}
=

(T − t)4

4

(
1

9
− 1

2π2

q∑
r=1

1

r2
−

− 5

8π4

q∑
r=1

1

r4
− 1

π4

q∑
k,l=1
k ̸=l

k2 + l2

l2 (l2 − k2)2

)
, (5.97)

M

{(
I
∗(i1i2)
(01)T,t − I

∗(i1i2)q
(01)T,t

)2}
=

(T − t)4

4

(
1

9
− 1

2π2

q∑
r=1

1

r2
−

− 5

8π4

q∑
r=1

1

r4
− 1

π4

q∑
k,l=1
k ̸=l

l2 + k2

k2 (l2 − k2)2

)
. (5.98)

Comparing (5.96)–(5.98) and (5.93)–(5.95), we note that

∞∑
k,l=1
k ̸=l

l2 + k2

k2 (l2 − k2)2
=

∞∑
k,l=1
k ̸=l

l2 + k2

l2 (l2 − k2)2
=
π4

48
, (5.99)

∞∑
r,l=1
r ̸=l

5l4 + 4r4 − 3r2l2

r2l2 (r2 − l2)2
=

9π4

80
. (5.100)

Let us consider approximations of stochastic integrals I
∗(i1i1)
(10)T,t, I

∗(i1i1)
(01)T,t and

conditions for selecting number q using the trigonometric system of functions

I
∗(i1i1)q
(10)T,t = −(T − t)2

(
1

6

(
ζ
(i1)
0

)2
− 1

2
√
2π

√
αqξ

(i1)
q ζ

(i1)
0 −

− 1

2
√
2π2

√
βqµ

(i1)
q ζ

(i1)
0 − 1

2
√
2

q∑
r=1

(
1

πr
ζ
(i1)
2r−1ζ

(i1)
0 +

1

π2r2
ζ
(i1)
2r ζ

(i1)
0

)
−
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− 1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
ζ
(i1)
2r ζ

(i1)
2l +

l

r
ζ
(i1)
2r−1ζ

(i1)
2l−1

)
+

+
1

8π2

q∑
r=1

1

r2

(
3
(
ζ
(i1)
2r−1

)2
+
(
ζ
(i1)
2r

)2))
,

I
∗(i1i1)q
(01)T,t = (T − t)2

(
−1

3

(
ζ
(i1)
0

)2
+

1

2
√
2π

√
αqξ

(i1)
q ζ

(i1)
0 −

− 1

2
√
2π2

√
βqµ

(i1)
q ζ

(i1)
0 +

1

2
√
2

q∑
r=1

(
1

πr
ζ
(i1)
2r−1ζ

(i1)
0 − 1

π2r2
ζ
(i1)
2r ζ

(i1)
0

)
+

+
1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
ζ
(i1)
2r ζ

(i1)
2l +

r

l
ζ
(i1)
2r−1ζ

(i1)
2l−1

)
+

+
1

8π2

q∑
r=1

1

r2

(
3
(
ζ
(i1)
2r−1

)2
+
(
ζ
(i1)
2r

)2))
.

Furthermore, we have

M

{(
I
∗(i1i1)
(01)T,t − I

∗(i1i1)q
(01)T,t

)2}
= M

{(
I
∗(i1i1)
(10)T,t − I

∗(i1i1)q
(10)T,t

)2}
=

=
(T − t)4

4

(
2

π4

(
π4

90
−

q∑
r=1

1

r4

)
+

1

π4

(
π2

6
−

q∑
r=1

1

r2

)2

+

+
1

π4

( ∞∑
k,l=1
k ̸=l

−
q∑

k,l=1
k ̸=l

)
l2 + k2

k2(l2 − k2)2

)
. (5.101)

Considering (5.99), we can rewrite the relation (5.101) in the following form

M

{(
I
∗(i1i1)
(01)T,t − I

∗(i1i1)q
(01)T,t

)2}
= M

{(
I
∗(i1i1)
(10)T,t − I

∗(i1i1)q
(10)T,t

)2}
=

=
(T − t)4

4

(
17

240
− 1

3π2

q∑
r=1

1

r2
− 2

π4

q∑
r=1

1

r4
+
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Table 5.37: Confirmation of the formula (5.96)

ε/(T − t)3 0.0459 0.0072 7.5722·10−4 7.5973 · 10−5 7.5990 · 10−6

q 1 10 100 1000 10000

Table 5.38: Confirmation of the formulas (5.97), (5.98)

4ε/(T − t)4 0.0540 0.0082 8.4261·10−4 8.4429 · 10−5 8.4435 · 10−6

q 1 10 100 1000 10000

+
1

π4

(
q∑
r=1

1

r2

)2

− 1

π4

q∑
k,l=1
k ̸=l

l2 + k2

k2(l2 − k2)2

)
. (5.102)

In Tables 5.37–5.39 we confirm numerically the formulas (5.96)–(5.98),
(5.102) for various values of q. In Tables 5.37–5.39 the number ε means right-
hand sides of the mentioned formulas. Obviously, these results are consistent
with the estimate (1.225).

The formulas (5.99), (5.100) appear to be interesting. Let us confirm nu-
merically their correctness in Tables 5.40 and 5.41 (the number εq is an absolute
deviation of multiple partial sums with the upper limit of summation q for the
series (5.99), (5.100) from the right-hand sides of the formulas (5.99), (5.100);
convergence of multiple series is regarded here when p1 = p2 = q → ∞, which
is acceptable according to Theorems 1.1, 2.2, 2.6, and 2.8).

Using the trigonometric system of functions, let us consider approximations
of iterated stochastic integrals of the following form

J
∗(i1...ik)
(λ1...λk)T,t

=

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(ik)
tk ,

where λl = 1 if il = 1, . . . ,m and λl = 0 if il = 0, l = 1, . . . , k (w
(i)
τ = f

(i)
τ for

i = 1, . . . ,m and w
(0)
τ = τ).

Table 5.39: Confirmation of the formula (5.102)

4ε/(T − t)4 0.0268 0.0034 3.3955·10−4 3.3804 · 10−5 3.3778 · 10−6

q 1 10 100 1000 10000
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Table 5.40: Confirmation of the formula (5.99)

εq 2.0294 0.3241 0.0330 0.0033 3.2902 · 10−4

q 1 10 100 1000 10000

Table 5.41: Confirmation of the formula (5.100)

εq 10.9585 1.8836 0.1968 0.0197 0.0020

q 1 10 100 1000 10000

It is easy to see that the approximations

J
∗(i1i2)q
(λ1λ2)T,t

, J
∗(i1i2i3)q
(λ1λ2λ3)T,t

of the stochastic integrals

J
∗(i1i2)
(λ1λ2)T,t

, J
∗(i1i2i3)
(λ1λ2λ3)T,t

are defined by the right-hand sides of the formulas (5.86), (5.87), where it is
necessary to take

ζ
(i)
j =

T∫
t

ϕj(s)dw
(i)
s (5.103)

and i1, i2, i3 = 0, 1, . . . ,m.

Since
T∫
t

ϕj(s)dw
(0)
s =


√
T − t if j = 0

0 if j ̸= 0

,

then it is easy to get from (5.86) and (5.87), considering that in these equalities

ζ
(i)
j is defined by (5.103) and i1, i2, i3 = 0, 1, . . . ,m, the following family of
formulas

J
∗(i10)q
(10)T,t =

1

2
(T − t)3/2

(
ζ
(i1)
0 +

√
2

π

(
q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.104)

J
∗(0i2)q
(01)T,t =

1

2
(T − t)3/2

(
ζ
(i2)
0 −

√
2

π

(
q∑
r=1

1

r
ζ
(i2)
2r−1 +

√
αqξ

(i2)
q

))
, (5.105)
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J
∗(00i3)q
(001)T,t = (T − t)5/2

(
1

6
ζ
(i3)
0 +

1

2
√
2π2

(
q∑
r=1

1

r2
ζ
(i3)
2r +

√
βqµ

(i3)
q

)
−

− 1

2
√
2π

(
q∑
r=1

1

r
ζ
(i3)
2r−1 +

√
αqξ

(i3)
q

))
,

J
∗(0i20)q
(010)T,t = (T − t)5/2

(
1

6
ζ
(i2)
0 − 1√

2π2

(
q∑
r=1

1

r2
ζ
(i2)
2r +

√
βqµ

(i2)
q

))
,

J
∗(i100)q
(100)T,t = (T − t)5/2

(
1

6
ζ
(i1)
0 +

1

2
√
2π2

(
q∑
r=1

1

r2
ζ
(i1)
2r +

√
βqµ

(i1)
q

)
+

+
1

2
√
2π

(
q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
,

J
∗(0i2i3)q
(011)T,t = (T − t)2

(
1

6
ζ
(i2)
0 ζ

(i3)
0 − 1

2
√
2π

√
αqξ

(i3)
q ζ

(i2)
0 +

+
1

2
√
2π2

√
βq

(
µ(i3)q ζ

(i2)
0 − 2µ(i2)q ζ

(i3)
0

)
+

+
1

2
√
2

q∑
r=1

(
− 1

πr
ζ
(i3)
2r−1ζ

(i2)
0 +

1

π2r2

(
ζ
(i3)
2r ζ

(i2)
0 − 2ζ

(i2)
2r ζ

(i3)
0

))
−

− 1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
ζ
(i2)
2r ζ

(i3)
2l +

l

r
ζ
(i2)
2r−1ζ

(i3)
2l−1

)
+

+

q∑
r=1

(
1

4πr

(
ζ
(i2)
2r ζ

(i3)
2r−1 − ζ

(i2)
2r−1ζ

(i3)
2r

)
+

+
1

8π2r2

(
3ζ

(i2)
2r−1ζ

(i3)
2r−1 + ζ

(i3)
2r ζ

(i2)
2r

)))
, (5.106)

J
∗(i1i20)q
(110)T,t = (T − t)2

(
1

6
ζ
(i1)
0 ζ

(i2)
0 +

1

2
√
2π

√
αqξ

(i1)
q ζ

(i2)
0 +
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+
1

2
√
2π2

√
βq

(
µ(i1)q ζ

(i2)
0 − 2µ(i2)q ζ

(i1)
0

)
+

+
1

2
√
2

q∑
r=1

(
1

πr
ζ
(i1)
2r−1ζ

(i2)
0 +

1

π2r2

(
ζ
(i1)
2r ζ

(i2)
0 − 2ζ

(i2)
2r ζ

(i1)
0

))
+

+
1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
r

l
ζ
(i1)
2r−1ζ

(i2)
2l−1 + ζ

(i1)
2r ζ

(i2)
2l

)
+

+

q∑
r=1

(
1

4πr

(
ζ
(i2)
2r−1ζ

(i1)
2r − ζ

(i1)
2r−1ζ

(i2)
2r

)
+

+
1

8π2r2

(
3ζ

(i1)
2r−1ζ

(i2)
2r−1 + ζ

(i1)
2r ζ

(i2)
2r

)))
,

J
∗(i10i3)q
(101)T,t = (T − t)2

(
1

6
ζ
(i1)
0 ζ

(i3)
0 +

1

2
√
2π

√
αq

(
ξ(i1)q ζ

(i3)
0 − ξ(i3)q ζ

(i1)
0

)
+

+
1

2
√
2π2

√
βq

(
µ(i1)q ζ

(i3)
0 + µ(i3)q ζ

(i1)
0

)
+

+
1

2
√
2

q∑
r=1

(
1

πr

(
ζ
(i1)
2r−1ζ

(i3)
0 − ζ

(i3)
2r−1ζ

(i1)
0

)
+

+
1

π2r2

(
ζ
(i1)
2r ζ

(i3)
0 + ζ

(i3)
2r ζ

(i1)
0

))
− 1

2π2

q∑
r,l=1
r ̸=l

1

rl
ζ
(i1)
2r−1ζ

(i3)
2l−1−

−
q∑
r=1

1

4π2r2

(
3ζ

(i1)
2r−1ζ

(i3)
2r−1 + ζ

(i1)
2r ζ

(i3)
2r

))
.

5.3 A Comparative Analysis of Efficiency of Using the

Legendre Polynomials and Trigonometric Functions

for the Numerical Solution of Itô SDEs

The section is devoted to comparative analysis of efficiency of application the
Legendre polynomials and trigonometric functions for the numerical integration
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of Itô SDEs in the framework of the method of approximation of iterated Itô and
Stratonovich stochastic integrals based on generalized multiple Fourier series
(Theorems 1.1, 2.1–2.9, 2.30, 2.33–2.36, 2.50, 2.51, 2.62–2.65). This section is
written on the base of the papers [21], [40], and [32] (Sect. 4).

Using the iterated Itô stochastic integrals of multiplicities 1 to 3 appearing
in the Taylor–Itô expansion as an example, it is shown that their expansions ob-
tained using multiple Fourier–Legendre series are significantly simpler and less
computationally costly than their analogues obtained on the basis of multiple
trigonometric Fourier series.

Let us consider the following set of iterated Itô and Stratonovich stochastic
integrals from the classical Taylor–Itô and Taylor–Stratonovich expansions [84]

J
(i1...ik)
(λ1...λk)T,t

=

T∫
t

. . .

t2∫
t

dw
(i1)
t1 . . . dw

(ik)
tk , (5.107)

J
∗(i1...ik)
(λ1...λk)T,t

=

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(ik)
tk , (5.108)

where w
(i)
τ = f

(i)
τ for i = 1, . . . ,m and w

(0)
τ = τ, i1, . . . , ik = 0, 1, . . . ,m, λl = 0

for il = 0 and λl = 1 for il = 1, . . . ,m (l = 1, . . . , k).

In [82] Milstein G.N. obtained the following expansion of J
(i1i2)
(11)T,t on the

base of the Karhunen–Loève expansion of the Brownian bridge process (we will
discuss the method [82] in detail in Sect. 6.2)

J
(i1i2)
(11)T,t =

1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

∞∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

)))
, (5.109)

where the series converges in the mean-square sense, i1 ̸= i2, i1, i2 = 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j (i =
1, . . . ,m, j = 0, 1, . . .),
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ϕj(s) =
1√
T − t



1 for j = 0

√
2sin(2πr(s− t)/(T − t)) for j = 2r − 1

√
2cos(2πr(s− t)/(T − t)) for j = 2r

, (5.110)

where r = 1, 2, . . .

Moreover,
J
(i1)
(1)T,t =

√
T − tζ

(i1)
0 ,

where i1 = 1, . . . ,m.

In principle, for implementing the strong numerical method with the con-
vergence order 1.0 (Milstein method [82], see Sect. 4.10) for Itô SDEs we can
take the following approximations

J
(i1)
(1)T,t =

√
T − tζ

(i1)
0 , (5.111)

J
(i1i2)q
(11)T,t =

1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

q∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

)))
, (5.112)

where i1 ̸= i2, i1, i2 = 1, . . . ,m.

It is not difficult to show that

M

{(
J
(i1i2)
(11)T,t − J

(i1i2)q
(11)T,t

)2}
=

3(T − t)2

2π2

(
π2

6
−

q∑
r=1

1

r2

)
. (5.113)

However, this approach has an obvious drawback. Indeed, we have too
complex formulas for the stochastic integrals with Gaussian distribution

J
(0i1)
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 −

√
2

π

∞∑
r=1

1

r
ζ
(i1)
2r−1

)
, (5.114)

J
(00i1)
(001)T,t = (T − t)5/2

(
1

6
ζ
(i1)
0 +

1

2
√
2π2

∞∑
r=1

1

r2
ζ
(i1)
2r − 1

2
√
2π

∞∑
r=1

1

r
ζ
(i1)
2r−1

)
,

J
(0i1)q
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 −

√
2

π

q∑
r=1

1

r
ζ
(i1)
2r−1

)
,
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J
(00i1)q
(001)T,t = (T − t)5/2

(
1

6
ζ
(i1)
0 +

1

2
√
2π2

q∑
r=1

1

r2
ζ
(i1)
2r − 1

2
√
2π

q∑
r=1

1

r
ζ
(i1)
2r−1

)
,

where the meaning of notations used in (5.112) is retained.

In [82] Milstein G.N. proposed the following mean-square approximations
on the base of (5.109), (5.114)

J
(0i1)q
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 −

√
2

π

( q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.115)

J
(i1i2)q
(11)T,t =

1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

q∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

))
+

√
2

π

√
αq

(
ξ(i1)q ζ

(i2)
0 − ζ

(i1)
0 ξ(i2)q

))
, (5.116)

where i1 ̸= i2 in (5.116), and

ξ(i)q =
1

√
αq

∞∑
r=q+1

1

r
ζ
(i)
2r−1, αq =

π2

6
−

q∑
r=1

1

r2
, (5.117)

where ζ
(i)
0 , ζ

(i)
2r , ζ

(i)
2r−1, ξ

(i)
q , r = 1, . . . , q, i = 1, . . . ,m are independent standard

Gaussian random variables.

Obviously, for the approximations (5.115) and (5.116) we obtain [82]

M

{(
J
(0i1)
(01)T,t − J

(0i1)q
(01)T,t

)2}
= 0,

M

{(
J
(i1i2)
(11)T,t − J

(i1i2)q
(11)T,t

)2}
=

(T − t)2

2π2

(
π2

6
−

q∑
r=1

1

r2

)
. (5.118)

This idea has been developed in [83]-[85]. For example, the approximation

J
(00i1)q
(001)T,t, which corresponds to (5.115), (5.116) is defined by [83]-[85]

J
(00i1)q
(001)T,t = (T − t)5/2

(
1

6
ζ
(i1)
0 +

1

2
√
2π2

(
q∑
r=1

1

r2
ζ
(i1)
2r +

√
βqµ

(i1)
q

)
−

− 1

2
√
2π

(
q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.119)
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where ξ
(i)
q , αq have the form (5.117),

µ(i)q =
1√
βq

∞∑
r=q+1

1

r2
ζ
(i)
2r , βq =

π4

90
−

q∑
r=1

1

r4
,

ϕj(s) is defined by (5.110), and ζ
(i)
0 , ζ

(i)
2r , ζ

(i)
2r−1, ξ

(i)
q , µ

(i)
q (r = 1, . . . , q, i =

1, . . . ,m) are independent standard Gaussian random variables.

Moreover,

M

{(
J
(00i1)
(001)T,t − J

(00i1)q
(001)T,t

)2}
= 0.

Nevetheless, the expansions (5.115), (5.119) are too complex for the ap-

proximation of two Gaussian random variables J
(0i1)
(01)T,t, J

(00i1)
(001)T,t.

Further, we will see that the introducing of random variables ξ
(i)
q and µ

(i)
q will

sharply complicate the approximation of stochastic integral J
(i1i2i3)
(111)T,t (i1, i2, i3 =

1, . . . ,m). This is due to the fact that the number q is fixed for stochastic
integrals included into the considered collection. However, it is clear that due
to the smallness of T − t, the number q for J

(i1i2i3)
(111)T,t could be taken significantly

less than in the formula (5.116). This feature is also valid for the formulas
(5.115), (5.119).

On the other hand, the following very simple formulas are well known (see
(5.7)–(5.9))

J
(i1)
(1)T,t =

√
T − tζ

(i1)
0 , (5.120)

J
(0i1)
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 +

1√
3
ζ
(i1)
1

)
, (5.121)

J
(00i1)
(001)T,t =

(T − t)5/2

6

(
ζ
(i1)
0 +

√
3

2
ζ
(i1)
1 +

1

2
√
5
ζ
(i1)
2

)
, (5.122)

where ζ
(i)
0 , ζ

(i)
1 , ζ

(i)
2 (i = 1, . . . ,m) are indepentent standard Gaussian random

variables. Obviously, that the formulas (5.120)-(5.122) are part of the method
based on Theorem 1.1 (also see Sect. 5.1).

To obtain the Milstein expansion for the stochastic integral (5.2) the trun-
cated expansions of components of the Wiener process fs must be iteratively
substituted in the single integrals in (5.2), and the integrals must be calculated
starting from the innermost integral. This is a complicated procedure that
obviously does not lead to a general expansion of (5.2) valid for an arbitrary
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multiplicity k. For this reason, only expansions of simplest single, double, and
triple integrals (5.2) were obtained [82]-[85], [92], [93] by the Milstein approach
[82] based on the Karhunen–Loève expansion of the Brownian bridge process.

At that, in [82], [92] the case ψ1(s), ψ2(s) ≡ 1 and i1, i2 = 0, 1, . . . ,m
(i1 ̸= i2) is considered. In [83]-[85], [93] the attempt to consider the case ψ1(s),
ψ2(s), ψ3(s) ≡ 1 and i1, i2, i3 = 0, 1, . . . ,m is realized. Note that, generally

speaking, the mean-square convergence of J
∗(i1i2i3)q
(111)T,t to J

∗(i1i2i3)
(111)T,t if q → ∞ was

not proved rigorously in [83]-[85], [93] within the frames of the Milstein approach
[82] together with the Wong–Zakai approximation [73]-[75] (see discussions in
Sect. 2.41, 2.42, 6.2).

5.3.1 A Comparative Analysis of Efficiency of Using the Legen-
dre Polynomials and Trigonometric Functions for the Integral
J
(i1i2)
(11)T,t

Using Theorem 1.1 and complete orthonormal system of Legendre polynomials
in the space L2([t, T ]), we have (see (5.11))

J
(i1i2)
(11)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
,

(5.123)

where series converges in the mean-square sense, i1, i2 = 1, . . . ,m,

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s

are independent standard Gaussian random variables for various i or j,

ϕj(x) =

√
2j + 1

T − t
Pj

((
x− T + t

2

)
2

T − t

)
, j = 0, 1, 2, . . . , (5.124)

where Pj(x) is the Legendre polynomial.

The formula (5.123) has been derived for the first time in [76] (1997) with
using Theorem 2.10.

Remind the formula (5.41) [76] (1997)

M

{(
J
(i1i2)
(11)T,t − J

(i1i2)q
(11)T,t

)2}
=

(T − t)2

2

(
1

2
−

q∑
i=1

1

4i2 − 1

)
, (5.125)
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Table 5.42: Numbers qtrig, q
∗
trig, qpol

T − t 2−5 2−6 2−7 2−8 2−9 2−10 2−11 2−12

qtrig 3 4 7 14 27 53 105 209

q∗trig 6 11 20 40 79 157 312 624

qpol 5 9 17 33 65 129 257 513

where

J
(i1i2)q
(11)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
.

(5.126)

Let us compare (5.126) with (5.116) and (5.125) with (5.118). Consider
minimal natural numbers qtrig and qpol, which satisfy to (see Table 5.42)

(T − t)2

2

(
1

2
−

qpol∑
i=1

1

4i2 − 1

)
≤ (T − t)3, (5.127)

(T − t)2

2π2

(
π2

6
−

qtrig∑
r=1

1

r2

)
≤ (T − t)3.

Thus, we have

qpol
qtrig

≈ 1.67, 2.22, 2.43, 2.36, 2.41, 2.43, 2.45, 2.45.

From the other hand, the formula (5.116) includes (4q + 4)m independent
standard Gaussian random variables. At the same time the folmula (5.126) in-
cludes only (2q+2)m independent standard Gaussian random variables. More-
over, the formula (5.126) is simpler than the formula (5.116). Thus, in this case
we can talk about approximately equal computational costs for the formulas
(5.116) and (5.126).

There is one important feature. As we mentioned above, further we will see
that the introducing of random variables ξ

(i)
q and µ

(i)
q will sharply complicate

the approximation of stochastic integral J
(i1i2i3)
(111)T,t (i1, i2, i3 = 1, . . . ,m). This is

due to the fact that the number q is fixed for all stochastic integrals, which
included into the considered collection. However, it is clear that due to the
smallness of T − t, the number q for J

(i1i2i3)
(111)T,t could be chosen significantly less
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than in the formula (5.116). This feature is also valid for the formulas (5.115),
(5.119). However, for the case of Legendre polynomials we can choose different
numbers q for different stochastic integrals.

From the other hand, if we will not introduce the random variables ξ
(i)
q

and µ
(i)
q , then the mean-square error of approximation of the stochastic inte-

gral J
(i1i2)
(11)T,t will be three times larger (see (5.113)). Moreover, in this case the

stochastic integrals J
(0i1)
(01)T,t, J

(00i1)
(001)T,t (with Gaussian distribution) will be approx-

imated worse.

Consider minimal natural numbers q∗trig, which satisfy to (see Table 5.42)

3(T − t)2

2π2

(
π2

6
−

q∗trig∑
r=1

1

r2

)
≤ (T − t)3.

In this situation we can talk about the advantage of Legendre polynomials
(q∗trig > qpol and (5.116) is more complex than (5.126)).

5.3.2 A Comparative Analysis of Efficiency of Using the Legendre
Polynomials and Trigonometric Functions for the Integrals
J
(i1)
(1)T,t, J

(i1i2)
(11)T,t, J

(0i1)
(01)T,t, J

(i10)
(10)T,t, J

(i1i2i3)
(111)T,t

It is well known [82]-[85], [92] (also see [14]-[17]) that for the numerical real-
ization of strong Taylor–Itô numerical methods with the convergence order 1.5
for Itô SDEs we need to approximate the following collection of iterated Itô
stochastic integrals (see Sect. 4.10)

J
(i1)
(1)T,t, J

(i1i2)
(11)T,t, J

(0i1)
(01)T,t, J

(i10)
(10)T,t, J

(i1i2i3)
(111)T,t.

Using Theorem 1.1 for the system of trigonometric functions, we have (see
Sect. 5.2)

J
(i1)
(1)T,t =

√
T − tζ

(i1)
0 , (5.128)

J
(i1i2)q
(11)T,t =

1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

q∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

))
+

+

√
2

π

√
αq

(
ξ(i1)q ζ

(i2)
0 − ζ

(i1)
0 ξ(i2)q

)
− 1{i1=i2}

)
, (5.129)
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J
(0i1)q
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 −

√
2

π

( q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.130)

J
(i10)q
(10)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 +

√
2

π

( q∑
r=1

1

r
ζ
(i1)
2r−1 +

√
αqξ

(i1)
q

))
, (5.131)

J
(i1i2i3)q
(111)T,t = (T − t)3/2

(
1

6
ζ
(i1)
0 ζ

(i2)
0 ζ

(i3)
0 +

√
αq

2
√
2π

(
ξ(i1)q ζ

(i2)
0 ζ

(i3)
0 − ξ(i3)q ζ

(i2)
0 ζ

(i1)
0

)
+

+
1

2
√
2π2

√
βq

(
µ(i1)q ζ

(i2)
0 ζ

(i3)
0 − 2µ(i2)q ζ

(i1)
0 ζ

(i3)
0 + µ(i3)q ζ

(i1)
0 ζ

(i2)
0

)
+

+
1

2
√
2

q∑
r=1

(
1

πr

(
ζ
(i1)
2r−1ζ

(i2)
0 ζ

(i3)
0 − ζ

(i3)
2r−1ζ

(i2)
0 ζ

(i1)
0

)
+

+
1

π2r2

(
ζ
(i1)
2r ζ

(i2)
0 ζ

(i3)
0 − 2ζ

(i2)
2r ζ

(i3)
0 ζ

(i1)
0 + ζ

(i3)
2r ζ

(i2)
0 ζ

(i1)
0

))
+

+

q∑
r=1

(
1

4πr

(
ζ
(i1)
2r ζ

(i2)
2r−1ζ

(i3)
0 − ζ

(i1)
2r−1ζ

(i2)
2r ζ

(i3)
0 − ζ

(i2)
2r−1ζ

(i3)
2r ζ

(i1)
0 + ζ

(i3)
2r−1ζ

(i2)
2r ζ

(i1)
0

)
+

+
1

8π2r2

(
3ζ

(i1)
2r−1ζ

(i2)
2r−1ζ

(i3)
0 + ζ

(i1)
2r ζ

(i2)
2r ζ

(i3)
0 − 6ζ

(i1)
2r−1ζ

(i3)
2r−1ζ

(i2)
0 +

+3ζ
(i2)
2r−1ζ

(i3)
2r−1ζ

(i1)
0 − 2ζ

(i1)
2r ζ

(i3)
2r ζ

(i2)
0 + ζ

(i3)
2r ζ

(i2)
2r ζ

(i1)
0

))
+D

(i1i2i3)q
T,t

)
, (5.132)

where in (5.132) we suppose that i1 ̸= i2, i1 ̸= i3, i2 ̸= i3,

D
(i1i2i3)q
T,t =

1

2π2

q∑
r,l=1
r ̸=l

(
1

r2 − l2

(
ζ
(i1)
2r ζ

(i2)
2l ζ

(i3)
0 − ζ

(i2)
2r ζ

(i1)
0 ζ

(i3)
2l +

+
r

l
ζ
(i1)
2r−1ζ

(i2)
2l−1ζ

(i3)
0 − l

r
ζ
(i1)
0 ζ

(i2)
2r−1ζ

(i3)
2l−1

)
− 1

rl
ζ
(i1)
2r−1ζ

(i2)
0 ζ

(i3)
2l−1

)
+

+
1

4
√
2π2

(
q∑

r,m=1

(
2

rm

(
−ζ(i1)2r−1ζ

(i2)
2m−1ζ

(i3)
2m + ζ

(i1)
2r−1ζ

(i2)
2r ζ

(i3)
2m−1+
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+ζ
(i1)
2r−1ζ

(i2)
2m ζ

(i3)
2m−1 − ζ

(i1)
2r ζ

(i2)
2r−1ζ

(i3)
2m−1

)
+

+
1

m(r +m)

(
−ζ(i1)2(m+r)ζ

(i2)
2r ζ

(i3)
2m − ζ

(i1)
2(m+r)−1ζ

(i2)
2r−1ζ

(i3)
2m −

−ζ(i1)2(m+r)−1ζ
(i2)
2r ζ

(i3)
2m−1 + ζ

(i1)
2(m+r)ζ

(i2)
2r−1ζ

(i3)
2m−1

))
+

+

q∑
m=1

q∑
l=m+1

(
1

m(l −m)

(
ζ
(i1)
2(l−m)ζ

(i2)
2l ζ

(i3)
2m + ζ

(i1)
2(l−m)−1ζ

(i2)
2l−1ζ

(i3)
2m −

−ζ(i1)2(l−m)−1ζ
(i2)
2l ζ

(i3)
2m−1 + ζ

(i1)
2(l−m)ζ

(i2)
2l−1ζ

(i3)
2m−1

)
+

+
1

l(l −m)

(
−ζ(i1)2(l−m)ζ

(i2)
2m ζ

(i3)
2l + ζ

(i1)
2(l−m)−1ζ

(i2)
2m−1ζ

(i3)
2l −

−ζ(i1)2(l−m)−1ζ
(i2)
2m ζ

(i3)
2l−1 − ζ

(i1)
2(l−m)ζ

(i2)
2m−1ζ

(i3)
2l−1

)))
,

where

ξ(i)q =
1

√
αq

∞∑
r=q+1

1

r
ζ
(i)
2r−1, αq =

π2

6
−

q∑
r=1

1

r2
,

µ(i)q =
1√
βq

∞∑
r=q+1

1

r2
ζ
(i)
2r , βq =

π4

90
−

q∑
r=1

1

r4
,

and ζ
(i)
0 , ζ

(i)
2r , ζ

(i)
2r−1, ξ

(i)
q , µ

(i)
q (r = 1, . . . , q, i = 1, . . . ,m) are independent stan-

dard Gaussian random variables.

The mean-square errors of approximations (5.129)–(5.132) are represented
by the formulas

M

{(
J
(0i1)
(01)T,t − J

(0i1)q
(01)T,t

)2}
= 0,

M

{(
J
(i10)
(10)T,t − J

(i10)q
(10)T,t

)2}
= 0,

M

{(
J
(i1i2)
(11)T,t − J

(i1i2)q
(11)T,t

)2}
=

(T − t)2

2π2

(
π2

6
−

q∑
r=1

1

r2

)
, (5.133)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series1053

Table 5.43: Confirmation of the formula (5.134)

ε/(T − t)3 0.0459 0.0072 7.5722·10−4 7.5973 · 10−5 7.5990 · 10−6

q 1 10 100 1000 10000

M

{(
J
(i1i2i3)
(111)T,t − J

(i1i2i3)q
(111)T,t

)2}
= (T − t)3

(
4

45
− 1

4π2

q∑
r=1

1

r2
−

− 55

32π4

q∑
r=1

1

r4
− 1

4π4

q∑
r,l=1
r ̸=l

5l4 + 4r4 − 3r2l2

r2l2 (r2 − l2)2

)
, (5.134)

where i1 ̸= i2, i1 ̸= i3, i2 ̸= i3.

In Table 5.43 we can see the numerical confirmation of the formula (5.134)
(ε means the right-hand side of (5.134)).

Note that the formulas (5.128), (5.129) have been obtained for the first time
in [82]. Using (5.128), (5.129), we can realize numerically an explicit one-step
strong numerical method with the convergence order 1.0 for Itô SDEs (Milstein
method [82]; also see Sect. 4.10).

An analogue of the formula (5.132) has been obtained for the first time in
[83], [84].

As we mentioned above, the Milstein expansion (i.e. expansion based on
the Karhunen–Loève expansion of the Brownian bridge process) for iterated
stochastic integrals leads to iterated application of the operation of limit tran-
sition. An analogue of (5.132) for iterated Stratonovich stochastic integrals has
been derived in [83], [84] on the base of the Milstein expansion together with
the Wong–Zakai approximation [73]-[75] (without rigorous proof). It means
that the authors in [83], [84] formally could not use the double sum with the
upper limit q in the analogue of (5.132). From the other hand, the correctness
of (5.132) follows directly from Theorem 1.1. Note that (5.132) has been ob-
tained reasonably for the first time in [1]. The version of (5.132) but without

the introducing of random variables ξ
(i)
q and µ

(i)
q can be found in [76] (1997).

Note that the formula (5.133) appears for the first time in [82]. The mean-
square error (5.134) has been obtained for the first time in [81] (1996) on the
base of the simplified variant of Theorem 1.1 (the case of pairwise different
i1, . . . , ik).



1054D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

The number q as we noted above must be the same in (5.129)–(5.132). This
is the main drawback of this approach, because really the number q in (5.132)
can be chosen essentially smaller than in (5.129).

Note that in (5.132) we can replace J
(i1i2i3)q
(111)T,t with J

∗(i1i2i3)q
(111)T,t and (5.132) then

will be valid for any i1, i2, i3 = 0, 1, . . . ,m (see Theorems 2.6–2.8).

Consider now approximations of iterated stochastic integrals

J
(i1)
(1)T,t, J

(i1i2)
(11)T,t, J

(0i1)
(01)T,t, J

(i10)
(10)T,t, J

(i1i2i3)
(111)T,t (i1, i2, i3 = 1, . . . ,m)

on the base of Theorem 1.1 (the case of Legendre polynomials) [1]-[17], [32]

J
(i1)
(1)T,t =

√
T − tζ

(i1)
0 , (5.135)

J
(i1i2)q
(11)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
,

(5.136)

J
(0i1)
(01)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 +

1√
3
ζ
(i1)
1

)
, (5.137)

J
(i10)
(10)T,t =

(T − t)3/2

2

(
ζ
(i1)
0 − 1√

3
ζ
(i1)
1

)
, (5.138)

J
(i1i2i3)q1
(111)T,t =

q1∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, q1 ≪ q, (5.139)

J
(i1i1i1)
(111)T,t =

1

6
(T − t)3/2

((
ζ
(i1)
0

)3
− 3ζ

(i1)
0

)
,

where

Cj3j2j1 =

T∫
t

ϕj3(z)

z∫
t

ϕj2(y)

y∫
t

ϕj1(x)dxdydz =

=

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
(T − t)3/2C̄j3j2j1,
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C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz, (5.140)

ϕj(x) is defined by (5.124) and Pi(x) is the Legendre polynomial (i = 0, 1, 2, . . .).

The mean-square errors of approximations (5.136), (5.139) are represented
by the formulas (see Theorems 1.3 and 1.4; also see Sect. 5.1)

M

{(
J
(i1i2)
(11)T,t − J

(i1i2)q
(11)T,t

)2}
=

(T − t)2

2

(
1

2
−

q∑
i=1

1

4i2 − 1

)
(i1 ̸= i2), (5.141)

M

{(
J
(i1i2i3)
(111)T,t − J

(i1i2i3)q1
(111)T,t

)2}
=

=
(T − t)3

6
−

q1∑
j3,j2,j1=0

C2
j3j2j1

(i1 ̸= i2, i1 ̸= i3, i2 ̸= i3), (5.142)

M

{(
J
(i1i2i3)
(111)T,t − J

(i1i2i3)q1
(111)T,t

)2}
=

(T − t)3

6
−

q1∑
j3,j2,j1=0

C2
j3j2j1

−

−
q1∑

j3,j2,j1=0

Cj2j3j1Cj3j2j1 (i1 ̸= i2 = i3), (5.143)

M

{(
J
(i1i2i3)
(111)T,t − J

(i1i2i3)q1
(111)T,t

)2}
=

(T − t)3

6
−

q1∑
j3,j2,j1=0

C2
j3j2j1

−

−
q1∑

j3,j2,j1=0

Cj3j2j1Cj1j2j3 (i1 = i3 ̸= i2), (5.144)

M

{(
J
(i1i2i3)
(111)T,t − J

(i1i2i3)q1
(111)T,t

)2}
=

(T − t)3

6
−

q1∑
j3,j2,j1=0

C2
j3j2j1

−

−
q1∑

j3,j2,j1=0

Cj3j1j2Cj3j2j1 (i1 = i2 ̸= i3), (5.145)

M

{(
J
(i1i2i3)
(111)T,t − J

(i1i2i3)q1
(111)T,t

)2}
≤ 6

(
(T − t)3

6
−

q1∑
j3,j2,j1=0

C2
j3j2j1

)
, (5.146)
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where i1, i2, i3 = 1, . . . ,m in (5.146).

Let us compare the efficiency of application of Legendre polynomials and
trigonometric functions for the approximation of iterated stochastic integrals
J
(i1i2)
(11)T,t, J

(i1i2i3)
(111)T,t.

Consider the following conditions (i1 ̸= i2, i1 ̸= i3, i2 ̸= i3)

(T − t)2

2

(
1

2
−

q∑
i=1

1

4i2 − 1

)
≤ (T − t)4, (5.147)

(T − t)3

(
1

6
−

q1∑
j1,j2,j3=0

(Cj3j2j1)
2

(T − t)3

)
≤ (T − t)4, (5.148)

(T − t)2

2π2

(
π2

6
−

p∑
r=1

1

r2

)
≤ (T − t)4, (5.149)

(T − t)3
(

4

45
− 1

4π2

p1∑
r=1

1

r2
− 55

32π4

p1∑
r=1

1

r4
− 1

4π4

p1∑
r,l=1
r ̸=l

5l4 + 4r4 − 3r2l2

r2l2 (r2 − l2)2

)
≤ (T − t)4,

(5.150)

where

Cj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
(T − t)3/2C̄j3j2j1,

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

where Pi(x) is the Legendre polynomial.

In Tables 5.44 and 5.45 we can see the minimal numbers q, q1, p, p1, which
satisfy the conditions (5.147)–(5.150). As we mentioned above, the numbers q,
q1 are different. At that q1 ≪ q (the case of Legendre polynomials). As we saw
in the previous sections, we cannot take different numbers p, p1 for the case of
trigonometric functions. Thus, we should choose q = p in (5.129)–(5.132). This
leads to huge computational costs (see the fairly complicated formula (5.132)).

From the other hand, we can take different numbers q in (5.129)–(5.132).

At that we should exclude random variables ξ
(i)
q , µ

(i)
q from (5.129)–(5.132). At

this situation for the case i1 ̸= i2, i2 ̸= i3, i1 ̸= i3 we have
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Table 5.44: Numbers q, q1

T − t 0.08222 0.05020 0.02310 0.01956

q 19 51 235 328

q1 1 2 5 6

Table 5.45: Numbers p, p1, p
∗, p∗1

T − t 0.08222 0.05020 0.02310 0.01956

p 8 21 96 133

p1 1 1 3 4

p∗ 23 61 286 398

p∗1 1 2 4 5

3(T − t)2

2π2

(
π2

6
−

p∗∑
r=1

1

r2

)
≤ (T − t)4, (5.151)

(T − t)3

(
5

36
− 1

2π2

p∗1∑
r=1

1

r2
− 79

32π4

p∗1∑
r=1

1

r4
−

− 1

4π4

p∗1∑
r,l=1
r ̸=l

5l4 + 4r4 − 3r2l2

r2l2 (r2 − l2)2

)
≤ (T − t)4, (5.152)

where the left-hand sides of (5.151), (5.152) correspond to (5.129), (5.132) but

without ξ
(i)
q , µ

(i)
q . In Table 5.45 we can see minimal numbers p∗, p∗1, which satisfy

the conditions (5.151), (5.152).

Moreover,

M

{(
J
(0i1)
(01)T,t − J

(0i1)q
(01)T,t

)2}
= M

{(
J
(i10)
(10)T,t − J

(i10)q
(10)T,t

)2}
=

Table 5.46: Confirmation of the formula (5.152)

ε/(T − t)3 0.0629 0.0097 0.0010 1.0129 · 10−4 1.0132 · 10−5

q 1 10 100 1000 10000
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=
(T − t)3

2π2

(
π2

6
−

q∑
r=1

1

r2

)
̸= 0, (5.153)

where J
(0i1)q
(01)T,t, J

(i10)q
(10)T,t are defined by (5.130), (5.131) but without ξ

(i)
q .

It is not difficult to see that the numbers qtrig in Table 5.42 correspond to
minimal numbers qtrig, which satisfy the condition (compare with (5.153))

(T − t)3

2π2

(
π2

6
−

qtrig∑
r=1

1

r2

)
≤ (T − t)4.

From the other hand, the right-hand sides of (5.137), (5.138) include only
2 random variables. In this situation we again can talk about the advantage of
Ledendre polynomials.

In Table 5.46 we can see the numerical confirmation of the formula (5.152)
(ε means the left-hand side of (5.152)).

5.3.3 A Comparative Analysis of Efficiency of Using the Legen-
dre Polynomials and Trigonometric Functions for the Integral
J
∗(0i1i2)
(011)T,t

In this section, we compare computational costs for approximation of the it-
erated Stratonovich stochastic integral J

∗(0i1i2)
(011)T,t (i1, i2 = 1, . . . ,m) within the

framework of the method of generalized multiple Fourier series for the Legen-
dre polynomial system and the system of trigomomenric functions.

Using Theorem 2.1 for the case of trigonometric system of functions, we
obtain [6]-[17], [40]

J
∗(0i1i2)q
(011)T,t = (T − t)2

(
1

6
ζ
(i1)
0 ζ

(i2)
0 − 1

2
√
2π

√
αqξ

(i2)
q ζ

(i1)
0 +

+
1

2
√
2π2

√
βq

(
µ(i2)q ζ

(i1)
0 − 2µ(i1)q ζ

(i2)
0

)
+

+
1

2
√
2

q∑
r=1

(
− 1

πr
ζ
(i2)
2r−1ζ

(i1)
0 +

1

π2r2

(
ζ
(i2)
2r ζ

(i1)
0 − 2ζ

(i1)
2r ζ

(i2)
0

))
−

− 1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
ζ
(i1)
2r ζ

(i2)
2l +

l

r
ζ
(i1)
2r−1ζ

(i2)
2l−1

)
+
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Table 5.47: Confirmation of the formula (5.155)

4ε/(T − t)4 0.0540 0.0082 8.4261·10−4 8.4429 · 10−5 8.4435 · 10−6

q 1 10 100 1000 10000

Table 5.48: Confirmation of the formula (5.157)

16ε/(T−t)4 0.3797 0.0581 0.0062 6.2450 · 10−4 6.2495 · 10−5

q 1 10 100 1000 10000

+

q∑
r=1

(
1

4πr

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r

)
+

+
1

8π2r2

(
3ζ

(i1)
2r−1ζ

(i2)
2r−1 + ζ

(i2)
2r ζ

(i1)
2r

)))
. (5.154)

For the case i1 ̸= i2 from Theorem 1.3 we get [6]-[18], [31], [40]

M

{(
J
∗(0i1i2)
(011)T,t − J

∗(0i1i2)q
(011)T,t

)2}
=

(T − t)4

4

(
1

9
− 1

2π2

q∑
r=1

1

r2
−

− 5

8π4

q∑
r=1

1

r4
− 1

π4

q∑
k,l=1
k ̸=l

k2 + l2

l2 (l2 − k2)2

)
. (5.155)

Analogues of the formulas (5.154), (5.155) for the case of Legendre polyno-
mials will look as follows [6]-[18], [31], [40]

J
∗(0i1i2)q
(011)T,t =

T − t

2
J
∗(i1i2)q
(11)T,t +

(T − t)2

4

(
1√
3
ζ
(i2)
0 ζ

(i1)
1 +

+

q∑
i=0

(
(i+ 1)ζ

(i2)
i+2ζ

(i1)
i − (i+ 2)ζ

(i2)
i ζ

(i1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(i1)
i ζ

(i2)
i

(2i− 1)(2i+ 3)

))
, (5.156)

where

J
∗(i1i2)q
(11)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

))
,



1060D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

M

{(
J
∗(0i1i2)
(011)T,t − J

∗(0i1i2)q
(011)T,t

)2}
=

(T − t)4

16

(
5

9
− 2

q∑
i=2

1

4i2 − 1
−

−
q∑
i=1

1

(2i− 1)2(2i+ 3)2
−

q∑
i=0

(i+ 2)2 + (i+ 1)2

(2i+ 1)(2i+ 5)(2i+ 3)2

)
, (5.157)

where i1 ̸= i2.

In Tables 5.47 and 5.48 we can see the numerical confirmation of the for-
mulas (5.155) and (5.157) (ε means the right-hand side of (5.155) or (5.157)).

Let us compare the complexity of the formulas (5.154) and (5.156). The
formula (5.154) includes the double sum

1

2π2

q∑
r,l=1
r ̸=l

1

r2 − l2

(
ζ
(i1)
2r ζ

(i2)
2l +

l

r
ζ
(i1)
2r−1ζ

(i2)
2l−1

)
.

Thus, the formula (5.154) is more complex, than the formula (5.156) even if
we take identical numbers q in these formulas. As we noted above, the number
q in (5.154) must be equal to the number q from the formula (5.129), so it is
much larger than the number q from the formula (5.156). As a result, we have
obvious advantage of the formula (5.156) in computational costs.

As we mentioned above, if we will not introduce the random variables ξ
(i)
q

and µ
(i)
q , then the number q in (5.154) can be chosen smaller, but the mean-

square error of approximation of the stochastic integral J
(i1i2)
(11)T,t will be three

times larger (see (5.113)). Moreover, in this case the stochastic integrals J
(0i1)
(01)T,t,

J
(i10)
(10)T,t, J

(00i1)
(001)T,t (with Gaussian distribution) will be approximated worse. In this

situation, we can again talk about the advantage of Ledendre polynomials.

5.3.4 Conclusions

Summing up the results of previous sections we can come to the following
conclusions.

1. We can talk about approximately equal computational costs for the for-
mulas (5.129) and (5.136). This means that computational costs for realizing
the Milstein scheme (explicit one-step strong numerical method with the con-
vergence order γ = 1.0 for Itô SDEs; see Sect. 4.10) for the case of Legendre
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polynomials and for the case of trigonometric functions are approximately the
same.

2. If we will not introduce the random variables ξ
(i)
q (see (5.129)), then

the mean-square error of approximation of the stochastic integral J
(i1i2)
(11)T,t will

be three times larger (see (5.113)). In this situation, we can talk about the
advantage of Ledendre polynomials in the Milstein method. Moreover, in this
case the stochastic integrals J

(0i1)
(01)T,t, J

(i10)
(10)T,t, J

(00i1)
(001)T,t (with Gaussian distribution)

will be approximated worse.

3. If we talk about the explicit one-step strong numerical scheme with the
convergence order γ = 1.5 for Itô SDEs (see Sect. 4.10), then the numbers q,
q1 (see (5.136), (5.139)) are different. At that q1 ≪ q (the case of Legendre
polynomials). The number q must be the same in (5.129)–(5.132) (the case of
trigonometric functions). This leads to huge computational costs (see the fairly
complicated formula (5.132)). From the other hand, we can take different num-

bers q in (5.129)–(5.132). At that we should exclude the random variables ξ
(i)
q ,

µ
(i)
q from (5.129)–(5.132). This leads to another problems which we discussed

above (see Conclusion 2).

4. In addition, the author supposes that effect described in Conclusion 3
will be more impressive when analyzing more complex sets of iterated Itô and
Stratonovich stochastic integrals (when γ = 2.0, 2.5, 3.0, . . .). This supposition
is based on the fact that the polynomial system of functions has the significant
advantage (in comparison with the trigonometric system) when approximating
the iterated stochastic integrals for which not all weight functions are equal to
1 (see Sect 5.4.3 and conclusion at the end of Sect. 5.1).

5.4 Optimization of the Mean-Square Approximation

Procedures for Iterated Itô Stochastic Integrals

Based on Theorem 1.1 and Multiple Fourier–Le-

gendre Series

This section is devoted to optimization of the mean-square approximation pro-
cedures for iterated Itô stochastic integrals (5.3) of multiplicities 1 to 4 based
on Theorem 1.1 and multiple Fourier–Legendre series. The mentioned stochas-
tic integrals are part of strong numerical methods with convergence orders 1.0,
1.5, and 2.0 for Itô SDEs with multidimensional non-commutative noise (see
(4.79)–(4.81)). We show that the lengths of sequences of independent standard
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Gaussian random variables required for the mean-square approximation of iter-
ated Itô stochastic integrals (5.3) can be significantly reduced without the loss
of the mean-square accuracy of approximation for these stochastic integrals.
This section is written on the base of paper [56]. An extension of the men-
tioned results to iterated Itô stochastic integrals of multiplicity 5 can be found
in [55].

Using Theorem 1.1 and the system of Legendre polynomials, we obtain the
following approximations of iterated Itô stochastic integrals (5.3)

I
(i1)
(0)T,t =

√
T − tζ

(i1)
0 ,

I
(i1)
(1)T,t = −(T − t)3/2

2

(
ζ
(i1)
0 +

1√
3
ζ
(i1)
1

)
,

I
(i1i2)q
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

)
− 1{i1=i2}

)
,

(5.158)

I
(i1i2i3)q1
(000)T,t =

q1∑
j1,j2,j3=0

Cj3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3

− 1{i1=i2}1{j1=j2}ζ
(i3)
j3

−

−1{i2=i3}1{j2=j3}ζ
(i1)
j1

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2

)
, (5.159)

I
(i1i2)q2
(10)T,t =

q2∑
j1,j2=0

C10
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
, (5.160)

I
(i1i2)q̄2
(01)T,t =

q̄2∑
j1,j2=0

C01
j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2

− 1{i1=i2}1{j1=j2}

)
, (5.161)

I
(i1i2i3i4)q3
(0000)T,t =

q3∑
j1,j2,j3,j4=0

Cj4j3j2j1

(
ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
ζ
(i4)
j4

−

−1{i1=i2}1{j1=j2}ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3}1{j1=j3}ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4}1{j1=j4}ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3}1{j2=j3}ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4}1{j2=j4}ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4}1{j3=j4}ζ
(i1)
j1
ζ
(i2)
j2

+
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+1{i1=i2}1{j1=j2}1{i3=i4}1{j3=j4} + 1{i1=i3}1{j1=j3}1{i2=i4}1{j2=j4}+

+1{i1=i4}1{j1=j4}1{i2=i3}1{j2=j3}

)
, (5.162)

where 1A is the indicator of the set A,

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s (i = 1, . . . ,m, j = 0, 1, . . .)

are independent standard Gaussian random variables for various i or j,
{ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials in the
space L2([t, T ]) (see (5.5)),

Cj3j2j1 =
1

8
Lj1j2j3(T − t)3/2C̄j3j2j1, C01

j2j1
=

1

8
Lj1j2(T − t)2C̄01

j2j1
, (5.163)

C10
j2j1

=
1

8
Lj1j2(T − t)2C̄10

j2j1
, Cj4j3j2j1 =

1

16
Lj1j2j3j4(T − t)2C̄j4j3j2j1, (5.164)

Lj1j2 =
√

(2j1 + 1)(2j2 + 1), Lj1j2j3 =
√

(2j1 + 1)(2j2 + 1)(2j3 + 1),

Lj1j2j3j4 =
√

(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1),

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

C̄j4j3j2j1 =

1∫
−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdu,

C̄01
j2j1

= −
1∫

−1

(1 + y)Pj2(y)

y∫
−1

Pj1(x)dxdy,

C̄10
j2j1

= −
1∫

−1

Pj2(y)

y∫
−1

(1 + x)Pj1(x)dxdy,

Pj(x) is the Legendre polynomial (see (5.6)).
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Combining the estimates (4.84) and (1.129) for p1 = . . . = pk = p, we obtain

k!

 ∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1,...,jk=0

C2
jk...j1

 ≤ C(T − t)r+1, (5.165)

where K(t1, . . . , tk) is defined by (5.79) (see (5.80)–(5.82)), r/2 is the strong
convergence orders for the numerical schemes (4.79)–(4.81), i.e. r/2 = 1.0, 1.5,
and 2.0; constant C is independent of T − t.

It is not difficult to see that the multiplier factor k! on the left-hand side of
the inequality (5.165) leads to a significant increase of computational costs for
approximation of iterated Itô stochastic integrals. The mentioned problem can
be overcome if we calculate the mean-square approximation error for iterated Itô
stochastic integrals exactly (see Theorem 1.3 and Sect. 1.2.3). In this section,
we discuss how to essentially minimize the numbers q, q1, q2, q̄2, q3 from (5.158)–
(5.162). At that we will use the results from Sect. 1.2.3.

Denote

E(l1...lk)
p

def
= M

{(
I
(i1...ik)
(l1...lk)T,t

− I
(i1...ik)p
(l1...lk)T,t

)2}
, (5.166)

where I
(i1...ik)
(l1...lk)T,t

is the iterated Itô stochastic integral (5.3) and I
(i1...ik)p
(l1...lk)T,t

is the
mean-square approximation of this stochastic integral. More precisely, the ap-
proximations I

(i1i2)q
(00)T,t, I

(i1i2i3)q1
(000)T,t , I

(i1i2)q2
(10)T,t , I

(i1i2)q̄2
(01)T,t , I

(i1i2i3i4)q3
(0000)T,t are defined by (5.158)-

(5.162).

The results of Sect. 1.2.3 give the following formulas for the case of Legendre
polynomials

E(00)
q =

(T − t)2

2

(
1

2
−

q∑
i=1

1

4i2 − 1

)
, i1 ̸= i2, (5.167)

E(000)
q1,1

= (T − t)3

(
1

6
− 1

64

q1,1∑
j1,j2,j3=0

L2
j1j2j3

(
C̄j3j2j1

)2)
, (5.168)

where i1 ̸= i2, i1 ̸= i3, i2 ̸= i3,

E(000)
q1,2

= (T − t)3

(
1

6
− 1

64

q1,2∑
j1,j2,j3=0

L2
j1j2j3

((
C̄j3j2j1

)2
+ C̄j3j1j2C̄j3j2j1

))
, (5.169)

where i1 = i2 ̸= i3,

E(000)
q1,3

= (T − t)3

(
1

6
− 1

64

q1,3∑
j1,j2,j3=0

L2
j1j2j3

((
C̄j3j2j1

)2
+ C̄j2j3j1C̄j3j2j1

))
, (5.170)
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where i1 ̸= i2 = i3,

E(000)
q1,4

= (T − t)3

(
1

6
− 1

64

q1,4∑
j1,j2,j3=0

L2
j1j2j3

((
C̄j3j2j1

)2
+ C̄j3j2j1C̄j1j2j3

))
, (5.171)

where i1 = i3 ̸= i2,

E(10)
q2,1

= (T − t)4

(
1

12
− 1

64

q2,1∑
j1,j2=0

L2
j1j2

(
C̄10
j2j1

)2)
, i1 ̸= i2, (5.172)

E(10)
q2,2

= (T − t)4

 1

12
− 1

64

q2,2∑
j1,j2=0

L2
j1j2
C̄10
j2j1

∑
(j1,j2)

C̄10
j2j1

 , i1 = i2, (5.173)

E
(01)
q̄2,1 = (T − t)4

(
1

4
− 1

64

q̄2,1∑
j1,j2=0

L2
j1j2

(
C̄01
j2j1

)2)
, i1 ̸= i2, (5.174)

E
(01)
q̄2,2 = (T − t)4

1

4
− 1

64

q̄2,2∑
j1,j2=0

L2
j1j2
C̄01
j2j1

∑
(j1,j2)

C̄01
j2j1

 , i1 = i2, (5.175)

E(0000)
q3,1

= (T − t)4

(
1

24
− 1

256

q3,1∑
j1,...,j4=0

L2
j1...j4

(
C̄j4...j1

)2)
, (5.176)

where i1, . . . , i4 are pairwise different,

E(0000)
q3,2

= (T − t)4

 1

24
− 1

256

q3,2∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j1,j2)

C̄j4...j1

 , (5.177)

where i1 = i2 ̸= i3, i4; i3 ̸= i4,

E(0000)
q3,3

= (T − t)4

 1

24
− 1

256

q3,3∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j1,j3)

C̄j4...j1

 , (5.178)

where i1 = i3 ̸= i2, i4; i2 ̸= i4,

E(0000)
q3,4

= (T − t)4

 1

24
− 1

256

q3,4∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j1,j4)

C̄j4...j1

 , (5.179)
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where i1 = i4 ̸= i2, i3; i2 ̸= i3,

E(0000)
q3,5

= (T − t)4

 1

24
− 1

256

q3,5∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j2,j3)

C̄j4...j1

 , (5.180)

where i2 = i3 ̸= i1, i4; i1 ̸= i4,

E(0000)
q3,6

= (T − t)4

 1

24
− 1

256

q3,6∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j2,j4)

C̄j4...j1

 , (5.181)

where i2 = i4 ̸= i1, i3; i1 ̸= i3,

E(0000)
q3,7

= (T − t)4

 1

24
− 1

256

q3,7∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j3,j4)

C̄j4...j1

 , (5.182)

where i3 = i4 ̸= i1, i2; i1 ̸= i2,

E(0000)
q3,8

= (T − t)4

 1

24
− 1

256

q3,8∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

 ∑
(j1,j2,j3)

C̄j4...j1

 , (5.183)

where i1 = i2 = i3 ̸= i4,

E(0000)
q3,9

= (T − t)4

 1

24
− 1

256

q3,9∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

 ∑
(j2,j3,j4)

C̄j4...j1

 , (5.184)

where i2 = i3 = i4 ̸= i1,

E(0000)
q3,10

= (T − t)4

 1

24
− 1

256

q3,10∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

 ∑
(j1,j2,j4)

C̄j4...j1

 , (5.185)

where i1 = i2 = i4 ̸= i3,

E(0000)
q3,11

= (T − t)4

 1

24
− 1

256

q3,11∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

 ∑
(j1,j3,j4)

C̄j4...j1

 , (5.186)

where i1 = i3 = i4 ̸= i2,

E(0000)
q3,12

= (T − t)4

 1

24
− 1

256

q3,12∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j1,j2)

∑
(j3,j4)

C̄j4...j1

 ,

(5.187)
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where i1 = i2 ̸= i3 = i4,

E(0000)
q3,13

= (T − t)4

 1

24
− 1

256

q3,13∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j1,j3)

∑
(j2,j4)

C̄j4...j1

 ,

(5.188)
where i1 = i3 ̸= i2 = i4,

E(0000)
q3,14

= (T − t)4

 1

24
− 1

256

q3,14∑
j1,...,j4=0

L2
j1...j4

C̄j4...j1

∑
(j1,j4)

∑
(j2,j3)

C̄j4...j1

 ,

(5.189)
where i1 = i4 ̸= i2 = i3.

Obviously, the conditions (5.167)–(5.189) do not contain the multiplier fac-
tors 2!, 3!, and 4! in contrast to the estimate (1.129) (see Theorem 1.4). How-
ever, the number of the mentioned conditions is quite large, which is inconve-
nient for practice. In this section, we propose the hypothesis [53]-[56] that all
the formulas (5.167)–(5.189) can be replaced by the formulas (5.167), (5.168),
(5.172), (5.174), (5.176) in which we can suppose that i1, i2, i3, i4 = 1, . . . ,m.
At that we will not have a noticeable loss of the mean-square approximation
accuracy of iterated Itô stochastic integrals.

It should be noted that unlike the method based on Theorem 1.1, existing
approaches to the mean-square approximation of iterated stochastic integrals
based on Fourier series (see, for example, [82]-[85], [92], [96]) do not allow to
choose different numbers p (see (5.166)) for approximations of different iter-
ated stochastic integrals with multiplicities k = 2, 3, 4, . . . Moreover, the noted
approaches exclude the possibility for obtaining of approximate and exact ex-
pressions similar to (1.76), (1.129) (see Theorems 1.3, 1.4). The detailed com-
parison of Theorem 1.1 with methods from [82]-[85], [92]-[94], [96], [97], [99] is
given in Chapter 6 of this monograph.

Consider the following conditions

E(00)
q ≤ (T − t)4, E(000)

q1,i
≤ (T − t)4, i = 1, . . . , 4, (5.190)

and

E(00)
q ≤ (T − t)5, E(000)

q1,i
≤ (T − t)5, E(10)

q2,j
≤ (T − t)5, (5.191)

E
(01)
q̄2,j ≤ (T − t)5, E(0000)

q3,k
≤ (T − t)5, (5.192)

where i = 1, . . . , 4; j = 1, 2; k = 1, . . . , 14.
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Let us show by numerical experiments that in most situations the following
inequalities are fulfilled (under conditions (5.190) and (5.191), (5.192))

q1,1 ≥ q1,i, i = 2, 3, 4, (5.193)

q2,1 ≥ q2,2, q̄2,1 ≥ q̄2,2, (5.194)

q3,1 ≥ q3,k, k = 2, . . . , 14, (5.195)

where q1,i, q2,j, q̄2,j, q3,k (i = 1, . . . , 4; j = 1, 2; k = 1, . . . , 14) are minimal
natural numbers satisfying the conditions (5.190) and (5.191), (5.192).

In Tables 5.49–5.56 we can see the results of numerical experiments. These
results confirm the hypothesis proposed earlier in this section. Note that in
Tables 5.54–5.56 we calculate the mean-square approximation errors of iterated
Itô stochastic integrals in the case when

q1,i = q1,1, i = 2, 3, 4,

q2,2 = q2,1, q̄2,2 = q̄2,1,

q3,k = q3,1, k = 2, . . . , 14,

where q1,1, q2,1, q̄2,1, q3,1 are minimal natural numbers satisfying the conditions
(5.190) and (5.191), (5.192). In this case, there is no noticeable loss of the
mean-square approximation accuracy of iterated Itô stochastic integrals (see
Tables 5.54–5.56). This means that all the formulas (5.167)–(5.189) can be
replaced by the formulas (5.167), (5.168), (5.172), (5.174), (5.176) in which we
can suppose that i1, i2, i3, i4 = 1, . . . ,m.

Let q1,1 and q3,1 be minimal natural numbers satisfying the conditions

E(000)
q1,1

≤ (T − t)4, (5.196)

E(0000)
q3,1

≤ (T − t)5, (5.197)

where the left-hand sides of these inequalities are defined by the formulas (5.168)
and (5.176), respectively.

Let p1,1 and p3,1 be minimal natural numbers satisfying the conditions

3! · E(000)
p1,1

≤ (T − t)4, (5.198)

4! · E(0000)
p3,1

≤ (T − t)5, (5.199)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series1069

Table 5.49: Conditions E
(000)
q1,i ≤ (T − t)4, i = 1, . . . , 4.

T − t 0.011 0.008 0.0045 0.0035 0.0027 0.0025

q1,1 12 16 28 36 47 50

q1,2 6 8 14 18 23 25

q1,3 6 8 14 18 23 25

q1,4 12 16 28 36 47 51

where the values E
(000)
p1,1 and E

(0000)
p3,1 on the left-hand sides of these inequalities

are defined by the formulas (5.168) and (5.176), respectively.

In Tables 5.57, 5.58 we can see the numerical comparison of the numbers q1,1
and q3,1 with the numbers p1,1 and p3,1, respectively. Obviously, excluding of the
multiplier factors 3! and 4! essentially (in many times) reduces the calculation

costs for the mean-square approximations of iterated Itô stochastic integrals.
Note that in this section we use the exactly calculated Fourier–Legendre coef-
ficients using the Python programming language [53], [54].

As we mentioned above, existing approaches to the mean-square approxi-
mation of iterated stochastic integrals based on Fourier series (see, for example,
[82]-[85], [92], [96]) do not allow to choose different numbers p (see Theorem 1.3)
for approximations of different iterated stochastic integrals with multiplicities
k = 2, 3, 4, . . . and exclude the possibility for obtaining of approximate and ex-
act expressions similar to the formulas (1.76), (1.129) (see Theorems 1.3, 1.4).
This leads to unnecessary terms usage in the expansions of iterated Itô stochas-
tic integrals and, as a consequence, to essential increase of computational costs
for the implementation of numerical methods for Itô SDEs.

In this section (also see [55], [56]) we have optimized the method based on
Theorems 1.1 and 1.3, which makes it possible to correctly choose the lengths of
sequences of standard Gaussian random variables required for the approxima-
tion of iterated Itô stochastic integrals. Thus, the computational costs for the
implementation of numerical methods for Itô SDEs are significantly reduced.

On the base of the obtained results we recommend to use in practice the
following conditions (for any i1, . . . , i4 = 1, . . . ,m) for correct choosing the
minimal natural numbers q, q1, q2, q̄2, q3

E(00)
q ≤ C(T − t)3
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Table 5.50: Conditions E
(0000)
q3,k ≤ (T − t)5, i = 1, . . . , 14.

T − t 0.011 0.008 0.0045 0.0042 0.0040

q3,1 6 8 14 15 16

q3,2 4 5 10 11 11

q3,3 6 8 14 15 16

q3,4 6 8 14 15 16

q3,5 3 5 9 9 10

q3,6 6 8 14 15 16

q3,7 4 5 10 11 11

q3,8 2 3 4 5 5

q3,9 2 3 4 5 5

q3,10 4 6 10 11 11

q3,11 4 6 10 11 11

q3,12 2 3 5 6 6

q3,13 6 8 14 15 16

q3,14 3 5 9 9 10

Table 5.51: The conditions (5.191), (5.192).

T − t 0.010 0.005 0.0025

q2,1 4 8 16

q2,2 1 1 1

q̄2,1 4 8 16

q̄2,2 1 1 1
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Table 5.52: The condition (5.190).

T − t 2−1 2−3 2−5 2−8

q 1 8 128 8192

q1,1 0 1 4 32

q1,2 0 0 2 16

q1,3 0 0 2 16

q1,4 0 0 4 33

Table 5.53: The conditions (5.191), (5.192).

T − t 2−1 2−3 2−5 2−8

q 1 8 64 512

q1,1 0 2 4 32

q1,2 0 1 4 16

q1,3 0 1 4 16

q1,4 0 2 8 33

q̄2,1 0 0 1 1

q̄2,2, q2,1, q2,2 0 0 0 0

q3,1, . . . , q3,14 0 0 0 0

Table 5.54: Values E
(000)
q1,i · (T − t)−3 def

= Eq1,i , i = 1, . . . , 4.

T − t 0.011 0.008 0.0045 0.0035 0.0027 0.0025

q1,1 12 16 28 36 47 50

Eq1,1 0.010154 0.007681 0.004433 0.003456 0.002652 0.002494

q1,2 12 16 28 36 47 50

Eq1,2 0.005077 0.003841 0.002216 0.001728 0.001326 0.001247

q1,3 12 16 28 36 47 50

Eq1,3 0.005077 0.003841 0.002216 0.001728 0.001326 0.001247

q1,4 12 16 28 36 47 50

Eq1,4 0.010308 0.007787 0.004480 0.003488 0.002673 0.002513
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Table 5.55: Values E
(01)
q̄2,j · (T − t)−4 def

= Eq̄2,j , E
(10)
q2,j · (T − t)−4 def

= Eq2,j , j = 1, 2.

T − t 0.010 0.005 0.0025

q̄2,1 4 8 16

Eq̄2,1 0.008950 0.004660 0.002383

q̄2,2 4 8 16

Eq̄2,2 0.000042 0.000006 0.000001

q2,1 4 8 16

Eq2,1 0.008950 0.004660 0.002383

q2,2 4 8 16

Eq2,2 0.000042 0.000006 0.000001

(for the Milstein scheme (4.79)),

E(00)
q ≤ (T − t)4, E(000)

q1,1
≤ C(T − t)4

(for the strong scheme (4.80) with order 1.5), and

E(00)
q ≤ C(T − t)5, E(000)

q1,1
≤ C(T − t)5, E(10)

q2,1
≤ C(T − t)5,

E
(01)
q̄2,1 ≤ C(T − t)5, E(0000)

q3,1
≤ C(T − t)5

(for the strong scheme (4.81) with order 2.0). Here the left-hand sides of the
above inequalities are defined by the relations (5.167), (5.168), (5.172), (5.174),
(5.176) and C is a constant from the condition (4.84).

Taking into account the results of this section (also see [55]), we recommend
to use in practice the following condition (for any i1, . . . , ik = 1, . . . ,m) on the
mean-square approximation accuracy for iterated Itô stochastic integrals

M

{(
I
(i1...ik)
(l1...lk)T,t

− I
(i1...ik)p
(l1...lk)T,t

)2}
=

=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk −
p∑

j1,...,jk=0

C2
jk...j1

≤ C(T − t)r+1,
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Table 5.56: Values E
(0000)
q3,k · (T − t)−4 def

= Eq3,k , k = 1, . . . , 14.

T − t 0.011 0.008 0.0045 0.0042

q3,1 6 8 14 15

Eq3,1 0.009636 0.007425 0.004378 0.004096

q3,2 6 8 14 15

Eq3,2 0.006771 0.005191 0.003041 0.002843

q3,3 6 8 14 15

Eq3,3 0.009722 0.007502 0.004424 0.004139

q3,4 6 8 14 15

Eq3,4 0.009641 0.007427 0.004379 0.004097

q3,5 6 8 14 15

Eq3,5 0.005997 0.004614 0.002720 0.002545

q3,6 6 8 14 15

Eq3,6 0.009722 0.007502 0.004424 0.004139

q3,7 6 8 14 15

Eq3,7 0.006771 0.005191 0.003041 0.002843

q3,8 6 8 14 15

Eq3,8 0.003095 0.002364 0.001379 0.001290

q3,9 6 8 14 15

Eq3,9 0.003095 0.002364 0.001379 0.001290

q3,10 6 8 14 15

Eq3,10 0.006885 0.005282 0.003090 0.002889

q3,11 6 8 14 15

Eq3,11 0.006885 0.005282 0.003090 0.002889

q3,12 6 8 14 15

Eq3,12 0.003690 0.002834 0.001663 0.001555

q3,13 6 8 14 15

Eq3,13 0.009756 0.007545 0.004457 0.004170

q3,14 6 8 14 15

Eq3,14 0.006010 0.004621 0.002722 0.002547
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Table 5.57: Comparison of numbers q1,1 and p1,1.

T − t 2−1 2−2 2−3 2−4 2−5 2−6

q1,1 0 0 1 2 4 8

(q1,1 + 1)3 1 1 8 27 125 729

p1,1 1 3 6 12 24 48

(p1,1 + 1)3 8 64 343 2197 15625 117649

Table 5.58: Comparison of numbers q3,1 and p3,1.

T − t 2−1 2−2 2−3 2−4 2−5 2−6

q3,1 0 0 0 0 0 0

(q3,1 + 1)4 1 1 1 1 1 1

p3,1 3 4 6 9 12 17

(p3,1 + 1)4 256 625 2401 10000 28561 104976

where I
(i1...ik)
(l1...lk)T,t

is the iterated Itô stochastic integral (5.3), I
(i1...ik)p
(l1...lk)T,t

is the mean-
square approximation of this stochastic integral based on Theorem 1.1 and
multiple Fourier–Legendre series, p and k ∈ N,

K(t1, . . . , tk) = (t− tk)
lk . . . (t− t1)

l1 1{t1<...<tk}, t1, . . . , tk ∈ [t, T ],

1A is the indicator of the set A, l1, . . . , lk = 0, 1, . . . , C and r have the same
meaning as in the formula (4.84).

5.5 Exact Calculation of the Mean-Square Approxima-

tion Errors for Iterated Stratonovich Stochastic In-

tegrals I
∗(i1)
(0)T,t, I

∗(i1)
(1)T,t, I

∗(i1i2)
(00)T,t, I

∗(i1i2i3)
(000)T,t

Consider the question on the exact calculation of the mean-square approxima-
tion errors for the following iterated Stratonovich stochastic integrals

I
∗(i1)
(0)T,t, I

∗(i1)
(1)T,t, I

∗(i1i2)
(00)T,t, I

∗(i1i2i3)
(000)T,t , i1, i2, i3 = 1, . . . ,m. (5.200)

We assume that the stochastic integrals (5.200) are approximated using

Theorems 1.1, 2.1, 2.8 and the Legendre polynomial system. Since I
(i1)
(0)T,t =
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I
∗(i1)
(0)T,t, I

(i1)
(1)T,t = I

∗(i1)
(1)T,t w. p. 1, we can use (5.7), (5.8) to approximate the

stochastic integrals I
∗(i1)
(0)T,t, I

∗(i1)
(1)T,t. In this case, we will have zero mean-square

approximation errors.

To approximate the iterated Stratonovich stochastic integral I
∗(i1i2)
(00)T,t we can

use the formula (see (5.10))

I
∗(i1i2)q
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

))
. (5.201)

The mean-square approximation error for (5.201) will be determined by the
formula (5.41) (i1 ̸= i2). For the case i1 = i2 we can use the formula (see (6.75))

I
∗(i1i1)
(00)T,t =

T − t

2

(
ζ
(i1)
0

)2
w. p. 1.

Consider now the iterated Stratonovich stochastic integral I
∗(i1i2i3)
(000)T,t of multi-

plicity 3 (i1, i2, i3 = 1, . . . ,m). For the case of pairwise different i1, i2, i3 we can
use the formula (5.77). In the case i1 = i2 = i3, to approximate the stochastic

integral I
∗(i1i1i1)
(000)T,t , we use the formula (5.19).

Thus, it remains to consider the following three cases

i1 = i2 ̸= i3, (5.202)

i1 ̸= i2 = i3, (5.203)

i1 = i3 ̸= i2. (5.204)

Consider the case (5.202). From (5.69) we obtain

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

= M


I(i1i2i3)(000)T,t − I

(i1i2i3)q
(000)T,t +

1

2

T∫
t

τ∫
t

dsdf (i3)τ −
q∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

2
 . (5.205)

According to the formulas (1.77), (1.86), the quantity

I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t
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includes only iterated Itô stochastic integrals of multiplicity 3. At the same
time, the quantity

1

2

T∫
t

τ∫
t

dsdf (i3)τ −
q∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

contains only iterated Itô stochastic integrals of multiplicity 1. This means that
from (5.205) we get

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
= M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
+

+M


1

2

T∫
t

(τ − t)df (i3)τ −
q∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

2
 . (5.206)

The relation (1.103) implies that

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

6
−

−
q∑

j1,j2,j3=0

C2
j3j2j1

−
q∑

j1,j2,j3=0

Cj3j1j2Cj3j2j1, (5.207)

where i1 = i2 ̸= i3.

We have

M


1

2

T∫
t

(τ − t)df (i3)τ −
q∑

j1,j3=0

Cj3j1j1ζ
(i3)
j3

2
 =

1

4

T∫
t

(τ − t)2dτ−

−
q∑

j1,j3=0

Cj3j1j1

T∫
t

(τ − t)ϕj3(τ)dτ +

q∑
j3=0

(
q∑

j1=0

Cj3j1j1

)2

, (5.208)

where ϕj3(τ) is the Legendre polynomial defined by (5.5).

According to (2.155), we obtain

T∫
t

(τ − t)ϕj3(τ)dτ =
(T − t)3/2

2



1, j3 = 0

1/
√
3, j3 = 1

0, j3 ≥ 2

. (5.209)
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Combining (5.206)–(5.209), we get

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

4
−

−
q∑

j1,j2,j3=0

C2
j3j2j1

−
q∑

j1,j2,j3=0

Cj3j1j2Cj3j2j1−

−(T − t)3/2

2

q∑
j1=0

(
C0j1j1 +

1√
3
C1j1j1

)
+

+

q∑
j3=0

(
q∑

j1=0

Cj3j1j1

)2

, (5.210)

where i1 = i2 ̸= i3.

Consider the case (5.203). From (5.69) we obtain

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

= M


I(i1i2i3)(000)T,t − I

(i1i2i3)q
(000)T,t +

1

2

T∫
t

τ∫
t

df (i1)s dτ −
q∑

j1,j3=0

Cj3j3j1ζ
(i1)
j1

2
 =

= M


I(i1i2i3)(000)T,t − I

(i1i2i3)q
(000)T,t +

1

2

T∫
t

(T − s)df (i1)s −
q∑

j1,j3=0

Cj3j3j1ζ
(i1)
j1

2
 =

= M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
+

+M


1

2

T∫
t

(T − s)df (i1)s −
q∑

j1,j3=0

Cj3j3j1ζ
(i1)
j1

2
 =

= M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
+

+
1

4

T∫
t

(T − s)2ds−
q∑

j1,j3=0

Cj3j3j1

T∫
t

(T − s)ϕj1(s)ds+
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+

q∑
j1=0

(
q∑

j3=0

Cj3j3j1

)2

, (5.211)

where ϕj1(τ) is the Legendre polynomial defined by (5.5).

The relation (1.104) implies that

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

6
−

−
q∑

j1,j2,j3=0

C2
j3j2j1

−
q∑

j1,j2,j3=0

Cj2j3j1Cj3j2j1, (5.212)

where i1 ̸= i2 = i3.

Moreover,

T∫
t

(T − s)ϕj1(s)ds =
(T − t)3/2

2



1, j1 = 0

−1/
√
3, j1 = 1

0, j1 ≥ 2

. (5.213)

Combining (5.211)–(5.213), we get

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

4
−

−
q∑

j1,j2,j3=0

C2
j3j2j1

−
q∑

j1,j2,j3=0

Cj2j3j1Cj3j2j1−

−(T − t)3/2

2

q∑
j3=0

(
Cj3j30 −

1√
3
Cj3j31

)
+

+

q∑
j1=0

(
q∑

j3=0

Cj3j3j1

)2

, (5.214)

where i1 ̸= i2 = i3.

Consider the case (5.204). From (5.69) we obtain

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=
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= M


(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t −

q∑
j1,j2=0

Cj1j2j1ζ
(i2)
j2

)2
 =

= M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
+M


(

q∑
j1,j2=0

Cj1j2j1ζ
(i2)
j2

)2
 =

= M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
+

q∑
j2=0

(
q∑

j1=0

Cj1j2j1

)2

. (5.215)

The relation (1.105) implies that

M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

6
−

−
q∑

j1,j2,j3=0

C2
j3j2j1

−
q∑

j1,j2,j3=0

Cj3j2j1Cj1j2j3, (5.216)

where i1 = i3 ̸= i2.

Combining (5.215) and (5.216), we obtain

M

{(
I
∗(i1i2i3)
(000)T,t − I

∗(i1i2i3)q
(000)T,t

)2}
=

(T − t)3

6
−

−
q∑

j1,j2,j3=0

C2
j3j2j1

−
q∑

j1,j2,j3=0

Cj3j2j1Cj1j2j3+

+

q∑
j2=0

(
q∑

j1=0

Cj1j2j1

)2

, (5.217)

where i1 = i3 ̸= i2.

Thus, the exact calculaton of the mean-square approximation error for the
iterated Stratonovich stochastic integral I

∗(i1i2i3)
(000)T,t (i1, i2, i3 = 1, . . . ,m) is given

by the formulas (5.77), (5.210), (5.214), and (5.217).



1080D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

5.6 Exact Calculation of the Mean-Square Approxima-

tion Error for Iterated Stratonovich Stochastic Inte-

gral I
∗(i1i2i3i4)
(0000)T,t

Consider now the iterated Stratonovich stochastic integral I
∗(i1i2i3i4)
(0000)T,t of multi-

plicity 4 (i1, i2, i3, i4 = 1, . . . ,m). For the case of pairwise different i1, i2, i3, i4
we can use the formula (5.78). In the case i1 = i2 = i3 = i4, to approximate the

iterated stochastic integral I
∗(i1i1i1i1)
(0000)T,t , we use the formula (5.32).

Thus, it remains to consider the following 13 cases

i1 = i2 ̸= i3, i4; i3 ̸= i4, (5.218)

i1 = i3 ̸= i2, i4; i2 ̸= i4, (5.219)

i1 = i4 ̸= i2, i3; i2 ̸= i3, (5.220)

i2 = i3 ̸= i1, i4; i1 ̸= i4, (5.221)

i2 = i4 ̸= i1, i3; i1 ̸= i3, (5.222)

i3 = i4 ̸= i1, i2; i1 ̸= i2, (5.223)

i1 = i2 = i3 ̸= i4, (5.224)

i2 = i3 = i4 ̸= i1, (5.225)

i1 = i2 = i4 ̸= i3, (5.226)

i1 = i3 = i4 ̸= i2, (5.227)

i1 = i2 ̸= i3 = i4, (5.228)

i1 = i3 ̸= i2 = i4, (5.229)

i1 = i4 ̸= i2 = i3. (5.230)

By analogy with (5.69) and using (2.400), (1.48), we obtain

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

= M


(
I
(i1i2i3i4)
(0000)T,t +

1

2
1{i1=i2 ̸=0}

T∫
t

t4∫
t

t3∫
t

dt1dw
(i3)
t3 dw

(i4)
t4 +
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+
1

2
1{i2=i3 ̸=0}

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i4)
t4 +

1

2
1{i3=i4 ̸=0}

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3+

+
1

4
1{i1=i2 ̸=0}1{i3=i4 ̸=0}

T∫
t

t2∫
t

dt1dt2 − I
(i1i2i3i4)q
(0000)T,t −

−1{i1=i2 ̸=0}

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4

− 1{i1=i3 ̸=0}

q∑
j4,j2=0

q∑
j1=0

Cj4j1j2j1ζ
(i2)
j2
ζ
(i4)
j4

−

−1{i1=i4 ̸=0}

q∑
j3,j2=0

q∑
j1=0

Cj1j3j2j1ζ
(i2)
j2
ζ
(i3)
j3

− 1{i2=i3 ̸=0}

q∑
j4,j1=0

q∑
j2=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i4)
j4

−

−1{i2=i4 ̸=0}

q∑
j3,j1=0

q∑
j2=0

Cj2j3j2j1ζ
(i1)
j1
ζ
(i3)
j3

− 1{i3=i4 ̸=0}

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i2)
j2

+

+1{i1=i2 ̸=0}1{i3=i4 ̸=0}

q∑
j3,j1=0

Cj3j3j1j1 + 1{i1=i3 ̸=0}1{i2=i4 ̸=0}

q∑
j2,j1=0

Cj2j1j2j1+

+1{i1=i4 ̸=0}1{i2=i3 ̸=0}

q∑
j2,j1=0

Cj1j2j2j1

)2
 , (5.231)

where I
(i1i2i3i4)q
(0000)T,t is defined by (5.162).

Consider the case (5.218). From (5.231) we get

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

= M


(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t +

1

2

T∫
t

t4∫
t

t3∫
t

dt1dw
(i3)
t3 dw

(i4)
t4 −

−
q∑

j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4

)2
 . (5.232)

Note that

ζ
(i3)
j3
ζ
(i4)
j4

=

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)dw
(i3)
t3 dw

(i4)
t4 +

T∫
t

ϕj3(t3)

t3∫
t

ϕj4(t4)dw
(i4)
t4 dw

(i3)
t3

(5.233)
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w. p. 1, where i3 ̸= i4.

According to the formulas (1.77), (1.86), the quantity

I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

includes only iterated Itô stochastic integrals of multiplicity 4. At the same
time (see (5.233)), the quantity

1

2

T∫
t

t4∫
t

t3∫
t

dt1dw
(i3)
t3 dw

(i4)
t4 −

q∑
j4,j3=0

p∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4

contains only iterated Itô stochastic integrals of multiplicity 2. This means that
from (5.232) we have

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

+M


1

2

T∫
t

t4∫
t

(t3 − t)dw
(i3)
t3 dw

(i4)
t4 −

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i4)
j4

2
 =

= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

1

4

T∫
t

t4∫
t

(t3 − t)2dt3dt4+

+

q∑
j4,j3=0

(
q∑

j1=0

Cj4j3j1j1

)2

−

−
q∑

j4,j3=0

q∑
j1=0

Cj4j3j1j1

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)(t3 − t)dt3dt4 =

= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

(T − t)4

48
+

q∑
j4,j3=0

(
q∑

j1=0

Cj4j3j1j1

)2

+

+

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1C
10
j4j3
, (5.234)

where (see (5.14))

C10
j4j3

=

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)(t− t3)dt3dt4. (5.235)
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Using (1.110) and (5.234), we finally get

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

16
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j2)

Cj4j3j2j1

)
+

q∑
j4,j3=0

(
q∑

j1=0

Cj4j3j1j1

)2

+

+

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1C
10
j4j3
, (5.236)

where i1 = i2 ̸= i3, i4; i3 ̸= i4.

Consider the cases (5.219), (5.220) by analogy with the case (5.218) using
(1.111), (1.112). We have

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

24
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j3)

Cj4j3j2j1

)
+

q∑
j4,j2=0

(
q∑

j1=0

Cj4j1j2j1

)2

,

where i1 = i3 ̸= i2, i4 and i2 ̸= i4;

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

24
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j4)

Cj4j3j2j1

)
+

q∑
j3,j2=0

(
q∑

j1=0

Cj1j3j2j1

)2

,

where i1 = i4 ̸= i2, i3 and i2 ̸= i3.

Consider the case (5.221) by analogy with the case (5.218). We have

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

+M


1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i4)
t4 −

q∑
j4,j1=0

q∑
j2=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i4)
j4

2
 =

= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+
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+M


1

2

T∫
t

t4∫
t

(t4 − t1)dw
(i1)
t1 dw

(i4)
t4 −

q∑
j4,j1=0

q∑
j2=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i4)
j4

2
 =

= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

(T − t)4

48
+

q∑
j4,j1=0

(
q∑

j2=0

Cj4j2j2j1

)2

−

−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1

T∫
t

ϕj4(t4)

t4∫
t

ϕj1(t1)(t4 − t1)dt3dt4.

Then using (1.113), we obtain

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

16
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j2,j3)

Cj4j3j2j1

)
+

+

q∑
j4,j1=0

(
q∑

j2=0

Cj4j2j2j1

)2

−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1
(
C10
j4j1

− C01
j4j1

)
,

where i2 = i3 ̸= i1, i4 and i1 ̸= i4; C
10
j4j1

is defined by (5.235) and

C01
j4j1

=

T∫
t

ϕj4(t4)(t− t4)

t4∫
t

ϕj1(t1)dt1dt4. (5.237)

For the case (5.222) by analogy with the case (5.218) and using (1.114), we
get

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

24
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j2,j4)

Cj4j3j2j1

)
+

q∑
j3,j1=0

(
q∑

j2=0

Cj2j3j2j1

)2

,

where i2 = i4 ̸= i1, i3 and i1 ̸= i3.
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Consider the case (5.223) by analogy with the case (5.218). We have (see
Example 3.1 in Sect. 3.6)

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

+M


1

2

T∫
t

(T − t2)

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 −

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i2)
j2

2
 =

= M

{(
I
(i1i2i3i4)
(0000)T,t − I

(i1i2i3i4)q
(0000)T,t

)2}
+

(T − t)4

48
+

q∑
j2,j1=0

(
q∑

j3=0

Cj3j3j2j1

)2

−

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1

T∫
t

(T − t2)ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2.

Then using (1.115), we obtain

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

16
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j3,j4)

Cj4j3j2j1

)
+

+

q∑
j2,j1=0

(
q∑

j3=0

Cj3j3j2j1

)2

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1
(
(T − t)Cj2j1 + C01

j2j1

)
,

where i3 = i4 ̸= i1, i2 and i1 ̸= i2; C
01
j2j1

is defined by (5.237) and

Cj2j1 =

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dt1dt2.

Consider the case (5.224). From (5.231) we have

M

{(
I
∗(i1i1i1i4)
(0000)T,t − I

∗(i1i1i1i4)q
(0000)T,t

)2}
= M


(
I
(i1i1i1i4)
(0000)T,t +

1

2

T∫
t

t4∫
t

t3∫
t

dt1dw
(i1)
t3 dw

(i4)
t4 +
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+
1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i4)
t4 − I

(i1i1i1i4)q
(0000)T,t −

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i1)
j3
ζ
(i4)
j4

−

−
q∑

j4,j2=0

q∑
j1=0

Cj4j1j2j1ζ
(i1)
j2
ζ
(i4)
j4

−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i4)
j4

)2
 . (5.238)

Furthermore,

T∫
t

t4∫
t

t3∫
t

dt1dw
(i1)
t3 dw

(i4)
t4 +

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i4)
t4 =

=

T∫
t

t4∫
t

(t1 − t)dw
(i1)
t1 dw

(i4)
t4 +

T∫
t

t4∫
t

(t4 − t1)dw
(i1)
t1 dw

(i4)
t4 =

=

T∫
t

(t4 − t)

t4∫
t

dw
(i1)
t1 dw

(i4)
t4 w. p. 1. (5.239)

From (5.238) and (5.239) we get

M

{(
I
∗(i1i1i1i4)
(0000)T,t − I

∗(i1i1i1i4)q
(0000)T,t

)2}
= M

{(
I
(i1i1i1i4)
(0000)T,t − I

(i1i1i1i4)q
(0000)T,t

)2}
+

+M


(
1

2

T∫
t

(t4 − t)

t4∫
t

dw
(i1)
t1 dw

(i4)
t4 −

−
q∑

j4,j1=0

q∑
j2=0

(Cj4j1j2j2 + Cj4j2j1j2 + Cj4j2j2j1) ζ
(i1)
j1
ζ
(i4)
j4

)2
 =

= M

{(
I
(i1i1i1i4)
(0000)T,t − I

(i1i1i1i4)q
(0000)T,t

)2}
+

(T − t)4

16
+

+

q∑
j4,j1=0

(
q∑

j2=0

(Cj4j1j2j2 + Cj4j2j1j2 + Cj4j2j2j1)

)2

−

−
q∑

j4,j1=0

q∑
j2=0

(Cj4j1j2j2 + Cj4j2j1j2 + Cj4j2j2j1)

T∫
t

(t4 − t)ϕj4(t4)

t4∫
t

ϕj1(t1)dt1dt4.

(5.240)
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Using (1.116) and (5.240), we finally obtain

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

5(T − t)4

48
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

( ∑
(j1,j2,j3)

Cj4j3j2j1

)
+

+

q∑
j4,j1=0

(
q∑

j2=0

(Cj4j1j2j2 + Cj4j2j1j2 + Cj4j2j2j1)

)2

+

+

q∑
j4,j1=0

q∑
j2=0

(Cj4j1j2j2 + Cj4j2j1j2 + Cj4j2j2j1)C
01
j4j2
,

where i1 = i2 = i3 ̸= i4.

Consider the case (5.225). From (5.231) we have

M

{(
I
∗(i1i2i2i2)
(0000)T,t − I

∗(i1i2i2i2)q
(0000)T,t

)2}
= M


(
I
(i1i2i2i2)
(0000)T,t +

1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i2)
t4 +

+
1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 − I

(i1i2i2i2)q
(0000)T,t −

q∑
j4,j1=0

q∑
j2=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i2)
j4

−

−
q∑

j3,j1=0

q∑
j2=0

Cj2j3j2j1ζ
(i1)
j1
ζ
(i2)
j3

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i2)
j2

)2
 . (5.241)

Moreover,

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i2)
t4 +

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i2)
t2 dt3 =

=

T∫
t

t4∫
t

(t4 − t1)dw
(i1)
t1 dw

(i2)
t4 +

T∫
t

t4∫
t

(T − t4)dw
(i1)
t1 dw

(i2)
t4 =

=

T∫
t

t4∫
t

(T − t1)dw
(i1)
t1 dw

(i2)
t4 w. p. 1. (5.242)
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From (5.241) and (5.242) we get

M

{(
I
∗(i1i2i2i2)
(0000)T,t − I

∗(i1i2i2i2)q
(0000)T,t

)2}
= M

{(
I
(i1i2i2i2)
(0000)T,t − I

(i1i2i2i2)q
(0000)T,t

)2}
+

+M


(
1

2

T∫
t

t4∫
t

(T − t1)dw
(i1)
t1 dw

(i2)
t4 −

−
q∑

j4,j1=0

q∑
j2=0

(Cj4j2j2j1 + Cj2j4j2j1 + Cj2j2j4j1) ζ
(i1)
j1
ζ
(i2)
j4

)2
 =

= M

{(
I
(i1i2i2i2)
(0000)T,t − I

(i1i2i2i2)q
(0000)T,t

)2}
+

(T − t)4

16
+

+

q∑
j4,j1=0

(
q∑

j2=0

(Cj4j2j2j1 + Cj2j4j2j1 + Cj2j2j4j1)

)2

−

−
q∑

j4,j1=0

q∑
j2=0

(Cj4j2j2j1 + Cj2j4j2j1 + Cj2j2j4j1)

T∫
t

ϕj4(t4)

t4∫
t

(T − t1)ϕj1(t1)dt1dt4.

(5.243)

Using (1.117) and (5.243), we finally obtain

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

5(T − t)4

48
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

( ∑
(j2,j3,j4)

Cj4j3j2j1

)
+

+

q∑
j4,j1=0

(
q∑

j2=0

(Cj4j2j2j1 + Cj2j4j2j1 + Cj2j2j4j1)

)2

−

−
q∑

j4,j1=0

q∑
j2=0

(Cj4j2j2j1 + Cj2j4j2j1 + Cj2j2j4j1)
(
(T − t)Cj4j1 + C10

j4j1

)
,

where i2 = i3 = i4 ̸= i1.

For the cases (5.226), (5.227) by analogy with the case (5.225) and using
(1.118), (1.119), we get

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

16
−
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−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

( ∑
(j1,j2,j4)

Cj4j3j2j1

)
+

+

q∑
j4,j3=0

(
q∑

j1=0

(Cj4j3j1j1 + Cj1j3j4j1 + Cj1j3j1j4)

)2

+

+

q∑
j4,j3=0

q∑
j1=0

(Cj4j3j1j1 + Cj1j3j4j1 + Cj1j3j1j4)C
10
j4j3
,

where i1 = i2 = i4 ̸= i3;

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

16
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

( ∑
(j1,j3,j4)

Cj4j3j2j1

)
+

+

q∑
j4,j2=0

(
q∑

j1=0

(Cj4j1j2j1 + Cj1j4j2j1 + Cj1j1j2j4)

)2

−

−
q∑

j4,j2=0

q∑
j1=0

(Cj4j1j2j1 + Cj1j4j2j1 + Cj1j1j2j4)
(
(T − t)Cj2j3 + C01

j2j3

)
,

where i1 = i3 = i4 ̸= i2.

Let us consider the case (5.228). Using (5.231), we obtain

M

{(
I
∗(i1i1i3i3)
(0000)T,t − I

∗(i1i1i3i3)q
(0000)T,t

)2}
=

= M


(
I
(i1i1i3i3)
(0000)T,t +

1

2

T∫
t

t4∫
t

(t3 − t)dw
(i3)
t3 dw

(i3)
t4 +

+
1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i1)
t2 dt3 +

(T − t)2

8
− I

(i1i1i3i3)q
(0000)T,t −

−
q∑

j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i3)
j4

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i1)
j2

+

q∑
j3,j1=0

Cj3j3j1j1

)2
 =
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= M


(
I
(i1i1i3i3)
(0000)T,t − I

(i1i1i3i3)q
(0000)T,t +

1

2

T∫
t

t4∫
t

(t3 − t)dw
(i3)
t3 dw

(i3)
t4 −

−
q∑

j4,j3=0

q∑
j1=0

Cj4j3j1j1

(
ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4}

)
+

+
1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i1)
t2 dt3 −

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

)
+

+
(T − t)2

8
−

q∑
j3,j1=0

Cj3j3j1j1

)2
 . (5.244)

Note that

ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4} =

=

T∫
t

ϕj4(t4)

t4∫
t

ϕj3(t3)dw
(i3)
t3 dw

(i3)
t4 +

T∫
t

ϕj3(t3)

t3∫
t

ϕj4(t4)dw
(i3)
t4 dw

(i3)
t3 , (5.245)

ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2} =

=

T∫
t

ϕj2(t2)

t2∫
t

ϕj1(t1)dw
(i1)
t1 dw

(i1)
t2 +

T∫
t

ϕj1(t1)

t1∫
t

ϕj2(t2)dw
(i1)
t2 dw

(i1)
t1 (5.246)

w. p. 1.

The relations (5.244)–(5.246) and Example 3.1 in Sect. 3.6 imply the fol-
lowing

M

{(
I
∗(i1i1i3i3)
(0000)T,t − I

∗(i1i1i3i3)q
(0000)T,t

)2}
= M

{(
I
(i1i1i3i3)
(0000)T,t − I

(i1i1i3i3)q
(0000)T,t

)2}
+

+M


(
1

2

T∫
t

t4∫
t

(t3 − t)dw
(i3)
t3 dw

(i3)
t4 −

−
q∑

j4,j3=0

q∑
j1=0

Cj4j3j1j1

(
ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4}

))2
+
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+M


(
1

2

T∫
t

t3∫
t

t2∫
t

dw
(i1)
t1 dw

(i1)
t2 dt3−

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

))2
+

+

(
(T − t)2

8
−

q∑
j3,j1=0

Cj3j3j1j1

)2

=

= M

{(
I
(i1i1i3i3)
(0000)T,t − I

(i1i1i3i3)q
(0000)T,t

)2}
+M


(
1

2

T∫
t

t4∫
t

(t3 − t)dw
(i3)
t3 dw

(i3)
t4 −

−
q∑

j4,j3=0

q∑
j1=0

Cj4j3j1j1

(
ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4}

))2
+

+M


(
1

2

T∫
t

(T − t2)

t2∫
t

dw
(i1)
t1 dw

(i1)
t2 −

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

))2
+

+

(
(T − t)2

8
−

q∑
j3,j1=0

Cj3j3j1j1

)2

=

= M

{(
I
(i1i1i3i3)
(0000)T,t − I

(i1i1i3i3)q
(0000)T,t

)2}
+

(T − t)4

48
+

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1
(
C10
j3j4

+ C10
j4j3

)
+

+M


(

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1

(
ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4}

))2
+

+
(T − t)4

48
−

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1
(
(T − t) (Cj1j2 + Cj2j1) + C01

j1j2
+ C01

j2j1

)
+

+M


(

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

))2
+
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+

(
(T − t)2

8
−

q∑
j3,j1=0

Cj3j3j1j1

)2

. (5.247)

Furthermore,

M


(

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1

(
ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4}

))2
 =

= M


(

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i3)
j4

)2
− 2

(
q∑

j3,j1=0

Cj3j3j1j1

)2

+

+

(
q∑

j3,j1=0

Cj3j3j1j1

)2

=

= M


(

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i3)
j4

)2
−

(
q∑

j3,j1=0

Cj3j3j1j1

)2

, (5.248)

M


(

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

))2
 =

= M


(

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1ζ
(i1)
j1
ζ
(i1)
j2

)2
−

(
q∑

j1,j3=0

Cj3j3j1j1

)2

. (5.249)

Using (2.324), we get

M


(

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1ζ
(i3)
j3
ζ
(i3)
j4

)2
 =

=

(
q∑

j3,j1=0

Cj3j3j1j1

)2

+

q∑
j4=0

j4−1∑
j3=0

(
q∑

j1=0

Cj3j4j1j1 +

q∑
j1=0

Cj4j3j1j1

)2

+

+2

q∑
j4=0

(
q∑

j1=0

Cj4j4j1j1

)2

. (5.250)
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From (5.248) and (5.250) we have

M


(

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1

(
ζ
(i3)
j3
ζ
(i3)
j4

− 1{j3=j4}

))2
 =

=

q∑
j4=0

j4−1∑
j3=0

(
q∑

j1=0

Cj3j4j1j1 +

q∑
j1=0

Cj4j3j1j1

)2

+ 2

q∑
j4=0

(
q∑

j1=0

Cj4j4j1j1

)2

. (5.251)

By analogy with (5.251) we obtain

M


(

q∑
j2,j1=0

q∑
j3=0

Cj3j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j2

− 1{j1=j2}

))2
 =

=

q∑
j2=0

j2−1∑
j1=0

(
q∑

j3=0

Cj3j3j1j2 +

q∑
j3=0

Cj3j3j2j1

)2

+ 2

q∑
j2=0

(
q∑

j3=0

Cj3j3j2j2

)2

. (5.252)

Combining (1.120), (5.247), (5.251), and (5.252), we finally have

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

12
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j2)

(∑
(j3,j4)

Cj4j3j2j1

))
+

q∑
j4,j3=0

q∑
j1=0

Cj4j3j1j1
(
C10
j3j4

+ C10
j4j3

)
+

+

q∑
j4=0

j4−1∑
j3=0

(
q∑

j1=0

Cj3j4j1j1 +

q∑
j1=0

Cj4j3j1j1

)2

+ 2

q∑
j4=0

(
q∑

j1=0

Cj4j4j1j1

)2

−

−
q∑

j2,j1=0

q∑
j3=0

Cj3j3j2j1
(
(T − t)Cj1Cj2 + C01

j1j2
+ C01

j2j1

)
+

+

q∑
j2=0

j2−1∑
j1=0

(
q∑

j3=0

Cj3j3j1j2 +

q∑
j3=0

Cj3j3j2j1

)2

+ 2

q∑
j2=0

(
q∑

j3=0

Cj3j3j2j2

)2

+

+

(
(T − t)2

8
−

q∑
j3,j1=0

Cj3j3j1j1

)2

,



1094D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

where i1 = i2 ̸= i3 = i4 and

Cj =

T∫
t

ϕj(τ)dτ =


√
T − t, j = 0

0, j ̸= 0

.

Consider the case (5.229) by analogy with the case (5.228). Using (5.231),
we obtain

M

{(
I
∗(i1i2i1i2)
(0000)T,t − I

∗(i1i2i1i2)q
(0000)T,t

)2}
= M

{(
I
(i1i2i1i2)
(0000)T,t − I

(i1i2i1i2)q
(0000)T,t −

−
q∑

j4,j2=0

q∑
j1=0

Cj4j1j2j1ζ
(i2)
j2
ζ
(i2)
j4

−
q∑

j3,j1=0

q∑
j2=0

Cj2j3j2j1ζ
(i1)
j1
ζ
(i1)
j3

+

q∑
j2,j1=0

Cj2j1j2j1

)2}
=

= M

{(
I
(i1i2i1i2)
(0000)T,t − I

(i1i2i1i2)q
(0000)T,t −

q∑
j4,j2=0

q∑
j1=0

Cj4j1j2j1

(
ζ
(i2)
j2
ζ
(i2)
j4

− 1{j2=j4}

)
−

−
q∑

j3,j1=0

q∑
j2=0

Cj2j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j3

− 1{j1=j3}

)
−

q∑
j2,j1=0

Cj2j1j2j1

)2}
=

= M

{(
I
(i1i2i1i2)
(0000)T,t − I

(i1i2i1i2)q
(0000)T,t

)2}
+

+M


(

q∑
j4,j2=0

q∑
j1=0

Cj4j1j2j1

(
ζ
(i2)
j2
ζ
(i2)
j4

− 1{j2=j4}

))2
+

+M


(

q∑
j3,j1=0

q∑
j2=0

Cj2j3j2j1

(
ζ
(i1)
j1
ζ
(i1)
j3

− 1{j1=j3}

))2
+

+

(
q∑

j2,j1=0

Cj2j1j2j1

)2

. (5.253)

Using (1.121) and (5.253), we finally get

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

24
−
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−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j3)

(∑
(j2,j4)

Cj4j3j2j1

))
+

+

q∑
j4=0

j4−1∑
j2=0

(
q∑

j1=0

Cj2j1j4j1 +

q∑
j1=0

Cj4j1j2j1

)2

+ 2

q∑
j4=0

(
q∑

j1=0

Cj4j1j4j1

)2

+

+

q∑
j3=0

j3−1∑
j1=0

(
q∑

j2=0

Cj2j1j2j3 +

q∑
j2=0

Cj2j3j2j1

)2

+ 2

q∑
j3=0

(
q∑

j2=0

Cj2j3j2j3

)2

+

+

(
q∑

j2,j1=0

Cj2j1j2j1

)2

,

where i1 = i3 ̸= i2 = i4.

Consider the case (5.230) by analogy with the cases (5.228) and (5.229).
Using (5.231), we obtain

M

{(
I
∗(i1i2i2i1)
(0000)T,t − I

∗(i1i2i2i1)q
(0000)T,t

)2}
=

= M


(
I
(i1i2i2i1)
(0000)T,t +

1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i1)
t4 − I

(i1i2i2i1)q
(0000)T,t −

−
q∑

j3,j2=0

q∑
j1=0

Cj1j3j2j1ζ
(i2)
j2
ζ
(i2)
j3

−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1ζ
(i1)
j1
ζ
(i1)
j4

+

q∑
j2,j1=0

Cj1j2j2j1

)2
 =

= M

{(
I
(i1i2i2i1)
(0000)T,t − I

(i1i2i2i1)q
(0000)T,t +

+
1

2

T∫
t

t4∫
t

t2∫
t

dw
(i1)
t1 dt2dw

(i1)
t4 −

q∑
j4,j1=0

q∑
j2=0

Cj4j2j2j1

(
ζ
(i1)
j1
ζ
(i1)
j4

− 1{j1=j4}

)
−

−
q∑

j3,j2=0

q∑
j1=0

Cj1j3j2j1

(
ζ
(i2)
j2
ζ
(i2)
j3

− 1{j2=j3}

)
−

q∑
j2,j1=0

Cj1j2j2j1

)2}
=

= M

{(
I
(i1i2i2i1)
(0000)T,t − I

(i1i2i2i1)q
(0000)T,t

)2}
+M


(
1

2

T∫
t

t4∫
t

(t4 − t1)dw
(i1)
t1 dw

(i1)
t4 −
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−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1

(
ζ
(i1)
j1
ζ
(i1)
j4

− 1{j1=j4}

))2
+

+M


(

q∑
j3,j2=0

q∑
j1=0

Cj1j3j2j1

(
ζ
(i2)
j2
ζ
(i2)
j3

− 1{j2=j3}

))2
+

+

(
q∑

j2,j1=0

Cj1j2j2j1

)2

=

= M

{(
I
(i1i2i2i1)
(0000)T,t − I

(i1i2i2i1)q
(0000)T,t

)2}
+

(T − t)4

48
−

−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1

 T∫
t

ϕj4(t4)

t4∫
t

(t4 − t1)ϕj1(t1)dt1dt4+

+

T∫
t

ϕj1(t4)

t4∫
t

(t4 − t1)ϕj4(t1)dt1dt4

+

+M


(

q∑
j4,j1=0

q∑
j2=0

Cj4j2j2j1

(
ζ
(i1)
j1
ζ
(i1)
j4

− 1{j1=j4}

))2
+

+M


(

q∑
j3,j2=0

q∑
j1=0

Cj1j3j2j1

(
ζ
(i2)
j2
ζ
(i2)
j3

− 1{j2=j3}

))2
+

+

(
q∑

j2,j1=0

Cj1j2j2j1

)2

. (5.254)

Using (1.122) and (5.254), we finally get

M

{(
I
∗(i1i2i3i4)
(0000)T,t − I

∗(i1i2i3i4)q
(0000)T,t

)2}
=

(T − t)4

16
−

−
q∑

j1,j2,j3,j4=0

Cj4j3j2j1

(∑
(j1,j4)

(∑
(j2,j3)

Cj4j3j2j1

))
−

−
q∑

j4,j1=0

q∑
j2=0

Cj4j2j2j1
(
C10
j4j1

+ C10
j1j4

− C01
j4j1

− C01
j1j4

)
+
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+

q∑
j4=0

j4−1∑
j1=0

(
q∑

j2=0

Cj1j2j2j4 +

q∑
j2=0

Cj4j2j2j1

)2

+ 2

q∑
j4=0

(
q∑

j2=0

Cj4j2j2j4

)2

+

+

q∑
j3=0

j3−1∑
j2=0

(
q∑

j1=0

Cj1j2j3j1 +

q∑
j1=0

Cj1j3j2j1

)2

+ 2

q∑
j3=0

(
q∑

j1=0

Cj1j3j3j1

)2

+

+

(
q∑

j2,j1=0

Cj1j2j2j1

)2

,

where i1 = i4 ̸= i2 = i3.

5.7 Optimization of the Mean-Square Approximation

Procedures for Iterated Stratonovich Stochastic In-

tegrals Based on Theorems 2.2, 2.8 and Multiple

Fourier–Legendre Series

This section is devoted to optimization of the mean-square approximation pro-
cedures for iterated Stratonovich stochastic integrals (5.4) of multiplicities 1 to
3 based on Theorems 2.2, 2.8 and multiple Fourier–Legendre series [68]1.

The mentioned stochastic integrals are part of strong numerical methods
with convergence orders 1.0 and 1.5 for Itô SDEs with multidimensional non-
commutative noise (see (4.88), (4.89)).

We show that the lengths of sequences of independent standard Gaus-
sian random variables required for the mean-square approximation of iterated
Stratonovich stochastic integrals (5.4) can be significantly reduced without the
loss of the mean-square accuracy of approximation for these stochastic integrals.

Using Theorems 2.2, 2.8 and the system of Legendre polynomials, we obtain
the following approximations of iterated Stratonovich stochastic integrals (5.4)

I
∗(i1)
(0)T,t =

√
T − tζ

(i1)
0 ,

I
∗(i1)
(1)T,t = −(T − t)3/2

2

(
ζ
(i1)
0 +

1√
3
ζ
(i1)
1

)
,

1The results of this section were obtained jointly with Kuznetsov M.D., who is also a co-author of the
publications [53]-[56], [58], [60], [68].
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I
∗(i1i2)q
(00)T,t =

T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(i1)
i−1ζ

(i2)
i − ζ

(i1)
i ζ

(i2)
i−1

))
, (5.255)

I
∗(i1i2i3)q1
(000)T,t =

q1∑
j1,j2,j3=0

Cj3j2j1ζ
(i1)
j1
ζ
(i2)
j2
ζ
(i3)
j3
, (5.256)

where

ζ
(i)
j =

T∫
t

ϕj(s)df
(i)
s (i = 1, . . . ,m, j = 0, 1, . . .)

are independent standard Gaussian random variables for various i or j,
{ϕj(x)}∞j=0 is a complete orthonormal system of Legendre polynomials in the
space L2([t, T ]) (see (5.5)),

Cj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
(T − t)3/2C̄j3j2j1,

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

Pj(x) is the Legendre polynomial (see (5.6)).

Denote

E∗(l1...lk)
p

def
= M

{(
I
∗(i1...ik)
(l1...lk)T,t

− I
∗(i1...ik)p
(l1...lk)T,t

)2}
,

where I
∗(i1...ik)
(l1...lk)T,t

is the iterated Stratonovich stochastic integral (5.4) and

I
∗(i1...ik)p
(l1...lk)T,t

is the mean-square approximation of this stochastic integral. More

precisely, the approximations I
∗(i1i2)q
(00)T,t , I

∗(i1i2i3)q1
(000)T,t are defined by (5.255), (5.256).

Using (5.41), (5.77), (5.210), (5.214), (5.217), we get

E∗(00)
q =

(T − t)2

2

(
1

2
−

q∑
i=1

1

4i2 − 1

)
(i1 ̸= i2), (5.257)

E∗(000)
q1,1

=
(T − t)3

6
−

q1,1∑
j1,j2,j3=0

C2
j3j2j1

(i1 ̸= i2, i1 ̸= i3, i2 ̸= i3), (5.258)

E∗(000)
q1,2

=
(T − t)3

4
−

q1,2∑
j1,j2,j3=0

C2
j3j2j1

−
q1,2∑

j1,j2,j3=0

Cj3j1j2Cj3j2j1−
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−(T − t)3/2

2

q1,2∑
j1=0

(
C0j1j1 +

1√
3
C1j1j1

)
+

q1,2∑
j3=0

(
q1,2∑
j1=0

Cj3j1j1

)2

(i1 = i2 ̸= i3),

(5.259)

E∗(000)
q1,3

=
(T − t)3

4
−

q1,3∑
j1,j2,j3=0

C2
j3j2j1

−
q1,3∑

j1,j2,j3=0

Cj2j3j1Cj3j2j1−

−(T − t)3/2

2

q1,3∑
j3=0

(
Cj3j30 −

1√
3
Cj3j31

)
+

q1,3∑
j1=0

(
q1,3∑
j3=0

Cj3j3j1

)2

(i1 ̸= i2 = i3),

(5.260)

E∗(000)
q1,4

=
(T − t)3

6
−

q1,4∑
j1,j2,j3=0

C2
j3j2j1

−
q1,4∑

j1,j2,j3=0

Cj3j2j1Cj1j2j3+

+

q1,4∑
j2=0

(
q1,4∑
j1=0

Cj1j2j1

)2

(i1 = i3 ̸= i2). (5.261)

Note that the number of conditions (5.258)–(5.261) is quite large, which is
inconvenient for practice. In this section, we propose the hypothesis that all the
formulas (5.258)–(5.261) can be replaced by the formula (5.258) in which we
can suppose that i1, i2, i3 = 1, . . . ,m. At that we will not have a noticeable loss
of the mean-square approximation accuracy of iterated Stratonovich stochastic
integrals.

Consider the following condition

E∗(00)
q ≤ (T − t)4, E∗(000)

q1,i
≤ (T − t)4, i = 1, . . . , 4. (5.262)

Let us show by numerical experiments that in most situations the following
inequality is fulfilled

q1,1 ≥ q1,i, i = 2, 3, 4, (5.263)

where q1,i (i = 1, . . . , 4) are minimal natural numbers satisfying the condition
(5.262).

In Tables 5.59–5.61 we can see the results of numerical experiments. These
results confirm the hypothesis proposed earlier in this section. Note that in
Table 5.61 we calculate the mean-square approximation errors of iterated Stra-
tonovich stochastic integrals in the case when

q1,i = q1,1, i = 2, 3, 4,
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Table 5.59: Conditions E
∗(000)
q1,i ≤ (T − t)4, i = 1, . . . , 4.

T − t 0.011 0.008 0.0045 0.0035 0.0027 0.0025

q1,1 12 16 28 36 47 50

q1,2 6 8 14 18 23 25

q1,3 6 8 14 18 23 25

q1,4 12 16 28 36 47 51

Table 5.60: The condition (5.262).

T − t 2−1 2−3 2−5 2−8

q 1 8 128 8192

q1,1 0 1 4 32

q1,2 0 0 2 16

q1,3 0 0 2 16

q1,4 0 0 4 33

Table 5.61: Values E
∗(000)
q1,i · (T − t)−3 def

= E∗
q1,i
, i = 1, . . . , 4.

T − t 0.011 0.008 0.0045 0.0035 0.0027 0.0025

q1,1 12 16 28 36 47 50

E∗
q1,1

0.010154 0.007681 0.004433 0.003456 0.002652 0.002494

q1,2 12 16 28 36 47 50

E∗
q1,2

0.005102 0.003855 0.002221 0.001731 0.001328 0.001248

q1,3 12 16 28 36 47 50

E∗
q1,3

0.005102 0.003855 0.002221 0.001731 0.001328 0.001248

q1,4 12 16 28 36 47 50

E∗
q1,4

0.010407 0.007845 0.004500 0.003501 0.002680 0.002519
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Table 5.62: Comparison of numbers q1,1 and p1,1.

T − t 2−1 2−2 2−3 2−4 2−5 2−6

q1,1 0 0 1 2 4 8

(q1,1 + 1)3 1 1 8 27 125 729

p1,1 1 3 6 12 24 48

(p1,1 + 1)3 8 64 343 2197 15625 117649

where q1,1 is the minimal natural number satisfying the condition (5.262). In
this case, there is no noticeable loss of the mean-square approximation accuracy
of iterated Stratonovich stochastic integrals (see Table 5.61). This means that
all the formulas (5.258)–(5.261) can be replaced by the formula (5.258) in which
we can suppose that i1, i2, i3 = 1, . . . ,m.

Let q1,1 be the minimal natural number satisfying the condition

E(000)
q1,1

≤ (T − t)4, (5.264)

where the left-hand side of (5.264) is defined by the formula (5.258).

Let p1,1 be the minimal natural number satisfying the condition

3! · E(000)
p1,1

≤ (T − t)4, (5.265)

where the value E
(000)
p1,1 on the left-hand side of (5.265) is defined by the formula

(5.258) (recall that 3! is included in the inequality (5.165) for the case k = 3).

In Table 5.62 we can see the numerical comparison of numbers q1,1 and
p1,1. Obviously, excluding of the multiplier factor 3! essentially (in many times)
reduces the calculation costs for the mean-square approximations of iterated
Stratonovich stochastic integrals. Note that in this section we use the exactly
calculated Fourier–Legendre coefficients using the Python programming lan-
guage [53], [54].



Chapter 6

Other Methods of Approximation of
Specific Iterated Itô and Stratonovich
Stochastic Integrals of Multiplicities 1
to 4

6.1 New Simple Method for Obtainment an Expansion

of Iterated Itô Stochastic integrals of Multiplicity 2

Based on the Wiener Process Expansion Using Leg-

endre Polynomials and Trigonometric Functions

This section is devoted to the expansion of iterated Itô stochastic integrals
of multiplicity 2 based on the Wiener process expansion using complete or-
thonormal systems of functions in L2([t, T ]). The expansions of these stochastic
integrals using Legendre polynomials and trigonometric functions are consid-
ered. In contrast to the method of expansion of iterated Itô stochastic integrals
based on the Karhunen–Loève expansion of the Brownian bridge process [82]-
[84], this method allows the use of different systems of basis functions, not only
the trigonometric system of functions. The proposed method makes it possi-
ble to obtain expansions of iterated Itô stochastic integrals of multiplicity 2
much easier than the method based on generalized multiple Fourier series (see
Chapters 1 and 2). The latter involve the calculation of coefficients of multiple
Fourier series, which is a time-consuming task. However, the proposed method
can be applied only to iterated Itô stochastic integrals of multiplicity 2.

It is well known that the idea of representing of the Wiener process as
a functional series with random coefficients (that are independent standard
Gaussian random variables) with using the complete orthonormal system of

1102
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trigonometric functions in L2([0, T ]) goes back to the works of Wiener [166]
(1924) and Lévy [167] (1951). The specified series was used in [166] and [167]
for construction of the Brownian motion process (Wiener process). A little later,
Itô and McKean in [168] (1965) used for this purpose the complete orthonormal
system of Haar functions in L2([0, T ]).

Let fτ , τ ∈ [0, T ] be an m-dimestional standard Wiener process with inde-

pendent components f
(i)
τ , i = 1, . . . ,m.

We have

f (i)s − f
(i)
t =

s∫
t

df (i)τ =

T∫
t

1{τ<s}df
(i)
τ ,

where
T∫
t

1{τ<s}df
(i)
τ

is the Itô stochastic integral, t ≥ 0, and

1{τ<s} =


1, τ < s

0, otherwise

, τ, s ∈ [t, T ].

Consider the Fourier expansion of 1{τ<s} ∈ L2([t, T ]) at the interval [t, T ]
(see, for example, [130])

∞∑
j=0

T∫
t

1{τ<s}ϕj(τ)dτϕj(τ) =
∞∑
j=0

s∫
t

ϕj(τ)dτϕj(τ), (6.1)

where {ϕj(τ)}∞j=0 is a complete orthonormal system of functions in the space
L2([t, T ]) and the series (6.1) converges in the mean-square sense, i.e.

T∫
t

1{τ<s} −
q∑
j=0

s∫
t

ϕj(τ)dτϕj(τ)

2

dτ → 0 if q → ∞.

Let f
(i)q
s,t be the mean-square approximation of the process f

(i)
s − f

(i)
t , which

has the following form

f
(i)q
s,t =

T∫
t

 q∑
j=0

s∫
t

ϕj(τ)dτϕj(τ)

 df (i)τ =

q∑
j=0

s∫
t

ϕj(τ)dτ

T∫
t

ϕj(τ)df
(i)
τ . (6.2)
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Moreover,

M

{(
f (i)s − f

(i)
t − f

(i)q
s,t

)2
}

=

= M


 T∫

t

1{τ<s} −
q∑
j=0

s∫
t

ϕj(τ)dτϕj(τ)

 df (i)τ

2
 =

=

T∫
t

1{τ<s} −
q∑
j=0

s∫
t

ϕj(τ)dτϕj(τ)

2

dτ → 0 if q → ∞. (6.3)

In [87] it was proposed to use an expansion similar to (6.2) for the expansion
of iterated Itô stochastic integrals

I
(i1i2)
(00)T,t =

T∫
t

t2∫
t

df
(i1)
t1 df

(i2)
t2 (i1, i2 = 1, . . . ,m). (6.4)

At that, to obtain the mentioned expansion of (6.4), the truncated ex-
pansions (6.2) of components of the Wiener process fs have been iteratively
substituted in the single integrals [87]. This procedure leads to the calculation
of coefficients of the double Fourier series, which is a time-consuming task for
not too complex problem of expansion of the iterated Itô stochastic integral
(6.4). In [87] the expansions on the base of Haar functions and trigonometric
functions have been considered.

In contrast to [87] we subsitute the expansion (6.2) only one time and
only into the innermost integral in (6.4). This procedure leads to the simple
calculation of the coefficients

s∫
t

ϕj(τ)dτ (j = 0, 1, 2, . . .)

of the usual (not double) Fourier series.

Moreover, we use the Legendre polynomials [51], [71] for the construction
of the expansion of (6.4). For the first time the Legendre polynomials have
been applied in the framework of the mentioned problem in the author’s papers
[76] (1997), [77] (1998), [78] (2000), [79] (2001) (also see [1]-[71]) while in the
papers of other author’s these polynomials have not been considered as the
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basis functions for the construction of expansions of iterated Itô or Stratonovich
stochastic integrals.

Theorem 6.1 [14]-[17], [51], [71]. Let ϕj(τ) (j = 0, 1, . . .) be an arbitrary
complete orthonormal system of functions in the space L2([t, T ]). Let

T∫
t

f
(i1)q
s,t df (i2)s =

q∑
j=0

T∫
t

ϕj(τ)df
(i1)
τ

T∫
t

s∫
t

ϕj(τ)dτdf
(i2)
s (6.5)

be an approximation of the iterated Itô stochastic integral (6.4) for i1 ̸= i2. Then

I
(i1i2)
(00)T,t = l.i.m.

q→∞

T∫
t

f
(i1)q
s,t df (i2)s (i1 ̸= i2),

where i1, i2 = 1, . . . ,m.

Proof. Using the standard properties of the Itô stochastic integral as well
as (6.3) and the property of orthonormality of functions ϕj(τ) (j = 0, 1, . . .) at
the interval [t, T ], we obtain

M


 T∫

t

s∫
t

df (i1)τ df (i2)s −
T∫
t

f
(i1)q
s,t df (i2)s

2
 =

=

T∫
t

M

{(
f (i1)s − f

(i1)
t − f

(i1)q
s,t

)2
}
ds =

=

T∫
t

T∫
t

1{τ<s} −
q∑
j=0

s∫
t

ϕj(τ)dτϕj(τ)

2

dτds =

=

T∫
t

(s− t)−
q∑
j=0

 s∫
t

ϕj(τ)dτ

2
 ds. (6.6)

Using the continuity of the functions uq(s) (see below), the nondecreasing
property of the functional sequence

uq(s) =

q∑
j=0

 s∫
t

ϕj(τ)dτ

2

,
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and the continuity of the limit function u(s) = s−t according to Dini’s Theorem,
we have the uniform convergence uq(s) to u(s) at the interval [t, T ].

Then from this fact as well as from (6.6) we obtain

I
(i1i2)
(00)T,t = l.i.m.

q→∞

T∫
t

f
(i1)q
s,t df (i2)s . (6.7)

Note that we could also use Lebesgue’s Dominated Convergence Theorem
in (6.6) to obtain (6.7). Theorem 6.1 is proved.

Let {ϕj(τ)}∞j=0 be a complete orthonormal system of Legendre polynomials
in the space L2([t, T ]), which has the form (5.5). Then

s∫
t

ϕj(τ)dτ =
T − t

2

(
ϕj+1(s)√

(2j + 1)(2j + 3)
− ϕj−1(s)√

4j2 − 1

)
for j ≥ 1. (6.8)

Let us denote

ζ
(i)
j =

T∫
t

ϕj(τ)df
(i)
τ (i = 1, . . . ,m).

From (6.5) and (6.8) we obtain

T∫
t

f
(i1)q
s,t df (i2)s =

1√
T − t

ζ
(i1)
0

T∫
t

(s− t)f (i2)s +

+
T − t

2

q∑
j=1

ζ
(i1)
j

(
1√

(2j + 1)(2j + 3)
ζ
(i2)
j+1 −

1√
4j2 − 1

ζ
(i2)
j−1

)
=

=
T − t

2
ζ
(i1)
0

(
ζ
(i2)
0 +

1√
3
ζ
(i2)
1

)
+

+
T − t

2

q∑
j=1

ζ
(i1)
j

(
1√

(2j + 1)(2j + 3)
ζ
(i2)
j+1 −

1√
4j2 − 1

ζ
(i2)
j−1

)
=

=
T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

q∑
j=1

1√
4j2 − 1

(
ζ
(i1)
j−1ζ

(i2)
j − ζ

(i1)
j ζ

(i2)
j−1

))
+
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+
T − t

2
ζ(i1)q ζ

(i2)
q+1

1√
(2q + 1)(2q + 3)

. (6.9)

Then from (6.7) and (6.9) we get

I
(i1i2)
(00)T,t = l.i.m.

q→∞

T∫
t

f
(i1)q
s,t df (i2)s =

=
T − t

2

(
ζ
(i1)
0 ζ

(i2)
0 +

∞∑
j=1

1√
4j2 − 1

(
ζ
(i1)
j−1ζ

(i2)
j − ζ

(i1)
j ζ

(i2)
j−1

))
. (6.10)

It is not difficult to see that the relation (6.10) has been obtained in Sect. 5.1
(see (5.11)).

Let {ϕj(τ)}∞j=0 be a complete orthonormal system of trigonomertic functions
in the space L2([t, T ]), which has the form (5.110).

We have

s∫
t

ϕj(τ)dτ =
T − t

2πr


ϕ2r−1(s), j = 2r

√
2ϕ0(s)− ϕ2r(s), j = 2r − 1

, (6.11)

where j ≥ 1 and r = 1, 2, . . .

From (6.5) and (6.11) we obtain

T∫
t

f
(i1)q
s,t df (i2)s =

1√
T − t

ζ
(i1)
0

T∫
t

(s− t)f (i2)s +

+
T − t

2

q∑
r=1

1

πr

((
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r

)
+
√
2ζ

(i2)
0 ζ

(i1)
2r−1

)
=

=
1√
T − t

ζ
(i1)
0

(T − t)3/2

2

(
ζ
(i2)
0 −

√
2

π

∞∑
r=1

1

r
ζ
(i2)
2r−1

)
+

+
T − t

2

q∑
r=1

1

πr

((
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r

)
+
√
2ζ

(i2)
0 ζ

(i1)
2r−1

)
=

=
1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

q∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +
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+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

)))
− T − t

π
√
2
ζ
(i1)
0

∞∑
r=q+1

1

r
ζ
(i2)
2r−1. (6.12)

From (6.12) and (6.7) we get

I
(i1i2)
(00)T,t = l.i.m.

q→∞

T∫
t

f
(i1)q
s,t df (i2)s =

1

2
(T − t)

(
ζ
(i1)
0 ζ

(i2)
0 +

+
1

π

∞∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

)))
, (6.13)

where i1 ̸= i2.

It is obvious that (6.13) is consistent with (5.86) for i1 ̸= i2 (we consider

here (5.86) without the random variables ξ
(i)
q ).

6.2 Milstein method of Expansion of Iterated Itô and

Stratonovich Stochastic Integrals

The method that is considered in this section was proposed by Milstein G.N.
[82] (1988) and probably until the mid-2000s remained one of the most famous
methods for strong approximation of iterated stochastic integrals (also see [83]-
[85], [91]-[93], [96], [97]). However, in light of the results of Chapters 1 and 2 as
well as Sect. 5.1 and 5.3, it can be argued that the method based on Theorem
1.1 is more general and effective.

The mentioned Milstein method [82] is based on the expansion of the Brown-
ian bridge process into the trigonometric Fourier series with random coefficients
(version of the so-called Karhunen–Loève expansion).

Let us consider the Brownian bridge process

ft −
t

∆
f∆, t ∈ [0,∆], ∆ > 0, (6.14)

where ft is a standard Wiener process with independent components f
(i)
t , i =

1, . . . ,m.

The componentwise Karhunen–Loève expansion of the process (6.14) has
the following form

f
(i)
t − t

∆
f
(i)
∆ =

1

2
ai,0 +

∞∑
r=1

(
ai,rcos

2πrt

∆
+ bi,rsin

2πrt

∆

)
, (6.15)
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where the series converges in the mean-square sense and

ai,r =
2

∆

∆∫
0

(
f (i)s − s

∆
f
(i)
∆

)
cos

2πrs

∆
ds,

bi,r =
2

∆

∆∫
0

(
f (i)s − s

∆
f
(i)
∆

)
sin

2πrs

∆
ds,

r = 0, 1, . . . , i = 1, . . . ,m.

It is easy to demonstrate [82] that the random variables ai,r, bi,r are Gaussian
ones and they satisfy the following relations

M {ai,rbi,r} = M {ai,rbi,k} = 0, M {ai,rai,k} = M {bi,rbi,k} = 0,

M {ai1,rai2,r} = M {bi1,rbi2,r} = 0, M
{
a2i,r
}
= M

{
b2i,r
}
=

∆

2π2r2
,

where i, i1, i2 = 1, . . . ,m, r ̸= k, i1 ̸= i2.

According to (6.15), we have

f
(i)
t = f

(i)
∆

t

∆
+

1

2
ai,0 +

∞∑
r=1

(
ai,rcos

2πrt

∆
+ bi,rsin

2πrt

∆

)
, (6.16)

where the series converges in the mean-square sense.

Note that the trigonometric functions are the eigenfunctions of the covari-
ance operator of the Brownian bridge process. That is why the basis functions
are the trigonometric functions in the considered approach.

Using the relation (6.16), it is easy to get the following expansions [82]-[84]

t∫
0

df (i)τ =
t

∆
f
(i)
∆ +

1

2
ai,0 +

∞∑
r=1

(
ai,rcos

2πrt

∆
+ bi,rsin

2πrt

∆

)
, (6.17)

t∫
0

τ∫
0

df (i)τ1 dτ =
t2

2∆
f
(i)
∆ +

t

2
ai,0+

+
∆

2π

∞∑
r=1

1

r

(
ai,rsin

2πrt

∆
− bi,r

(
cos

2πrt

∆
− 1

))
, (6.18)
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t∫
0

τ∫
0

dτ1df
(i)
τ = t

t∫
0

df
(i)
t −

t∫
0

τ∫
0

df (i)τ1 dτ =
t2

2∆
f
(i)
∆ +

+t
∞∑
r=1

(
ai,rcos

2πrt

∆
+ bi,rsin

2πrt

∆

)
−

−∆

2π

∞∑
r=1

1

r

(
ai,rsin

2πrt

∆
− bi,r

(
cos

2πrt

∆
− 1

))
, (6.19)

t∫
0

τ∫
0

df (i1)τ1
df (i2)τ =

1

∆
f
(i1)
∆

t∫
0

τ∫
0

dτ1df
(i2)
τ +

1

2
ai1,0

t∫
0

df (i2)τ +

+
tπ

∆

∞∑
r=1

r (ai1,rbi2,r − bi1,rai2,r)+

+
1

4

∞∑
r=1

(
(ai1,rai2,r − bi1,rbi2,r)

(
1− cos

4πrt

∆

)
+

+(ai1,rbi2,r + bi1,rai2,r) sin
4πrt

∆
+

+
2

πr
f
(i2)
∆

(
ai1,rsin

2πrt

∆
+ bi1,r

(
cos

2πrt

∆
− 1

)))
+

+
∞∑
k=1

∞∑
r=1(r ̸=k)

k

ai1,rai2,k
cos

(
2π(k+r)t

∆

)
2(k + r)

+
cos
(
2π(k−r)t

∆

)
2(k − r)

− k

k2 − r2

+

+ai1,rbi2,k

sin
(
2π(k+r)t

∆

)
2(k + r)

+
sin
(
2π(k−r)t

∆

)
2(k − r)

+

+bi1,rbi2,k

cos
(
2π(k−r)t

∆

)
2(k − r)

−
cos
(
2π(k+r)t

∆

)
2(k + r)

− r

k2 − r2

+

+
∆

2π
bi1,rai2,k

sin
(
2π(k+r)t

∆

)
2(k + r)

−
sin
(
2π(k−r)t

∆

)
2(k − r)

 (6.20)



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series1111

converging in the mean-square sense, where we suppose that i1 ̸= i2 in (6.20).

It is necessary to pay a special attention to the fact that the double series
in (6.20) should be understood as the iterated one, and not as a multiple series
(as in Theorem 1.1), i.e. as the iterated passage to the limit for the sequence
of double partial sums. So, the Milstein method of approximation of iterated
stochastic integrals [82] leads to iterated application of the limit transition (in
contrast with the method of generalized multiple Fourier series (Theorem 1.1),
for which the limit transition is implemented only once) starting at least from
the second or third multiplicity of iterated stochastic integrals (we mean at least
double or triple integration with respect to components of the Wiener process).
Multiple series are more preferential for approximation than the iterated ones,
since the partial sums of multiple series converge for any possible case of joint
converging to infinity of their upper limits of summation (let us denote them as
p1, . . . , pk). For example, when p1 = . . . = pk = p→ ∞. For iterated series, the
condition p1 = . . . = pk = p→ ∞ obviously does not guarantee the convergence
of this series. However, as we will see further in this section in [83] (pp. 438-439),
[84] (Sect. 5.8, pp. 202–204), [85] (pp. 82-84), [93] (pp. 263-264) the authors use
(without rigorous proof) the condition p1 = p2 = p3 = p→ ∞ within the frames
of the Milstein method [82] together with the Wong–Zakai approximation [73]-
[75] (also see discussions in Sect. 2.41, 2.42). Furthermore, in order to obtain
the Milstein expansion for iterated stochastic integral, the truncated expansions
(6.16) of components of the Wiener process ft must be iteratively substituted
in the single integrals, and the integrals must be calculated, starting from the
innermost integral. This is a complicated procedure that obviously does not
lead to the expansion of iterated stochastic integral of multiplicity k (k ∈ N).

Assume that t = ∆ in the relations (6.17)–(6.20) (at that double partial
sums of iterated series in (6.20) will become zero). As a result, we get

∆∫
0

df (i)τ = f
(i)
∆ , (6.21)

∆∫
0

τ∫
0

df (i)τ1 dτ =
1

2
∆
(
f
(i)
∆ + ai,0

)
, (6.22)

∆∫
0

τ∫
0

dτ1df
(i)
τ =

1

2
∆
(
f
(i)
∆ − ai,0

)
, (6.23)
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∆∫
0

τ∫
0

df (i1)τ1
df (i2)τ =

1

2
f
(i1)
∆ f

(i2)
∆ − 1

2

(
ai2,0f

(i1)
∆ − ai1,0f

(i2)
∆

)
+

+π
∞∑
r=1

r (ai1,rbi2,r − bi1,rai2,r) (6.24)

converging in the mean-square sense, where we suppose that i1 ̸= i2 in (6.24).

Deriving (6.21)–(6.24), we used the relation

ai,0 = −2
∞∑
r=1

ai,r, (6.25)

which results from (6.15) when t = ∆.

Let us compare expansions of some iterated stochastic integrals of first and
second multiplicity obtained by Milstein method [82] and method based on
generalized multiple Fourier series (Theorem 1.1).

Let us denote

ζ
(i)
2r−1 =

√
2

∆

∆∫
0

sin
2πrs

∆
df (i)s , ζ

(i)
2r =

√
2

∆

∆∫
0

cos
2πrs

∆
df (i)s , (6.26)

ζ
(i)
0 =

1√
∆

∆∫
0

df (i)s , (6.27)

where r = 1, 2, . . . , i = 1, . . . ,m.

Using the Itô formula, it is not difficult to show that

ai,r = − 1

πr

√
∆

2
ζ
(i)
2r−1, bi,r =

1

πr

√
∆

2
ζ
(i)
2r w. p. 1. (6.28)

From (6.25) we get

ai,0 =

√
2∆

π

∞∑
r=1

1

r
ζ
(i)
2r−1. (6.29)

After substituting (6.28), (6.29) into (6.21)–(6.24) and taking into account
(6.26), (6.27), we have

∆∫
0

df (i1)τ =
√
∆ζ

(i1)
0 , (6.30)
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∆∫
0

τ∫
0

dτ1df
(i1)
τ =

∆3/2

2

(
ζ
(i1)
0 −

√
2

π

∞∑
r=1

1

r
ζ
(i1)
2r−1

)
, (6.31)

∆∫
0

τ∫
0

df (i1)τ1
dτ =

∆3/2

2

(
ζ
(i1)
0 +

√
2

π

∞∑
r=1

1

r
ζ
(i1)
2r−1

)
, (6.32)

∆∫
0

τ∫
0

df (i1)τ1
df (i2)τ =

∆

2

(
ζ
(i1)
0 ζ

(i2)
0 +

1

π

∞∑
r=1

1

r

(
ζ
(i1)
2r ζ

(i2)
2r−1 − ζ

(i1)
2r−1ζ

(i2)
2r +

+
√
2
(
ζ
(i1)
2r−1ζ

(i2)
0 − ζ

(i1)
0 ζ

(i2)
2r−1

)))
. (6.33)

Obviously, the formulas (6.30)–(6.33) are consistent with the formulas (5.7),
(5.86), (5.104), (5.105). It testifies that at least for the considered iterated
stochastic integrals and trigonometric system of functions, the Milstein method
and the method based on generalized multiple Fourier series (Theorem 1.1) give
the same result (it is an interesting fact, although it is rather expectable).

Further, we will discuss the usage of Milstein method for the iterated sto-
chastic integrals of third multiplicity.

First, we note that the authors of the monograph [84] based on the results
of Wong E. and Zakai M. [73], [74] (also see [75]) concluded (without rigorous
proof) that the expansions of iterated stochastic integrals on the basis of (6.16)
(the case i1, i2, i3 = 1, . . . ,m) converge to the iterated Stratonovich stochastic
integrals (see discussions in Sect. 2.41, 2.42). It is obvious that this conclusion
is consistent with the results given above in this section for the case i1 ̸= i2.

As we mentioned before, the technical peculiarities of the Milstein method
[82] may result to the iterated series of products of standard Gaussian random
variables (in contradiction to multiple series as in Theorem 1.1). In the case of
simplest stochastic integral of second multiplicity this problem was avoided as
we saw above. However, the situation is not the same for the simplest stochastic
integrals of third multiplicity.

Let us denote

J
∗(i1...ik)
(λ1...λk)T,t

=

∗∫
t

T

. . .

∗∫
t

t2

dw
(i1)
t1 . . . dw

(ik)
tk ,
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where λl = 1 if il = 1, . . . ,m and λl = 0 if il = 0, l = 1, . . . , k, w
(i)
τ = f

(i)
τ for

i = 1, . . . ,m and w
(0)
τ = τ .

Let us consider the expansion of iterated Stratonovich stochastic integral of
third multiplicity obtained in [83]-[85], [93] by the Milstein method [82]

J
∗(i1i2i3)
(111)∆,0 =

1

∆
J
∗(i1)
(1)∆,0J

∗(0i2i3)
(011)∆,0+

+
1

2
ai1,0J

∗(i2i3)
(11)∆,0 +

1

2π
bi1J

(i2)
(1)∆,0J

∗(i3)
(1)∆,0 −∆J

∗(i2)
(1)∆,0Bi1i3+

+∆J
∗(i3)
(1)∆,0

(
1

2
Ai1i2 − Ci2i1

)
+∆3/2Di1i2i3, (6.34)

where

J
∗(0i2i3)
(011)∆,0 =

1

6
J
∗(i2)
(1)∆,0J

∗(i3)
(1)∆,0 −

1

π
∆J

∗(i3)
(1)∆,0bi2+

+∆2Bi2i3 −
1

4
∆ai3,0J

∗(i2)
(1)∆,0 +

1

2π
∆bi3J

∗(i2)
(1)∆,0 +∆2Ci2i3 +

1

2
∆2Ai2i3,

Ai2i3 =
π

∆

∞∑
r=1

r (ai2,rbi3,r − bi2,rai3,r) ,

Ci2i3 = − 1

∆

∞∑
l=1

∞∑
r=1(r ̸=l)

r

r2 − l2
(rai2,rai3,l + lbi2,rbi3,l) ,

Bi2i3 =
1

2∆

∞∑
r=1

(ai2,rai3,r + bi2,rbi3,r) , bi =
∞∑
r=1

1

r
bi,r,

Di1i2i3 = − π

2∆3/2

∞∑
l=1

∞∑
r=1

l

(
ai2,l (ai3,l+rbi1,r − ai1,rbi3,l+r)+

+bi2,l (ai1,rai3,r+l + bi1,rbi3,l+r)

)
+

+
π

2∆3/2

∞∑
l=1

l−1∑
r=1

l

(
ai2,l (ai1,rbi3,l−r + ai3,l−rbi1,r)−
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−bi2,l (ai1,rai3,l−r − bi1,rbi3,l−r)

)
+

+
π

2∆3/2

∞∑
l=1

∞∑
r=l+1

l

(
ai2,l (ai3,r−lbi1,r − ai1,rbi3,r−l)+

+bi2,l (ai1,rai3,r−l + bi1,rbi3,r−l)

)
.

From the expansion (6.34) and expansion of the stochastic integral J
∗(0i2i3)
(011)∆,0

we can conclude that they include iterated (double) series. Moreover, for ap-

proximation of the stochastic integral J
∗(i1i2i3)
(111)∆,0 in the works [83] (pp. 438-439),

[84] (Sect. 5.8, pp. 202–204), [85] (pp. 82-84), [93] (pp. 263-264) it is pro-
posed to put upper limits of summation by equal q (on the base of the Wong–
Zakai approximation [73]-[75] but without rigorous proof; also see discussions
in Sect. 2.41, 2.42).

For example, the valueDi1i2i3 is approximated in [83]-[85], [93] by the double
sums of the form

Dq
i1i2i3

= − π

2∆3/2

q∑
l=1

q∑
r=1

l

(
ai2,l (ai3,l+rbi1,r − ai1,rbi3,l+r)+

+bi2,l (ai1,rai3,r+l + bi1,rbi3,l+r)

)
+

+
π

2∆3/2

q∑
l=1

l−1∑
r=1

l

(
ai2,l (ai1,rbi3,l−r + ai3,l−rbi1,r)−

−bi2,l (ai1,rai3,l−r − bi1,rbi3,l−r)

)
+

+
π

2∆3/2

q∑
l=1

2q∑
r=l+1

l

(
ai2,l (ai3,r−lbi1,r − ai1,rbi3,r−l)+

+bi2,l (ai1,rai3,r−l + bi1,rbi3,r−l)

)
.

We can avoid the mentioned problem (iterated application of the operation
of limit transition) using the method based on Theorems 1.1, 2.1–2.9, 2.33–2.36,
2.50, 2.51, 2.62, 2.63.
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From the other hand, if we prove that the members of the expansion (6.34)
coincide with the members of its analogue obtained using Theorem 1.1, then
we can replace the iterated series in (6.34) by the multiple series (see Theorems
1.1, 2.1–2.9, 2.33–2.36, 2.50, 2.51, 2.62, 2.63) as was made formally in [83]-[85],
[93]. However, it requires the separate argumentation.

6.3 Usage of Integral Sums for Approximation of Iter-

ated Itô Stochastic Integrals

It should be noted that there is an approach to the mean-square approxima-
tion of iterated stochastic integrals based on multiple integral sums (see, for
example, [82], [92], [94], [169]). This method implies the partitioning of the in-
tegration interval [t, T ] of the iterated stochastic integral under consideration;
this interval is the integration step of the numerical methods used to solve Itô
SDEs (see Chapter 4); therefore, it is already fairly small and does not need to
be partitioned. Computational experiments [1] (also see below in this section)
show that the application of the method [82], [92], [94], [169] to stochastic in-
tegrals with multiplicities k ≥ 2 leads to unacceptably high computational cost
and accumulation of computation errors.

As we noted in the introduction to this book, considering the modern state
of question on the approximation of iterated stochastic integrals, the method
analyzed in this section is hardly important for practice. However, we will
consider this method in order to get the overall view. In this section, we will
analyze one of the simplest modifications of the mentioned method.

Let the functions ψl(τ), l = 1, . . . , k satisfy the Lipschitz condition at the
interval [t, T ] with constants Cl

|ψl(τ1)− ψl(τ2)| ≤ Cl|τ1 − τ2| for all τ1, τ2 ∈ [t, T ]. (6.35)

Then, according to Lemma 1.1 (see Sect. 1.1.3), the following equality is
correct

J [ψ(k)]T,t = l.i.m.
N→∞

N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

ψl(τjl)∆w(il)
τjl

w. p. 1,

where notations are the same as in (1.12).
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Let us consider the following approximation

J [ψ(k)]NT,t =
N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

ψl(τjl)∆w(il)
τjl

(6.36)

of the iterated Itô stochastic integral J [ψ(k)]T,t. The relation (6.36) can be
rewritten as

J [ψ(k)]NT,t =
N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

√
∆τjlψl(τjl)u

(il)
jl
, (6.37)

where u
(i)
j

def
=
(
w

(i)
τj+1 −w

(i)
τj

)
/
√
∆τj, i = 1, . . . ,m are independent standard

Gaussian random variables for various i or j, u
(0)
j =

√
∆τj.

Assume that

τj = t+ j∆, j = 0, 1, . . . , N, τN = T, ∆ > 0. (6.38)

Then

J [ψ(k)]NT,t = ∆k/2
N−1∑
jk=0

. . .

j2−1∑
j1=0

k∏
l=1

ψl(t+ jl∆)u
(il)
jl
, (6.39)

where u
(i)
j

def
=
(
w

(i)
t+(j+1)∆ −w

(i)
t+j∆

)
/
√
∆, i = 1, . . . ,m, u

(0)
j =

√
∆.

Lemma 6.1. Suppose that the functions ψl(τ), l = 1, . . . k satisfy the
Lipschitz condition (6.35) and {τj}Nj=0 is a partition of the interval [t, T ], which
satisfies the condition (6.38). Then for a sufficiently small value T − t there
exists a constant Hk <∞ such that

M

{(
J [ψ(k)]T,t − J [ψ(k)]NT,t

)2}
≤ Hk(T − t)2

N
.

Proof. It is easy to see that in the case of a sufficiently small value T − t
there exists a constant Lk such that

M

{(
J [ψ(k)]T,t − J [ψ(k)]NT,t

)2}
≤ LkM

{(
J [ψ(2)]T,t − J [ψ(2)]NT,t

)2}
,

where

J [ψ(2)]T,t − J [ψ(2)]NT,t =
3∑
j=1

SNj ,
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SN1 =
N−1∑
j1=0

τj1+1∫
τj1

ψ2(t2)

t2∫
τj1

ψ1(t1)dw
(i1)
t1 dw

(i2)
t2 ,

SN2 =
N−1∑
j1=0

τj1+1∫
τj1

(ψ2(t2)− ψ2(τj1)) dw
(i2)
t2

j1−1∑
j2=0

τj2+1∫
τj2

ψ1(t1)dw
(i1)
t1 ,

SN3 =
N−1∑
j1=0

ψ2(τj1)∆w(i2)
τj1

j1−1∑
j2=0

τj2+1∫
τj2

(ψ1(t1)− ψ1(τj2)) dw
(i1)
t1 .

Therefore, according to the Minkowski inequality, we have(
M

{(
J [ψ(2)]T,t − J [ψ(2)]NT,t

)2})1/2

≤
3∑
j=1

(
M
{(
SNj
)2})1/2

.

Using standard moment properties of stochastic integrals (see (1.26),

(1.27)), let us estimate the values M
{(
SNj
)2}

, j = 1, 2, 3.

Let us consider four cases.

Case 1. i1, i2 ̸= 0 :

M
{(
SN1
)2} ≤ ∆

2
(T − t) max

s∈[t,T ]
ψ2
2(s)ψ

2
1(s),

M
{(
SN2
)2} ≤ ∆2

6
(T − t)2 (C2)

2 max
s∈[t,T ]

ψ2
1(s),

M
{(
SN3
)2} ≤ ∆2

6
(T − t)2 (C1)

2 max
s∈[t,T ]

ψ2
2(s).

Case 2. i1 ̸= 0, i2 = 0 :

M
{(
SN1
)2} ≤ ∆

2
(T − t)2 max

s∈[t,T ]
ψ2
2(s)ψ

2
1(s),

M
{(
SN2
)2} ≤ ∆2

3
(T − t)3 (C2)

2 max
s∈[t,T ]

ψ2
1(s),

M
{(
SN3
)2} ≤ ∆2

3
(T − t)3 (C1)

2 max
s∈[t,T ]

ψ2
2(s).
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Case 3. i2 ̸= 0, i1 = 0 :

M
{(
SN1
)2} ≤ ∆2

3
(T − t) max

s∈[t,T ]
ψ2
2(s)ψ

2
1(s),

M
{(
SN2
)2} ≤ ∆2

3
(T − t)3 (C2)

2 max
s∈[t,T ]

ψ2
1(s),

M
{(
SN3
)2} ≤ ∆2

8
(T − t)3 (C1)

2 max
s∈[t,T ]

ψ2
2(s).

Case 4. i1 = i2 = 0 :

M
{(
SN1
)2} ≤ ∆2

4
(T − t)2 max

s∈[t,T ]
ψ2
2(s)ψ

2
1(s),

M
{(
SN2
)2} ≤ ∆2

4
(T − t)4 (C2)

2 max
s∈[t,T ]

ψ2
1(s),

M
{(
SN3
)2} ≤ ∆2

16
(T − t)4 (C1)

2 max
s∈[t,T ]

ψ2
2(s).

According to the obtained estimates, we have

M

{(
J [ψ(k)]T,t − J [ψ(k)]NT,t

)2}
≤ Hk(T − t)∆ =

Hk(T − t)2

N
,

where Hk <∞. Lemma 6.1 is proved.

It is easy to check that the following relation is correct

M

{(
I
(i1i2)
(00)T,t − I

(i1i2)N
(00)T,t

)2}
=

(T − t)2

2N
, (6.40)

where i1, i2 = 1, . . . ,m and I
(i1i2)N
(00)T,t is the approximation of the iterated stochas-

tic integral I
(i1i2)
(00)T,t (see (6.4)) obtained according to the formula (6.39).

Finally, we will demonstrate that the method based on generalized multiple
Fourier series (Theorem 1.1) is signficiantly better, than the method based
on multiple integral sums in the sense of computational costs on modeling of
iterated stochastic integrals.

Let us consider the approximations of iterated Itô stochastic integrals ob-
tained using the method based on multiple integral sums

I
(1)q
(0)T,t =

√
∆

q−1∑
j=0

ξ
(1)
j , (6.41)
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Table 6.1: Values Tsum/Tpol.

T − t 2−5 2−6 2−7

Tsum/Tpol 8.67 23.25 55.86

I
(12)q
(00)T,t = ∆

q−1∑
j=0

(
j−1∑
i=0

ξ
(1)
i

)
ξ
(2)
j , (6.42)

where

ξ
(i)
j =

(
f
(i)
t+(j+1)∆ − f

(i)
t+j∆

)
/
√
∆, i = 1, 2

are independent standard Gaussian random variables, ∆ = (T − t)/q, I
(12)q
(00)T,t,

I
(1)q
(0)T,t are approximations of the iterated Itô stochastic integrals I

(12)
(00)T,t (see

(6.4)), I
(1)
(0)T,t = f

(1)
T − f

(1)
t .

Let us choose the number q (see (6.41), (6.42)) from the condition

M

{(
I
(12)
(00)T,t − I

(12)q
(00)T,t

)2}
=

(T − t)2

2q
≤ (T − t)3.

Let us implement 200 independent numerical modelings of the collection of
iterated Itô stochastic integrals I

(12)
(00)T,t, I

(1)
(0)T,t using the formulas (6.41), (6.42)

for T − t = 2−j, j = 5, 6, 7. We denote by Tsum the computer time which is
necessary for performing this task.

Let us repeat the above experiment for the case when the approximations of
iterated Itô stochastic integrals I

(12)
(00)T,t, I

(1)
(0)T,t are defined by (5.135), (5.136) and

the number q is chosen from the condition (5.127) (method based on Theorem
1.1, the case of Legendre polynomials). Let Tpol be the computer time which is
necessary for performing this task.

Considering the results from Table 6.1, we come to conclusion that the
method based on multiple integral sums even when T − t = 2−7 is more than 50
times worse in terms of computer time for modeling the collection of iterated Itô
stochastic integrals I

(12)
00T,t

, I
(1)
0T,t

, than the method based on generalized multiple
Fourier series.

It is not difficult to see that this effect will be more essential if we consider
iterated stochastic integrals of multiplicities 3, 4, . . . or choose value T−t smaller
than 2−7.
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6.4 Iterated Itô Stochastic Integrals as Solutions of Sys-

tems of Linear Itô SDEs

Milstein G.N. [82] (also see [99])) proposed an approach to numerical modeling
of iterated Itô stochastic integrals based on their representation in the form of
systems of linear Itô SDEs. Let us consider this approach using the following
set of iterated Itô stochastic integrals

I
(i1)
(0)s,t =

s∫
t

df
(i1)
t1 , I

(i1i2)
(00)s,t =

s∫
t

t2∫
t

df
(i1)
t1 df

(i2)
t2 , (6.43)

where i1, i2 = 1, . . . ,m, 0 ≤ t < s ≤ T, f
(i)
s (i = 1, . . . ,m) are independent

standard Wiener processes.

Obviously, we have the following representation

d

 I
(i1)
(0)s,t

I
(i1i2)
(00)s,t

 =

(
0 0

1 0

)
I
(i1)
(0)s,t

I
(i1i2)
(00)s,t

 df (i2)s +

(
1 0

0 0

)
d

(
f
(i1)
s

f
(i2)
s

)
. (6.44)

It is well known [82], [84] that the solution of system (6.44) has the following
integral form  I

(i1)
(0)s,t

I
(i1i2)
(00)s,t

 =

s∫
t

e

(
0 0

1 0

)(
f
(i2)
s −f

(i2)
θ

)(
1 0

0 0

)
d

(
f
(i1)
θ

f
(i2)
θ

)
, (6.45)

where eA is a matrix exponent

eA
def
=

∞∑
k=0

Ak

k!
,

A is a square matrix, and A0 def
= I is a unity matrix.

Numerical modeling of the right-hand side of (6.45) is unlikely simpler task
than the jointly numerical modeling of the collection of stochastic integrals
(6.43). We have to perform numerical modeling of (6.43) within the frames
of the considered approach by numerical integration of the system of linear Itô
SDEs (6.44). This procedure can be realized using the Euler (Euler–Maruyama)
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method [82]. Note that the expressions of more accurate numerical methods for
the system (6.44) (see Chapter 4) contain the iterated Itô stochastic integrals
(6.43) and therefore they useless in our situation.

Let {τj}Nj=0 be the partition of [t, s] such that

τj = t+ j∆, j = 0, 1, . . . , N, τN = s.

Let us consider the Euler method for the system of linear Itô SDEs (6.44) y
(i1)
p+1

y
(i1i2)
p+1

 =

 y
(i1)
p

y
(i1i2)
p

+

 ∆f
(i1)
τp

y
(i1)
p ∆f

(i2)
τp

 , y
(i1)
0 = 0, y

(i1i2)
0 = 0, (6.46)

where
y(i1)
τp

def
= y(i1)

p , y(i1i2)
τp

def
= y(i1i2)

p

are approximations of the iterated Itô stochastic integrals I
(i1)
(0)τp,t

, I
(i1i2)
(00)τp,t

ob-

tained using the numerical scheme (6.46), ∆f
(i)
τp = f

(i)
τp+1 − f

(i)
τp , i = 1, . . . ,m.

Iterating the expression (6.46), we have

y
(i1)
N =

N−1∑
l=0

∆f (i1)τl
, y

(i1i2)
N =

N−1∑
q=0

q−1∑
l=0

∆f (i1)τl
∆f (i2)τq

, (6.47)

where
∑
∅

def
= 0.

Obviously, the formulas (6.47) are formulas for approximations of the iter-
ated Itô stochastic integrals (6.43) obtained using the method based on multiple
integral sums (see (6.41), (6.42)).

Consequently, the efficiency of methods for the approximation of iterated Itô
stochastic integrals based on multiple integral sums and numerical integration
of systems of linear Itô SDEs on the base of the Euler method turns out to be
equivalent.

6.5 Combined Method of the Mean-Square Approxima-

tion of Iterated Itô Stochastic Integrals

This section is written of the base of the work [170] (also see [17]) and devoted
to the combined method of approximation of iterated Itô stochastic integrals
based on Theorem 1.1 and the method of multiple integral sums (see Sect. 6.3).
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The combined method of approximation of iterated Itô stochastic integrals
provides a possibility to minimize significantly the total number of the Fourier–
Legendre coefficients which are necessary for the approximation of iterated Itô
stochastic integrals. However, in this connection the computational costs for
approximation of the mentioned stochastic integrals are become bigger.

Using the additive property of the Itô stochastic integral, we have

I
(i1)
(0)T,t =

√
∆

N−1∑
k=0

ζ
(i1)
0,k w. p. 1, (6.48)

I
(i1)
(1)T,t =

N−1∑
k=0

(
I
(i1)
(1)τk+1,τk

−∆3/2kζ
(i1)
0,k

)
w. p. 1, (6.49)

I
(i1i2)
(00)T,t = ∆

N−1∑
k=0

k−1∑
l=0

ζ
(i1)
0,l ζ

(i2)
0,k +

N−1∑
k=0

I
(i1i2)
(00)τk+1,τk

w. p. 1, (6.50)

I
(i1i2i3)
(000)T,t = ∆3/2

N−1∑
k=0

k−1∑
l=0

l−1∑
q=0

ζ
(i1)
0,q ζ

(i2)
0,l ζ

(i3)
0,k +

+
√
∆

N−1∑
k=0

k−1∑
l=0

(
I
(i1i2)
(00)τl+1,τl

ζ
(i3)
0,k + ζ

(i1)
0,l I

(i2i3)
(00)τk+1,τk

)
+
N−1∑
k=0

I
(i1i2i3)
(000)τk+1,τk

w. p. 1, (6.51)

where stochastic integrals

I
(i1)
(0)T,t, I

(i1)
(1)T,t, I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t

have the form (5.3), i1, . . . , ik = 1, . . . ,m, T − t = N∆, τk = t+ k∆,

ζ
(i)
0,k

def
=

1√
∆

τk+1∫
τk

df (i)s ,

k = 0, 1, . . . , N − 1, the sum with respect to the empty set is equal to zero.

Substituting the relation

I
(i1)
(1)τk+1,τk

= −∆3/2

2

(
ζ
(i1)
0,k +

1√
3
ζ
(i1)
1,k

)
w. p. 1

into (6.49), where ζ
(i1)
0,k , ζ

(i1)
1,k are independent standard Gaussian random vari-

ables, we get

I
(i1)
(1)T,t = −∆3/2

N−1∑
k=0

((
1

2
+ k

)
ζ
(i1)
0,k +

1

2
√
3
ζ
(i1)
1,k

)
w. p. 1. (6.52)



1124D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

Consider approximations of the following iterated Itô stochastic integrals
using the method based on multiple Fourier–Legendre series (Theorem 1.1)

I
(i1i2)
(00)τk+1,τk

, I
(i2i3)
(00)τk+1,τk

, I
(i1i2i3)
(000)τk+1,τk

.

As a result, we get

I
(i1i2)N,q
(00)T,t = ∆

N−1∑
k=0

k−1∑
l=0

ζ
(i1)
0,l ζ

(i2)
0,k +

N−1∑
k=0

I
(i1i2)q
(00)τk+1,τk

, (6.53)

I
(i1i2i3)N,q1,q2
(000)T,t = ∆3/2

N−1∑
k=0

k−1∑
l=0

l−1∑
q=0

ζ
(i1)
0,q ζ

(i2)
0,l ζ

(i3)
0,k +

+
√
∆

N−1∑
k=0

k−1∑
l=0

(
I
(i1i2)q1
(00)τl+1,τl

ζ
(i3)
0,k + ζ

(i1)
0,l I

(i2i3)q1
(00)τk+1,τk

)
+

N−1∑
k=0

I
(i1i2i3)q2
(000)τk+1,τk

, (6.54)

where we suppose that the approximations

I
(i1i2)q
(00)τk+1,τk

, I
(i1i2)q1
(00)τk+1,τk

, I
(i1i2i3)q2
(000)τk+1,τk

are obtained using Theorem 1.1 (the case of Legendre polynomials).

In particular, when N = 2, the formulas (6.48), (6.52)-(6.54) will look as
follows

I
(i1)
(0)T,t =

√
∆
(
ζ
(i1)
0,0 + ζ

(i1)
0,1

)
w. p. 1, (6.55)

I
(i1)
(1)T,t = −∆3/2

(
1

2
ζ
(i1)
0,0 +

3

2
ζ
(i1)
0,1 +

1

2
√
3

(
ζ
(i1)
1,0 + ζ

(i1)
1,1

))
w. p. 1, (6.56)

I
(i1i2)2,q
(00)T,t = ∆

(
ζ
(i1)
0,0 ζ

(i2)
0,1 + I

(i1i2)q
(00)τ1,τ0

+ I
(i1i2)q
(00)τ2,τ1

)
, (6.57)

I
(i1i2i3)2,q1,q2
(000)T,t =

√
∆
(
I
(i1i2)q1
(00)τ1,τ0

ζ
(i3)
0,1 + ζ

(i1)
0,0 I

(i2i3)q1
(00)τ2,τ1

)
+

+I
(i1i2i3)q2
(000)τ1,τ0

+ I
(i1i2i3)q2
(000)τ2,τ1

, (6.58)

where ∆ = (T − t)/2, τk = t+ k∆, k = 0, 1, 2.

Note that if N = 1, then (6.48), (6.52)-(6.54) are the formulas for numeri-
cal modeling of the mentioned stochastic integrals using the method based on
Theorem 1.1.
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Further, we will demonstrate that modeling of the iterated Itô stochastic
integrals

I
(i1)
(0)T,t, I

(i1)
(1)T,t, I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t

using the formulas (6.55)–(6.58) results in abrupt decrease of the total number
of Fourier–Legendre coefficients, which are necessary for approximation of these
stochastic integrals using the method based on Theorem 1.1.

From the other hand, the formulas (6.57), (6.58) include two approximations
of iterated Itô stochastic integrals of second and third multiplicity, and each one
of them should be obtained using the method based on Theorem 1.1. Obviously,
this leads to an increase in computational costs for the approximation.

Let us calculate the mean-square approximation errors for the formulas
(6.53), (6.54). We have

Eq
N

def
= M

{(
I
(i1i2)
(00)T,t − I

(i1i2)N,q
(00)T,t

)2
}

=
N−1∑
k=0

M

{(
I
(i1i2)
(00)τk+1,τk

− I
(i1i2)q
(00)τk+1,τk

)2
}

=

= N
∆2

2

(
1

2
−

q∑
l=1

1

4l2 − 1

)
=

(T − t)2

2N

(
1

2
−

q∑
l=1

1

4l2 − 1

)
, (6.59)

Eq1,q2
N

def
= M

{(
I
(i1i2i3)
(000)T,t − I

(i1i2i3)N,q1,q2
(000)T,t

)2
}

=

= M

{(
N−1∑
k=0

(
√
∆

k−1∑
l=0

(
ζ
(i3)
0,k

(
I
(i1i2)
(00)τl+1,τl

− I
(i1i2)q1
(00)τl+1,τl

)
+

+ζ
(i1)
0,l

(
I
(i2i3)
(00)τk+1,τk

− I
(i2i3)q1
(00)τk+1,τk

))
+ I

(i1i2i3)
(000)τk+1,τk

− I
(i1i2i3)q2
(000)τk+1,τk

))2}
=

=
N−1∑
k=0

M

{(
√
∆

k−1∑
l=0

(
ζ
(i3)
0,k

(
I
(i1i2)
(00)τl+1,τl

− I
(i1i2)q1
(00)τl+1,τl

)
+

+ζ
(i1)
0,l

(
I
(i2i3)
(00)τk+1,τk

− I
(i2i3)q1
(00)τk+1,τk

))
+ I

(i1i2i3)
(000)τk+1,τk

− I
(i1i2i3)q2
(000)τk+1,τk

)2}
=



1126D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

=
N−1∑
k=0

∆M


(
ζ
(i3)
0,k

k−1∑
l=0

(
I
(i1i2)
(00)τl+1,τl

− I
(i1i2)q1
(00)τl+1,τl

))2
 +

+∆M


((

I
(i2i3)
(00)τk+1,τk

− I
(i2i3)q1
(00)τk+1,τk

) k−1∑
l=0

ζ
(i1)
0,l

)2
+H

(i1i2i3)
k,q2

 =

=
N−1∑
k=0

(
∆

k−1∑
l=0

M

{(
I
(i1i2)
(00)τl+1,τl

− I
(i1i2)q1
(00)τl+1,τl

)2
}
+

+ k∆M

{(
I
(i2i3)
(00)τk+1,τk

− I
(i2i3)q1
(00)τk+1,τk

)2
}

+H
(i1i2i3)
k,q2

)
=

=
N−1∑
k=0

(
2k∆M

{(
I
(i1i2)
(00)τk+1,τk

− I
(i1i2)q1
(00)τk+1,τk

)2
}

+H
(i1i2i3)
k,q2

)
=

=
N−1∑
k=0

(
2k∆

∆2

2

(
1

2
−

q1∑
l=1

1

4l2 − 1

)
+H

(i1i2i3)
k,q2

)
=

= ∆3N(N − 1)

2

(
1

2
−

q1∑
l=1

1

4l2 − 1

)
+

N−1∑
k=0

H
(i1i2i3)
k,q2

=

=
1

2
(T − t)3

(
1

N
− 1

N 2

)(
1

2
−

q1∑
l=1

1

4l2 − 1

)
+

+
N−1∑
k=0

H
(i1i2i3)
k,q2

, (6.60)

where

H
(i1i2i3)
k,q2

= M

{(
I
(i1i2i3)
(000)τk+1,τk

− I
(i1i2i3)q2
(000)τk+1,τk

)2
}
.

Moreover, we suppose that i1 ̸= i2 in (6.59) and not all indices i1, i2, i3
in (6.60) are equal. Otherwise there are simple relationships for modeling the

integrals I
(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t

I
(i1i1)
(00)T,t =

1

2
(T − t)

((
ζ
(i1)
0

)2
− 1

)
w. p. 1,
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I
(i1i1i1)
(000)T,t =

1

6
(T − t)3/2

((
ζ
(i1)
0

)3
− 3ζ

(i1)
0

)
w. p. 1,

where

ζ
(i1)
0 =

1√
T − t

T∫
t

df (i1)s

is a standard Gaussian random variable.

For definiteness, assume that i1, i2, i3 are pairwise different in (6.60) (other
cases are represented by (5.55)–(5.58)). Then from Theorem 1.3 we have

H
(i1i2i3)
k,q2

= ∆3

(
1

6
−

q2∑
j1,j2,j3=0

C2
j3j2j1

∆3

)
, (6.61)

where

Cj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
∆3/2C̄j3j2j1,

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

and Pi(x) (i = 0, 1, 2, . . .) is the Legendre polynomial.

Substituting (6.61) into (6.60), we obtain

Eq1,q2
N =

1

2
(T − t)3

(
1

N
− 1

N 2

)(
1

2
−

q1∑
l=1

1

4l2 − 1

)
+

+
(T − t)3

N 2

(
1

6
−

q2∑
j1,j2,j3=0

(2j1 + 1)(2j2 + 1)(2j3 + 1)

64
C̄2
j3j2j1

)
. (6.62)

Note that for N = 1 the formulas (6.59), (6.62) pass into the corresponding
formulas for the mean-square approximation errors of the iterated Itô stochastic
integrals I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t (see Theorem 1.3).

Let us consider modeling the integrals I
(i1)
(0)T,t, I

(i1i2)
(00)T,t. To do it we can use

the relations (6.48), (6.53). At that, the mean-square approximation error for

the integral I
(i1i2)
(00)T,t is defined by the formula (6.59) for the case of Legendre

polynomials. Let us calculate the value Eq
N for various N and q

E2
3 ≈ 0.0167(T − t)2, E3

2 ≈ 0.0179(T − t)2, (6.63)
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Table 6.2: T − t = 0.1.

N q q1 q2 M

1 13 – 1 21

2 6 0 0 7

3 4 0 0 5

Table 6.3: T − t = 0.05.

N q q1 q2 M

1 50 – 2 77

2 25 2 0 26

3 17 1 0 18

E6
1 ≈ 0.0192(T − t)2. (6.64)

Note that the combined method (see (6.63)) requires calculation of a sig-
nificantly smaller number of the Fourier–Legendre coefficients than the method
based on Theorem 1.1 (see (6.64)).

Assume that the mean-square approximation error of the iterated Itô
stochastic integrals I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t equals to (T − t)4.

In Tables 6.2–6.4 we can see the values N, q, q1, q2, which satisfy the system
of inequalities 

Eq
N ≤ (T − t)4

Eq1,q2
N ≤ (T − t)4

(6.65)

as well as the total numberM of the Fourier–Legendre coefficients, which are ne-
sessary for approximation of the iterated Itô stochastic integrals I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t

when T − t = 0.1, 0.05, 0.02 (the numbers q, q1, q2 were taken in such a manner
that the number M was the smallest one).

From Tables 6.2–6.4 it is clear that the combined method with the small N

Table 6.4: T − t = 0.02.

N q q1 q2 M

1 312 – 6 655

2 156 4 2 183

3 104 6 0 105



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series1129

(N = 2) provides a possibility to decrease significantly the total number of the
Fourier–Legendre coefficients, which are necessary for the approximation of the
iterated Itô stochastic integrals I

(i1i2)
(00)T,t, I

(i1i2i3)
(000)T,t in comparison with the method

based on Theorem 1.1 (N = 1). However, as we noted before, as a result the
computational costs for the approximation are increased. The approximation
accuracy of iterated Itô stochastic integrals for the combined method and the
method based on Theorem 1.1 was taken (T − t)4.

6.6 Representation of Iterated Itô Stochastic Integrals of

Multiplicity k with Respect to the Scalar Standard

Wiener Process Based on Hermite Polynomials

In Chapters 1, 2, and 5 we analyzed the general theory of the approximation of
iterated Itô and Stratonovich stochastic integrals with respect to components of
the multidimensional Wiener process. However, in some narrow special cases we
can get exact expressions for iterated Itô and Stratonovich stochastic integrals
in the form of polynomials of finite degrees from one standard Gaussian random
variable. This and next sections will be devoted to this question. The results
described in them can be found, for example, in [108] (also see [82], [84]).

Let us consider the set of polynomials Hn(x, y), n = 0, 1, . . . defined by

Hn(x, y) =

(
dn

dαn
eαx−α

2y/2

)∣∣∣∣∣
α=0

.

It is well known that polynomials Hn(x, y) are connected with the Hermite
polynomials

hn(x) = (−1)nex
2 dn

dxn

(
e−x

2
)

by the formula

Hn(x, y) =
(y
2

)n/2
hn

(
x√
2y

)
= yn/2Hn

(
x
√
y

)
,

where Hn(x) is the Hermite polynomial (1.267).

Using the recurrent formulas

dhn
dz

(z) = 2nhn−1(z), n = 1, 2, . . . ,
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hn(z) = 2zhn−1(z)− 2(n− 1)hn−2(z), n = 2, 3, . . . ,

it is easy to get the following recurrent relations for polynomials Hn(x, y)

∂Hn

∂x
(x, y) = nHn−1(x, y), n = 1, 2, . . . , (6.66)

∂Hn

∂y
(x, y) =

n

2y
Hn(x, y)−

nx

2y
Hn−1(x, y), n = 1, 2, . . . , (6.67)

∂Hn

∂y
(x, y) = −n(n− 1)

2
Hn−2(x, y), n = 2, 3, . . . (6.68)

From (6.66) – (6.68) it follows that

∂Hn

∂y
(x, y) +

1

2

∂2Hn

∂x2
(x, y) = 0, n = 2, 3, . . . (6.69)

Using the Itô formula, we have

Hn(ft, t)−Hn(0, 0) =

t∫
0

∂Hn

∂x
(fs, s)dfs +

t∫
0

(
∂Hn

∂y
(fs, s) +

1

2

∂2Hn

∂x2
(fs, s)

)
ds

(6.70)
w. p. 1, where t ∈ [0, T ] and ft is a scalar standard Wiener process.

Note that Hn(0, 0) = 0, n = 2, 3, . . . Then from (6.69) and (6.70) we get

Hn(ft, t) =

t∫
0

nHn−1(fs, s)dfs, w. p. 1 (n = 2, 3, . . .). (6.71)

Furthermore, by induction it is easy to get the following relation (see (6.71))

t∫
0

. . .

t2∫
0

dft1 . . . dftn =
Hn(ft, t)

n!
w. p. 1 (n = 1, 2, . . .). (6.72)

Let us consider one generalization of the formula (6.72) [108]

J
(n)
t

def
=

t∫
0

ψ(tn) . . .

t2∫
0

ψ(t1)dft1 . . . dftn =
Hn(xt, y(t))

n!
w. p. 1, (6.73)
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where t ∈ [0, T ], n = 1, 2, . . . , and

xt
def
=

t∫
0

ψ(s)dfs, y(t)
def
=

t∫
0

ψ2(s)ds,

where ψ(s) ∈ L2([0, T ]).

To prove the equality (6.73), we apply the Itô formula. Using the Itô formula
and (6.66), (6.69), we obtain w. p. 1 (Hn(0, 0) = 0, n = 2, 3, . . .)

Hn(xt, y(t))−Hn(0, 0) =

t∫
0

ψ(s)
∂Hn

∂x
(xs, y(s))dfs+

+

t∫
0

(
∂Hn

∂s
(xs, y(s)) +

1

2
ψ2(s)

∂2Hn

∂x2
(xs, y(s))

)
ds =

=

t∫
0

ψ(s)
∂Hn

∂x
(xs, y(s))dfs+

+

t∫
0

(
∂Hn

∂y(s)
(xs, y(s))y

′(s) +
1

2
ψ2(s)

∂2Hn

∂x2
(xs, y(s))

)
ds =

=

t∫
0

ψ(s)
∂Hn

∂x
(xs, y(s))dfs+

+

t∫
0

ψ2(s)

(
∂Hn

∂y(s)
(xs, y(s)) +

1

2

∂2Hn

∂x2
(xs, y(s))

)
ds =

=

t∫
0

ψ(s)
∂Hn

∂x
(xs, y(s))dfs =

t∫
0

ψ(s)nHn−1(xs, y(s))dfs =

=

t∫
0

ψ(s)

s∫
0

ψ(τ)n(n− 1)Hn−2(xτ , y(τ))dfτdfs = . . .

. . . = n!

t∫
0

ψ(tn) . . .

t2∫
0

ψ(t1)dft1 . . . dftn. (6.74)
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From (6.74) we get (6.73).

It is easy to check that first eight formulas from the set (6.73) have the
following form

J
(1)
t =

1

1!
xt,

J
(2)
t =

1

2!

(
(xt)

2 − y(t)
)
,

J
(3)
t =

1

3!

(
(xt)

3 − 3xty(t)
)
,

J
(4)
t =

1

4!

(
(xt)

4 − 6(xt)
2y(t) + 3y2(t)

)
,

J
(5)
t =

1

5!

(
(xt)

5 − 10(xt)
3y(t) + 15xty

2(t)
)
,

J
(6)
t =

1

6!

(
(xt)

6 − 15(xt)
4y(t) + 45(xt)

2y2(t)− 15y3(t)
)
,

J
(7)
t =

1

7!

(
(xt)

7 − 21(xt)
5y(t) + 105(xt)

3y2(t)− 105xty
3(t)
)
,

J
(8)
t =

1

8!

(
(xt)

8 − 28(xt)
6y(t) + 210(xt)

4y2(t)− 420(xt)
2y3(t) + 105y4(t)

)
w. p. 1. As follows from the results of Sect. 1.1.6, for the case ψ1(τ), . . . , ψk(τ)
≡ ψ(τ) and i1 = . . . = ik = 1, . . . ,m the formula (1.54) transforms into (6.73).

6.7 Representation of Iterated Stratonovich Stochastic

Integrals of Multiplicity k with Respect to the Scalar

Standard Wiener Process

Let us prove the following relation for iterated Stratonovich stochastic integrals
(see, for example, [84])

∗∫
0

t

. . .

∗∫
0

t2

dft1 . . . dftn =

(
ft
)n
n!

w. p. 1, (6.75)

where t ∈ [0, T ].

At first, we will consider the case n = 2. Using Theorem 2.12, we obtain

∗∫
0

t ∗∫
0

t2

dft1dft2 =

t∫
0

t2∫
0

dft1dft2 +
1

2

t∫
0

dt1 w. p. 1. (6.76)
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From the relation (6.72) for n = 2 it follows that

t∫
0

t2∫
0

dft1dft2 =

(
ft
)2

2!
− 1

2

t∫
0

dt1 w. p. 1. (6.77)

Substituting (6.77) into (6.76), we have

∗∫
0

t ∗∫
0

t2

dft1dft2 =

(
ft
)2

2!
w. p. 1.

So, the formula (6.75) is correct for n = 2. Using the induction assumption
and (2.4), we obtain

∗∫
0

t

. . .

∗∫
0

t2

dft1 . . . dftn+1
=

∗∫
0

t

(fτ)
n

n!
dfτ =

t∫
0

(fτ)
n

n!
dfτ +

1

2

t∫
0

(fτ)
n−1

(n− 1)!
dτ (6.78)

w. p. 1. From the other hand, using the Itô formula, we get(
ft
)n+1

(n+ 1)!
=

t∫
0

(fτ)
n−1

2(n− 1)!
dτ +

t∫
0

(fτ)
n

n!
dfτ w. p. 1. (6.79)

From (6.78) and (6.79) we obtain (6.75). It is easy to see that the formula
(6.75) admits the following generalization

∗∫
0

t

ψ(tn) . . .

∗∫
0

t2

ψ(t1)dft1 . . . dftn =
1

n!

 t∫
0

ψ(τ)dfτ

n

w. p. 1, (6.80)

where t ∈ [0, T ] and ψ(τ) is a continuous nonrandom function at the interval
[0, T ].

To prove the equality (6.80), first consider the case n = 2. Using Theorem
2.12, we get

∗∫
0

t

ψ(t2)

∗∫
0

t2

ψ(t1)dft1dft2 =

t∫
0

ψ(t2)

t2∫
0

ψ(t1)dft1dft2 +
1

2

t∫
0

ψ2(s)ds w. p. 1.

(6.81)
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From the relation (6.73) for n = 2 it follows that

t∫
0

ψ(t2)

t2∫
0

ψ(t1)dft1dft2 =
1

2!

 t∫
0

ψ(s)dfs

2

− 1

2

t∫
0

ψ2(s)ds w. p. 1. (6.82)

Substituting (6.82) into (6.81), we obtain

∗∫
0

t

ψ(t2)

∗∫
0

t2

ψ(t1)dft1dft2 =
1

2!

 t∫
0

ψ(s)dfs

2

w. p. 1.

Thus the formula (6.80) is proved for n = 2. Applying the induction as-
sumption and (2.4), we have

∗∫
0

t

ψ(tn+1) . . .

∗∫
0

t2

ψ(t1)dft1 . . . dftn+1
=

∗∫
0

t

ψ(τ)
1

n!

 τ∫
0

ψ(s)dfs

n

dfτ =

=

t∫
0

ψ(τ)
1

n!

 τ∫
0

ψ(s)dfs

n

dfτ +
1

2

t∫
0

ψ2(τ)
1

(n− 1)!

 τ∫
0

ψ(s)dfs

n−1

dτ

(6.83)
w. p. 1. Applying the Itô formula, we obtain

1

(n+ 1)!

 t∫
0

ψ(s)dfs

n+1

=

t∫
0

ψ2(τ)
1

2(n− 1)!

 τ∫
0

ψ(s)dfs

n−1

dτ+

+

t∫
0

ψ(τ)
1

n!

 τ∫
0

ψ(s)dfs

n

dfτ w. p. 1. (6.84)

From (6.83) and (6.84) we get (6.80).

6.8 Weak Approximation of Iterated Itô Stochastic In-

tegrals of Multiplicity 1 to 4

In the previous chapters of the book and previous sections of this chapter we
analyzed in detail the methods of so-called strong or mean-square approxima-
tion of iterated stochastic integrals. For numerical integration of Itô SDEs
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the so-called weak approximations of iterated Itô stochastic integrals from the
Taylor–Itô expansions (see Chapter 4) are also interesting.

Let (Ω, F, P) be a complete probability space, let {Ft, t ∈ [0, T ]} be a non-
decreasing right-continuous family of σ-algebras of F, and let ft be a standard
m-dimensional Wiener process, which is Ft-measurable for all t ∈ [0, T ]. We

suppose that the components f
(i)
t (i = 1, . . . ,m) of this process are indepen-

dent.

Let us consider an Itô SDE in the integral form

xt = x0 +

t∫
0

a(xτ , τ)dτ +

t∫
0

B(xτ , τ)dfτ , x0 = x(0, ω), (6.85)

where xt is some n-dimensional stochastic process satisfying to the Itô SDE
(6.85), the nonrandom functions a : Rn × [0, T ] → Rn, B : Rn × [0, T ] →
Rn×m guarantee the existence and uniqueness up to stochastic equivalence of
a solution of (6.85) [100], x0 is an n-dimensional random variable, which is
F0-measurable and M

{
|x0|2

}
<∞, x0 and ft − f0 are independent for t > 0.

Let us consider the iterated Itô stochastic integrals from the classical
Taylor–Itô expansion (see Chapter 4)

J
(i1...ik)
(λ1...λk)s,t

=

s∫
t

. . .

τ2∫
t

dw
(i1)
t1 . . . dw

(ik)
tk (k ≥ 1),

wherew
(i)
τ = f

(i)
τ for i = 1, . . . ,m andw

(0)
τ = τ , il = 0 if λl = 0 and il = 1, . . . ,m

if λl = 1 (l = 1, . . . , k). Moreover, let

Mk =

{
(λ1, . . . , λk) : λl = 0 or 1, l = 1, . . . , k

}
.

Weak approximations of iterated Itô stochastic stochastic integrals are
formed or selected from the specific moment conditions [82], [84], [85], [92],
[93] (see below) and they are significantly simpler than their mean-square ana-
logues. However, weak approximations are focused on the numerical solution of
other problems [82], [84], [85], [92], [93] connected with Itô SDEs in comparison
with mean-square approximations.

We will say that the set of weak approximations

Ĵ
(i1...ik)
(λ1...λk)s,t
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of the iterated Itô stochastic integrals

J
(i1...,ik)
(λ1...λk)s,t

from the Taylor–Itô expansion (4.22) has the order r, if [82], [84] for t ∈ [t0, T ]
and r ∈ N there exists a constant K ∈ (0,∞) such that the condition∣∣∣∣∣M

{
l∏

g=1

J
(i(g)1 ... i

(g)
kg )

(λ(g)1 ... λ
(g)
kg )t,t0

−
l∏

g=1

Ĵ
(i(g)1 ... i

(g)
kg )

(λ(g)1 ... λ
(g)
kg )t,t0

∣∣∣∣Ft0
}∣∣∣∣∣ ≤ K(t−t0)r+1 w. p. 1 (6.86)

is satisfied for all
(
λ
(g)
1 . . . λ

(g)
kg

)
∈ Mkg , i

(g)
1 , . . . , i

(g)
kg

= 0, 1, . . . ,m, kg ≤ r, g =

1, . . . , l, l = 1, 2, . . . , 2r + 1.

If we talk about the unified Taylor–Itô expansion (4.28), then we will say
that the set of weak approximations

Î
(i1...ik)
l1...lks,t

of the iterated Itô stochastic integrals

I
(i1...ik)
l1...lks,t

=

s∫
t

(t− tk)
lk . . .

t2∫
t

(t− t1)
l1df

(i1)
t1 . . . df

(ik)
tk (i1, . . . , ik = 1, . . . ,m)

has the order r, if for t ∈ [t0, T ] and r ∈ N there exists a constant K ∈ (0,∞)
such that the condition∣∣∣∣∣M

{
l∏

g=1

(t− t0)
jg

jg!
I
(i

(g)
1 ... i

(g)
kg

)

l
(g)
1 ... l

(g)
kg t,t0

−
l∏

g=1

(t− t0)
jg

jg!
Î
(i

(g)
1 ... i

(g)
kg

)

l
(g)
1 ... l

(g)
kg t,t0

∣∣∣∣Ft0
}∣∣∣∣∣ ≤

≤ K(t− t0)
r+1 w. p. 1 (6.87)

is satisfied for all
(
kg, jg, l

(g)
1 , . . . , l

(g)
kg

)
∈ Aqg , i

(g)
1 , . . . , i

(g)
kg

= 1, . . . ,m, qg ≤ r,

g = 1, . . . , l, l = 1, 2, . . . , 2r + 1, where

Aq =

{
(k, j, l1, . . . , lk) : k + j +

k∑
p=1

lp = q; k, j, l1, . . . , lk = 0, 1, . . .

}
.

The theory of weak approximations of iterated Itô stochastic integrals is not
so rich as the theory of mean-square approximations. On the one hand, it is
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connected with the sufficiency for practical needs of already found approxima-
tions [82], [84], [92], and on the other hand, it is connected with the complexity
of their formation owing to the necessity to satisfy a lot of moment conditions.

Let us consider the basic results in this area.

In [84] (also see [82]) the authors found the weak approximations with the
orders r = 1, 2 when m,n ≥ 1 as well as with the order r = 3 when m = 1,
n ≥ 1 for iterated Itô stochastic integrals

J
(i1...ik)
(λ1...λk)t,t0

.

Recall that n is a dimension of the Itô process xt, which is a solution of the
Itô SDE (6.85) and m is a dimension of the Wiener process in (6.85).

Further, we will consider the mentioned weak approximations as well as
weak approximations with the order r = 4 when m = 1, n ≥ 1 [171] (2000) for
iterated Itô stochastic integrals

I
(i1...ik)
l1...lkt,t0

.

In order to shorten the record let us write

M

{
l∏

g=1

J
(i(g)1 ... i

(g)
kg )

(λ(g)1 ... λ
(g)
kg )t0+∆,t0

∣∣∣∣Ft0
}

def
= M′

{
l∏

g=1

J
(i(g)1 ... i

(g)
kg )

(λ(g)1 ... λ
(g)
kg )

}
, (6.88)

where ∆ ∈ [0, T − t0],
(
λ
(g)
1 . . . λ

(g)
kg

)
∈ Mkg , kg ≤ r, g = 1, . . . , l.

Further in this section, equalities and inequalities for conditional expecta-
tions are understood w. p. 1. As before, 1A means the indicator of the set
A.

Let us consider the exact values of conditional expectations (6.88) calculated
in [82], [84] and necessary to form weak approximations

Ĵ
(i1...ik)
(λ1...λk)t0+∆,t0

of the orders r = 1, 2 when m,n ≥ 1

M′
{
J
(i1)
(1) J

(i2)
(1)

}
= ∆1{i1=i2}, (6.89)

M′
{
J
(i1)
(1) J

(0i2)
(01)

}
= M′

{
J
(i1)
(1) J

(i20)
(10)

}
=

1

2
∆21{i1=i2}, (6.90)

M′
{
J
(i1i2)
(11) J

(i3i4)
(11)

}
=

1

2
∆21{i1=i3}1{i2=i4}, (6.91)
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M′
{
J
(i1)
(1) J

(i2)
(1) J

(i3i4)
(11)

}
=



∆2 when i1 = . . . = i4

∆2/2
when i3 ̸= i4, i1 = i3, i2 = i4

or i3 ̸= i4, i1 = i4, i2 = i3

0 otherwise

, (6.92)

M′
{
J
(i1)
(1) J

(i2)
(1) J

(i3)
(1) J

(i4)
(1)

}
=



3∆2 when i1 = . . . = i4

∆2 if among i1, . . . , i4 there are

two pairs of identical numbers

0 otherwise

, (6.93)

M′
{
J
(i10)
(10) J

(0i2)
(01)

}
=

1

6
∆31{i1=i2}, (6.94)

M′
{
J
(i10)
(10) J

(i20)
(10)

}
= M′

{
J
(0i1)
(01) J

(0i2)
(01)

}
=

1

3
∆31{i1=i2}, (6.95)

M′
{
J
(0i1)
(01) J

(i2)
(1) J

(i3)
(1) J

(i4)
(1)

}
= M′

{
J
(i10)
(10) J

(i2)
(1) J

(i3)
(1) J

(i4)
(1)

}
=

=



3∆3/2 when i1 = . . . = i4

∆3/2
if among i1, . . . , i4 there are

two pairs of identical numbers

0 otherwise

, (6.96)

M′
{
J
(0i1)
(01) J

(i2)
(1) J

(i3i4)
(11)

}
=

1

6
∆31{i1=i3}1{i2=i4}, (6.97)

M′
{
J
(i10)
(10) J

(i2)
(1) J

(i3i4)
(11)

}
=

1

3
∆31{i1=i3}1{i2=i4}, (6.98)
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M′
{
J
(i1)
(1) . . . J

(i6)
(1)

}
=



15∆3 when i1 = . . . = i6

3∆3 if among i1, . . . , i6 there is a pair

and a quad of identical numbers

∆3 if among i1, . . . , i6 there are three

pairs of identical numbers

0 otherwise

, (6.99)

M′
{
J
(i1i2)
(11) J

(i3i4)
(11) J

(i5i6)
(11)

}
=

=
1

6
∆3

(
1{i2=i4}

(
1{i1=i5}1{i3=i6} + 1{i1=i6}1{i3=i5}

)
+

+1{i2=i6}
(
1{i1=i3}1{i4=i5} + 1{i1=i4}1{i3=i5}

)
+

+1{i4=i6}
(
1{i1=i3}1{i2=i5} + 1{i2=i3}1{i1=i5}

))
, (6.100)

M′
{
J
(i1i2)
(11) J

(i3i4)
(11) J

(i5)
(1) J

(i6)
(1)

}
=

=
1

2
∆31{i1=i3}1{i2=i4}1{i5=i6}+

+
1

6
∆3

(
2 · 1{i1=i3}

(
1{i2=i5}1{i4=i6} + 1{i2=i6}1{i4=i5}

)
+

+1{i2=i3}
(
1{i1=i5}1{i4=i6} + 1{i1=i6}1{i4=i5}

)
+

+1{i1=i4}
(
1{i3=i5}1{i2=i6} + 1{i3=i6}1{i2=i5}

)
+

+2 · 1{i2=i4}
(
1{i1=i5}1{i3=i6} + 1{i3=i5}1{i1=i6}

))
, (6.101)

M′
{
J
(i1i2)
(11) J

(i3)
(1) . . . J

(i6)
(1)

}
=

=
1

2

(
M′
{
J
(i1)
(1) . . . J

(i6)
(1)

}
−∆1{i1=i2}M

′
{
J
(i3)
(1) . . . J

(i6)
(1)

})
. (6.102)
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Let us explain the formula (6.101). From the following equality

J
(i5)
(1) J

(i6)
(1) = J

(i5i6)
(11) + J

(i6i5)
(11) +∆1{i5=i6} w. p. 1

we obtain

M′
{
J
(i1i2)
(11) J

(i3i4)
(11) J

(i5)
(1) J

(i6)
(1)

}
= M′

{
J
(i1i2)
(11) J

(i3i4)
(11) J

(i5i6)
(11)

}
+

+M′
{
J
(i1i2)
(11) J

(i3i4)
(11) J

(i6i5)
(11)

}
+∆1{i5=i6}M

′
{
J
(i1i2)
(11) J

(i3i4)
(11)

}
. (6.103)

Applying (6.91), (6.100) to the right-hand side of (6.103) gives (6.101). It
is necessary to note [82], [84] that

M′

{
l∏

g=1

J
(i(g)1 ... i

(g)
kg )

(λ(g)1 ... λ
(g)
kg )

}
= 0

if the number of units included in all multi-indices
(
λ
(g)
1 . . . λ

(g)
kg

)
is odd (kg ≤ r,

g = 1, . . . , l). In addition [82], [84]∣∣∣∣∣M′

{
l∏

g=1

J
(i(g)1 ... i

(g)
kg )

(λ(g)1 ... λ
(g)
kg )

}∣∣∣∣∣ ≤ K∆γl,

where γl = δl/2+ρl, δl is a number of units and ρl is a number of zeros included

in all multi-indices
(
λ
(g)
1 . . . λ

(g)
kg

)
, kg ≤ r, g = 1, . . . , l, K ∈ (0,∞) is a constant.

In the case n,m ≥ 1 and r = 1 we can put [82], [84]

Ĵ
(i)
(1) = ∆f̃ (i) (i = 1, . . . ,m),

where ∆f̃ (i), i = 1, . . . ,m are independent discrete random variables for which

P
{
∆f̃ (i) = ±

√
∆
}
=

1

2
.

It is not difficult to see that the approximation

Ĵ
(i)
(1) =

√
∆ζ

(i)
0 (i = 1, . . . ,m)

also satisfies the condition (6.86) when r = 1. Here ζ
(i)
0 are independent standard

Gaussian random variables.
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In the case n,m ≥ 1 and r = 2 as the approximations Ĵ
(i1)
(1) , Ĵ

(i1i2)
(11) , Ĵ

(i10)
(10) ,

Ĵ
(0i1)
(01) are taken the following ones [84]

Ĵ
(i1)
(1) = ∆f̃ (i1), Ĵ

(i10)
(10) = Ĵ

(0i1)
(01) =

1

2
∆ ·∆f̃ (i1), (6.104)

Ĵ
(i1i2)
(11) =

1

2

(
∆f̃ (i1)∆f̃ (i2) + V (i1i2)

)
, (6.105)

where ∆f̃ (i) are independent Gaussian random variables with zero expectation
and variance ∆ or independent discrete random variables for which the following
conditions are fulfilled

P
{
∆f̃ (i) = ±

√
3∆
}
=

1

6
,

P
{
∆f̃ (i) = 0

}
=

2

3
,

V (i1i2) are independent discrete random variables satisfying the conditions

P
{
V (i1i2) = ±∆

}
=

1

2
when i2 < i1,

V (i1i1) = −∆, V (i1i2) = −V (i2i1) when i1 < i2,

where i1, i2 = 1, . . . ,m.

Let us consider the case r = 3 and m = 1, n ≥ 1. In this situation in
addition to the formulas (6.89)–(6.103) we need a number of formulas for the
conditional expectations (6.88) when m = 1.

We have [82], [84]

M′{J(1)J(111)} = M′{J(01)J(111)} = M′{J(10)J(111)} = 0,

M′{J(011)J(11)} = M′{J(101)J(11)} = M′{J(110)J(11)} =
1

6
∆3,

M′{J(001)J(1)} = M′{J(010)J(1)} = M′{J(100)J(1)} =
1

6
∆3,

M′{J(100)J(10)} = M′{J(001)J(01)} =
1

8
∆4, M′{J(111)J(11)} = 0,

M′{J(010)J(10)} = M′{J(010)J(01)} =
1

6
∆4, M′

{(
J(111)

)2}
=

1

6
∆3,

M′{J(100)J(01)} = M′{J(001)J(10)} =
1

24
∆4,
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M′{J(110)J(10)} = M′{J(110)J(01)} = M′{J(101)J(10)} = 0,

M′{J(101)J(01)} = M′{J(011)J(10)} = M′{J(011)J(01)} = 0,

M′
{
J(011)

(
J(1)
)2}

= M′
{
J(101)

(
J(1)
)2}

= M′
{
J(110)

(
J(1)
)2}

=
1

6
∆3,

M′
{
J(111)

(
J(1)
)3}

= ∆3, M′ {J(111)J(11)J(1)} =
1

2
∆3,

where

J(λ1...λk)
def
=

t0+∆∫
t0

. . .

t2∫
t0

df
(λ1)
t1 . . . df

(λk)
tk ,

f
(0)
t

def
= t, f

(1)
t

def
= ft is standard scalar Wiener process, λl = 0 or λl = 1,

l = 1, . . . , k.

In [82], [84] using the given moment relations the authors proposed the
following weak approximations of iterated Itô stochastic integrals for r = 3
when m = 1, n ≥ 1

Ĵ(1) = ∆f̃ , (6.106)

Ĵ(10) = ∆f̂ , Ĵ(01) = ∆ ·∆f̃ −∆f̂ , (6.107)

Ĵ(11) =
1

2

((
∆f̃
)2

−∆

)
, Ĵ(001) = Ĵ(010) = Ĵ(100) =

1

6
∆2 ·∆f̃ ,

Ĵ(110) = Ĵ(101) = Ĵ(011) =
1

6
∆

((
∆f̃
)2

−∆

)
,

Ĵ(111) =
1

6
∆f̃

((
∆f̃
)2

− 3∆

)
,

where

∆f̃ ∼ N(0,∆), ∆f̂ ∼ N

(
0,

1

3
∆3

)
, M

{
∆f̃∆f̂

}
=

1

2
∆2.

Here N(0, σ2) is a Gaussian distribution with zero expectation and variance σ2.

Finally, we will form the weak approximations of iterated Itô stochastic
integrals for r = 4 when m = 1, n ≥ 1 [1]-[17].

The truncated Taylor–Itô expansion (4.22) when r = 4 and m = 1 includes
26 various iterated Itô stochastic integrals. The formation of weak approxima-
tions for these stochastic integrals satisfying the condition (6.87) when r = 4
is extremely difficult due to the necessity to consider a lot of moment con-
ditions. However, this problem can be simplified if we consider the truncated
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unified Taylor–Itô expansion (4.28) when r = 4 and m = 1, since this expansion
includes only 15 various iterated Itô stochastic integrals

I0, I1, I00, I000, I2, I10, I01, I3, I11, I20, I02, I100, I010, I001, I0000,

where

Il1...lk
def
=

t0+∆∫
t0

(t0 − tk)
lk . . .

t2∫
t0

(t0 − t1)
l1dft1 . . . dftk (k ≥ 1)

and ft is standard scalar Wiener process.

It is not difficult to notice that the condition (6.87) will be satisfied for
r = 4 and i1 = . . . = i4 if the following more strong condition is fulfilled∣∣∣∣∣M

{
l∏

g=1

I
l
(g)
1 ... l

(g)
kg

−
l∏

g=1

Î
l
(g)
1 ... l

(g)
kg

∣∣∣∣Ft0
}∣∣∣∣∣ ≤ K(t− t0)

5 w. p. 1 (6.108)

for all l
(g)
1 . . . l

(g)
kg

∈ A, kg ≤ 4, g = 1, . . . , l, l = 1, 2, . . . , 9, where K ∈ (0,∞)
and

A =

{
0, 1, 00, 000, 2, 10, 01, 3, 11, 20, 02, 100, 010, 001, 0000

}
is the set of multi-indices.

Let (see Sect. 5.1 and 6.6) [14]-[17], [171]

Î0 =
√
∆ζ0, Î00 =

1

2
∆

((
ζ0
)2 − 1

)
, (6.109)

Î1 = −∆3/2

2

(
ζ0 +

1√
3
ζ1

)
, Î000 =

∆3/2

6

((
ζ0
)3 − 3ζ0

)
, (6.110)

Î0000 =
∆2

24

((
ζ0
)4 − 6

(
ζ0
)2

+ 3

)
. (6.111)

Here and further

ζ0
def
=

1√
∆

t0+∆∫
t0

dfs, ζ1
def
=

2
√
3

∆3/2

t0+∆∫
t0

(
s− t0 −

∆

2

)
dfs,

where fs is scalar standard Wiener process.

It is not difficult to see that ζ0, ζ1 are independent standard Gaussian ran-
dom variables. In addition, the approximations (6.109)–(6.111) equal w. p. 1
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to the iterated Itô stochastic integrals corresponding to these approximations.
This implies that all products

l∏
g=1

Î
l
(g)
1 ... l

(g)
kg

,

which contain only the approximations (6.109)–(6.111) will convert the left-
hand side of (6.108) to zero w. p. 1, i.e. the condition (6.108) will be fulfilled
automatically.

For forming the approximations

Î100, Î010, Î001, Î10, Î01, Î11, Î20, Î02, Î2, Î3

it is necessary to calculate several conditional expectations

M

{
l∏

g=1

I
l
(g)
1 ... l

(g)
kg

∣∣∣∣Ft0
}
, (6.112)

where l
(g)
1 . . . l

(g)
kg

∈ A.

We will denote (6.112) (as before) as follows

M′

{
l∏

g=1

I
l
(g)
1 ... l

(g)
kg

}
.

We have

M′{I3} = M′{I3(I0)2} = M′{I3I00} = 0, M′{I3I0} = −∆4

4
,

M′{I2(I0)2} = M′{I2I00} = M′{I2I000} = M′{I2I0000} = 0,

M′{I2(I00)2} = M′{I2(I0)4} = M′{I2I000I0} = 0,

M′{I2I00(I0)2} = M′{I2I10} = M′{I2I01} = M′{I2I1I0} = M′{I2} = 0,

M′{I2I0} =
∆3

3
, M′{I2(I0)3} = ∆4, M′{I2I00I0} =

∆4

3
,

M′{I2I1} = −∆4

4
, M′{Iµ} = M′{IµI0} = M′{IµI000} = M′{Iµ(I0)3} = 0,

M′{IµI00I0} = M′{IµI1} = 0, M′{I20(I0)2} =
∆4

6
, M′{I20I00} =

∆4

12
,
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M′{I11(I0)2} =
∆4

4
, M′{I11I00} =

∆4

8
, M′{I02(I0)2} =

∆4

2
,

M′{I02I00} =
∆4

4
, M′{Iλ} = M′{IλI0} = M′{Iλ(I0)2} = M′{IλI00} = 0,

M′{IλI1} = M′{IλI0000} = M′{Iλ(I00)2} = M′{Iλ(I0)4} = 0,

M′{IλI000I0} = M′{IλI00(I0)2} = M′{IλI10} = 0,

M′{IλI01} = M′{IλI1I0} = 0,

M′{I100I000} = −∆4

24
, M′{I100(I0)3} = −∆4

4
, M′{I100I00I0} = −∆4

8
,

M′{I010I000} = −∆4

12
, M′{I010(I0)3} = −∆4

2
, M′{I010I00I0} = −∆4

4
,

M′{I001I000} = −∆4

8
, M′{I001(I0)3} = −3∆4

4
, M′{I001I00I0} = −3∆4

8
,

M′{IρI0} = M′{IρI000} = M′{Iρ(I0)3} = M′{IρI00I0} = 0,

M′{IρI1} = M′{IρI0000} = M′{Iρ(I0)5} = M′{Iρ(I00)2I0} = 0,

M′{IρI00(I0)3} = M′{IρI000(I0)2} = M′{IρI0000I0} = 0,

M′{IρI000I00} = M′{IρI100} = M′{IρI010} = 0,

M′{IρI001} = M′{IρI2} = M′{(Iρ)2I0} = M′{IρI00I1} = 0,

M′{I10I01I0} = M′{Iρ} = M′{IρI1(I0)2} = 0,

M′{I10(I0)2} = −∆3

3
, M′{I10I00} = −∆3

6
, M′{I10(I00)2} = −∆4

3
,

M′{I10(I0)4} = −2∆4, M′{I10I000I0} = −∆4

6
,

M′{I10I00(I0)2} = −5∆4

6
,

M′{(I10)2} =
∆4

12
, M′{I10I01} =

∆4

8
, M′{I10I1I0} =

5∆4

24
,

M′{I01(I0)2} = −2∆3

3
, M′{I01I00} = −∆3

3
, M′{I01(I00)2} = −2∆4

3
,

M′{I01(I0)4} = −4∆4, M′{I01I000I0} = −∆4

3
,
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M′{I01I00(I0)2} = −5∆4

3
, M′{(I01)2} =

∆4

4
, M′{I01I1I0} =

3∆4

8
,

where

µ = 02, 11, 20, λ = 100, 010, 001, ρ = 10, 01

(these recordings should be understood as sequences of digits).

The above relations are obtained using the standard properties of the Itô
stochastic integral and the following equalities resulting from the Itô formula

(I0)
4 = 24I0000 + 12∆I00 + 3∆2, (I00)

2 = 6I0000 + 2∆I00 +
∆2

2
,

I00(I0)
2 = 12I0000 + 5∆I00 +∆2, I1I0 = I10 + I01 −

∆2

2
,

I00(I0)
3 = 60I00000 + 27∆I000 + 6∆2I0,

(I0)
5 = 120I00000 + 60∆I000 + 15∆2I0,

(I00)
2I0 = 30I00000 + 12∆I000 +

10∆2

4
I0,

I000(I0)
2 = 20I00000 + 7∆I000 +∆2I0, I0000I0 = 5I00000 +∆I000,

I000I00 = 10I00000 + 3∆I000 +
∆2

2
I0, I00I1 = I001 + I010 + I100 −

∆2

2
I0,

(I0)
3 = 6I000 + 3∆I0, I00I0 = 3I000 +∆I0,

I10I0 = I010 + I100 +∆I1 + I2, I000I0 = 4I0000 +∆I00, (I0)
2 = 2I00 +∆,

I01I0 = 2I001 + I010 −
1

2

(
I2 +∆2I0

)
w. p. 1.

Using the given before moment relations, we can form the weak approxi-
mations Î100, Î010, Î001, Î10, Î01, Î11, Î20, Î02, Î2, Î3 [14]-[17], [171]

Î100 = −∆5/2

24

((
ζ0
)3 − 3ζ0

)
, Î010 = −∆5/2

12

((
ζ0
)3 − 3ζ0

)
, (6.113)

Î001 = −∆5/2

8

((
ζ0
)3 − 3ζ0

)
, Î11 =

∆3

8

((
ζ0
)2 − 1

)
, (6.114)

Î20 =
∆3

12

((
ζ0
)2 − 1

)
, Î02 =

∆3

4

((
ζ0
)2 − 1

)
, (6.115)
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Î3 = −∆7/2

4
ζ0, Î2 =

∆5/2

3

(
ζ0 +

√
3

2
ζ1

)
, (6.116)

Î10 = ∆2

(
−1

6

((
ζ0
)2 − 1

)
− 1

4
√
3
ζ0ζ1 ±

1

12
√
2

((
ζ1
)2 − 1

))
, (6.117)

Î01 = ∆2

(
−1

3

((
ζ0
)2 − 1

)
− 1

4
√
3
ζ0ζ1 ∓

1

12
√
2

((
ζ1
)2 − 1

))
, (6.118)

where ζ0, ζ1 are the same random variables as in (6.109)–(6.111).

It is easy to check that the approximations (6.109)–(6.111), (6.113)–(6.118)
satisfy the condition (6.108) for r = 4 and m = 1, n ≥ 1, i.e. they are weak
approximations of the order r = 4 for the case m = 1, n ≥ 1.



Chapter 7

Approximation of Iterated Stochastic
Integrals with Respect to the
Q-Wiener Process. Application to the
High-Order Strong Numerical Methods
for Non-Commutative Semilinear
SPDEs with Nonliear Multiplicative
Trace Class Noise

7.1 Introduction

There exists a lot of publications on the subject of numerical integration of
stochastic partial differential equations (SPDEs) (see, for example [172]-[196]).

One of the perspective approaches to the construction of high-order strong
numerical methods (with respect to the temporal discretization) for semilinear
SPDEs is based on the Taylor formula in Banach spaces and exponential for-
mula for the mild solution of SPDEs [178], [180]-[183]. A significant step in this
direction was made in [182] (2015), [183] (2016), where the exponential Milstein
and Wagner–Platen methods for semilinear SPDEs with nonlinear multiplica-
tive trace class noise were constructed. Under the appropriate conditions [182],
[183] these methods have strong orders of convergence 1.0−ε and 1.5−ε corre-
spondingly with respect to the temporal variable (where ε is an arbitrary small
posilive real number). It should be noted that in [187] (2007) the convergence
with strong order 1.0 of the exponential Milstein scheme for semilinear SPDEs
was proved under additional smoothness assumptions.

1148
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An important feature of the mentioned numerical methods is the presence
in them the so-called iterated stochastic integrals with respect to the infinite-
dimensional Q-Wiener process [189]. Approximation of these stochastic in-
tegrals is a complex problem. The problem of numerical modeling of these
stochastic integrals with multiplicities 1 to 3 was solved in [182], [183] for the
case when special commutativity conditions for semilinear SPDE with nonlinear
multiplicative trace class noise are fulfilled.

If the mentioned commutativity conditions are not fulfilled, which often
corresponds to SPDEs in numerous applications, the numerical modeling of it-
erated stochastic integrals with respect to the infinite-dimensional Q-Wiener
process becomes much more difficult. Note that the exponential Milstein
scheme [182] contains the iterated stochastic integrals of multiplicities 1 and
2 with respect to the infinite-dimensional Q-Wiener process and the exponen-
tial Wagner–Platen scheme [183] contains the mentioned stochastic integrals of
multiplicities 1 to 3 (see Sect. 7.2).

In [195] (2017), [196] (2018) two methods of the mean-square approximation
of simplest iterated (double) stochastic integrals from the exponential Milstein
scheme for semilinear SPDEs with nonlinear multiplicative trace class noise
and without the commutativity conditions are considered and theorems on the
convergence of these methods are given. At that, the basic idea (first of the
mentioned methods [195], [196]) about the Karhunen–Loève expansion of the
Brownian bridge process was taken from the monograph [82] (Milstein approach,
see Sect. 6.2). The second of the mentioned methods [195], [196] is based on
the results of Wiktorsson M. [88], [89] (2001).

Note that the mean-square error of approximation of iterated stochastic
integrals with respect to the infinite-dimensional Q-Wiener process consists of
two components [195], [196]. The first component is related with the finite-
dimentional approximation of the infinite-dimentional Q-Wiener process while
the second one is connected with the approximation of iterated Itô stochastic
integrals with respect to the scalar standard Brownian motions.

It is important to note that the approximation of iterated stochastic inte-
grals with respect to the infinite-dimensional Q-Wiener process can be reduced
to the approximation of iterated Itô stochastic integrals with respect to the
finite-dimensional Wiener process. In a lot of author’s publications [1]-[63]
(see Chapters 1, 2, and 5) an effective method of the mean-square approxima-
tion of iterated Itô (and Stratonovich) stochastic integrals with respect to the
finite-dimensional Wiener process was proposed and developed. This method is
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based on the generalized multiple Fourier series, in particular, on the multiple
Fourier–Legendre series (see Sect. 5.1).

The purpose of this chapter is an adaptation of the method [1]-[63] for
the mean-square approximation of iterated stochastic integrals with respect to
the infinite-dimensional Q-Wiener process. In the author’s publications [24],
[48] (see Sect. 7.3) the problem of the mean-square approximation of iterated
stochastic integrals with respect to the infinite-dimensional Q-Wiener process
in the sense of the second component of approximation error (see above) has
been solved for arbitraty multiplicity k (k ∈ N) of stochastic integrals and
without the assumptions of commutativity for SPDE. More precisely, in [24],
[48] the method of generalized multiple Fourier series (Theorems 1.1, 1.2, 1.16)
for the approximation of iterated Itô stochastic integrals with respect to the
scalar standard Brownian motions was adapted for iterated stochastic integrals
with respect to the infinite-dimensional Q-Wiener process (in the sense of the
second component of approximation error).

In Sect. 7.4 (also see [25], [49]), we extend the method [195], [196] and esti-
mate the first component of approximation error for iterated stochastic integrals
of multiplicities 1 to 3 with respect to the infinite-dimensional Q-Wiener pro-
cess. In addition, we combine the obtained results with the results from [24],
[48] (see Sect. 7.3). Thus, the results of this chapter can be applied to the
implementation of exponential Milstein and Wagner–Platen schemes for semi-
linear SPDEs with nonlinear multiplicative trace class noise and without the
commutativity conditions.

Let U, H be separable R-Hilbert spaces and LHS(U,H) be a space of
Hilbert–Schmidt operators mapping from U to H. Let (Ω,F,P) be a probabil-
ity space with a normal filtration {Ft, t ∈ [0, T̄ ]} [189], let Wt be an U -valued
Q-Wiener process with respect to {Ft, t ∈ [0, T̄ ]}, which has a covariance trace
class operator Q ∈ L(U). Here and further L(U) denotes all bounded linear
operators on U . Let U0 be an R-Hilbert space defined as U0 = Q1/2(U). At
that, a scalar product in U0 is given by the relation [183]

⟨u,w⟩U0
=
〈
Q−1/2u,Q−1/2w

〉
U

for all u,w ∈ U0.

Consider the semilinear parabolic SPDE with nonlinear multiplicative trace
class noise

dXt = (AXt + F (Xt)) dt+B(Xt)dWt, X0 = ξ, t ∈ [0, T̄ ], (7.1)
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where nonlinear operators F, B (F : H → H, B : H → LHS(U0, H)), the linear
operator A : D(A) ⊂ H → H as well as the initial value ξ are assumed to
satisfy the conditions of existence and uniqueness of the SPDE mild solution
(see [183], Assumptions A1–A4).

It is well known [192] that Assumptions A1–A4 [183] guarantee the existence
and uniqueness (up to modifications) of the mild solution Xt : [0, T̄ ]× Ω → H
of the SPDE (7.1)

Xt = exp(At)ξ+

t∫
0

exp(A(t−τ))F (Xτ)dτ +

t∫
0

exp(A(t−τ))B(Xτ)dWτ (7.2)

w. p. 1 for all t ∈ [0, T̄ ], where exp(At), t ≥ 0 is the semigroup generated by
the operator A.

As we mentioned earlier, numerical methods of high orders of accuracy (with
respect to the temporal discretization) for approximating the mild solution of
the SPDE (7.1), which are based on the Taylor formula for operators and an
exponential formula for the mild solution of SPDEs, contain iterated stochastic
integrals with respect to the Q-Wiener process [178], [180]-[183], [187].

Note that the exponential Milstein type numerical scheme [182] and the
exponential Wagner-Platen type numerical scheme [183] contain, for example,
the following iterated stochastic integrals (see Sect. 7.2)

T∫
t

B(Z)dWt1,

T∫
t

B′(Z)

 t2∫
t

B(Z)dWt1

 dWt2, (7.3)

T∫
t

B′(Z)

 t2∫
t

F (Z)dt1

 dWt2,

T∫
t

F ′(Z)

 t2∫
t

B(Z)dWt1

 dt2, (7.4)

T∫
t

B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWt1

 dWt2

 dWt3, (7.5)

T∫
t

B′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)dWt1

 dWt2, (7.6)

where 0 ≤ t < T ≤ T̄ , Z : Ω → H is an Ft/B(H)-measurable mapping and
F ′, B′, B′′ denote Frêchet derivatives. At that, the exponential Milstein type
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scheme [182] contains integrals (7.3) while the exponential Wagner–Platen type
scheme [183] contains integrals (7.3)–(7.6) (see Sect. 7.2).

It is easy to notice that the numerical schemes for SPDEs with higher orders
of convergence (with respect to the temporal discretization) in contrast with
the numerical schemes from [182], [183] will include iterated stochastic integrals
(with respect to the Q-Wiener process) with multiplicities k > 3 [181] (2011).
So, this chapter is partially devoted to the approximation of iterated stochastic
integrals of the form

I[Φ(k)(Z)]T,t =

T∫
t

Φk(Z)

. . .
 t3∫

t

Φ2(Z)

 t2∫
t

Φ1(Z)dWt1

 dWt2

 . . .

 dWtk,

(7.7)

where 0 ≤ t < T ≤ T̄ , Z : Ω → H is an Ft/B(H)-measurable mapping and
Φk(v)( . . . (Φ2(v)(Φ1(v)) . . . )) is a k-linear Hilbert–Schmidt operator mapping
from U0 × . . .× U0︸ ︷︷ ︸

k times

to H for all v ∈ H.

In Sect. 7.3.1 we consider the approximation of more general iterated
stochastic integrals than (7.7). In Sect. 7.3.2 and 7.3.3 some other types of
iterated stochastic integrals of multiplicities 2–4 with respect to the Q-Wiener
process will be considered.

Note that the stochastic integral (7.6) is not a special case of the stochastic
integral (7.7) for k = 3. Nevertheless, the extended representation for approxi-
mation of the stochastic integral (7.6) is similar to (7.12) (see below) for k = 3.
Moreover, the mentioned representation for approximation of the stochastic
integral (7.6) contains the same iterated Itô stochastic integrals of third multi-
plicity as in (7.12) for k = 3 (see Sect. 7.3.2). These conclusions mean that one
of the main results of this chapter (Theorem 7.1, Sect. 7.3.1) for k = 3 can be
reformulated naturally for the stochastic integral (7.6) (see Sect. 7.3.2).

It should be noted that by developing the approach from the work [183],
which uses the Taylor formula for operators and a formula for the mild solution
of the SPDE (7.1), we obviously obtain a number of other iterated stochastic
integrals. For example, the following stochastic integrals

T∫
t

B′′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)dWt1

 dWt2,
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T∫
t

B′(Z)

 t3∫
t

B′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)dWt1

 dWt2

 dWt3,

T∫
t

B′′(Z)

 t3∫
t

B(Z)dWt1,

t3∫
t

B′(Z)

 t2∫
t

B(Z)dWt1

 dWt2

 dWt3,

T∫
t

F ′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWt1

 dWt2

 dt3,

T∫
t

F ′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)dWt1

 dt2,

T∫
t

B′′(Z)

 t2∫
t

F (Z)dt1,

t2∫
t

B(Z)dWt1

 dWt2

will be considered in Sect. 7.3.3. Here Z : Ω → H is an Ft/B(H)-measurable
mapping and B′, B′′, B′′′, F ′, F ′′ are Frêchet derivatives.

Consider eigenvalues λi and eigenfunctions ei(x) of the covariance operator
Q, where i = (i1, . . . , id) ∈ J, x = (x1, . . . , xd), and J =

{
i : i ∈ Nd and λi > 0

}
.

The series representation of the Q-Wiener process has the form [189]

W(t, x) =
∑
i∈J

ei(x)
√
λiw

(i)
t , t ∈ [0, T̄ ]

or in the shorter notations

Wt =
∑
i∈J

ei
√
λiw

(i)
t , t ∈ [0, T̄ ],

where w
(i)
t , i ∈ J are independent standard Wiener processes.

Note that eigenfunctions ei, i ∈ J form an orthonormal basis of U [189].

Consider the finite-dimensional approximation of Wt [189]

WM
t =

∑
i∈JM

ei
√
λiw

(i)
t , t ∈ [0, T̄ ], (7.8)

where

JM =
{
i : 1 ≤ i1, . . . , id ≤M and λi > 0

}
. (7.9)
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Using (7.8) and the relation [189]

w
(i)
t =

1√
λi
⟨ei,Wt⟩U , i ∈ J, (7.10)

we obtain

WM
t =

∑
i∈JM

ei ⟨ei,Wt⟩U , t ∈ [0, T̄ ], (7.11)

where ⟨·, ·⟩U is a scalar product in U.

Taking into account (7.10) and (7.11), we note that the approximation
I[Φ(k)(Z)]MT,t of the iterated stochastic integral I[Φ(k)(Z)]T,t (see (7.7)) can be
written w. p. 1 in the following form

I[Φ(k)(Z)]MT,t =

=

T∫
t

Φk(Z)

. . .
 t3∫

t

Φ2(Z)

 t2∫
t

Φ1(Z)dW
M
t1

 dWM
t2

 . . .

 dWM
tk

=

=
∑

r1,...,rk∈JM

Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk×

×
T∫
t

. . .

t3∫
t

t2∫
t

d⟨er1,Wt1⟩U d⟨er2,Wt2⟩U . . . d⟨erk,Wtk⟩U =

=
∑

r1,...,rk∈JM

Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk
√
λr1λr2 . . . λrk×

×
T∫
t

. . .

t3∫
t

t2∫
t

dw
(r1)
t1 dw

(r2)
t2 . . . dw

(rk)
tk , (7.12)

where 0 ≤ t < T ≤ T̄ .

Remark 7.1. Obviously, without loss of generality, we can write JM =
{1, 2, . . . ,M}.

As we mentioned before, when special conditions of commutativity for the
SPDE (7.1) be fulfilled, it is proposed to simulate numerically the stochastic
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integrals (7.3)–(7.6) using the simple formulas [182], [183]. In this case, the
numerical simulation of the mentioned stochastic integrals requires the use of
increments of the Q-Wiener process only. However, if these commutativity
conditions are not fulfilled (which often corresponds to SPDEs in numerous
applications), the numerical simulation of the stochastic integrals (7.3)–(7.6)
becomes much more difficult. Recall that in [195], [196] two methods for the
mean-square approximation of simplest iterated (double) stochastic integrals
defined by (7.3) are proposed. In this chapter, we consider a substantially more
general and effective method (based on the results of Chapters 1 and 5) for
the mean-square approximation of iterated stochastic integrals of multiplicity
k (k ∈ N) with respect to the Q-Wiener process. The convergence analysis in
the transition from JM to J , i.e., from the finite-dimensional Wiener process
to the infinite-dimensional one will be carried out in Sect. 7.4 for integrals of
multiplicities 1 to 3 similar to the proof of Theorem 1 [196].

7.2 Exponential Milstein and Wagner–Platen Numerical

Schemes for Non-Commutative Semilinear SPDEs

Let assumptions of Sect. 7.1 are fulfilled. Let ∆ > 0, τp = p∆ (p = 0, 1, . . . , N),
and N∆ = T̄ . Consider the exponential Milstein numerical scheme [182]

Yp+1 = exp (A∆)

Yp +∆F (Yp) +

τp+1∫
τp

B(Yp)dWs+

+

τp+1∫
τp

B′(Yp)

 s∫
τp

B(Yp)dWτ

 dWs

 (7.13)

and the exponential Wagner–Platen numerical scheme [183]

Yp+1 = exp

(
A∆

2

)exp

(
A∆

2

)
Yp +∆F (Yp) +

τp+1∫
τp

B(Yp)dWs+

+

τp+1∫
τp

B′(Yp)

 s∫
τp

B(Yp)dWτ

 dWs+
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+
∆2

2
F ′(Yp)

(
AYp + F (Yp)

)
+

τp+1∫
τp

F ′(Yp)

 s∫
τp

B(Yp)dWτ

 ds+

+
∆2

4

∑
i∈J

λiF
′′(Yp)

(
B(Yp)ei, B(Yp)ei

)
+

+A

 τp+1∫
τp

s∫
τp

B(Yp)dWτds−
∆

2

τp+1∫
τp

B(Yp)dWs

+

+∆

τp+1∫
τp

B′(Yp)

(
AYp + F (Yp)

)
dWs −

τp+1∫
τp

s∫
τp

B′(Yp)

(
AYp + F (Yp)

)
dWτds+

+
1

2

τp+1∫
τp

B′′(Yp)

 s∫
τp

B(Yp)dWτ ,

s∫
τp

B(Yp)dWτ

 dWs+

+

τp+1∫
τp

B′(Yp)

 s∫
τp

B′(Yp)

 τ∫
τp

B(Yp)dWθ

 dWτ

 dWs

 (7.14)

for the SPDE (7.1), where Yp is an approximation of Xτp (mild solution (7.2) at
the time moment τp), p = 0, 1, . . . , N, and B′, B′′, F ′, F ′′ are Frêchet derivatives.

Note that in addition to the temporal discretization, the implementation of
numerical schemes (7.13) and (7.14) also requires a discretization of the infinite-
dimensional Hilbert space H (approximation with respect to the space domain)
and a finite-dimensional approximation of the Q-Wiener process. Let us focus
on the approximation connected with the Q-Wiener process.

Consider the following iterated Itô stochastic integrals

J
(r1)
(1)T,t =

T∫
t

dw
(r1)
t1 , J

(r10)
(10)T,t =

T∫
t

t2∫
t

dw
(r1)
t1 dt2, J

(0r2)
(01)T,t =

T∫
t

t2∫
t

dt1dw
(r2)
t2 ,

(7.15)

J
(r1r2)
(11)T,t =

T∫
t

t2∫
t

dw
(r1)
t1 dw

(r2)
t2 , J

(r1r2r3)
(111)T,t =

T∫
t

t3∫
t

t2∫
t

dw
(r1)
t1 dw

(r2)
t2 dw

(r3)
t3 , (7.16)
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where r1, r2, r3 ∈ JM , 0 ≤ t < T ≤ T̄ , and JM is defined by (7.9).

Let us replace the infinite-dimensional Q-Wiener process in the iterated
stochastic integrals from (7.13), (7.14) by its finite-dimensional approximation
(7.8). Then we have w. p. 1

τp+1∫
τp

B(Yp)dW
M
s =

∑
r1∈JM

B(Yp)er1
√
λr1J

(r1)
(1)τp+1,τp

, (7.17)

A

 τp+1∫
τp

s∫
τp

B(Yp)dW
M
τ ds−

∆

2

τp+1∫
τp

B(Yp)dW
M
s

 =

= A

τp+1∫
τp

B(Yp)
(τp+1

2
− s+

τp
2

)
dWM

s =

=
∑
r1∈JM

AB(Yp)er1
√
λr1

(
∆

2
J
(r1)
(1)τp+1,τp

− J
(0r1)
(01)τp+1,τp

)
, (7.18)

∆

τp+1∫
τp

B′(Yp)

(
AYp + F (Yp)

)
dWM

s −
τp+1∫
τp

s∫
τp

B′(Yp)

(
AYp + F (Yp)

)
dWM

τ ds =

=

τp+1∫
τp

B′(Yp)

s∫
τp

(
AYp + F (Yp)

)
dτdWM

s =

=
∑
r1∈JM

B′(Yp)

(
AYp + F (Yp)

)
er1
√
λr1J

(0r1)
(01)τp+1,τp

, (7.19)

τp+1∫
τp

F ′(Yp)

 s∫
τp

B(Yp)dW
M
τ

 ds =

=
∑
r1∈JM

F ′(Yp)B(Yp)er1
√
λr1

(
∆J

(r1)
(1)τp+1,τp

− J
(0r1)
(01)τp+1,τp

)
, (7.20)
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τp+1∫
τp

B′(Yp)

 s∫
τp

B(Yp)dW
M
τ

 dWM
s =

=
∑

r1,r2∈JM

B′(Yp) (B(Yp)er1) er2
√
λr1λr2J

(r1r2)
(11)τp+1,τp

, (7.21)

τp+1∫
τp

B′(Yp)

 s∫
τp

B′(Yp)

 τ∫
τp

B(Yp)dW
M
θ

 dWM
τ

 dWM
s =

=
∑

r1,r2,r3∈JM

B′(Yp) (B
′(Yp) (B(Yp)er1) er2) er3

√
λr1λr2λr3J

(r1r2r3)
(111)τp+1,τp

, (7.22)

τp+1∫
τp

B′′(Yp)

 s∫
τp

B(Yp)dW
M
τ ,

s∫
τp

B(Yp)dW
M
τ

 dWM
s =

=
∑

r1,r2,r3∈JM

B′′(Yp) (B(Yp)er1, B(Yp)er2) er3
√
λr1λr2λr3×

×
τp+1∫
τp

 s∫
τp

dw(r1)
τ

s∫
τp

dw(r2)
τ

 dw(r3)
s . (7.23)

Note that in (7.18)–(7.20) we used the Itô formula. Moreover, using the Itô
formula we obtain

s∫
τp

dw(r1)
τ

s∫
τp

dw(r2)
τ = J

(r1r2)
(11)s,τp

+ J
(r2r1)
(11)s,τp

+ 1{r1=r2}(s− τp) w. p. 1, (7.24)

where 1A is the indicator of the set A. From (7.24) we have w. p. 1

τp+1∫
τp

 s∫
τp

dw(r1)
τ

s∫
τp

dw(r2)
τ

 dw(r3)
s = J

(r1r2r3)
(111)τp+1,τp

+ J
(r2r1r3)
(111)τp+1,τp

+ 1{r1=r2}J
(0r3)
(01)τp+1,τp

.

(7.25)
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After substituting (7.25) into (7.23), we obtain w. p. 1

τp+1∫
τp

B′′(Yp)

 s∫
τp

B(Yp)dW
M
τ ,

s∫
τp

B(Yp)dW
M
τ

 dWM
s =

=
∑

r1,r2,r3∈JM

B′′(Yp) (B(Yp)er1, B(Yp)er2) er3
√
λr1λr2λr3×

×
(
J
(r1r2r3)
(111)τp+1,τp

+ J
(r2r1r3)
(111)τp+1,τp

+ 1{r1=r2}J
(0r3)
(01)τp+1,τp

)
. (7.26)

Thus, for the implementation of numerical schemes (7.13) and (7.14) we
need to approximate the following collection of iterated Itô stochastic integrals

J
(r1)
(1)T,t, J

(0r1)
(01)T,t, J

(r1r2)
(11)T,t, J

(r1r2r3)
(111)T,t, (7.27)

where r1, r2, r3 ∈ JM , 0 ≤ t < T ≤ T̄ .

The problem of the mean-square approximation of iterated Itô stochastic
integrals (7.27) is considered completely in Chapters 1 and 5.

7.3 Approximation of Iterated Stochastic Integrals of

Multiplicity k (k ∈ N) with Respect to the Finite-

Dimensional Approximation WM
t of the Q-Wiener

Process

In this section, we consider a method for the approximation of iterated stochas-
tic integrals of multiplicity k (k ∈ N) with respect to the finite-dimensional
approximation WM

t of the Q-Wiener process Wt using the mean-square ap-
proximation method of iterated Itô stochastic integrals based on Theorems 1.1,
1.2, 1.16.

7.3.1 Theorem on the Mean-Square Approximation of Iterated Sto-
chastic Integrals of Multiplicity k (k ∈ N) with Respect to
the Finite-Dimensional Approximation WM

t of the Q-Wiener
Process

Consider the iterated stochastic integral with respect to the Q-Wiener process
in the following form
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I[Φ(k)(Z), ψ(k)]T,t =

T∫
t

Φk(Z)

. . .
 t3∫

t

Φ2(Z)×

×

 t2∫
t

Φ1(Z)ψ1(t1)dWt1

ψ2(t2)dWt2

 . . .

ψk(tk)dWtk, (7.28)

where Z : Ω → H is an Ft/B(H)-measurable mapping,Wτ is theQ-Wiener pro-
cess, Φk(v)( . . . (Φ2(v)(Φ1(v))) . . . ) is a k-linear Hilbert–Schmidt operator map-
ping from U0 × . . .× U0︸ ︷︷ ︸

k times

to H for all v ∈ H, and ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]).

Let I[Φ(k)(Z), ψ(k)]MT,t be the approximation of the iterated stochastic inte-
gral (7.28)

I[Φ(k)(Z), ψ(k)]MT,t =

T∫
t

Φk(Z)

. . .
 t3∫

t

Φ2(Z)×

×

 t2∫
t

Φ1(Z)ψ1(t1)dW
M
t1

ψ2(t2)dW
M
t2

 . . .

ψk(tk)dW
M
tk

=

=
∑

r1,r2,...,rk∈JM

Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk

(
k∏
l=1

λrl

)1/2

×

×J [ψ(k)]
(r1r2...rk)
T,t , (7.29)

where 0 ≤ t < T ≤ T̄ and

J [ψ(k)]
(r1r2...rk)
T,t =

T∫
t

ψk(tk) . . .

t3∫
t

ψ2(t2)

t2∫
t

ψ1(t1)dw
(r1)
t1 dw

(r2)
t2 . . . dw

(rk)
tk

is the iterated Itô stochastic integral (1.5).

Let I[Φ(k)(Z), ψ(k)]M,p1,...,pk
T,t be the approximation of the iterated stochastic

integral (7.29)
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I[Φ(k)(Z), ψ(k)]M,p1,...,pk
T,t =

=
∑

r1,r2,...,rk∈JM

Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk

(
k∏
l=1

λrl

)1/2
×

×J [ψ(k)]
(r1r2...rk)p1,...,pk
T,t , (7.30)

where J [ψ(k)]
(r1r2...rk)p1,...,pk
T,t is defined as the expression before passing to the limit

on the right-hand side of (1.321)

J [ψ(k)]
(r1r2...rk)p1,...,pk
T,t =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

(
k∏
l=1

ζ
(rl)
jl

+

[k/2]∑
m=1

(−1)m×

×
∑

({{g1,g2},...,{g2m−1,g2m}},{q1,...,qk−2m})
{g1,g2,...,g2m−1,g2m,q1,...,qk−2m}={1,2,...,k}

m∏
s=1

1{rg2s−1
= rg2s ̸=0}1{jg2s−1

= jg2s }

k−2m∏
l=1

ζ
(rql)

jql

)
.

(7.31)

Let U, H be separable R-Hilbert spaces, U0 = Q1/2(U), and L(U,H) be the
space of linear and bounded operators mapping from U to H. Let

L(U,H)0 =
{
T |U0

: T ∈ L(U,H)
}
,

where T |U0
is the restriction of operator T to the space U0. It is known [189]

that L(U,H)0 is a dense subset of the space of Hilbert–Schmidt operators
LHS(U0, H).

Theorem 7.1 [14]-[17], [24], [48]. Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ])
and {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in the
space L2([t, T ]). Furthermore, let the following conditions be satisfied:

1. Q ∈ L(U) is a nonnegative and symmetric trace class operator (λi and ei
(i ∈ J) are its eigenvalues and eigenfunctions (which form an orthonormal basis
of U) correspondingly) and Wτ , τ ∈ [0, T̄ ] is an U-valued Q-Wiener process.

2. Z : Ω → H is an Ft/B(H)-measurable mapping.

3. Φ1 ∈ L(U,H)0, Φ2 ∈ L(H,L(U,H)0), and Φk(v)( . . . (Φ2(v)(Φ1(v))) . . . )
is a k-linear Hilbert–Schmidt operator mapping from U0 × . . .× U0︸ ︷︷ ︸

k times

to H for all

v ∈ H such that
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∥∥∥∥∥
2

H

≤ Lk <∞

w. p. 1 for all r1, r2, . . . , rk ∈ JM , M ∈ N.

Then

M


∥∥∥∥∥I[Φ(k)(Z), ψ(k)]MT,t − I[Φ(k)(Z), ψ(k)]M,p1,...,pk

T,t

∥∥∥∥∥
2

H

 ≤

≤ Lk(k!)
2 (tr Q)k

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

)
, (7.32)

where

tr Q =
∑
i∈J

λi <∞,

Ik = ∥K∥2L2([t,T ]k)
=

∫
[t,T ]k

K2(t1, . . . , tk)dt1 . . . dtk,

Cjk...j1 =

∫
[t,T ]k

K(t1, . . . , tk)
k∏
l=1

ϕjl(tl)dt1 . . . dtk

is the Fourier coefficient,

K(t1, . . . , tk) =


ψ1(t1) . . . ψk(tk), t1 < . . . < tk

0, otherwise

=
k∏
l=1

ψl(tl)
k−1∏
l=1

1{tl<tl+1},

where t1, . . . , tk ∈ [t, T ] (k ≥ 2) and K(t1) ≡ ψ1(t1) for t1 ∈ [t, T ] (1A denotes
the indicator of the set A).

Remark 7.2. It should be noted that the right-hand side of the inequality
(7.32) is independent of M and tends to zero if p1, . . . , pk → ∞ due to the
Parseval equality.
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Remark 7.3. Recall the estimate (1.328), which we will use in the proof of
Theorem 7.1

M

{(
J [ψ(k)]

(r1r2...rk)
T,t − J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t

)2
}

≤

≤ k!

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

)
,

where J [ψ(k)]
(r1r2...rk)
T,t is defined by (1.5) and J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t is defined by

(7.31).

Proof. Using (1.129), we obtain

M


∥∥∥∥∥I[Φ(k)(Z), ψ(k)]MT,t − I[Φ(k)(Z), ψ(k)]M,p1,...,pk

T,t

∥∥∥∥∥
2

H

 =

= M


∥∥∥∥∥ ∑
r1,r2,...,rk∈JM

Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk

(
k∏
l=1

λrl

)1/2
×

×

(
J [ψ(k)]

(r1r2...rk)
T,t − J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t

)∥∥∥∥∥
2

H

 = (7.33)

=

∣∣∣∣∣M
{ ∑
r1,r2,...,rk∈JM

∑
(r,1,r

,
2,...,r

,
k): {r

,
1,r

,
2,...,r

,
k}={r1,r2,...,rk}

(
k∏
l=1

λrl

)1/2( k∏
l=1

λr,l

)1/2
×

×

〈
Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk ,

Φk(Z)
(
. . .
(
Φ2(Z)

(
Φ1(Z)er,1

)
er,2
)
. . .
)
er,k

〉
H

×

× M

{(
J [ψ(k)]

(r1r2...rk)
T,t − J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t

)
×

×

(
J [ψ(k)]

(r,1r
,
2...r

,
k)

T,t − J [ψ(k)]
(r,1r

,
2...r

,
k)p1,...,pk

T,t

)∣∣∣∣Ft

}}∣∣∣∣∣ ≤ (7.34)
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≤
∑

r1,r2,...,rk∈JM

∑
(r,1,r

,
2,...,r

,
k): {r

,
1,r

,
2,...,r

,
k}={r1,r2,...,rk}

(
k∏
l=1

λrl

)1/2( k∏
l=1

λr,l

)1/2
×

×M

{∥∥∥∥∥Φk(Z) (. . . (Φ2(Z) (Φ1(Z)er1) er2) . . .) erk

∥∥∥∥∥
H

×

×

∥∥∥∥∥Φk(Z)
(
. . .
(
Φ2(Z)

(
Φ1(Z)er,1

)
er,2
)
. . .
)
er,k

∥∥∥∥∥
H

×

×

∣∣∣∣∣M
{(

J [ψ(k)]
(r1r2...rk)
T,t − J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t

)
×

×

(
J [ψ(k)]

(r,1r
,
2...r

,
k)

T,t − J [ψ(k)]
(r,1r

,
2...r

,
k)p1,...,pk

T,t

)∣∣∣∣Ft

}∣∣∣∣∣
}

≤

≤ Lk
∑

r1,r2,...,rk∈JM

∑
(r,1,r

,
2,...,r

,
k): {r

,
1,r

,
2,...,r

,
k}={r1,r2,...,rk}

(
k∏
l=1

λrl

)1/2( k∏
l=1

λr,l

)1/2
×

×M

{∣∣∣∣∣
(
J [ψ(k)]

(r1r2...rk)
T,t − J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t

)
×

×

(
J [ψ(k)]

(r,1r
,
2...r

,
k)

T,t − J [ψ(k)]
(r,1r

,
2...r

,
k)p1,...,pk

T,t

)∣∣∣∣∣
}

≤

≤ Lk
∑

r1,r2,...,rk∈JM

∑
(r,1,r

,
2,...,r

,
k): {r

,
1,r

,
2,...,r

,
k}={r1,r2,...,rk}

(
k∏
l=1

λrl

)1/2( k∏
l=1

λr,l

)1/2
×

×

M


(
J [ψ(k)]

(r1r2...rk)
T,t − J [ψ(k)]

(r1r2...rk)p1,...,pk
T,t

)2

1/2

×

×

M


(
J [ψ(k)]

(r,1r
,
2...r

,
k)

T,t − J [ψ(k)]
(r,1r

,
2...r

,
k)p1,...,pk

T,t

)2

1/2

≤
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≤ Lk
∑

r1,r2,...,rk∈JM

∑
(r,1,r

,
2,...,r

,
k): {r

,
1,r

,
2,...,r

,
k}={r1,r2,...,rk}

(
k∏
l=1

λrl

)1/2( k∏
l=1

λr,l

)1/2
×

×

(
k!

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

))1/2(
k!

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

))1/2

≤

≤ Lk
∑

r1,r2,...,rk∈JM

k! λr1λr2 . . . λrk

(
k!

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

))
=

= Lk (k!)
2

∑
r1,r2,...,rk∈JM

λr1λr2 . . . λrk

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

)
≤

≤ Lk (k!)
2 (tr Q)k

(
Ik −

p1∑
j1=0

. . .

pk∑
jk=0

C2
jk...j1

)
,

where ⟨·, ·⟩H is a scalar product in H, and∑
(r,1,r

,
2,...,r

,
k): {r

,
1,r

,
2,...,r

,
k}={r1,r2,...,rk}

means the sum with respect to all possible permutations (r,1, r
,
2, . . . , r

,
k) such

that {r,1, r
,
2, . . . , r

,
k} = {r1, r2, . . . , rk}.

The transition from (7.33) to (7.34) is based on the following theorem.

Theorem 7.2 [14]-[17], [24], [48]. Suppose that ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ])
and {ϕj(x)}∞j=0 is an arbitrary complete orthonormal system of functions in the
space L2([t, T ]). Then, the following equality is true

M

{(
J [ψ(k)]

(r1...rk)
T,t − J [ψ(k)]

(r1...rk)p1,...,pk
T,t

)
×

×

(
J [ψ(k)]

(m1...mk)
T,t − J [ψ(k)]

(m1...mk)p1,...,pk
T,t

)∣∣∣∣Ft

}
= 0 (7.35)

w. p. 1 for all r1, . . . , rk,m1, . . . ,mk ∈ JM (M ∈ N) such that {r1, . . . , rk} ≠
{m1, . . . ,mk}.
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Proof. Using the standard moment properties of the Itô stochastic integral,
we obtain

M

{
J [ψ(k)]

(r1...rk)
T,t J [ψ(k)]

(m1...mk)
T,t

∣∣∣∣Ft

}
= 0 (7.36)

w. p. 1 for all r1, . . . , rk,m1, . . . ,mk ∈ JM (M ∈ N) such that (r1, . . . , rk) ̸=
(m1, . . . ,mk).

Using (1.311), (1.318), (1.335), and (1.327), we obtain

J [ψ(k)]
(m1...mk)p1,...,pk
T,t =

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1J
′[ϕj1 . . . ϕjk]

(m1...mk)
T,t , (7.37)

where
J ′[ϕj1 . . . ϕjk]

(m1...mk)
T,t =

=
∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(m1)
t1 . . . dw

(mk)
tk w. p. 1, (7.38)

and ∑
(j1,...,jk)

means the sum with respect to all possible permutations (j1, . . . , jk). At the
same time if jr swapped with jq in the permutation (j1, . . . , jk), then mr

swapped with mq in the permutation (m1, . . . ,mk). Another notations are the

same as in Theorems 1.1, 1.2, 1.16 (J ′[ϕj1 . . . ϕjk]
(m1...mk)
T,t is defined by (1.304)).

Then w. p. 1

M

{
J [ψ(k)]

(r1...rk)
T,t J [ψ(k)]

(m1...mk)p1,...,pk
T,t

∣∣∣∣Ft

}
=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1×

×M

J [ψ(k)]
(r1...rk)
T,t

∑
(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(m1)
t1 . . . dw

(mk)
tk

∣∣∣∣Ft

 .

From the standard moment properties of the Itô stochastic integral it follows
that

M

J [ψ(k)]
(r1...rk)
T,t

∑
(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(m1)
t1 . . . dw

(mk)
tk

∣∣∣∣Ft

 = 0
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w. p. 1 for all r1, . . . , rk,m1, . . . ,mk ∈ JM (M ∈ N) such that {r1, . . . , rk} ≠
{m1, . . . ,mk}.

Then

M

{
J [ψ(k)]

(r1...rk)
T,t J [ψ(k)]

(m1...mk)p1,...,pk
T,t

∣∣∣∣Ft

}
= 0 (7.39)

w. p. 1 for all r1, . . . , rk,m1, . . . ,mk ∈ JM (M ∈ N) such that {r1, . . . , rk} ≠
{m1, . . . ,mk}.

Using (7.37), (7.38), we have

M

{
J [ψ(k)]

(r1...rk)p1,...,pk
T,t J [ψ(k)]

(m1...mk)p1,...,pk
T,t

∣∣∣∣Ft

}
=

=

p1∑
j1=0

. . .

pk∑
jk=0

Cjk...j1

p1∑
q1=0

. . .

pk∑
qk=0

Cqk...q1×

×M


 ∑

(j1,...,jk)

T∫
t

ϕjk(tk) . . .

t2∫
t

ϕj1(t1)dw
(r1)
t1 . . . dw

(rk)
tk

×

×

 ∑
(q1,...,qk)

T∫
t

ϕqk(tk) . . .

t2∫
t

ϕq1(t1)dw
(m1)
t1 . . . dw

(mk)
tk

∣∣∣∣Ft

 = 0

(7.40)

w. p. 1 for all r1, . . . , rk,m1, . . . ,mk ∈ JM (M ∈ N) such that {r1, . . . , rk} ≠
{m1, . . . ,mk}.

From (7.36), (7.39), and (7.40) we obtain (7.35). Theorem 7.2 is proved.

Corollary 7.1 [14]-[17], [24], [48]. Suppose that {ϕj(x)}∞j=0 is an arbi-
trary complete orthonormal system of functions in the space L2([t, T ]) and
ψ1(τ), . . . , ψk(τ) ∈ L2([t, T ]). Then, the following equality is true

M

{(
J [ψ(k)]

(r1...rk)
T,t − J [ψ(k)]

(r1...rk)p1,...,pk
T,t

)
×

×

(
J [ψ(l)]

(m1...ml)
T,t − J [ψ(l)]

(m1...ml)q1,...,ql
T,t

)∣∣∣∣Ft

}
= 0

w. p. 1 for all l = 1, 2, . . . , k − 1 and r1, . . . , rk, m1, . . . ,ml ∈ JM , p1, . . . , pk,
q1, . . . , ql = 0, 1, 2, . . .
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7.3.2 Approximation of Some Iterated Stochastic Integrals of Milti-
plicities 2 and 3 with Respect to the Finite-Dimensional Ap-
proximation WM

t of the Q-Wiener Process

This section is devoted to the approximation of iterated stochastic integrals of
the following form (see Sect. 7.1)

I0[B(Z), F (Z)]MT,t =

T∫
t

B′(Z)

 t2∫
t

F (Z)dt1

 dWM
t2
, (7.41)

I1[B(Z), F (Z)]MT,t =

T∫
t

F ′(Z)

 t2∫
t

B(Z)dWM
t1

 dt2, (7.42)

I2[B(Z)]MT,t =

T∫
t

B′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

 dWM
t2
. (7.43)

Let Conditions 1, 2 of Theorem 7.1 be fulfilled. Let B′′(v)(B(v), B(v)) be
a 3-linear Hilbert–Schmidt operator mapping from U0 × U0 × U0 to H for all
v ∈ H. Then we have w. p. 1 (see (7.29))

I0[B(Z), F (Z)]MT,t =
∑
r1∈JM

B′(Z)F (Z)er1
√
λr1J

(0r1)
(01)T,t, (7.44)

I1[B(Z), F (Z)]MT,t =
∑
r1∈JM

F ′(Z)(B(Z)er1)
√
λr1J

(r10)
(10)T,t, (7.45)

I2[B(Z)]MT,t =
∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1, B(Z)er2) er3
√
λr1λr2λr3×

×
T∫
t

 s∫
t

dw(r1)
τ

s∫
t

dw(r2)
τ

 dw(r3)
s . (7.46)

Using the Itô formula, we obtain

s∫
t

dw(r1)
τ

s∫
t

dw(r2)
τ = J

(r1r2)
(11)s,t + J

(r2r1)
(11)s,t + 1{r1=r2}(s− t) w. p. 1. (7.47)
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From (7.47) we have

T∫
t

 s∫
t

dw(r1)
τ

s∫
t

dw(r2)
τ

 dw(r3)
s = J

(r1r2r3)
(111)T,t + J

(r2r1r3)
(111)T,t + 1{r1=r2}J

(0r3)
(01)T,t w. p. 1.

(7.48)

Note that in (7.44), (7.45), (7.47), and (7.48) we use the notations from
Sect. 7.2 (see (7.15), (7.16)). After substituting (7.48) into (7.46), we have

I2[B(Z)]MT,t =
∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1, B(Z)er2) er3
√
λr1λr2λr3×

×
(
J
(r1r2r3)
(111)T,t + J

(r2r1r3)
(111)T,t + 1{r1=r2}J

(0r3)
(01)T,t

)
w. p. 1. (7.49)

Taking into account (5.137), (5.138), we put for q = 1

J
(0r3)q
(01)T,t = J

(0r3)
(01)T,t =

(T − t)3/2

2

(
ζ
(r3)
0 +

1√
3
ζ
(r3)
1

)
w. p. 1, (7.50)

J
(r10)q
(10)T,t = J

(r10)
(10)T,t =

(T − t)3/2

2

(
ζ
(r1)
0 − 1√

3
ζ
(r1)
1

)
w. p. 1, (7.51)

where J
(0r3)q
(01)T,t, J

(r10)q
(10)T,t denote the approximations of corresponding iterated Itô

stochastic integrals.

Denote by I0[B(Z), F (Z)]M,q
T,t , I1[B(Z), F (Z)]M,q

T,t , I2[B(Z)]M,q
T,t the approxi-

mations of iterated stochastic integrals (7.44), (7.45), (7.49)

I0[B(Z), F (Z)]M,q
T,t =

∑
r1∈JM

B′(Z)F (Z)er1
√
λr1J

(0r1)q
(01)T,t, (7.52)

I1[B(Z), F (Z)]M,q
T,t =

∑
r1∈JM

F ′(Z)(B(Z)er1)
√
λr1J

(r10)q
(10)T,t, (7.53)

I2[B(Z)]M,q
T,t =

∑
r1,r2,r3∈JM

B′′(Z) (B(Z)er1, B(Z)er2) er3
√
λr1λr2λr3×

×
(
J
(r1r2r3)q
(111)T,t + J

(r2r1r3)q
(111)T,t + 1{r1=r2}J

(0r3)q
(01)T,t

)
, (7.54)



1170D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

where q = 1 in (7.52), (7.53) and the approximations J
(r1r2r3)q
(111)T,t , J

(r2r1r3)q
(111)T,t are

defined by (1.108) for some q ≥ 1.

From (7.44), (7.45), (7.49), (7.52)–(7.54) we have

I0[B(Z), F (Z)]MT,t − I0[B(Z), F (Z)]M,q
T,t = 0 w. p. 1,

I1[B(Z), F (Z)]MT,t − I1[B(Z), F (Z)]M,q
T,t = 0 w. p. 1,

I2[B(Z)]MT,t − I2[B(Z)]M,q
T,t =

=
∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1, B(Z)er2) er3
√
λr1λr2λr3×

×
((
J
(r1r2r3)
(111)T,t − J

(r1r2r3)q
(111)T,t

)
+
(
J
(r2r1r3)
(111)T,t − J

(r2r1r3)q
(111)T,t

))
w. p. 1.

Repeating with an insignificant modification the proof of Theorem 7.1 for
the case k = 3, we obtain

M

{∥∥∥∥I2[B(Z)]MT,t − I2[B(Z)]M,q
T,t

∥∥∥∥2
H

}
≤

≤ 4C(3!)2 (tr Q)3
(
(T − t)3

6
−

q∑
j1,j2,j3=0

C2
j3j2j1

)
,

where here and further constant C has the same meaning as constant Lk in
Theorem 7.1 (k is the multiplicity of the iterated stochastic integral), and

Cj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
(T − t)3/2C̄j3j2j1,

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

where Pj(x) is the Legendre polynomial.
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7.3.3 Approximation of Some Iterated Stochastic Integrals of Milti-
plicities 3 and 4 with Respect to the Finite-Dimensional Ap-
proximation WM

t of the Q-Wiener Process

In this section, we consider the approximation of iterated stochastic integrals
of the following form (see Sect. 7.1)

I3[B(Z)]MT,t =

T∫
t

B′′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

 dWM
t2
,

I4[B(Z)]MT,t =

=

T∫
t

B′(Z)

 t3∫
t

B′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

 dWM
t2

 dWM
t3
,

I5[B(Z)]MT,t =

=

T∫
t

B′′(Z)

 t3∫
t

B(Z)dWM
t1
,

t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 dWM
t2

 dWM
t3
,

I6[B(Z), F (Z)]MT,t =

T∫
t

F ′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 dWM
t2

 dt3,

I7[B(Z), F (Z)]MT,t =

T∫
t

F ′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

 dt2,

I8[B(Z), F (Z)]MT,t =

T∫
t

B′′(Z)

 t2∫
t

F (Z)dt1,

t2∫
t

B(Z)dWM
t1

 dWM
t2
.

Consider the stochastic integral I3[B(Z)]MT,t. Let Conditions 1, 2 of Theorem
7.1 be fulfilled. Let B′′′(v)(B(v), B(v), B(v)) be a 4-linear Hilbert–Schmidt
operator mapping from U0 × U0 × U0 × U0 to H for all v ∈ H.

We have (see (7.29))

I3[B(Z)]MT,t =
∑

r1,r2,r3,r4∈JM

B′′′(Z) (B(Z)er1, B(Z)er2, B(Z)er3) er4
√
λr1λr2λr3λr4×
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×
T∫
t

 s∫
t

dw(r1)
τ

s∫
t

dw(r2)
τ

s∫
t

dw(r3)
τ

 dw(r4)
s w. p. 1. (7.55)

By analogy with (2.416) or using the Itô formula, we obtain

J
(r1)
(1)s,tJ

(r2)
(1)s,tJ

(r3)
(1)s,t = J

(r1r2r3)
(111)s,t + J

(r1r3r2)
(111)s,t + J

(r2r1r3)
(111)s,t + J

(r2r3r1)
(111)s,t + J

(r3r1r2)
(111)s,t + J

(r3r2r1)
(111)s,t+

+1{r1=r2}

(
J
(r30)
(10)s,t + J

(0r3)
(01)s,t

)
+ 1{r1=r3}

(
J
(r20)
(10)s,t + J

(0r2)
(01)s,t

)
+

+1{r2=r3}

(
J
(r10)
(10)s,t + J

(0r1)
(01)s,t

)
=

=
∑

(r1,r2,r3)

J
(r1r2r3)
(111)s,t +(s−t)

(
1{r2=r3}J

(r1)
(1)s,t + 1{r1=r3}J

(r2)
(1)s,t + 1{r1=r2}J

(r3)
(1)s,t

)
(7.56)

w. p. 1, where ∑
(r1,r2,r3)

means the sum with respect to all possible permutations (r1, r2, r3).We also use
the notations from Sect. 7.2 (see (7.15), (7.16)).

After substituting (7.56) into (7.55), we obtain

I3[B(Z)]MT,t =
∑

r1,r2,r3,r4∈JM

B′′′(Z) (B(Z)er1, B(Z)er2, B(Z)er3) er4
√
λr1λr2λr3λr4×

×

 ∑
(r1,r2,r3)

J
(r1r2r3r4)
(1111)T,t − 1{r1=r2}I

(r3r4)
(01)T,t − 1{r1=r3}I

(r2r4)
(01)T,t − 1{r2=r3}I

(r1r4)
(01)T,t


(7.57)

w. p. 1, where J
(r1r2r3r4)
(1111)T,t is defined by (5.107) and

I
(r1r2)
(01)T,t =

T∫
t

(t− s)

s∫
t

dw(r1)
τ dw(r2)

s . (7.58)

Denote by I3[B(Z)]M,q
T,t the approximation of the iterated stochastic integral

(7.57), which has the following form
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I3[B(Z)]M,q
T,t =

∑
r1,r2,r3,r4∈JM

B′′′(Z) (B(Z)er1, B(Z)er2, B(Z)er3) er4
√
λr1λr2λr3λr4×

×

 ∑
(r1,r2,r3)

J
(r1r2r3r4)q
(1111)T,t − 1{r1=r2}I

(r3r4)q
(01)T,t − 1{r1=r3}I

(r2r4)q
(01)T,t − 1{r2=r3}I

(r1r4)q
(01)T,t

 ,

(7.59)

where the approximations J
(r1r2r3r4)q
(1111)T,t , I

(r1r2)q
(01)T,t are based on Theorem 1.1 and Le-

gendre polynomials (see (5.15) and (5.59)).

For example, from (5.15) we have (here we use the notation I
(r1r2)
(01)T,t from the

formula (5.15))

I
(r1r2)q
(01)T,t = −T − t

2
J
(r1r2)q
(11)T,t −

(T − t)2

4

(
1√
3
ζ
(r1)
0 ζ

(r2)
1 +

+

q∑
i=0

(
(i+ 2)ζ

(r1)
i ζ

(r2)
i+2 − (i+ 1)ζ

(r1)
i+2 ζ

(r2)
i√

(2i+ 1)(2i+ 5)(2i+ 3)
− ζ

(r1)
i ζ

(r2)
i

(2i− 1)(2i+ 3)

))
, (7.60)

J
(r1r2)q
(11)T,t =

T − t

2

(
ζ
(r1)
0 ζ

(r2)
0 +

q∑
i=1

1√
4i2 − 1

(
ζ
(r1)
i−1 ζ

(r2)
i − ζ

(r1)
i ζ

(r2)
i−1

)
− 1{r1=r2}

)
,

(7.61)

where notations are the same as in Theorem 1.1. For r1 ̸= r2 we get (see (5.42))

M

{(
I
(r1r2)
(01)T,t − I

(r1r2)q
(01)T,t

)2}
=

(T − t)4

16

(
5

9
− 2

q∑
i=2

1

4i2 − 1
−

−
q∑
i=1

1

(2i− 1)2(2i+ 3)2
−

q∑
i=0

(i+ 2)2 + (i+ 1)2

(2i+ 1)(2i+ 5)(2i+ 3)2

)
. (7.62)

From (1.129) and (7.62) we obtain

M

{(
I
(r1r2)
(01)T,t − I

(r1r2)q
(01)T,t

)2}
≤ (T − t)4

8

(
5

9
− 2

q∑
i=2

1

4i2 − 1
−

−
q∑
i=1

1

(2i− 1)2(2i+ 3)2
−

q∑
i=0

(i+ 2)2 + (i+ 1)2

(2i+ 1)(2i+ 5)(2i+ 3)2

)
,

where r1, r2 = 1, . . . ,M.
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From (7.57) and (7.59) it follows that

I3[B(Z)]MT,t − I3[B(Z)]M,q
T,t =

=
∑

r1,r2,r3,r4∈JM

B′′′(Z) (B(Z)er1, B(Z)er2, B(Z)er3) er4
√
λr1λr2λr3λr4×

×

( ∑
(r1,r2,r3)

(
J
(r1r2r3r4)
(1111)T,t − J

(r1r2r3r4)q
(1111)T,t

)
− 1{r1=r2}

(
I
(r3r4)
(01)T,t − I

(r3r4)q
(01)T,t

)
−

−1{r1=r3}

(
I
(r2r4)
(01)T,t − I

(r2r4)q
(01)T,t

)
−1{r2=r3}

(
I
(r1r4)
(01)T,t − I

(r1r4)q
(01)T,t

))
w. p. 1. (7.63)

Repeating with an insignificant modification the proof of Theorem 7.1 for
the cases k = 2 and k = 4, we obtain

M

{∥∥∥∥I3[B(Z)]MT,t − I3[B(Z)]M,q
T,t

∥∥∥∥2
H

}
≤

≤ C (tr Q)4
(
62(4!)2

(
(T − t)4

24
−

q∑
j1,j2,j3,j4=0

C2
j4j3j2j1

)
+ 32(2!)2Eq

)
,

where Eq is the right-hand side of (7.62) and

Cj4j3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

16
(T − t)2C̄j4j3j2j1, (7.64)

C̄j4j3j2j1 =

1∫
−1

Pj4(u)

u∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydzdu,

where Pj(x) is the Legendre polynomial.

Consider the stochastic integral I4[B(Z)]MT,t. Let Conditions 1, 2 of Theorem
7.1 be fulfilled. Let B′(v)(B′′(v)(B(v), B(v))) be a 4-linear Hilbert–Schmidt
operator mapping from U0 × U0 × U0 × U0 to H for all v ∈ H.

We have (see (7.29))

I4[B(Z)]MT,t =
∑

r1,r2,r3,r4∈JM

B′(Z) (B′′(Z) (B(Z)er1, B(Z)er2) er3) er4×
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×
√
λr1λr2λr3λr4

T∫
t

s∫
t

 τ∫
t

dw(r1)
u

τ∫
t

dw(r2)
u

 dw(r3)
τ dw(r4)

s w. p. 1. (7.65)

From (7.48) and (7.65) we obtain

I4[B(Z)]MT,t =
∑

r1,r2,r3,r4∈JM

B′(Z) (B′′(Z) (B(Z)er1, B(Z)er2) er3) er4×

×
√
λr1λr2λr3λr4

(
J
(r1r2r3r4)
(1111)T,t + J

(r2r1r3r4)
(1111)T,t − 1{r1=r2}I

(r3r4)
(10)T,t

)
w. p. 1, (7.66)

where

I
(r3r4)
(10)T,t =

T∫
t

s∫
t

(t− τ)dw(r3)
τ dw(r4)

s . (7.67)

Denote by I4[B(Z)]M,q
T,t the approximation of the iterated stochastic integral

(7.66), which has the following form

I4[B(Z)]M,q
T,t =

∑
r1,r2,r3,r4∈JM

B′(Z) (B′′(Z) (B(Z)er1, B(Z)er2) er3) er4×

×
√
λr1λr2λr3λr4

(
J
(r1r2r3r4)q
(1111)T,t + J

(r2r1r3r4)q
(1111)T,t − 1{r1=r2}I

(r3r4)q
(10)T,t

)
w. p. 1, (7.68)

where the approximations J
(r1r2r3r4)q
(1111)T,t , I

(r1r2)q
(10)T,t are based on Theorem 1.1 and

Legendre polynomials.

For example, from (5.16) we have (here we use the notation I
(r1r2)
(10)T,t from the

formula (5.16))

I
(r1r2)q
(10)T,t = −T − t

2
J
(r1r2)q
(11)T,t −

(T − t)2

4

(
1√
3
ζ
(r2)
0 ζ

(r1)
1 +

+

q∑
i=0

(
(i+ 1)ζ

(r2)
i+2 ζ

(r1)
i − (i+ 2)ζ

(r2)
i ζ

(r1)
i+2√

(2i+ 1)(2i+ 5)(2i+ 3)
+

ζ
(r1)
i ζ

(r2)
i

(2i− 1)(2i+ 3)

))
, (7.69)

where the approximation J
(r1r2)q
(11)T,t is defined by (7.61).
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Moreover,

M

{(
I
(r1r2)
(10)T,t − I

(r1r2)q
(10)T,t

)2}
= Eq (r1 ̸= r2), (7.70)

where Eq is the right-hand side of (7.62) (see (5.42)).

From (7.66), (7.68) we have

I4[B(Z)]MT,t − I4[B(Z)]M,q
T,t =

=
∑

r1,r2,r3,r4∈JM

B′(Z) (B′′(Z) (B(Z)er1, B(Z)er2) er3) er4
√
λr1λr2λr3λr4×

×

((
J
(r1r2r3r4)
(1111)T,t − J

(r1r2r3r4)q
(1111)T,t

)
+
(
J
(r2r1r3r4)
(1111)T,t − J

(r2r1r3r4)q
(1111)T,t

)
−

−1{r1=r2}

(
I
(r3r4)
(10)T,t − I

(r3r4)q
(10)T,t

))
w. p. 1.

Repeating with an insignificant modification the proof of Theorem 7.1 for
the cases k = 2 and k = 4, we obtain

M

{∥∥∥∥I4[B(Z)]MT,t − I4[B(Z)]M,q
T,t

∥∥∥∥2
H

}
≤

≤ C (tr Q)4
(
22(4!)2

(
(T − t)4

24
−

q∑
j1,j2,j3,j4=0

C2
j4j3j2j1

)
+ (2!)2Eq

)
,

where Eq is the right-hand side of (7.62) and Cj4j3j2j1 is defined by (7.64).

Consider the stochastic integral I5[B(Z)]MT,t. Let Conditions 1, 2 of Theorem
7.1 be fulfilled. Let B′′(v)(B(v), B′(v)(B(v))) be a 4-linear Hilbert–Schmidt
operator mapping from U0 × U0 × U0 × U0 to H for all v ∈ H.

We have (see (7.29))

I5[B(Z)]MT,t =
∑

r1,r2,r3,r4∈JM

B′′(Z)(B(Z)er3, B
′(Z)(B(Z)er2)er1)er4

√
λr1λr2λr3λr4×

×
T∫
t

 s∫
t

dw(r3)
τ

s∫
t

τ∫
t

dw(r2)
u dw(r1)

τ

 dw(r4)
s w. p. 1. (7.71)
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Using the theorem on replacement of the integration order in iterated Itô
stochastic integrals (see Theorem 3.1 and Example 3.1) or the Itô formula, we
obtain

T∫
t

 s∫
t

dw(r3)
τ

s∫
t

τ∫
t

dw(r2)
u dw(r1)

τ

 dw(r4)
s =

= J
(r2r1r3r4)
(1111)T,t + J

(r2r3r1r4)
(1111)T,t + J

(r3r2r1r4)
(1111)T,t +

+1{r1=r3}

(
I
(r2r4)
(10)T,t − I

(r2r4)
(01)T,t

)
− 1{r2=r3}I

(r1r4)
(10)T,t w. p. 1, (7.72)

where we use the notations from Sect. 7.2 (see (7.16)) and I
(r1r2)
(01)T,t, I

(r1r2)
(10)T,t are

defined by (7.58), (7.67).

After substituting (7.72) into (7.71), we obtain

I5[B(Z)]MT,t =
∑

r1,r2,r3,r4∈JM

B′′(Z)(B(Z)er3, B
′(Z)(B(Z)er2)er1)er4×

×
√
λr1λr2λr3λr4

(
J
(r2r1r3r4)
(1111)T,t + J

(r2r3r1r4)
(1111)T,t + J

(r3r2r1r4)
(1111)T,t +

+1{r1=r3}

(
I
(r2r4)
(10)T,t − I

(r2r4)
(01)T,t

)
− 1{r2=r3}I

(r1r4)
(10)T,t

)
w. p. 1. (7.73)

Denote by I5[B(Z)]M,q
T,t the approximation of the iterated stochastic integral

(7.73), which has the following form

I5[B(Z)]M,q
T,t =

∑
r1,r2,r3,r4∈JM

B′′(Z)(B(Z)er3, B
′(Z)(B(Z)er2)er1)er4×

×
√
λr1λr2λr3λr4

(
J
(r2r1r3r4)q
(1111)T,t + J

(r2r3r1r4)q
(1111)T,t + J

(r3r2r1r4)q
(1111)T,t +

+1{r1=r3}

(
I
(r2r4)q
(10)T,t − I

(r2r4)q
(01)T,t

)
− 1{r2=r3}I

(r1r4)q
(10)T,t

)
w. p. 1, (7.74)

where the approximations J
(r1r2r3r4)q
(1111)T,t , I

(r1r2)q
(01)T,t , and I

(r1r2)q
(10)T,t are based on Theorem

1.1 and Legendre polynomials.



1178D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

From (7.73), (7.74) it follows that

I5[B(Z)]MT,t − I5[B(Z)]M,q
T,t =

=
∑

r1,r2,r3,r4∈JM

B′′(Z)(B(Z)er3, B
′(Z)(B(Z)er2)er1)er4

√
λr1λr2λr3λr4×

×

((
J
(r2r1r3r4)
(1111)T,t − J

(r2r1r3r4)q
(1111)T,t

)
+
(
J
(r2r3r1r4)
(1111)T,t − J

(r2r3r1r4)q
(1111)T,t

)
+
(
J
(r3r2r1r4)
(1111)T,t − J

(r3r2r1r4)q
(1111)T,t

)
+

+1{r1=r3}

((
I
(r2r4)
(10)T,t − I

(r2r4)q
(10)T,t

)
−
(
I
(r2r4)
(01)T,t − I

(r2r4)q
(01)T,t

))
−

−1{r2=r3}

(
I
(r1r4)
(10)T,t − I

(r1r4)q
(10)T,t

))
w. p. 1.

Repeating with an insignificant modification the proof of Theorem 7.1 for
the cases k = 2 and k = 4 and taking into account (7.70), we obtain

M

{∥∥∥∥I5[B(Z)]MT,t − I5[B(Z)]M,q
T,t

∥∥∥∥2
H

}
≤

≤ C (tr Q)4
(
32(4!)2

(
(T − t)4

24
−

q∑
j1,j2,j3,j4=0

C2
j4j3j2j1

)
+ 32(2!)2Eq

)
,

where Eq is the right-hand side of (7.62) and Cj4j3j2j1 is defined by (7.64).

Consider the stochastic integral I6[B(Z), F (Z)]MT,t. Let Conditions 1, 2 of
Theorem 7.1 be fulfilled. We have (see (7.29))

I6[B(Z), F (Z)]MT,t =
∑

r1,r2∈JM

F ′(Z)(B′(Z)(B(Z)er1)er2)
√
λr1λr2×

×
T∫
t

s∫
t

τ∫
t

dw(r1)
u dw(r2)

τ ds w. p. 1. (7.75)

Using the theorem on replacement of the integration order in iterated Itô
stochastic integrals (see Theorem 3.1 and Example 3.1) or the Itô formula, we
obtain

T∫
t

s∫
t

τ∫
t

dw(r1)
u dw(r2)

τ ds = (T − t)J
(r1r2)
(11)T,t + I

(r1r2)
(01)T,t w. p. 1. (7.76)
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After substituting (7.76) into (7.75), we have

I6[B(Z), F (Z)]MT,t =
∑

r1,r2∈JM

F ′(Z)(B′(Z)(B(Z)er1)er2)
√
λr1λr2×

×
(
(T − t)J

(r1r2)
(11)T,t + I

(r1r2)
(01)T,t

)
w. p. 1. (7.77)

Denote by I6[B(Z), F (Z)]M,q
T,t the approximation of the iterated stochastic

integral (7.77), which has the following form

I6[B(Z), F (Z)]M,q
T,t =

∑
r1,r2∈JM

F ′(Z)(B′(Z)(B(Z)er1)er2)
√
λr1λr2×

×
(
(T − t)J

(r1r2)q
(11)T,t + I

(r1r2)q
(01)T,t

)
, (7.78)

where the approximations I
(r1r2)q
(01)T,t , J

(r1r2)q
(11)T,t are defined by (7.60), (7.61).

From (7.77), (7.78) we get

I6[B(Z), F (Z)]MT,t − I6[B(Z), F (Z)]M,q
T,t =

=
∑

r1,r2∈JM

F ′(Z)(B′(Z)(B(Z)er1)er2)
√
λr1λr2×

×
(
(T − t)

(
J
(r1r2)
(11)T,t − J

(r1r2)q
(11)T,t

)
+
(
I
(r1r2)
(01)T,t − I

(r1r2)q
(01)T,t

))
w. p. 1.

Repeating with an insignificant modification the proof of Theorem 7.1 for
the case k = 2, we obtain

M

{∥∥∥∥I6[B(Z), F (Z)]MT,t − I6[B(Z), F (Z)]M,q
T,t

∥∥∥∥2
H

}
≤

≤ 2C(2!)2 (tr Q)2
(
(T − t)2Gq + Eq

)
,

where Gq and Eq are the right-hand sides of (5.41) and (7.62) correspondingly.

Consider the stochastic integral I7[B(Z), F (Z)]MT,t. Let Conditions 1, 2 of
Theorem 7.1 be fulfilled.
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Then we have (see (7.29))

I7[B(Z), F (Z)]MT,t =
∑

r1,r2∈JM

F ′′(Z) (B(Z)er1, B(Z)er2)
√
λr1λr2×

×
T∫
t

 s∫
t

dw(r1)
τ

s∫
t

dw(r2)
τ

 ds w. p. 1. (7.79)

From (7.47) and (7.76) we get w. p. 1

T∫
t

 s∫
t

dw(r1)
τ

s∫
t

dw(r2)
τ

 ds =

=

T∫
t

J
(r1r2)
(11)s,tds+

T∫
t

J
(r2r1)
(11)s,tds+ 1{r1=r2}

(T − t)2

2
=

= (T − t)
(
J
(r1r2)
(11)T,t + J

(r2r1)
(11)T,t

)
+ I

(r1r2)
(01)T,t + I

(r2r1)
(01)T,t + 1{r1=r2}

(T − t)2

2
=

= (T − t)
(
J
(r1)
(1)T,tJ

(r2)
(1)T,t − 1{r1=r2}(T − t)

)
+

+I
(r1r2)
(01)T,t + I

(r2r1)
(01)T,t + 1{r1=r2}

(T − t)2

2
=

= (T − t)J
(r1)
(1)T,tJ

(r2)
(1)T,t + I

(r1r2)
(01)T,t + I

(r2r1)
(01)T,t − 1{r1=r2}

(T − t)2

2
. (7.80)

After substituting (7.80) into (7.79), we obtain

I7[B(Z), F (Z)]MT,t =
∑

r1,r2∈JM

F ′′(Z) (B(Z)er1, B(Z)er2)
√
λr1λr2×

×
(
(T − t)J

(r1)
(1)T,tJ

(r2)
(1)T,t + I

(r1r2)
(01)T,t + I

(r2r1)
(01)T,t − 1{r1=r2}

(T − t)2

2

)
w. p. 1.

(7.81)

Denote by I7[B(Z), F (Z)]M,q
T,t the approximation of the iterated stochastic

integral (7.81), which has the following form
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I7[B(Z), F (Z)]M,q
T,t =

∑
r1,r2∈JM

F ′′(Z) (B(Z)er1, B(Z)er2)
√
λr1λr2×

×
(
(T − t)J

(r1)
(1)T,tJ

(r2)
(1)T,t + I

(r1r2)q
(01)T,t + I

(r2r1)q
(01)T,t − 1{r1=r2}

(T − t)2

2

)
, (7.82)

where the approximation I
(r1r2)q
(01)T,t is defined by (7.60).

From (7.81), (7.82) it follows that

I7[B(Z), F (Z)]MT,t − I7[B(Z), F (Z)]M,q
T,t =

∑
r1,r2∈JM

F ′′(Z) (B(Z)er1, B(Z)er2)×

×
√
λr1λr2

((
I
(r1r2)
(01)T,t − I

(r1r2)q
(01)T,t

)
+
(
I
(r2r1)
(01)T,t − I

(r2r1)q
(01)T,t

))
w. p. 1.

Repeating with an insignificant modification the proof of Theorem 7.1 for
the case k = 2, we obtain

M

{∥∥∥∥I7[B(Z), F (Z)]MT,t − I7[B(Z), F (Z)]M,q
T,t

∥∥∥∥2
H

}
≤ 4C(2!)2 (tr Q)2Eq,

where Eq is the right-hand side of (7.62).

Consider the stochastic integral I8[B(Z), F (Z)]MT,t. Let Conditions 1, 2 of
Theorem 7.1 be fulfilled.

Then we have w. p. 1 (see (7.29))

I8[B(Z), F (Z)]MT,t = −
∑

r1,r2∈JM

B′′(Z) (F (Z), B(Z)er1) er2
√
λr1λr2I

(r1r2)
(01)T,t. (7.83)

Denote by I8[B(Z), F (Z)]M,q
T,t the approximation of the iterated stochastic

integral (7.83), which has the following form

I8[B(Z), F (Z)]M,q
T,t = −

∑
r1,r2∈JM

B′′(Z) (F (Z), B(Z)er1) er2
√
λr1λr2I

(r1r2)q
(01)T,t ,

(7.84)

where the approximation I
(r1r2)q
(01)T,t is defined by (7.60).

From (7.83), (7.84) we get
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I8[B(Z), F (Z)]MT,t − I8[B(Z), F (Z)]M,q
T,t =

= −
∑

r1,r2∈JM

B′′(Z) (F (Z), B(Z)er1) er2
√
λr1λr2

(
I
(r1r2)
(01)T,t − I

(r1r2)q
(01)T,t

)
w. p. 1.

Repeating with an insignificant modification the proof of Theorem 7.1 for
the case k = 2, we obtain

M

{∥∥∥∥I8[B(Z), F (Z)]MT,t − I8[B(Z), F (Z)]M,q
T,t

∥∥∥∥2
H

}
≤ C(2!)2 (tr Q)2Eq,

where Eq is the right-hand side of (7.62).

7.4 Approximation of Iterated Stochastic Integrals of

Miltiplicities 1 to 3 with Respect to the Infinite-Di-

mensional Q-Wiener Process

This section is devoted to the application of Theorem 1.1 and multiple Fourier–
Legendre series for the approximation of iterated stochastic integrals of multi-
plicities 1 to 3 with respect to the infinite-dimensional Q-Wiener process. These
iterated stochastic integrals are part of the exponential Milstein and Wagner–
Platen numerical methods for semilinear SPDEs with nonlinear multiplicative
trace class noise (see Sect. 7.2). Theorem 7.3 (see below) on the mean-square
convergence of approximations of iterated stochastic integrals of multiplicities
2 and 3 with respect to the infinite-dimensional Q-Wiener process is formulated
and proved. The results of this section can be applied to the implementation of
high-order strong numerical methods for non-commutative semilinear SPDEs
with nonlinear multiplicative trace class noise.

7.4.1 Formulas for the Numerical Modeling of Iterated Stochastic
Integrals of Miltiplicities 1 to 3 with Respect to the Infinite-
Dimensional Q-Wiener Process Based on Theorem 1.1 and
Legendre Polynomials

This section is devoted to the formulas for numerical modeling of iterated
stochastic integrals from the Milstein type scheme (7.13) and the Wagner–
Platen type scheme (7.14) for non-commutative semilinear SPDEs. These inte-



D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series1183

grals have the following form (below we introduce new notations for the stochas-
tic integrals (7.88)-(7.91) and their approximations)

J1[B(Z)]T,t =

T∫
t

B(Z)dWt1, (7.85)

J2[B(Z)]T,t = A

 T∫
t

t2∫
t

B(Z)dWt1dt2 −
(T − t)

2

T∫
t

B(Z)dWt1

 , (7.86)

J3[B(Z), F (Z)]T,t = (T − t)

T∫
t

B′(Z)

(
AZ + F (Z)

)
dWt1−

−
T∫
t

t2∫
t

B′(Z)

(
AZ + F (Z)

)
dWt1dt2, (7.87)

J4[B(Z), F (Z)]T,t =

T∫
t

F ′(Z)

 t2∫
t

B(Z)dWt1

 dt2, (7.88)

I1[B(Z)]T,t =

T∫
t

B′(Z)

 t2∫
t

B(Z)dWt1

 dWt2, (7.89)

I2[B(Z)]T,t =

T∫
t

B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWt1

 dWt2

 dWt3, (7.90)

I3[B(Z)]T,t =

T∫
t

B′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)dWt1

 dWt2, (7.91)

where Z : Ω → H is an Ft/B(H)-measurable mapping, 0 ≤ t < T ≤ T̄ .

Note that according to (7.17)–(7.20), (5.7), (5.137), and (5.138), we can
write the following relatively simple formulas for numerical modeling [25], [49]

J1[B(Z)]MT,t =

T∫
t

B(Z)dWM
s =
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= (T − t)1/2
∑
r1∈JM

B(Z)er1
√
λr1ζ

(r1)
0 ,

J2[B(Z)]MT,t = A

 T∫
t

t2∫
t

B(Z)dWM
t1
dt2 −

(T − t)

2

T∫
t

B(Z)dWM
t1

 =

= −(T − t)3/2

2
√
3

∑
r1∈JM

AB(Z)er1
√
λr1ζ

(r1)
1 , (7.92)

J3[B(Z), F (Z)]MT,t = (T − t)

T∫
t

B′(Z)

(
AZ + F (Z)

)
dWM

t1
−

−
T∫
t

t2∫
t

B′(Z)

(
AZ + F (Z)

)
dWM

t1
dt2 =

=
(T − t)3/2

2

∑
r1∈JM

B′(Z)

(
AZ + F (Z)

)
er1
√
λr1

(
ζ
(r1)
0 +

1√
3
ζ
(r1)
1

)
, (7.93)

J4[B(Z), F (Z)]MT,t =

T∫
t

F ′(Z)

 t2∫
t

B(Z)dWM
t1

 dt2 =

=
(T − t)3/2

2

∑
r1∈JM

F ′(Z)B(Z)er1
√
λr1

(
ζ
(r1)
0 − 1√

3
ζ
(r1)
1

)
, (7.94)

where ζ
(r1)
0 , ζ

(r1)
1 (r1 ∈ JM) are independent standard Gaussian random vari-

ables.

Further, consider the stochastic integrals (7.89)–(7.91), which are more com-
plicate, in detail.

Let I1[B(Z)]MT,t, I2[B(Z)]MT,t, I3[B(Z)]MT,t be approximations of the stochastic
integrals (7.89)–(7.91), which have the following form (see (7.21), (7.22), and
(7.26))

I1[B(Z)]MT,t =

T∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 dWM
t2

=
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=
∑

r1,r2∈JM

B′(Z) (B(Z)er1) er2
√
λr1λr2J

(r1r2)
(11)T,t, (7.95)

I2[B(Z)]MT,t =

T∫
t

B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 dWM
t2

 dWM
t3

=

=
∑

r1,r2,r3∈JM

B′(Z) (B′(Z) (B(Z)er1) er2) er3
√
λr1λr2λr3J

(r1r2r3)
(111)T,t, (7.96)

I3[B(Z)]MT,t =

T∫
t

B′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

 dWM
t2

=

=
∑

r1,r2,r3∈JM

B′′(Z) (B(Z)er1, B(Z)er2) er3
√
λr1λr2λr3×

×
(
J
(r1r2r3)
(111)T,t + J

(r2r1r3)
(111)T,t + 1{r1=r2}J

(0r3)
(01)T,t

)
. (7.97)

Let I1[B(Z)]M,q
T,t , I2[B(Z)]M.q

T,t , I3[B(Z)]M,q
T,t be approximations of the stochas-

tic integrals (7.95)–(7.97), which look as follows

I1[B(Z)]M,q
T,t =

∑
r1,r2∈JM

B′(Z) (B(Z)er1) er2
√
λr1λr2J

(r1r2)q
(11)T,t ,

I2[B(Z)]M,q
T,t =

∑
r1,r2,r3∈JM

B′(Z) (B′(Z) (B(Z)er1) er2) er3
√
λr1λr2λr3J

(r1r2r3)q
(111)T,t ,

(7.98)

I3[B(Z)]M,q
T,t =

∑
r1,r2,r3∈JM

B′′(Z) (B(Z)er1, B(Z)er2) er3
√
λr1λr2λr3×

×
(
J
(r1r2r3)q
(111)T,t + J

(r2r1r3)q
(111)T,t + 1{r1=r2}J

(0r3)
(01)T,t

)
,

where the approximations J
(r1r2)q
(11)T,t , J

(r1r2r3)q
(111)T,t , J

(r2r1r3)q
(111)T,t of the stochastic integrals

(7.16) are defined by (5.136), (5.139) and J
(0r3)
(01)T,t has the form (5.137), q ≥ 1.
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7.4.2 Theorem on the Mean-Square Approximation of Iterated Sto-
chastic Integrals of Multiplicities 2 and 3 with Respect to the
Ininite-Dimensional Q-Wiener Process

Recall that LHS(U0, H) is a space of Hilbert–Schmidt operators mapping from

U0 to H. Moreover, let L
(2)
HS(U0, H) and L

(3)
HS(U0, H) be spaces of bilinear and

3-linear Hilbert–Schmidt operators mapping from U0 ×U0 to H and from U0 ×
U0 × U0 to H correspondingly. Furthermore, let

∥·∥LHS(U0,H) , ∥·∥
L
(2)
HS(U0,H)

, ∥·∥
L
(3)
HS(U0,H)

be operator norms in these spaces.

Theorem 7.3 [14]-[17], [25], [49], [57], [58]. Let Conditions 1, 2 of Theorem
7.1 be fulfilled. Furthermore, let

B(v) ∈ LHS(U0, H), B′(v)(B(v)) ∈ L
(2)
HS(U0, H),

B′(v)(B′(v)(B(v))), B′′(v)(B(v), B(v)) ∈ L
(3)
HS(U0, H)

for all v ∈ H (we suppose that Frêchet derivatives B′, B′′ exist; see Sect. 7.1).
Moreover, let there exists a constant C such that w. p. 1∥∥∥∥B(Z)Q−α

∥∥∥∥
LHS(U0,H)

< C,

∥∥∥∥B′(Z)(B(Z))Q−α
∥∥∥∥
L
(2)
HS(U0,H)

< C,

∥∥∥∥B′(Z)(B′(Z)(B(Z)))Q−α
∥∥∥∥
L
(3)
HS(U0,H)

< C,∥∥∥∥B′′(Z)(B(Z), B(Z))Q−α
∥∥∥∥
L
(3)
HS(U0,H)

< C

for some α > 0. Then

M


∥∥∥∥∥I1[B(Z)]T,t − I1[B(Z)]M,p

T,t

∥∥∥∥∥
2

H

 ≤

≤ (T − t)2

C0 (tr Q)
2

(
1

2
−

p∑
j=1

1

4j2 − 1

)
+KQ

(
sup

i∈J\JM
λi

)2α
 , (7.99)
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M


∥∥∥∥∥I2[B(Z)]T,t − I2[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 ≤

≤ (T − t)3

C1 (tr Q)
3

(
1

6
−

q∑
j1,j2,j3=0

Ĉ2
j3j2j1

)
+ LQ

(
sup

i∈J\JM
λi

)2α
 , (7.100)

M


∥∥∥∥∥I3[B(Z)]T,t − I3[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 ≤

≤ (T−t)3
C2 (tr Q)

3

(
1

6
−

q∑
j1,j2,j3=0

Ĉ2
j3j2j1

)
+MQ

(
sup

i∈J\JM
λi

)2α
 , (7.101)

where p, q ∈ N, C0, C1, C2, KQ, LQ,MQ <∞, and

Ĉj3j2j1 =

√
(2j1 + 1)(2j2 + 1)(2j3 + 1)

8
C̄j3j2j1,

C̄j3j2j1 =

1∫
−1

Pj3(z)

z∫
−1

Pj2(y)

y∫
−1

Pj1(x)dxdydz,

where Pj(x) (j = 0, 1, 2, . . .) is the Legendre polynomial.

Remark 7.4. Note that the estimate similar to (7.99) has been derived in
[195], [196] (also see [182]) with the difference connected with the first term on
the right-hand side of (7.99). In [196] the authors used the Karhunen–Loève
expansion of the Brownian bridge process for the approximation of iterated Itô
stochastic integrals with respect to the finite-dimensional Wiener process (Mil-
stein approach, see Sect. 6.2). In this section, we apply Theorem 1.1 and the
system of Legendre polynomials to obtain the first term on the right-hand side
of (7.99).

Remark 7.5. If we assume that λi ≤ C ′i−γ (γ > 1, C ′ < ∞) for i ∈ J ,
then the parameter α > 0 obviously increases with decreasing of γ [195].

Proof. The estimate (7.99) follows directly from (7.32) for k = 2 (the first
term on the right-hand side of (7.99)) and Theorem 1 from [196] (the second
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term on the right-hand side of (7.99)). Further C3, C4, . . . denote various
constants.

Let us prove the estimates (7.100), (7.101). Using Theorem 7.1, we obtain

M


∥∥∥∥∥I2[B(Z)]T,t − I2[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 ≤ 2M


∥∥∥∥∥I2[B(Z)]T,t − I2[B(Z)]MT,t

∥∥∥∥∥
2

H

+

+2M


∥∥∥∥∥I2[B(Z)]MT,t − I2[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 ≤

≤ 2M


∥∥∥∥∥I2[B(Z)]T,t − I2[B(Z)]MT,t

∥∥∥∥∥
2

H

+

+C3(T − t)3 (tr Q)3
(
1

6
−

q∑
j1,j2,j3=0

Ĉ2
j3j2j1

)
, (7.102)

M


∥∥∥∥∥I3[B(Z)]T,t − I3[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 ≤ 2M


∥∥∥∥∥I3[B(Z)]T,t − I3[B(Z)]MT,t

∥∥∥∥∥
2

H

+

+2M


∥∥∥∥∥I3[B(Z)]MT,t − I3[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 . (7.103)

Repeating with an insignificant modification the proof of Theorem 7.1 for
the case k = 3, we have (also see Sect. 7.3.2)

M

{∥∥∥∥I3[B(Z)]MT,t − I3[B(Z)]M,q
T,t

∥∥∥∥2
H

}
≤

≤ 4C̃(3!)2 (tr Q)3 (T − t)3

(
1

6
−

q∑
j1,j2,j3=0

Ĉ2
j3j2j1

)
, (7.104)

where constant C̃ has the same meaning as constant Lk in Theorem 7.1 (k is
the multiplicity of the iterated stochastic integral).

Combining (7.103) and (7.104), we obtain
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M


∥∥∥∥∥I3[B(Z)]T,t − I3[B(Z)]M,q

T,t

∥∥∥∥∥
2

H

 ≤ 2M


∥∥∥∥∥I3[B(Z)]T,t − I3[B(Z)]MT,t

∥∥∥∥∥
2

H

+

+C4(T − t)3 (tr Q)3
(
1

6
−

q∑
j1,j2,j3=0

Ĉ2
j3j2j1

)
. (7.105)

Let us estimate the right-hand sides of (7.102) and (7.105). Using the ele-
mentary inequality (a+ b+ c)2 ≤ 3(a2 + b2 + c2), we obtain

M


∥∥∥∥∥I2[B(Z)]T,t − I2[B(Z)]MT,t

∥∥∥∥∥
2

H

 ≤ 3
(
E1,M
T,t + E2,M

T,t + E3,M
T,t

)
, (7.106)

M


∥∥∥∥∥I3[B(Z)]T,t − I3[B(Z)]MT,t

∥∥∥∥∥
2

H

 ≤ 3
(
G1,M
T,t +G2,M

T,t +G3,M
T,t

)
, (7.107)

where

E1,M
T,t =

= M


∥∥∥∥∥∥

T∫
t

B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

) dWt2

 dWt3

∥∥∥∥∥∥
2

H

 ,

E2,M
T,t =

= M


∥∥∥∥∥∥

T∫
t

B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 d
(
Wt2 −WM

t2

) dWt3

∥∥∥∥∥∥
2

H

 ,

E3,M
T,t =

= M


∥∥∥∥∥∥

T∫
t

B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 dWM
t2

 d
(
Wt3 −WM

t3

)∥∥∥∥∥∥
2

H

 ,
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G1,M
T,t = M


∥∥∥∥∥∥

T∫
t

B′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)d
(
Wt1 −WM

t1

) dWt2

∥∥∥∥∥∥
2

H

 ,

G2,M
T,t = M


∥∥∥∥∥∥

T∫
t

B′′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

)
,

t2∫
t

B(Z)dWM
t1

 dWt2

∥∥∥∥∥∥
2

H

 ,

G3,M
T,t = M


∥∥∥∥∥∥

T∫
t

B′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

 d
(
Wt2 −WM

t2

)∥∥∥∥∥∥
2

H

 .

We have

E1,M
T,t =

=

T∫
t

M


∥∥∥∥∥∥B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

)dWt2

∥∥∥∥∥∥
2

LHS(U0,H)

dt3 ≤

≤ C5

T∫
t

M


∥∥∥∥∥∥

t3∫
t

B′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

) dWt2

∥∥∥∥∥∥
2

H

 dt3 =

= C5

T∫
t

t3∫
t

M


∥∥∥∥∥∥B′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

LHS(U0,H)

 dt2dt3 ≤

≤ C6

T∫
t

t3∫
t

M


∥∥∥∥∥∥

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

H

 dt2dt3 ≤ (7.108)

≤ C6

(
sup

i∈J\JM
λi

)2α T∫
t

t3∫
t

t2∫
t

M

{∥∥∥∥B(Z)Q−α
∥∥∥∥2
LHS(U0,H)

}
dt1dt2dt3 ≤ (7.109)
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≤ C7

(
sup

i∈J\JM
λi

)2α

(T − t)3. (7.110)

Note that the transition from (7.108) to (7.109) was made by analogy with
the proof of Theorem 1 in [196] (also see [182]). More precisely, taking into
account the relation Qαei = λαi ei, we have (see [196], Sect. 3.1)

M


∥∥∥∥∥∥

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

H

 =

= M


∥∥∥∥∥∥
∑

i∈J\JM

√
λi

t2∫
t

B(Z)eidw
(i)
t1

∥∥∥∥∥∥
2

H

 =

=
∑

i∈J\JM

λi

t2∫
t

M

{∥∥∥∥B(Z)Q−αQαei

∥∥∥∥2
H

}
dt1 =

=
∑

i∈J\JM

λ1+2α
i

t2∫
t

M

{∥∥∥∥B(Z)Q−αei

∥∥∥∥2
H

}
dt1 =

=

(
sup

i∈J\JM
λi

)2α t2∫
t

M

 ∑
i∈J\JM

λi

∥∥∥∥B(Z)Q−αei

∥∥∥∥2
H

 dt1 ≤

≤

(
sup

i∈J\JM
λi

)2α t2∫
t

M

{∑
i∈J

λi

∥∥∥∥B(Z)Q−αei

∥∥∥∥2
H

}
dt1 =

=

(
sup

i∈J\JM
λi

)2α t2∫
t

M

{∥∥∥∥B(Z)Q−α
∥∥∥∥2
LHS(U0,H)

}
dt1. (7.111)

Further, we also will use the estimate similar to (7.111).

We have

E2,M
T,t =



1192D.F. Kuznetsov Strong Approximation of Iterated Ito and Stratonovich Stochastic Integrals Based on Generalized Multiple Fourier Series

=

T∫
t

M


∥∥∥∥∥∥B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

d (Wt2 −WM
t2

)∥∥∥∥∥∥
2

LHS(U0,H)

dt3 ≤

≤ C8

T∫
t

M


∥∥∥∥∥∥

t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 d
(
Wt2 −WM

t2

)∥∥∥∥∥∥
2

H

 dt3 ≤

≤ C8

(
sup

i∈J\JM
λi

)2α T∫
t

t3∫
t

M


∥∥∥∥∥∥B′(Z)

 t2∫
t

B(Z)dWM
t1

Q−α

∥∥∥∥∥∥
2

LHS(U0,H)

 dt2dt3 ≤

≤ C8

(
sup

i∈J\JM
λi

)2α T∫
t

t3∫
t

M

{∥∥∥∥B′(Z) (B(Z))Q−α
∥∥∥∥2
L
(2)
HS(U0,H)

}
(t2 − t)dt2dt3 ≤

≤ C9

(
sup

i∈J\JM
λi

)2α

(T − t)3. (7.112)

Moreover,

E3,M
T,t ≤

(
sup

i∈J\JM
λi

)2α

×

×
T∫
t

M


∥∥∥∥∥∥B′(Z)

 t3∫
t

B′(Z)

 t2∫
t

B(Z)dWM
t1

 dWM
t2

Q−α

∥∥∥∥∥∥
2

LHS(U0,H)

 dt3 ≤

≤ C10

(
sup

i∈J\JM
λi

)2α

×

×
T∫
t

M

{∥∥∥∥B′(Z) (B′(Z) (B(Z)))Q−α
∥∥∥∥2
L
(3)
HS(U0,H)

}
(t3 − t)2

2
dt3 ≤
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≤ C11

(
sup

i∈J\JM
λi

)2α

(T − t)3. (7.113)

Combining (7.102), (7.106), (7.110), (7.112), and (7.113), we obtain (7.100).

We have

G1,M
T,t =

=

T∫
t

M


∥∥∥∥∥∥B′′(Z)

 t2∫
t

B(Z)dWt1,

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

LHS(U0,H)

 dt3 ≤

≤ C12

T∫
t

M


∥∥∥∥∥∥

t2∫
t

B(Z)dWt1

∥∥∥∥∥∥
2

H

∥∥∥∥∥∥
t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

H

 dt3 ≤

≤ C12

T∫
t

M


∥∥∥∥∥∥

t2∫
t

B(Z)dWt1

∥∥∥∥∥∥
4

H




1/2

×

×

M


∥∥∥∥∥∥

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
4

H




1/2

dt3 ≤

≤ C13

T∫
t

t2∫
t

(
M

{∥∥∥∥B(Z)

∥∥∥∥4
LHS(U0,H)

})1/2

dt1×

×

M


∥∥∥∥∥∥

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
4

H




1/2

dt3 ≤

≤ C14

T∫
t

(t2 − t)

M


∥∥∥∥∥∥

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
4

H




1/2

dt3. (7.114)

Let us estimate the right-hand side of (7.114). If s > t, then for fixed
M ∈ N and for some N > M (N ∈ N) we have
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M


∥∥∥∥∥∥

s∫
t

B(Z)d
(
WN

t1
−WM

t1

)∥∥∥∥∥∥
4

H

 =

= M


〈 ∑
j∈JN\JM

√
λjB(Z)ej

(
w(j)
s −w

(j)
t

)
,

∑
j′∈JN\JM

√
λj′B(Z)ej′

(
w(j′)
s −w

(j′)
t

)〉2

H

 =

=
∑

j,j′,l,l′∈JN\JM

√
λjλj′λlλl′ M

{〈
B(Z)ej, B(Z)ej′

〉
H

〈
B(Z)el, B(Z)el′

〉
H

×

×M

{(
w(j)
s −w

(j)
t

)(
w(j′)
s −w

(j′)
t

)(
w(l)
s −w

(l)
t

)(
w(l′)
s −w

(l′)
t

) ∣∣∣∣Ft

}}
=

= 3(s− t)2
∑

j∈JN\JM

λ2jM

{∥∥∥∥B(Z)ej

∥∥∥∥4
H

}
+

+(s− t)2
∑

j,j′∈JN\JM (j ̸=j′)

λjλj′

(
M

{∥∥∥∥B(Z)ej

∥∥∥∥2
H

∥∥∥∥B(Z)ej′

∥∥∥∥2
H

}
+

+2

〈
B(Z)ej, B(Z)ej′

〉2

H

)
≤

≤ 3(s− t)2

 ∑
j∈JN\JM

λ2jM

{∥∥∥∥B(Z)ej

∥∥∥∥4
H

}
+

+
∑

j,j′∈JN\JM (j ̸=j′)

λjλj′M

{∥∥∥∥B(Z)ej

∥∥∥∥2
H

∥∥∥∥B(Z)ej′

∥∥∥∥2
H

} =

= 3(s− t)2M


 ∑
j∈JN\JM

λj

∥∥∥∥B(Z)ej

∥∥∥∥2
H

2
 ≤

≤ 3(s− t)2

(
sup

i∈JN\JM
λi

)4α

M


 ∑
j∈JN\JM

λj

∥∥∥∥B(Z)Q−αej

∥∥∥∥2
H

2
 ≤
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≤ C15(s− t)2

(
sup

i∈JN\JM
λi

)4α

M

{∥∥∥∥B(Z)Q−α
∥∥∥∥4
LHS(U0,H)

}
. (7.115)

Using (7.115), we obtain

M


∥∥∥∥∥∥

s∫
t

B(Z)d
(
WN

t1
−WM

t1

)∥∥∥∥∥∥
4

H

→ 0

if N,M → ∞ (N > M). This means that
s∫
t

B(Z)dWN
t1

is a Cauchy sequence in the L4–space of H–valued stochastic processes.

It is well known [226] that Lp–space (1 ≤ p < ∞) of Banach space valued
stochastic processes is a Banach space, i.e. a complete space. Then, carrying
out the passage to the limit lim

N→∞
in (7.115), we get

M


∥∥∥∥∥∥

s∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
4

H

 =

= lim
N→∞

M


∥∥∥∥∥∥

s∫
t

B(Z)d
(
WN

t1
−WM

t1

)∥∥∥∥∥∥
4

H

 ≤

≤ C15(s− t)2

(
sup

i∈J\JM
λi

)4α

M

{∥∥∥∥B(Z)Q−α
∥∥∥∥4
LHS(U0,H)

}
. (7.116)

Combining (7.114) and (7.116), we obtain

G1,M
T,t ≤ C16

(
sup

i∈J\JM
λi

)2α

(T − t)3. (7.117)

Absolutely analogously we get

G2,M
T,t ≤ C17

(
sup

i∈J\JM
λi

)2α

(T − t)3. (7.118)
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Let us estimate G3,M
T,t . We have

G3,M
T,t ≤

(
sup

i∈J\JM
λi

)2α

×

×
T∫
t

M


∥∥∥∥∥∥B′′(Z)

 t2∫
t

B(Z)dWM
t1
,

t2∫
t

B(Z)dWM
t1

Q−α

∥∥∥∥∥∥
2

LHS(U0,H)

 dt2 ≤

≤

(
sup

i∈J\JM
λi

)2α∑
i∈J

∑
j,l∈JM

λiλjλl×

×
T∫
t

(t2 − t)2

(
M

{∥∥∥∥B′′(Z)(B(Z)ej, B(Z)el)Q
−αei

∥∥∥∥2
H

}
+

+M

{∥∥∥∥B′′(Z)(B(Z)ej, B(Z)ej)Q
−αei

∥∥∥∥
H

∥∥∥∥B′′(Z)(B(Z)el, B(Z)el)Q
−αei

∥∥∥∥
H

}
+

+M

{∥∥∥∥B′′(Z)(B(Z)ej, B(Z)el)Q
−αei

∥∥∥∥
H

×

×
∥∥∥∥B′′(Z)(B(Z)el, B(Z)ej)Q

−αei

∥∥∥∥
H

})
dt2 ≤

≤ C18

(
sup

i∈J\JM
λi

)2α

(T − t)3. (7.119)

Combining (7.105), (7.107), and (7.117)–(7.119), we obtain (7.101). Theo-
rem 7.3 is proved.

Let us consider the convergence analysis for the stochastic integrals (7.86)–
(7.88) (convergence for the stochastic integral (7.85) follows from (7.111) (see
Theorem 1 in [196] or [182])).

Using the Itô formula, we obtain w. p. 1 [183]

J2[B(Z)]T,t =

T∫
t

(
T

2
− s+

t

2

)
AB(Z)dWs,
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J3[B(Z), F (Z)]T,t =

T∫
t

(s− t)B′(Z)

(
AZ + F (Z)

)
dWs.

Suppose that

M

{∥∥∥∥B′(Z)

(
AZ + F (Z)

)
Q−α

∥∥∥∥2
LHS(U0,H)

}
<∞,

M

{∥∥∥∥AB(Z)Q−α
∥∥∥∥2
LHS(U0,H)

}
<∞

for some α > 0.

Then by analogy with (7.111) we get

M


∥∥∥∥∥J2[B(Z)]T,t − J2[B(Z)]MT,t

∥∥∥∥∥
2

H

 ≤

≤ C19(T − t)3

(
sup

i∈J\JM
λi

)2α

,

M


∥∥∥∥∥J3[B(Z), F (Z)]T,t − J3[B(Z), F (Z)]MT,t

∥∥∥∥∥
2

H

 ≤

≤ C20(T − t)3

(
sup

i∈J\JM
λi

)2α

,

where J2[B(Z)]MT,t, J3[B(Z), F (Z)]MT,t are defined by (7.92), (7.93).

Moreover, under the conditions of Theorem 7.3 we obtain for some α > 0

M


∥∥∥∥∥J4[B(Z), F (Z)]T,t − J4[B(Z), F (Z)]MT,t

∥∥∥∥∥
2

H

 =

= M


∥∥∥∥∥∥

T∫
t

F ′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

) dt2

∥∥∥∥∥∥
2

H

 ≤
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≤ (T − t)

T∫
t

M


∥∥∥∥∥∥F ′(Z)

 t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

H

 dt2 ≤

≤ C21(T − t)

T∫
t

M


∥∥∥∥∥∥

t2∫
t

B(Z)d
(
Wt1 −WM

t1

)∥∥∥∥∥∥
2

H

 dt2 ≤

≤ C21(T − t)

(
sup

i∈J\JM
λi

)2α T∫
t

t2∫
t

M

{∥∥∥∥B(Z)Q−α
∥∥∥∥2
LHS(U0,H)

}
dt1dt2 ≤

≤ C22(T − t)3

(
sup

i∈J\JM
λi

)2α

,

where J4[B(Z), F (Z)]MT,t is defined by (7.94).
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Epilogue

The results presented in this book were developed [53], [54] in the form of
a software package in the Python programming language that implements the
numerical methods (4.79)–(4.83), (4.88)–(4.92) (see Chapter 4) with the orders
1.0, 1.5, 2.0, 2.5, and 3.0 of strong convergence based on the unified Taylor–Itô
and Taylor–Stratonovich expansions. At that for the numerical simulation of
iterated Itô and Stratonovich stochastic integrals of multiplicities 1 to 6 we used
[53], [54] the formulas from Sect. 5.1, i.e. method based on Theorem 1.1 and
multiple Fourier–Legendre series. Note that in [53], [54] we used the database
with 270,000 exactly calculated Fourier–Legendre coefficients.

Using computational experiments it was shown in [55], [56] (also see
Sect. 5.4) that in most cases all the exact formulas from Sect. 1.2.3 for the
mean-square approximation errors of iterated Itô stochastic integarls can be
replaced by the formula (1.81) for k = 1, . . . , 5. This allows us to neglect the
multiplier factor k! (see the formula (1.129)). As a result, the computational
costs for the approximation of iterated Itô stochastic integrals are significantly
reduced. For the same reason, we can replace the multiplier factor (k!)2 by k!
in the formula (7.32) in practical calculations.

Iterated stochastic integrals are a fundamental tool for describing and study-
ing the dynamics of various types of stochastic equations. In recent years and
decades, numerical methods of high orders of accuracy have been constructed
using iterated stochastic integrals not only for Itô SDEs, but also for SDEs
with jumps [93], SPDEs with multiplicative trace class noise [182], [183], [187],
McKean SDEs [197], SDEs with switchings [198], mean-field SDEs [199], Itô–
Volterra SDEs [187], etc.
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[111] Major, P. The theory of Wiener–Itô integrals in vector valued Gaussian stationary random
fields. Part I. Moscow Mathematical Journal, 20, 4 (2020), 749-812.
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[224] Mrongowius, J, Rößler, A. On the approximation and simulation of iterated stochastic
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